ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
0ba8a671-bd6a-4936-ab30-7569bb8b140f
cpp
google/tensorstore
proto_binder
tensorstore/proto/proto_binder.cc
tensorstore/proto/proto_binder_test.cc
#include "tensorstore/proto/proto_binder.h" #include <string> #include <type_traits> #include <utility> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" #include "google/protobuf/text_format.h" #include "google/protobuf/util/json_util.h" #include "tensorstore/internal/json/value_as.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/proto/proto_util.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_json_binding { absl::Status JsonProtoBinderBase::operator()(std::true_type , const NoOptions& options, google::protobuf::Message* obj, ::nlohmann::json* j) const { if (!j->template get_ptr<::nlohmann::json::object_t*>()) { return internal_json::ExpectedError(*j, "object"); } std::string json_ascii = j->dump(); auto status = google::protobuf::util::JsonStringToMessage(json_ascii, obj); if (status.ok()) { return absl::OkStatus(); } return absl::InvalidArgumentError(tensorstore::StrCat( "Expected JSON protocol buffer ", obj->GetDescriptor()->name(), " object, but received ", j->dump(), " with error ", std::string_view(status.message().data(), status.message().size()))); } absl::Status JsonProtoBinderBase::operator()(std::false_type , const NoOptions& options, const google::protobuf::Message* obj, ::nlohmann::json* j) const { std::string json_ascii; auto status = google::protobuf::util::MessageToJsonString(*obj, &json_ascii); if (!status.ok()) { return absl::InternalError( std::string_view(status.message().data(), status.message().size())); } auto j_parse = ::nlohmann::json::parse(json_ascii, nullptr, false); if (j_parse.template get_ptr<::nlohmann::json::object_t*>()) { *j = std::move(j_parse); return absl::OkStatus(); } return absl::InternalError("Failed to serialize field as JSON proto"); } absl::Status AsciiProtoBinderBase::operator()(std::true_type, const NoOptions& options, google::protobuf::Message* obj, ::nlohmann::json* j) const { auto* str = j->template get_ptr<const std::string*>(); if (!str) { return internal_json::ExpectedError(*j, "string"); } if (TryParseTextProto(*str, obj)) { return absl::OkStatus(); } return absl::InvalidArgumentError(tensorstore::StrCat( "Expected ASCII protocol buffer ", obj->GetDescriptor()->name(), " object, but received ", *str)); } absl::Status AsciiProtoBinderBase::operator()(std::false_type, const NoOptions& options, const google::protobuf::Message* obj, ::nlohmann::json* j) const { std::string obj_text; google::protobuf::TextFormat::PrintToString(*obj, &obj_text); *j = obj_text; return absl::OkStatus(); } } }
#include "tensorstore/proto/proto_binder.h" #include <string> #include <type_traits> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json_fwd.hpp> #include "tensorstore/json_serialization_options.h" #include "tensorstore/proto/array.pb.h" #include "tensorstore/proto/protobuf_matchers.h" namespace { using ::protobuf_matchers::EqualsProto; using ::tensorstore::JsonSerializationOptions; using ::tensorstore::internal_json_binding::AsciiProtoBinder; using ::tensorstore::internal_json_binding::JsonProtoBinder; static inline constexpr JsonProtoBinder<::tensorstore::proto::Array> ArrayJsonBinder = {}; static inline constexpr AsciiProtoBinder<::tensorstore::proto::Array> ArrayAsciiBinder = {}; constexpr const char kProto[] = R"(dtype: "int64" shape: 1 shape: 2 shape: 4 int_data: 1 int_data: 0 int_data: 2 int_data: 2 int_data: 4 int_data: 5 int_data: 6 int_data: 7 )"; TEST(ProtoBinderTest, Ascii) { JsonSerializationOptions options; ::tensorstore::proto::Array proto; ::nlohmann::json j = std::string(kProto); EXPECT_TRUE(ArrayAsciiBinder(std::true_type{}, options, &proto, &j).ok()); EXPECT_THAT(proto, EqualsProto(kProto)); ::nlohmann::json out; EXPECT_TRUE(ArrayAsciiBinder(std::false_type{}, options, &proto, &out).ok()); ASSERT_TRUE(out.get_ptr<const std::string*>()); EXPECT_EQ(*out.get_ptr<const std::string*>(), kProto); } TEST(ProtoBinderTest, Json) { JsonSerializationOptions options; ::tensorstore::proto::Array proto; ::nlohmann::json j = ::nlohmann::json{{"dtype", "int64"}, {"shape", {1, 2, 4}}, {"int_data", {1, 0, 2, 2, 4, 5, 6, 7}}}; EXPECT_TRUE(ArrayJsonBinder(std::true_type{}, options, &proto, &j).ok()); EXPECT_THAT(proto, EqualsProto(kProto)); ::nlohmann::json out; EXPECT_TRUE(ArrayJsonBinder(std::false_type{}, options, &proto, &out).ok()); ::nlohmann::json expected{ {"dtype", "int64"}, {"shape", {"1", "2", "4"}}, {"intData", {"1", "0", "2", "2", "4", "5", "6", "7"}}}; EXPECT_EQ(out, expected); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/proto/proto_binder.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/proto/proto_binder_test.cc
4f887a6430414cd6088e1743555015b10f116d50
e6a53ecf-262f-4a73-8681-729d61a7cb24
cpp
google/quiche
http_encoder
quiche/quic/core/http/http_encoder.cc
quiche/quic/core/http/http_encoder_test.cc
#include "quiche/quic/core/http/http_encoder.h" #include <algorithm> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "quiche/quic/core/crypto/quic_random.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { namespace { bool WriteFrameHeader(QuicByteCount length, HttpFrameType type, QuicDataWriter* writer) { return writer->WriteVarInt62(static_cast<uint64_t>(type)) && writer->WriteVarInt62(length); } QuicByteCount GetTotalLength(QuicByteCount payload_length, HttpFrameType type) { return QuicDataWriter::GetVarInt62Len(payload_length) + QuicDataWriter::GetVarInt62Len(static_cast<uint64_t>(type)) + payload_length; } } QuicByteCount HttpEncoder::GetDataFrameHeaderLength( QuicByteCount payload_length) { QUICHE_DCHECK_NE(0u, payload_length); return QuicDataWriter::GetVarInt62Len(payload_length) + QuicDataWriter::GetVarInt62Len( static_cast<uint64_t>(HttpFrameType::DATA)); } quiche::QuicheBuffer HttpEncoder::SerializeDataFrameHeader( QuicByteCount payload_length, quiche::QuicheBufferAllocator* allocator) { QUICHE_DCHECK_NE(0u, payload_length); QuicByteCount header_length = GetDataFrameHeaderLength(payload_length); quiche::QuicheBuffer header(allocator, header_length); QuicDataWriter writer(header.size(), header.data()); if (WriteFrameHeader(payload_length, HttpFrameType::DATA, &writer)) { return header; } QUIC_DLOG(ERROR) << "Http encoder failed when attempting to serialize data frame header."; return quiche::QuicheBuffer(); } std::string HttpEncoder::SerializeHeadersFrameHeader( QuicByteCount payload_length) { QUICHE_DCHECK_NE(0u, payload_length); QuicByteCount header_length = QuicDataWriter::GetVarInt62Len(payload_length) + QuicDataWriter::GetVarInt62Len( static_cast<uint64_t>(HttpFrameType::HEADERS)); std::string frame; frame.resize(header_length); QuicDataWriter writer(header_length, frame.data()); if (WriteFrameHeader(payload_length, HttpFrameType::HEADERS, &writer)) { return frame; } QUIC_DLOG(ERROR) << "Http encoder failed when attempting to serialize headers " "frame header."; return {}; } std::string HttpEncoder::SerializeSettingsFrame(const SettingsFrame& settings) { QuicByteCount payload_length = 0; std::vector<std::pair<uint64_t, uint64_t>> ordered_settings{ settings.values.begin(), settings.values.end()}; std::sort(ordered_settings.begin(), ordered_settings.end()); for (const auto& p : ordered_settings) { payload_length += QuicDataWriter::GetVarInt62Len(p.first); payload_length += QuicDataWriter::GetVarInt62Len(p.second); } QuicByteCount total_length = GetTotalLength(payload_length, HttpFrameType::SETTINGS); std::string frame; frame.resize(total_length); QuicDataWriter writer(total_length, frame.data()); if (!WriteFrameHeader(payload_length, HttpFrameType::SETTINGS, &writer)) { QUIC_DLOG(ERROR) << "Http encoder failed when attempting to serialize " "settings frame header."; return {}; } for (const auto& p : ordered_settings) { if (!writer.WriteVarInt62(p.first) || !writer.WriteVarInt62(p.second)) { QUIC_DLOG(ERROR) << "Http encoder failed when attempting to serialize " "settings frame payload."; return {}; } } return frame; } std::string HttpEncoder::SerializeGoAwayFrame(const GoAwayFrame& goaway) { QuicByteCount payload_length = QuicDataWriter::GetVarInt62Len(goaway.id); QuicByteCount total_length = GetTotalLength(payload_length, HttpFrameType::GOAWAY); std::string frame; frame.resize(total_length); QuicDataWriter writer(total_length, frame.data()); if (WriteFrameHeader(payload_length, HttpFrameType::GOAWAY, &writer) && writer.WriteVarInt62(goaway.id)) { return frame; } QUIC_DLOG(ERROR) << "Http encoder failed when attempting to serialize goaway frame."; return {}; } std::string HttpEncoder::SerializePriorityUpdateFrame( const PriorityUpdateFrame& priority_update) { QuicByteCount payload_length = QuicDataWriter::GetVarInt62Len(priority_update.prioritized_element_id) + priority_update.priority_field_value.size(); QuicByteCount total_length = GetTotalLength( payload_length, HttpFrameType::PRIORITY_UPDATE_REQUEST_STREAM); std::string frame; frame.resize(total_length); QuicDataWriter writer(total_length, frame.data()); if (WriteFrameHeader(payload_length, HttpFrameType::PRIORITY_UPDATE_REQUEST_STREAM, &writer) && writer.WriteVarInt62(priority_update.prioritized_element_id) && writer.WriteBytes(priority_update.priority_field_value.data(), priority_update.priority_field_value.size())) { return frame; } QUIC_DLOG(ERROR) << "Http encoder failed when attempting to serialize " "PRIORITY_UPDATE frame."; return {}; } std::string HttpEncoder::SerializeAcceptChFrame( const AcceptChFrame& accept_ch) { QuicByteCount payload_length = 0; for (const auto& entry : accept_ch.entries) { payload_length += QuicDataWriter::GetVarInt62Len(entry.origin.size()); payload_length += entry.origin.size(); payload_length += QuicDataWriter::GetVarInt62Len(entry.value.size()); payload_length += entry.value.size(); } QuicByteCount total_length = GetTotalLength(payload_length, HttpFrameType::ACCEPT_CH); std::string frame; frame.resize(total_length); QuicDataWriter writer(total_length, frame.data()); if (!WriteFrameHeader(payload_length, HttpFrameType::ACCEPT_CH, &writer)) { QUIC_DLOG(ERROR) << "Http encoder failed to serialize ACCEPT_CH frame header."; return {}; } for (const auto& entry : accept_ch.entries) { if (!writer.WriteStringPieceVarInt62(entry.origin) || !writer.WriteStringPieceVarInt62(entry.value)) { QUIC_DLOG(ERROR) << "Http encoder failed to serialize ACCEPT_CH frame payload."; return {}; } } return frame; } std::string HttpEncoder::SerializeOriginFrame(const OriginFrame& origin) { QuicByteCount payload_length = 0; for (const std::string& entry : origin.origins) { constexpr QuicByteCount kLengthFieldOverhead = 2; payload_length += kLengthFieldOverhead + entry.size(); } QuicByteCount total_length = GetTotalLength(payload_length, HttpFrameType::ORIGIN); std::string frame; frame.resize(total_length); QuicDataWriter writer(total_length, frame.data()); if (!WriteFrameHeader(payload_length, HttpFrameType::ORIGIN, &writer)) { QUIC_DLOG(ERROR) << "Http encoder failed to serialize ORIGIN frame header."; return {}; } for (const std::string& entry : origin.origins) { if (!writer.WriteStringPiece16(entry)) { QUIC_DLOG(ERROR) << "Http encoder failed to serialize ACCEPT_CH frame payload."; return {}; } } return frame; } std::string HttpEncoder::SerializeGreasingFrame() { uint64_t frame_type; QuicByteCount payload_length; std::string payload; if (!GetQuicFlag(quic_enable_http3_grease_randomness)) { frame_type = 0x40; payload_length = 1; payload = "a"; } else { uint32_t result; QuicRandom::GetInstance()->RandBytes(&result, sizeof(result)); frame_type = 0x1fULL * static_cast<uint64_t>(result) + 0x21ULL; payload_length = result % 4; if (payload_length > 0) { payload.resize(payload_length); QuicRandom::GetInstance()->RandBytes(payload.data(), payload_length); } } QuicByteCount total_length = QuicDataWriter::GetVarInt62Len(frame_type) + QuicDataWriter::GetVarInt62Len(payload_length) + payload_length; std::string frame; frame.resize(total_length); QuicDataWriter writer(total_length, frame.data()); bool success = writer.WriteVarInt62(frame_type) && writer.WriteVarInt62(payload_length); if (payload_length > 0) { success &= writer.WriteBytes(payload.data(), payload_length); } if (success) { return frame; } QUIC_DLOG(ERROR) << "Http encoder failed when attempting to serialize " "greasing frame."; return {}; } std::string HttpEncoder::SerializeWebTransportStreamFrameHeader( WebTransportSessionId session_id) { uint64_t stream_type = static_cast<uint64_t>(HttpFrameType::WEBTRANSPORT_STREAM); QuicByteCount header_length = QuicDataWriter::GetVarInt62Len(stream_type) + QuicDataWriter::GetVarInt62Len(session_id); std::string frame; frame.resize(header_length); QuicDataWriter writer(header_length, frame.data()); bool success = writer.WriteVarInt62(stream_type) && writer.WriteVarInt62(session_id); if (success && writer.remaining() == 0) { return frame; } QUIC_DLOG(ERROR) << "Http encoder failed when attempting to serialize " "WEBTRANSPORT_STREAM frame header."; return {}; } std::string HttpEncoder::SerializeMetadataFrameHeader( QuicByteCount payload_length) { QUICHE_DCHECK_NE(0u, payload_length); QuicByteCount header_length = QuicDataWriter::GetVarInt62Len(payload_length) + QuicDataWriter::GetVarInt62Len( static_cast<uint64_t>(HttpFrameType::METADATA)); std::string frame; frame.resize(header_length); QuicDataWriter writer(header_length, frame.data()); if (WriteFrameHeader(payload_length, HttpFrameType::METADATA, &writer)) { return frame; } QUIC_DLOG(ERROR) << "Http encoder failed when attempting to serialize METADATA " "frame header."; return {}; } }
#include "quiche/quic/core/http/http_encoder.h" #include <string> #include "absl/base/macros.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/simple_buffer_allocator.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace quic { namespace test { TEST(HttpEncoderTest, SerializeDataFrameHeader) { quiche::QuicheBuffer buffer = HttpEncoder::SerializeDataFrameHeader( 5, quiche::SimpleBufferAllocator::Get()); char output[] = {0x00, 0x05}; EXPECT_EQ(ABSL_ARRAYSIZE(output), buffer.size()); quiche::test::CompareCharArraysWithHexError( "DATA", buffer.data(), buffer.size(), output, ABSL_ARRAYSIZE(output)); } TEST(HttpEncoderTest, SerializeHeadersFrameHeader) { std::string header = HttpEncoder::SerializeHeadersFrameHeader( 7); char output[] = {0x01, 0x07}; quiche::test::CompareCharArraysWithHexError("HEADERS", header.data(), header.length(), output, ABSL_ARRAYSIZE(output)); } TEST(HttpEncoderTest, SerializeSettingsFrame) { SettingsFrame settings; settings.values[1] = 2; settings.values[6] = 5; settings.values[256] = 4; char output[] = {0x04, 0x07, 0x01, 0x02, 0x06, 0x05, 0x41, 0x00, 0x04}; std::string frame = HttpEncoder::SerializeSettingsFrame(settings); quiche::test::CompareCharArraysWithHexError( "SETTINGS", frame.data(), frame.length(), output, ABSL_ARRAYSIZE(output)); } TEST(HttpEncoderTest, SerializeGoAwayFrame) { GoAwayFrame goaway; goaway.id = 0x1; char output[] = {0x07, 0x1, 0x01}; std::string frame = HttpEncoder::SerializeGoAwayFrame(goaway); quiche::test::CompareCharArraysWithHexError( "GOAWAY", frame.data(), frame.length(), output, ABSL_ARRAYSIZE(output)); } TEST(HttpEncoderTest, SerializePriorityUpdateFrame) { PriorityUpdateFrame priority_update1; priority_update1.prioritized_element_id = 0x03; uint8_t output1[] = {0x80, 0x0f, 0x07, 0x00, 0x01, 0x03}; std::string frame1 = HttpEncoder::SerializePriorityUpdateFrame(priority_update1); quiche::test::CompareCharArraysWithHexError( "PRIORITY_UPDATE", frame1.data(), frame1.length(), reinterpret_cast<char*>(output1), ABSL_ARRAYSIZE(output1)); PriorityUpdateFrame priority_update2; priority_update2.prioritized_element_id = 0x05; priority_update2.priority_field_value = "foo"; uint8_t output2[] = {0x80, 0x0f, 0x07, 0x00, 0x04, 0x05, 0x66, 0x6f, 0x6f}; std::string frame2 = HttpEncoder::SerializePriorityUpdateFrame(priority_update2); quiche::test::CompareCharArraysWithHexError( "PRIORITY_UPDATE", frame2.data(), frame2.length(), reinterpret_cast<char*>(output2), ABSL_ARRAYSIZE(output2)); } TEST(HttpEncoderTest, SerializeEmptyOriginFrame) { OriginFrame frame; uint8_t expected[] = {0x0C, 0x00}; std::string output = HttpEncoder::SerializeOriginFrame(frame); quiche::test::CompareCharArraysWithHexError( "ORIGIN", output.data(), output.length(), reinterpret_cast<char*>(expected), ABSL_ARRAYSIZE(expected)); } TEST(HttpEncoderTest, SerializeOriginFrame) { OriginFrame frame; frame.origins = {"foo", "bar"}; uint8_t expected[] = {0x0C, 0x0A, 0x00, 0x003, 0x66, 0x6f, 0x6f, 0x00, 0x003, 0x62, 0x61, 0x72}; std::string output = HttpEncoder::SerializeOriginFrame(frame); quiche::test::CompareCharArraysWithHexError( "ORIGIN", output.data(), output.length(), reinterpret_cast<char*>(expected), ABSL_ARRAYSIZE(expected)); } TEST(HttpEncoderTest, SerializeAcceptChFrame) { AcceptChFrame accept_ch; uint8_t output1[] = {0x40, 0x89, 0x00}; std::string frame1 = HttpEncoder::SerializeAcceptChFrame(accept_ch); quiche::test::CompareCharArraysWithHexError( "ACCEPT_CH", frame1.data(), frame1.length(), reinterpret_cast<char*>(output1), ABSL_ARRAYSIZE(output1)); accept_ch.entries.push_back({"foo", "bar"}); uint8_t output2[] = {0x40, 0x89, 0x08, 0x03, 0x66, 0x6f, 0x6f, 0x03, 0x62, 0x61, 0x72}; std::string frame2 = HttpEncoder::SerializeAcceptChFrame(accept_ch); quiche::test::CompareCharArraysWithHexError( "ACCEPT_CH", frame2.data(), frame2.length(), reinterpret_cast<char*>(output2), ABSL_ARRAYSIZE(output2)); } TEST(HttpEncoderTest, SerializeWebTransportStreamFrameHeader) { WebTransportSessionId session_id = 0x17; char output[] = {0x40, 0x41, 0x17}; std::string frame = HttpEncoder::SerializeWebTransportStreamFrameHeader(session_id); quiche::test::CompareCharArraysWithHexError("WEBTRANSPORT_STREAM", frame.data(), frame.length(), output, sizeof(output)); } TEST(HttpEncoderTest, SerializeMetadataFrameHeader) { std::string frame = HttpEncoder::SerializeMetadataFrameHeader( 7); char output[] = {0x40, 0x4d, 0x07}; quiche::test::CompareCharArraysWithHexError( "METADATA", frame.data(), frame.length(), output, ABSL_ARRAYSIZE(output)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/http_encoder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/http_encoder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
2dfa250a-7737-404a-b9d5-dbff2dca84a2
cpp
tensorflow/tensorflow
task
tensorflow/lite/core/async/c/task.cc
tensorflow/lite/core/async/c/task_test.cc
#include "tensorflow/lite/core/async/c/task.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/task_internal.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" extern "C" { TfLiteStatus TfLiteExecutionTaskSetBuffer(TfLiteExecutionTask* task, TfLiteIoType io_type, const char* tensor_signature_name, TfLiteBufferHandle handle) { if (task == nullptr || task->task == nullptr || tensor_signature_name == nullptr) return kTfLiteError; return task->task->SetBufferHandle(io_type, tensor_signature_name, handle); } TfLiteStatus TfLiteExecutionTaskSetBufferByIndex(TfLiteExecutionTask* task, int tensor_index, TfLiteBufferHandle handle) { if (task == nullptr || task->task == nullptr) return kTfLiteError; return task->task->SetBufferHandle(tensor_index, handle); } TfLiteStatus TfLiteExecutionTaskSetSync(TfLiteExecutionTask* task, TfLiteIoType io_type, const char* tensor_signature_name, TfLiteSynchronization* sync) { if (task == nullptr || task->task == nullptr || tensor_signature_name == nullptr) return kTfLiteError; return task->task->SetSynchronization(io_type, tensor_signature_name, sync); } TfLiteStatus TfLiteExecutionTaskSetSyncByIndex(TfLiteExecutionTask* task, int tensor_index, TfLiteSynchronization* sync) { if (task == nullptr || task->task == nullptr) return kTfLiteError; return task->task->SetSynchronization(tensor_index, sync); } TfLiteBufferHandle TfLiteExecutionTaskGetBufferByName( const TfLiteExecutionTask* task, TfLiteIoType io_type, const char* tensor_signature_name) { if (task == nullptr || task->task == nullptr || tensor_signature_name == nullptr) return kTfLiteNullBufferHandle; return task->task->GetBufferHandle(io_type, tensor_signature_name); } TfLiteSynchronization* TfLiteExecutionTaskGetSyncByName( const TfLiteExecutionTask* task, TfLiteIoType io_type, const char* tensor_signature_name) { if (task == nullptr || task->task == nullptr || tensor_signature_name == nullptr) return nullptr; return task->task->GetSynchronization(io_type, tensor_signature_name); } TfLiteBufferHandle TfLiteExecutionTaskGetBufferByIndex( const TfLiteExecutionTask* task, int tensor_index) { if (task == nullptr || task->task == nullptr) return kTfLiteNullBufferHandle; return task->task->GetBufferHandle(tensor_index); } TfLiteSynchronization* TfLiteExecutionTaskGetSyncByIndex( const TfLiteExecutionTask* task, int tensor_index) { if (task == nullptr || task->task == nullptr) return nullptr; return task->task->GetSynchronization(tensor_index); } void* TfLiteExecutionTaskGetDelegateExecutionData( const TfLiteExecutionTask* task, TfLiteAsyncKernel* kernel) { if (task == nullptr || task->task == nullptr) return nullptr; return task->task->GetDelegateExecutionData(kernel); } void TfLiteExecutionTaskSetDelegateExecutionData(TfLiteExecutionTask* task, TfLiteAsyncKernel* kernel, void* data) { if (task == nullptr || task->task == nullptr) return; task->task->SetDelegateExecutionData(kernel, data); } TfLiteStatus TfLiteExecutionTaskGetStatus(const TfLiteExecutionTask* task) { if (task == nullptr || task->task == nullptr) return kTfLiteError; return task->task->Status(); } void TfLiteExecutionTaskSetStatus(TfLiteExecutionTask* task, TfLiteStatus status) { if (task == nullptr || task->task == nullptr) return; task->task->SetStatus(status); } }
#include "tensorflow/lite/core/async/c/task.h" #include <gtest/gtest.h> #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/async/task_internal.h" #include "tensorflow/lite/core/c/common.h" namespace { class TfLiteExecutionTaskTest : public ::testing::Test { protected: void SetUp() override { input_names_["x"] = 1; input_names_["y"] = 2; output_names_["a"] = 3; task_.task->SetInputNameMap(&input_names_); task_.task->SetOutputNameMap(&output_names_); } TfLiteExecutionTask* task() { return &task_; } protected: tflite::async::ExecutionTask::TensorNameMapT input_names_; tflite::async::ExecutionTask::TensorNameMapT output_names_; TfLiteExecutionTask task_; }; TEST_F(TfLiteExecutionTaskTest, BasicTest) { auto* sync = TfLiteSynchronizationCreate(); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeInput, "x", 42)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeInput, "y", 43)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeOutput, "a", 44)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetSync(task(), kTfLiteIoTypeInput, "x", sync)); EXPECT_EQ( 42, TfLiteExecutionTaskGetBufferByName(task(), kTfLiteIoTypeInput, "x")); EXPECT_EQ( 43, TfLiteExecutionTaskGetBufferByName(task(), kTfLiteIoTypeInput, "y")); EXPECT_EQ( 44, TfLiteExecutionTaskGetBufferByName(task(), kTfLiteIoTypeOutput, "a")); EXPECT_EQ(sync, TfLiteExecutionTaskGetSyncByName(task(), kTfLiteIoTypeInput, "x")); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByName(task(), kTfLiteIoTypeInput, "y")); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByName(task(), kTfLiteIoTypeOutput, "a")); TfLiteSynchronizationDelete(sync); } TEST_F(TfLiteExecutionTaskTest, BasicTestByTensorIndex) { auto* sync = TfLiteSynchronizationCreate(); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeInput, "x", 42)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeInput, "y", 43)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeOutput, "a", 44)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetSync(task(), kTfLiteIoTypeInput, "x", sync)); EXPECT_EQ(42, TfLiteExecutionTaskGetBufferByIndex(task(), 1)); EXPECT_EQ(43, TfLiteExecutionTaskGetBufferByIndex(task(), 2)); EXPECT_EQ(44, TfLiteExecutionTaskGetBufferByIndex(task(), 3)); EXPECT_EQ(sync, TfLiteExecutionTaskGetSyncByIndex(task(), 1)); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByIndex(task(), 2)); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByIndex(task(), 3)); TfLiteSynchronizationDelete(sync); } TEST_F(TfLiteExecutionTaskTest, NullTest) { EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskSetBuffer(nullptr, kTfLiteIoTypeInput, "x", 42)); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskSetSync( nullptr, kTfLiteIoTypeInput, "x", nullptr)); EXPECT_EQ(kTfLiteNullBufferHandle, TfLiteExecutionTaskGetBufferByName( nullptr, kTfLiteIoTypeOutput, "a")); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByName(nullptr, kTfLiteIoTypeInput, "x")); EXPECT_EQ(kTfLiteNullBufferHandle, TfLiteExecutionTaskGetBufferByIndex(nullptr, 3)); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByIndex(nullptr, 3)); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskGetStatus(nullptr)); TfLiteExecutionTaskSetStatus(nullptr, kTfLiteOk); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskSetBufferByIndex(nullptr, 0, 0)); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskSetSyncByIndex(nullptr, 0, nullptr)); } TEST_F(TfLiteExecutionTaskTest, StatusTest) { EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskGetStatus(task())); TfLiteExecutionTaskSetStatus(task(), kTfLiteError); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskGetStatus(task())); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/c/task.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/async/c/task_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
256c9467-813a-47bb-bf44-f7c554ce6472
cpp
tensorflow/tensorflow
encapsulate_subgraphs_pass
tensorflow/compiler/jit/encapsulate_subgraphs_pass.cc
tensorflow/compiler/jit/encapsulate_subgraphs_pass_test.cc
#include "tensorflow/compiler/jit/encapsulate_subgraphs_pass.h" #include <functional> #include <memory> #include <numeric> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/mark_for_compilation_pass.h" #include "tensorflow/compiler/jit/shape_inference_helpers.h" #include "tensorflow/compiler/jit/xla_cluster_util.h" #include "tensorflow/compiler/tf2xla/const_analysis.h" #include "xla/service/graphcycles/graphcycles.h" #include "xla/status_macros.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/common_runtime/shape_refiner.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/control_flow.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/graph/tensor_id.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { const char* const kXlaCompiledKernelAttr = "_XlaCompiledKernel"; const char* const kXlaNumConstantArgsAttr = "_XlaNumConstantArgs"; const char* const kXlaNumResourceArgsAttr = "_XlaNumResourceArgs"; const char* const kXlaHostTransferSequencerAttr = "_xla_host_transfer_sequencer"; const char* const kXlaHasReferenceVarsAttr = "_XlaHasReferenceVars"; namespace { bool AreAllParentsGuaranteedConst( const Node& n, const absl::flat_hash_set<const Node*>& runtime_const_nodes) { if (n.type_string() == "GuaranteeConst") { return true; } bool all_parents_const = true; bool atleast_one_non_control_edge = false; for (const Edge* in : n.in_edges()) { atleast_one_non_control_edge = atleast_one_non_control_edge || !in->IsControlEdge(); if (!in->IsControlEdge() && runtime_const_nodes.count(in->src()) == 0) { all_parents_const = false; break; } } return all_parents_const && atleast_one_non_control_edge; } void MarkGuaranteedConstants( const Graph& graph, const std::vector<std::pair<const Node*, Node*>>& src_arg_pairs) { absl::flat_hash_set<const Node*> guaranteed_const_nodes; std::vector<const Node*> srcs; srcs.reserve(src_arg_pairs.size()); for (const auto& src_arg : src_arg_pairs) { srcs.push_back(src_arg.first); } ReverseDFSFrom( graph, srcs, nullptr, [&guaranteed_const_nodes](const Node* n) { if (AreAllParentsGuaranteedConst(*n, guaranteed_const_nodes)) { guaranteed_const_nodes.insert(n); } }); for (auto& src_arg : src_arg_pairs) { if (guaranteed_const_nodes.count(src_arg.first) != 0) { VLOG(1) << "Guaranteed const found: " << src_arg.first->DebugString(); src_arg.second->AddAttr("_is_guaranteed_constant", true); } } } struct OutputInputTensorPairHasher { uint64 operator()(std::pair<OutputTensor, InputTensor> const& s) const { return Hash64Combine(OutputTensor::Hash()(s.first), InputTensor::Hash()(s.second)); } }; static const char* const kArgOp = "_Arg"; static const char* const kRetValOp = "_Retval"; class Encapsulator { public: Encapsulator(string group_attribute, Graph const* graph_in) : group_attribute_(std::move(group_attribute)), graph_in_(graph_in) {} Status SplitIntoSubgraphs(FunctionLibraryDefinition* library); Status BuildFunctionDefs(const RewriteSubgraphFn& rewrite_subgraph_fn, bool reuse_existing_functions, FunctionLibraryDefinition* library); Status BuildOutputGraph(Graph* graph_out, FunctionLibraryDefinition* library); private: class Subgraph { public: Node* MakeNodeImage(const Graph* graph_in, Node* node); Graph* GetGraph() const; Status BuildFunctionDef(const string& name_in, const RewriteSubgraphFn& rewrite_subgraph_fn, bool reuse_existing_functions, FunctionLibraryDefinition* library); Status AddFunctionCallNode( const absl::flat_hash_map<const Node*, Node*>& node_images, Graph* graph_out); Node* GetCallNode() const; int GetArgIndexForEdge(const Edge* edge) const; int GetResultIndexForEdge(const Edge* edge) const; Status RecordArg(const Edge* edge, const absl::flat_hash_map<const Node*, Node*>& node_images, std::vector<std::pair<const Node*, Node*>>* src_arg_pairs); Status RecordControlResult( const Edge* edge, const absl::flat_hash_map<const Node*, Node*>& node_images); Status RecordResult( const Edge* edge, const absl::flat_hash_map<const Node*, Node*>& node_images); Status MakeSequencingNode(const string& subgraph_name, Graph* graph_out); void ConnectSequencerToCallNode(Graph* graph_out); Status ReplaceFunctionDef(FunctionLibraryDefinition* library); private: std::unique_ptr<Graph> graph_; string device_; NodeDef call_node_def_; string function_def_name_; Node* host_compute_key_placeholder_ = nullptr; Node* call_node_; absl::flat_hash_map<OutputTensor, int, OutputTensor::Hash> args_by_src_; absl::flat_hash_map<InputTensor, int, InputTensor::Hash> args_by_dst_; std::vector<Node*> args_; absl::flat_hash_map<OutputTensor, int, OutputTensor::Hash> results_; absl::flat_hash_set<string> control_output_nodes_; Node* sequencer_ = nullptr; }; Status GetFunctionNameAttr(Node const* node, string* attr) const; Status CopySubgraphEdges( const absl::flat_hash_map<const Node*, Node*>& node_images, std::vector<std::pair<const Node*, Node*>>* src_arg_pairs); Status CopySubgraphNodes( absl::flat_hash_map<const Node*, Node*>* node_images); Status CopyNodesToOutputGraph( Graph* graph_out, absl::flat_hash_map<const Node*, Node*>* node_images); Status AddFunctionCallNodes( const absl::flat_hash_map<const Node*, Node*>& node_images, Graph* graph_out); Status FindOutputImageOfEdgeSrc( const string& src_func_id, const string& dst_func_id, const absl::flat_hash_map<const Node*, Node*>& node_images, const Node* original_src_node, Node** src_image); int FindOutputSlotOfEdgeSrc(const string& src_func_id, const string& dst_func_id, const Edge* edge); Status FindOutputImageOfEdgeDst( const string& src_func_id, const string& dst_func_id, const absl::flat_hash_map<const Node*, Node*>& node_images, const Node* original_dst_node, Node** dst_image); int FindOutputSlotOfEdgeDst(const string& src_func_id, const string& dst_func_id, const Edge* edge); Status CopyEdgeToOutputGraph( const Edge* edge, const string& src_func_id, const string& dst_func_id, const absl::flat_hash_map<const Node*, Node*>& node_images, Graph* graph_out, absl::flat_hash_set<std::pair<OutputTensor, InputTensor>, OutputInputTensorPairHasher>* edges_added); Status AddEdgesToOutputGraph( const absl::flat_hash_map<const Node*, Node*>& node_images, Graph* graph_out); Status MakePrunedGraphCopyAndInline( const Graph& graph, const std::vector<Node*>& sink_nodes, std::unique_ptr<Graph>* pruned_graph, absl::flat_hash_map<const Node*, Node*>* node_images, FunctionLibraryDefinition* library); const string group_attribute_; const Graph* graph_in_; absl::flat_hash_map<string, Subgraph> subgraphs_; Encapsulator(const Encapsulator&) = delete; void operator=(const Encapsulator&) = delete; }; namespace { void TopologicalClusterSort( const absl::flat_hash_set<string>& clusters, const absl::flat_hash_set<string>& has_successors, const absl::flat_hash_map<string, absl::flat_hash_set<string>>& ancestors, std::vector<string>* sorted) { sorted->clear(); struct Work { string cluster; bool leave; }; std::set<string> visited; std::vector<Work> stack; for (const auto& cluster : clusters) { if (has_successors.find(cluster) == has_successors.end()) { stack.push_back({cluster, false}); } } while (!stack.empty()) { const Work item = stack.back(); stack.pop_back(); if (item.leave) { sorted->push_back(item.cluster); continue; } if (visited.find(item.cluster) != visited.end()) continue; visited.insert(item.cluster); stack.push_back({item.cluster, true}); const auto& iter = ancestors.find(item.cluster); if (iter != ancestors.end()) { for (const auto& ancestor : iter->second) { stack.push_back({ancestor, false}); } } } CHECK(sorted->size() == clusters.size()); } } Node* Encapsulator::Subgraph::GetCallNode() const { return call_node_; } int Encapsulator::Subgraph::GetArgIndexForEdge(const Edge* edge) const { return args_by_dst_.at(InputTensor(edge->dst(), edge->dst_input())); } int Encapsulator::Subgraph::GetResultIndexForEdge(const Edge* edge) const { return results_.at(OutputTensor(edge->src(), edge->src_output())); } Node* Encapsulator::Subgraph::MakeNodeImage(const Graph* graph_in, Node* node) { if (!graph_) { graph_.reset(new Graph(graph_in->op_registry())); graph_->set_versions(graph_in->versions()); } if (device_.empty()) { device_ = node->assigned_device_name().empty() ? node->requested_device() : node->assigned_device_name(); } return graph_->CopyNode(node); } Graph* Encapsulator::Subgraph::GetGraph() const { return graph_.get(); } Status Encapsulator::Subgraph::RecordArg( const Edge* edge, const absl::flat_hash_map<const Node*, Node*>& node_images, std::vector<std::pair<const Node*, Node*>>* src_arg_pairs) { Node* src_node = edge->src(); int src_slot = edge->src_output(); absl::flat_hash_map<OutputTensor, int, OutputTensor::Hash>::iterator iter; bool inserted; std::tie(iter, inserted) = args_by_src_.emplace( OutputTensor(src_node, src_slot), args_by_src_.size()); int arg_index = iter->second; if (inserted) { NodeDef arg_def; NodeDefBuilder builder( absl::StrCat(src_node->name(), "_", src_slot, "_arg"), kArgOp, NodeDebugInfo(src_node->def())); DataType dtype = edge->dst()->input_type(edge->dst_input()); builder.Attr("T", dtype); builder.Attr("index", arg_index); Status s = builder.Finalize(&arg_def); if (!s.ok()) return s; TF_ASSIGN_OR_RETURN(Node * arg, graph_->AddNode(arg_def)); src_arg_pairs->push_back({src_node, arg}); args_.push_back(arg); } Node* dst_node = edge->dst(); Node* dst_image = node_images.at(dst_node); int dst_slot = edge->dst_input(); args_by_dst_[InputTensor(dst_node, dst_slot)] = arg_index; graph_->AddEdge(args_[arg_index], 0, dst_image, dst_slot); return absl::OkStatus(); } Status Encapsulator::Subgraph::RecordControlResult( const Edge* edge, const absl::flat_hash_map<const Node*, Node*>& node_images) { Node* src_node = edge->src(); Node* src_image = node_images.at(src_node); control_output_nodes_.insert(src_image->name()); return absl::OkStatus(); } Status Encapsulator::Subgraph::RecordResult( const Edge* edge, const absl::flat_hash_map<const Node*, Node*>& node_images) { Node* src_node = edge->src(); Node* src_image = node_images.at(src_node); int src_slot = edge->src_output(); absl::flat_hash_map<OutputTensor, int, OutputTensor::Hash>::iterator iter; bool inserted; std::tie(iter, inserted) = results_.emplace(OutputTensor(src_node, src_slot), results_.size()); int ret_index = iter->second; if (inserted) { NodeDef ret_def; NodeDefBuilder builder( absl::StrCat(src_node->name(), "_", src_slot, "_retval"), kRetValOp, NodeDebugInfo(src_node->def())); DataType dtype = src_node->output_type(src_slot); builder.Attr("T", dtype); builder.Attr("index", ret_index); builder.Input(src_image->name(), src_slot, dtype); Status s = builder.Finalize(&ret_def); if (!s.ok()) return s; TF_ASSIGN_OR_RETURN(Node * ret, graph_->AddNode(ret_def)); graph_->AddEdge(src_image, src_slot, ret, 0); } return absl::OkStatus(); } Status Encapsulator::Subgraph::MakeSequencingNode(const string& subgraph_name, Graph* graph_out) { if (sequencer_ == nullptr) { NodeDef seq_def; NodeDefBuilder builder(absl::StrCat(subgraph_name, "_sequencer"), "NoOp"); builder.Attr(kXlaHostTransferSequencerAttr, subgraph_name); builder.Device(device_); Status s = builder.Finalize(&seq_def); if (!s.ok()) return s; TF_ASSIGN_OR_RETURN(sequencer_, graph_out->AddNode(seq_def)); } return absl::OkStatus(); } void Encapsulator::Subgraph::ConnectSequencerToCallNode(Graph* graph_out) { if (sequencer_ != nullptr) { VLOG(2) << "ConnectSequencerToCallNode"; graph_out->AddControlEdge(sequencer_, call_node_, true); } } Status Encapsulator::Subgraph::BuildFunctionDef( const string& name_in, const RewriteSubgraphFn& rewrite_subgraph_fn, bool reuse_existing_functions, FunctionLibraryDefinition* library) { string name = name_in; call_node_def_.set_op(name); call_node_def_.set_name(name); call_node_def_.set_device(device_); if (rewrite_subgraph_fn) { std::vector<OutputTensor> arg_source_tensors(args_by_src_.size()); for (const auto& arg : args_by_src_) { arg_source_tensors.at(arg.second) = arg.first; } std::vector<int> input_permutation(args_by_src_.size()); std::iota(input_permutation.begin(), input_permutation.end(), 0); std::vector<int> output_permutation(results_.size()); std::iota(output_permutation.begin(), output_permutation.end(), 0); TF_RETURN_IF_ERROR( rewrite_subgraph_fn(arg_source_tensors, &graph_, &input_permutation, &output_permutation, &call_node_def_)); if (input_permutation.size() != args_by_src_.size()) { return errors::InvalidArgument("Input permutation has incorrect size."); } if (output_permutation.size() != results_.size()) { return errors::InvalidArgument("Output permutation has incorrect size."); } for (auto& arg : args_by_src_) { arg.second = input_permutation[arg.second]; } for (auto& arg : args_by_dst_) { arg.second = input_permutation[arg.second]; } for (auto& result : results_) { result.second = output_permutation[result.second]; } name = call_node_def_.op(); } function_def_name_ = name; FunctionDef fdef; auto lookup = [this](const Node* node) -> std::optional<string> { if (control_output_nodes_.contains(node->name())) { return std::make_optional(node->name()); } return std::nullopt; }; std::vector<ControlFlowInfo> dummy; TF_RETURN_IF_ERROR(BuildControlFlowInfo(graph_.get(), &dummy)); TF_RETURN_IF_ERROR(GraphToFunctionDef(*graph_, name, lookup, &fdef)); if (VLOG_IS_ON(1)) { VLOG(2) << "Build function def " << name; DumpGraphToFile(absl::StrCat("encapsulate_fdef_graph_", name), *graph_, library); DumpFunctionDefToFile(absl::StrCat("encapsulate_fdef_", name), fdef); } const FunctionDef* original_fdef = library->Find(name); if (!reuse_existing_functions || original_fdef == nullptr) { TF_RETURN_IF_ERROR(library->AddFunctionDef(fdef)); } else if (!FunctionDefsEqual(*original_fdef, fdef)) { TF_RETURN_IF_ERROR(library->ReplaceFunction(name, fdef)); } return absl::OkStatus(); } Status Encapsulator::Subgraph::ReplaceFunctionDef( FunctionLibraryDefinition* library) { const string& name = function_def_name_; FunctionDef fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*graph_, name, &fdef)); if (VLOG_IS_ON(1)) { VLOG(2) << "Replace function def " << name; DumpGraphToFile(absl::StrCat("replace_encapsulate_fdef_graph_", name), *graph_, library); DumpFunctionDefToFile(absl::StrCat("replace_encapsulate_fdef_", name), fdef); } TF_RETURN_IF_ERROR(library->ReplaceFunction(name, fdef)); return absl::OkStatus(); } Status Encapsulator::Subgraph::AddFunctionCallNode( const absl::flat_hash_map<const Node*, Node*>& node_images, Graph* graph_out) { TF_ASSIGN_OR_RETURN(call_node_, graph_out->AddNode(call_node_def_)); call_node_->set_assigned_device_name(device_); return absl::OkStatus(); } Status Encapsulator::GetFunctionNameAttr(Node const* node, string* attr) const { AttrSlice attrs = node->attrs(); attr->clear(); for (const auto& node_attr : attrs) { if (node_attr.first == group_attribute_) { TF_RETURN_IF_ERROR(AttrValueHasType(node_attr.second, "string")); *attr = node_attr.second.s(); break; } } return absl::OkStatus(); } bool IsInSubgraph(const string& func_id) { return !func_id.empty(); } Status Encapsulator::CopySubgraphNodes( absl::flat_hash_map<const Node*, Node*>* node_images) { for (Node* node : graph_in_->op_nodes()) { string func_id; TF_RETURN_IF_ERROR(GetFunctionNameAttr(node, &func_id)); if (!IsInSubgraph(func_id)) continue; Subgraph& subgraph = subgraphs_[func_id]; Node* image = subgraph.MakeNodeImage(graph_in_, node); image->ClearAttr(group_attribute_); (*node_images)[node] = image; } return absl::OkStatus(); } Status Encapsulator::CopySubgraphEdges( const absl::flat_hash_map<const Node*, Node*>& node_images, std::vector<std::pair<const Node*, Node*>>* src_arg_pairs) { for (const Edge* edge : graph_in_->edges()) { string src_func_id; TF_RETURN_IF_ERROR(GetFunctionNameAttr(edge->src(), &src_func_id)); string dst_func_id; TF_RETURN_IF_ERROR(GetFunctionNameAttr(edge->dst(), &dst_func_id)); Node* src_image = gtl::FindWithDefault(node_images, edge->src(), nullptr); Node* dst_image = gtl::FindWithDefault(node_images, edge->dst(), nullptr); if (IsInSubgraph(src_func_id) && IsInSubgraph(dst_func_id) && src_func_id == dst_func_id) { Graph* g = subgraphs_[src_func_id].GetGraph(); if (edge->IsControlEdge()) { g->AddControlEdge(src_image, dst_image, true); } else { g->AddEdge(src_image, edge->src_output(), dst_image, edge->dst_input()); } continue; } if (IsInSubgraph(src_func_id)) { if (!edge->IsControlEdge()) { DataType dtype = edge->src()->output_type(edge->src_output()); if (IsRefType(dtype)) { return errors::InvalidArgument( "Ref Tensors (e.g., Variables) are not supported as results: " "tensor ", edge->src()->name(), ":", edge->src_output()); } } Subgraph& src_subgraph = subgraphs_[src_func_id]; if (edge->IsControlEdge()) { TF_RETURN_IF_ERROR(src_subgraph.RecordControlResult(edge, node_images)); } else { TF_RETURN_IF_ERROR(src_subgraph.RecordResult(edge, node_images)); } } if (IsInSubgraph(dst_func_id)) { if (!edge->IsControlEdge()) { DataType dtype = edge->dst()->input_type(edge->dst_input()); if (IsRefType(dtype)) { return errors::InvalidArgument( "Ref Tensors (e.g., Variables) are not supported as args: " "tensor ", edge->src()->name(), ":", edge->src_output()); } } Subgraph& dst_subgraph = subgraphs_[dst_func_id]; if (!edge->IsControlEdge()) { TF_RETURN_IF_ERROR( dst_subgraph.RecordArg(edge, node_images, src_arg_pairs)); } } } return absl::OkStatus(); } Status Encapsulator::SplitIntoSubgraphs(FunctionLibraryDefinition* library) { Status s; absl::flat_hash_map<const Node*, Node*> node_images; std::vector<std::pair<const Node*, Node*>> src_arg_pairs; TF_RETURN_IF_ERROR(CopySubgraphNodes(&node_images)); TF_RETURN_IF_ERROR(CopySubgraphEdges(node_images, &src_arg_pairs)); MarkGuaranteedConstants(*graph_in_, src_arg_pairs); for (auto& entry : subgraphs_) { Subgraph& subgraph = entry.second; FixupSourceAndSinkEdges(subgraph.GetGraph()); } if (VLOG_IS_ON(1)) { for (auto& entry : subgraphs_) { DumpGraphToFile( absl::StrCat("encapsulate_subgraphs_subgraph_", entry.first), *entry.second.GetGraph(), library); } } return s; } Status Encapsulator::BuildFunctionDefs( const RewriteSubgraphFn& rewrite_subgraph_fn, bool reuse_existing_functions, FunctionLibraryDefinition* library) { for (auto& subgraph_entry : subgraphs_) { string name = subgraph_entry.first; Subgraph& subgraph = subgraph_entry.second; TF_RETURN_IF_ERROR(subgraph.BuildFunctionDef( name, rewrite_subgraph_fn, reuse_existing_functions, library)); } return absl::OkStatus(); } Status Encapsulator::CopyNodesToOutputGraph( Graph* graph_out, absl::flat_hash_map<const Node*, Node*>* node_images) { for (Node* node : graph_in_->op_nodes()) { string func_id; TF_RETURN_IF_ERROR(GetFunctionNameAttr(node, &func_id)); if (IsInSubgraph(func_id)) continue; Node* image = graph_out->CopyNode(node); (*node_images)[node] = image; } (*node_images)[graph_in_->source_node()] = graph_out->source_node(); (*node_images)[graph_in_->sink_node()] = graph_out->sink_node(); return absl::OkStatus(); } Status Encapsulator::AddFunctionCallNodes( const absl::flat_hash_map<const Node*, Node*>& node_images, Graph* graph_out) { for (auto& subgraph_entry : subgraphs_) { TF_RETURN_IF_ERROR( subgraph_entry.second.AddFunctionCallNode(node_images, graph_out)); } return absl::OkStatus(); } Status Encapsulator::FindOutputImageOfEdgeSrc( const string& src_func_id, const string& dst_func_id, const absl::flat_hash_map<const Node*, Node*>& node_images, const Node* original_src_node, Node** src_image) { if (IsInSubgraph(src_func_id)) { *src_image = subgraphs_.at(src_func_id).GetCallNode(); } else { *src_image = node_images.at(original_src_node); } return absl::OkStatus(); } int Encapsulator::FindOutputSlotOfEdgeSrc(const string& src_func_id, const string& dst_func_id, const Edge* edge) { if (IsInSubgraph(src_func_id)) { const Subgraph& src_subgraph = subgraphs_.at(src_func_id); return src_subgraph.GetResultIndexForEdge(edge); } else { return edge->src_output(); } } Status Encapsulator::FindOutputImageOfEdgeDst( const string& src_func_id, const string& dst_func_id, const absl::flat_hash_map<const Node*, Node*>& node_images, const Node* original_dst_node, Node** dst_image) { if (IsInSubgraph(dst_func_id)) { *dst_image = subgraphs_.at(dst_func_id).GetCallNode(); } else { *dst_image = node_images.at(original_dst_node); } return absl::OkStatus(); } int Encapsulator::FindOutputSlotOfEdgeDst(const string& src_func_id, const string& dst_func_id, const Edge* edge) { if (IsInSubgraph(dst_func_id)) { const Subgraph& dst_subgraph = subgraphs_.at(dst_func_id); return dst_subgraph.GetArgIndexForEdge(edge); } else { return edge->dst_input(); } } Status Encapsulator::CopyEdgeToOutputGraph( const Edge* edge, const string& src_func_id, const string& dst_func_id, const absl::flat_hash_map<const Node*, Node*>& node_images, Graph* graph_out, absl::flat_hash_set<std::pair<OutputTensor, InputTensor>, OutputInputTensorPairHasher>* edges_added) { Node* src_image; TF_RETURN_IF_ERROR(FindOutputImageOfEdgeSrc( src_func_id, dst_func_id, node_images, edge->src(), &src_image)); Node* dst_image; TF_RETURN_IF_ERROR(FindOutputImageOfEdgeDst( src_func_id, dst_func_id, node_images, edge->dst(), &dst_image)); if (edge->IsControlEdge()) { if (edges_added ->emplace(OutputTensor(src_image, -1), InputTensor(dst_image, -1)) .second) { graph_out->AddControlEdge(src_image, dst_image, true); } return absl::OkStatus(); } int src_output = FindOutputSlotOfEdgeSrc(src_func_id, dst_func_id, edge); int dst_input = FindOutputSlotOfEdgeDst(src_func_id, dst_func_id, edge); if (edges_added ->emplace(OutputTensor(src_image, src_output), InputTensor(dst_image, dst_input)) .second) { graph_out->AddEdge(src_image, src_output, dst_image, dst_input); } return absl::OkStatus(); } Status Encapsulator::AddEdgesToOutputGraph( const absl::flat_hash_map<const Node*, Node*>& node_images, Graph* graph_out) { absl::flat_hash_set<std::pair<OutputTensor, InputTensor>, OutputInputTensorPairHasher> edges_added; for (const Edge* edge : graph_in_->edges()) { string src_func_id; TF_RETURN_IF_ERROR(GetFunctionNameAttr(edge->src(), &src_func_id)); string dst_func_id; TF_RETURN_IF_ERROR(GetFunctionNameAttr(edge->dst(), &dst_func_id)); if (IsInSubgraph(src_func_id) && IsInSubgraph(dst_func_id) && src_func_id == dst_func_id) { continue; } TF_RETURN_IF_ERROR(CopyEdgeToOutputGraph( edge, src_func_id, dst_func_id, node_images, graph_out, &edges_added)); } for (auto& subgraph_entry : subgraphs_) { Subgraph& subgraph = subgraph_entry.second; subgraph.ConnectSequencerToCallNode(graph_out); } return absl::OkStatus(); } namespace { Node* AddDummyShapedNode(const Node* src_node, int src_port, const std::vector<ControlFlowInfo>& control_flow_info, const TensorShapeProto& shape, Graph* graph_out) { DataType data_type = src_node->output_type(src_port); TensorProto dummy_proto; dummy_proto.set_dtype(data_type); *dummy_proto.mutable_tensor_shape() = shape; GraphDefBuilder::Options options(graph_out, nullptr); NodeBuilder node_builder(options.GetNameForOp("KnownShape"), "Const", options.op_registry()); node_builder.Attr("dtype", data_type).Attr("value", dummy_proto); Node* node = options.FinalizeBuilder(&node_builder); while (!control_flow_info[src_node->id()].frame_name.empty()) { NodeDebugInfo debug_info(*src_node); NodeBuilder enter_builder(options.GetNameForOp("Enter"), "Enter", options.op_registry(), &debug_info); enter_builder.Attr("frame_name", control_flow_info[src_node->id()].frame_name); enter_builder.Attr("is_constant", true); enter_builder.Input(node, 0); Node* enter_node = options.FinalizeBuilder(&enter_builder); node = enter_node; src_node = control_flow_info[src_node->id()].parent_frame; } return node; } } Status Encapsulator::MakePrunedGraphCopyAndInline( const Graph& graph, const std::vector<Node*>& sink_nodes, std::unique_ptr<Graph>* pruned_graph, absl::flat_hash_map<const Node*, Node*>* node_images, FunctionLibraryDefinition* library) { pruned_graph->reset(new Graph(library)); (*pruned_graph)->set_versions(graph.versions()); ReverseDFSFrom(graph, sink_nodes, nullptr, [&](Node* n) { if (!n->IsSource()) { Node* copied = (*pruned_graph)->CopyNode(n); node_images->emplace(n, copied); } }); for (auto entry : *node_images) { const Node* orig = entry.first; Node* image = entry.second; for (const Edge* out_edge : orig->out_edges()) { auto iter = node_images->find(out_edge->dst()); if (iter != node_images->end()) { (*pruned_graph) ->AddEdge(image, out_edge->src_output(), iter->second, out_edge->dst_input()); } } } std::vector<Node*> function_nodes; for (auto node : (*pruned_graph)->nodes()) { const OpRegistrationData* op_reg_data; TF_RETURN_IF_ERROR(library->LookUp(node->type_string(), &op_reg_data)); if (op_reg_data->is_function_op) { function_nodes.push_back(node); } } for (auto node : function_nodes) { VLOG(2) << "Inlining function " << node->name(); const FunctionDef* fdef = library->Find(node->type_string()); if (fdef == nullptr) { return errors::Internal("Failed to find function ", node->type_string(), " in function library."); } std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR( FunctionDefToBodyHelper(*fdef, node->attrs(), library, &fbody)); InlineFunctionBodyOptions inline_opts; TF_RETURN_IF_ERROR(InlineFunctionBody(*library, pruned_graph->get(), node, fbody.get(), inline_opts)); } return absl::OkStatus(); } Status Encapsulator::BuildOutputGraph(Graph* graph_out, FunctionLibraryDefinition* library) { absl::flat_hash_map<const Node*, Node*> node_images; TF_RETURN_IF_ERROR(CopyNodesToOutputGraph(graph_out, &node_images)); TF_RETURN_IF_ERROR(AddFunctionCallNodes(node_images, graph_out)); TF_RETURN_IF_ERROR(AddEdgesToOutputGraph(node_images, graph_out)); return absl::OkStatus(); } } Status EncapsulateSubgraphsInFunctions( string group_attribute, const Graph& graph_in, const RewriteSubgraphFn& rewrite_subgraph_fn, bool reuse_existing_functions, std::unique_ptr<Graph>* graph_out, FunctionLibraryDefinition* library) { Encapsulator encapsulator(std::move(group_attribute), &graph_in); TF_RETURN_IF_ERROR(encapsulator.SplitIntoSubgraphs(library)); TF_RETURN_IF_ERROR(encapsulator.BuildFunctionDefs( rewrite_subgraph_fn, reuse_existing_functions, library)); std::unique_ptr<Graph> out(new Graph(library)); out->set_versions(graph_in.versions()); TF_RETURN_IF_ERROR(encapsulator.BuildOutputGraph(out.get(), library)); *graph_out = std::move(out); return absl::OkStatus(); } static Status GetArgTypes(const Graph& graph, DataTypeVector* types) { for (Node* n : graph.op_nodes()) { if (n->type_string() == kArgOp) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); const int num_types = types->size(); if (index < 0 || index >= num_types) { return errors::InvalidArgument("Invalid argument number"); } (*types)[index] = n->output_type(0); } } return absl::OkStatus(); } static Status RenumberArguments(Graph* graph, const std::vector<int>& permutation) { for (Node* n : graph->op_nodes()) { if (n->type_string() == kArgOp) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); const int permutation_size = permutation.size(); if (index < 0 || index >= permutation_size) { return errors::InvalidArgument("Invalid argument number"); } n->AddAttr("index", permutation[index]); } } return absl::OkStatus(); } Status EncapsulateSubgraphsPass::Run( const GraphOptimizationPassOptions& options) { VLOG(1) << "EncapsulateSubgraphsPass::Run"; if (VLOG_IS_ON(1)) { DumpGraphToFile("encapsulate_subgraphs_before", **options.graph, options.flib_def); } for (Node* n : (*options.graph)->nodes()) { if (n->type_string() == "TPUExecute" || n->type_string() == "TPUExecuteAndUpdateVariables") { return absl::OkStatus(); } } std::unique_ptr<Graph> graph_out; FunctionLibraryDefinition* const library = options.flib_def; SessionOptions session_options; auto* device_count = session_options.config.mutable_device_count(); device_count->insert({"CPU", 1}); std::vector<std::unique_ptr<Device>> devices; DeviceFactory* cpu_factory = DeviceFactory::GetFactory("CPU"); if (!cpu_factory) { return errors::NotFound( "CPU Factory not registered. Can't run EncapsulateSubgraphsPass"); } TF_RETURN_IF_ERROR(cpu_factory->CreateDevices( session_options, "/job:localhost/replica:0/task:0", &devices)); if (devices.empty()) { return errors::NotFound( "Failed to create a CPU device for EncapsulateSubgraphsPass"); } std::unique_ptr<DeviceMgr> device_mgr = std::make_unique<StaticDeviceMgr>(std::move(devices)); const auto* config = &options.session_options->config; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr( new ProcessFunctionLibraryRuntime( device_mgr.get(), options.session_options->env, config, TF_GRAPH_DEF_VERSION, library, config->graph_options().optimizer_options())); FunctionLibraryRuntime* flr = pflr->GetFLR("/job:localhost/replica:0/task:0/device:CPU:0"); if (flr == nullptr) { return errors::Internal( "Failed to create and retrieve function library runtime to run " "constant folding"); } auto rewrite_subgraph = [flr](const std::vector<OutputTensor>& arg_source_tensors, std::unique_ptr<Graph>* subgraph, std::vector<int>* input_permutation, std::vector<int>* output_permutation, NodeDef* node) { bool disable_constant_folding = GetBuildXlaOpsPassFlags()->tf_xla_disable_constant_folding; auto cf_consider_fn = [disable_constant_folding](const Node* n) { if (disable_constant_folding) return false; for (const auto& output_arg : n->op_def().output_arg()) { if (output_arg.type() == DT_VARIANT) { return false; } } return true; }; GraphOptimizer::Options graph_optimizer_options; graph_optimizer_options.cf_consider_fn = cf_consider_fn; OptimizeGraph(flr, subgraph, graph_optimizer_options); const int num_args = input_permutation->size(); std::vector<bool> const_args(num_args); TF_RETURN_IF_ERROR( BackwardsConstAnalysis(**subgraph, &const_args, nullptr, flr)); DataTypeVector arg_types(num_args); TF_RETURN_IF_ERROR(GetArgTypes(**subgraph, &arg_types)); const int num_consts = std::count(const_args.begin(), const_args.end(), true); const int num_resources = std::count(arg_types.begin(), arg_types.end(), DT_RESOURCE); const int num_nonconsts = num_args - num_resources - num_consts; if (num_nonconsts < 0) { return errors::Internal("num_nonconsts should be >= 0, was ", num_nonconsts); } int const_pos = 0; int arg_pos = num_consts; int resource_pos = num_consts + num_nonconsts; for (int i = 0; i < num_args; ++i) { if (const_args[i]) { if (arg_types[i] == DT_RESOURCE) { return errors::Internal( "Resource arguments cannot be constant (argument ", i, ")"); } (*input_permutation)[i] = const_pos; ++const_pos; } else if (arg_types[i] == DT_RESOURCE) { (*input_permutation)[i] = resource_pos; ++resource_pos; } else { (*input_permutation)[i] = arg_pos; ++arg_pos; } } TF_RETURN_IF_ERROR( RenumberArguments(subgraph->get(), *input_permutation)); AddNodeAttr(kXlaCompiledKernelAttr, true, node); AddNodeAttr(kXlaNumConstantArgsAttr, num_consts, node); AddNodeAttr(kXlaNumResourceArgsAttr, num_resources, node); return absl::OkStatus(); }; TF_RETURN_WITH_CONTEXT_IF_ERROR( EncapsulateSubgraphsInFunctions( kXlaClusterAttr, **options.graph, rewrite_subgraph, false, &graph_out, library), "EncapsulateSubgraphsPass failed"); if (VLOG_IS_ON(1)) { DumpGraphToFile("encapsulate_subgraphs_after", *graph_out, options.flib_def); } *options.graph = std::move(graph_out); TF_ASSIGN_OR_RETURN(absl::flat_hash_set<Node*> ref_related_nodes, GetNodesRelatedToRefVariables(**options.graph, flr)); for (Node* node : (*options.graph)->nodes()) { bool has_ref_vars = ref_related_nodes.contains(node); node->AddAttr(kXlaHasReferenceVarsAttr, has_ref_vars); VLOG(3) << "Has ref vars = " << has_ref_vars << ", node: " << node->def().DebugString(); } return absl::OkStatus(); } bool IsXlaCompiledKernel(const Node& node) { bool is_compiled = false; bool has_compilation_attr = TryGetNodeAttr(node.attrs(), kXlaCompiledKernelAttr, &is_compiled) && is_compiled; return has_compilation_attr ? is_compiled : false; } }
#include "tensorflow/compiler/jit/encapsulate_subgraphs_pass.h" #include <memory> #include <utility> #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/jit/encapsulate_util.h" #include "tensorflow/compiler/jit/extract_outside_compilation_pass.h" #include "tensorflow/compiler/jit/test_util.h" #include "tensorflow/compiler/tf2xla/side_effect_util.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/equal_graph_def.h" namespace tensorflow { namespace { const char* const kXlaHostTransferSequencerAttr = "_xla_host_transfer_sequencer"; Status AddGraphDefToFunctionLibrary(const GraphDefBuilder& graphdef_builder, const string& name_suffix, FunctionDefLibrary* library) { GraphDef graphdef; TF_RETURN_IF_ERROR(graphdef_builder.ToGraphDef(&graphdef)); std::unique_ptr<Graph> graph = std::unique_ptr<Graph>(new Graph(OpRegistry::Global())); GraphConstructorOptions opts; opts.allow_internal_ops = true; TF_RETURN_IF_ERROR(ConvertGraphDefToGraph(opts, graphdef, graph.get())); FunctionDef* fdef = library->add_function(); TF_RETURN_IF_ERROR(GraphToFunctionDef( *graph, absl::StrCat("_outside_compilation_shape_inference_", name_suffix), fdef)); return absl::OkStatus(); } template <class Tkey, class Tvalue> bool EqualProtoMap(const ::tensorflow::protobuf::Map<Tkey, Tvalue>& a, const ::tensorflow::protobuf::Map<Tkey, Tvalue>& b, const std::function<string(const Tkey&)>& key_to_string, const std::function<string(const Tvalue&)>& value_to_string, const std::function<bool(const Tkey&, const Tvalue&, const Tvalue&)>& compare, const string& map_name, string* diff) { for (const auto& elt_a : a) { const auto iter = b.find(elt_a.first); if (iter == b.end()) { if (diff) { *diff = absl::StrCat(map_name, " expected: contains element with key '", key_to_string(elt_a.first), "' got: map has no such element"); } return false; } if (!compare(elt_a.first, elt_a.second, iter->second)) { if (diff) { *diff = absl::StrCat(map_name, " expected: element with key '", key_to_string(elt_a.first), "' has value '", value_to_string(elt_a.second), "' got: '", value_to_string(iter->second), "'"); } return false; } } for (const auto& elt_b : b) { const auto iter = a.find(elt_b.first); if (iter == a.end()) { if (diff) { *diff = absl::StrCat(map_name, " got: contains element with key '", key_to_string(elt_b.first), "' expected: map has no such element"); } return false; } } return true; } bool EqualFunctionNodeDef(const NodeDef& a, const NodeDef& b, const string& diff_preamble, string* diff) { if (a.op() != b.op()) { if (diff) { *diff = absl::StrCat(diff_preamble, " mismatch for node ", a.name(), ", expected op '", a.op(), "' got '", b.op()); } return false; } if (a.device() != b.device()) { if (diff) { *diff = absl::StrCat(diff_preamble, " mismatch for node ", a.name(), ", expected device '", a.device(), "' got '", b.device()); } return false; } if (a.input_size() != b.input_size()) { if (diff) { *diff = absl::StrCat(diff_preamble, " mismatch for node ", a.name(), ", expected ", a.input_size(), " inputs got ", b.input_size(), " expected:\n", a.DebugString(), "\ngot:\n", b.DebugString()); } return false; } std::unordered_set<string> control_input_a; std::unordered_set<string> control_input_b; for (int i = 0; i < a.input_size(); ++i) { if (absl::StartsWith(a.input(i), "^")) { if (!absl::StartsWith(b.input(i), "^")) { if (diff) { *diff = absl::StrCat(diff_preamble, " mismatch for node ", a.name(), " input ", i, ", expected control input ", a.input(i), " got ", b.input(i), " expected:\n", a.DebugString(), "\ngot:\n", b.DebugString()); } return false; } control_input_a.insert(a.input(i)); control_input_b.insert(b.input(i)); } else if (a.input(i) != b.input(i)) { if (diff) { *diff = absl::StrCat(diff_preamble, " mismatch for node ", a.name(), " input ", i, ", expected ", a.input(i), " got ", b.input(i), " expected:\n", a.DebugString(), "\ngot:\n", b.DebugString()); } return false; } } if (control_input_a != control_input_b) { if (diff) { *diff = absl::StrCat(diff_preamble, " mismatch for node ", a.name(), " control inputs differ expected:\n", a.DebugString(), "\ngot:\n", b.DebugString()); } return false; } return EqualProtoMap<string, AttrValue>( a.attr(), b.attr(), [](const string& s) { return s; }, [](const AttrValue& v) { return v.DebugString(); }, [](const string& key, const AttrValue& av, const AttrValue& bv) { if (key == "ancestors") { std::unordered_set<string> a_set(av.list().s().begin(), av.list().s().end()); std::unordered_set<string> b_set(bv.list().s().begin(), bv.list().s().end()); return a_set == b_set; } else { return av.DebugString() == bv.DebugString(); } }, absl::StrCat(diff_preamble, " attr mismatch for node ", a.name()), diff); } bool EqualFunctionDef(const FunctionDef& a, const FunctionDef& b, string* diff) { if (a.signature().DebugString() != b.signature().DebugString()) { if (diff) { *diff = absl::StrCat("Signature mismatch for function ", a.signature().name(), ", expected:\n", a.signature().DebugString(), "\ngot:\n", b.signature().DebugString()); } return false; } if (!EqualProtoMap<string, AttrValue>( a.attr(), b.attr(), [](const string& s) { return s; }, [](const AttrValue& v) { return v.DebugString(); }, [](const string& key, const AttrValue& av, const AttrValue& bv) { return av.DebugString() == bv.DebugString(); }, absl::StrCat("attr mismatch for function ", a.signature().name()), diff)) { return false; } if (!EqualProtoMap<string, string>( a.ret(), b.ret(), [](const string& s) { return s; }, [](const string& s) { return s; }, [](const string& key, const string& av, const string& bv) { return av == bv; }, absl::StrCat("ret mismatch for function ", a.signature().name()), diff)) { return false; } for (int i = 0; i < a.node_def_size(); ++i) { bool found = false; for (int j = 0; j < b.node_def_size(); ++j) { if (a.node_def(i).name() == b.node_def(j).name()) { if (!EqualFunctionNodeDef( a.node_def(i), b.node_def(j), absl::StrCat("Function ", a.signature().name()), diff)) { return false; } found = true; break; } } if (!found) { if (diff) { *diff = absl::StrCat("Function ", a.signature().name(), ", expected: has node '", a.node_def(i).name(), "' got: no node of that name"); } return false; } } for (int i = 0; i < b.node_def_size(); ++i) { bool found = false; for (int j = 0; j < a.node_def_size(); ++j) { if (b.node_def(i).name() == a.node_def(j).name()) { found = true; break; } } if (!found) { if (diff) { *diff = absl::StrCat("Function ", a.signature().name(), ", got: has node '", b.node_def(i).name(), "' expected: no node of that name"); } return false; } } return true; } bool EqualFunctionDefLibrary(const FunctionDefLibrary& expected, const FunctionDefLibrary& actual, string* diff) { std::unordered_map<string, const FunctionDef*> actual_index; for (const FunctionDef& function : actual.function()) { actual_index[function.signature().name()] = &function; } for (const FunctionDef& expected_function : expected.function()) { auto it = actual_index.find(expected_function.signature().name()); if (it == actual_index.end()) { if (diff) { *diff = absl::StrCat("Did not find expected function '", expected_function.signature().name(), "'"); } return false; } if (!EqualFunctionDef(expected_function, *it->second, diff)) return false; actual_index.erase(it); } if (!actual_index.empty()) { if (diff != nullptr) { *diff = absl::StrCat("Found unexpected function '", actual_index.begin()->second->signature().name(), "'"); } return false; } return true; } #define TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(expected, actual) \ do { \ string diff; \ EXPECT_TRUE(EqualFunctionDefLibrary(expected, actual, &diff)) \ << diff << "\nActual: " << actual.DebugString(); \ } while (false) REGISTER_OP("InputTest") .Output("o: float") .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) { c->set_output(0, c->UnknownShape()); return absl::OkStatus(); }); REGISTER_OP("InputTestShaped") .Output("o: float") .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) { c->set_output(0, c->Vector(2)); return absl::OkStatus(); }); REGISTER_OP("UnaryTest") .Input("a: float") .Output("o: float") .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) { ::tensorflow::shape_inference::ShapeHandle o; TF_RETURN_IF_ERROR(c->Merge(c->UnknownShape(), c->input(0), &o)); c->set_output(0, o); return absl::OkStatus(); }); REGISTER_OP("BinaryTest") .Input("a: float") .Input("b: float") .Output("o: float") .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) { ::tensorflow::shape_inference::ShapeHandle o; TF_RETURN_IF_ERROR(c->Merge(c->UnknownShape(), c->input(0), &o)); c->set_output(0, o); return absl::OkStatus(); }); REGISTER_OP("BinaryTest2") .Input("a: float") .Input("b: float") .Output("o: float") .SetShapeFn(::tensorflow::shape_inference::UnknownShape); REGISTER_OP("AddNLikeTest") .Input("inputs: N * T") .Output("sum: T") .Attr("N: int >= 1") .Attr("T: numbertype") .SetIsCommutative() .SetIsAggregate(); Node* Sequencer(const GraphDefBuilder::Options& opts, const string& call_node_name) { if (opts.HaveError()) return nullptr; NodeBuilder node_builder(opts.GetNameForOp("NoOp"), "NoOp", opts.op_registry()); return opts.WithAttr(kXlaHostTransferSequencerAttr, call_node_name) .FinalizeBuilder(&node_builder); } Node* Input(const GraphDefBuilder::Options& opts) { return ops::SourceOp("InputTest", opts); } Node* InputShaped(const GraphDefBuilder::Options& opts) { return ops::SourceOp("InputTestShaped", opts); } Node* KnownShapeBase(DataType dtype, absl::Span<const int> shape, const GraphDefBuilder::Options& opts) { if (opts.HaveError()) return nullptr; NodeBuilder node_builder(opts.GetNameForOp("Const"), "Const", opts.op_registry()); TensorProto value; value.set_dtype(dtype); for (int dim : shape) { value.mutable_tensor_shape()->add_dim()->set_size(dim); } return opts.WithAttr("value", value) .WithAttr("dtype", dtype) .FinalizeBuilder(&node_builder); } Node* KnownShape(absl::Span<const int> shape, const GraphDefBuilder::Options& opts) { return KnownShapeBase(DT_FLOAT, shape, opts); } Node* KeyPlaceholderShape(const GraphDefBuilder::Options& opts) { return KnownShapeBase(DT_STRING, {2}, opts); } Node* KeyPlaceholder(const string& call_node, const GraphDefBuilder::Options& opts) { if (opts.HaveError()) return nullptr; NodeBuilder node_builder(absl::StrCat(call_node, "_key_placeholder"), "Placeholder", opts.op_registry()); TensorShapeProto shape; shape.add_dim()->set_size(2); return opts.WithAttr("shape", shape) .WithAttr("dtype", DT_STRING) .WithAttr("_host_compute_call_node", call_node) .FinalizeBuilder(&node_builder); } Node* RecvAtHost(ops::NodeOut key_input, const string& cluster, const string& new_func_name, const string& oc_cluster, absl::Span<const DataType> dtypes, const GraphDefBuilder::Options& opts) { if (opts.HaveError()) return nullptr; string key = absl::StrCat("host_compute_channel_", cluster, "_", new_func_name, "_", oc_cluster); string name = absl::StrCat("outside_compilation_", cluster, "_", new_func_name, "_", oc_cluster, "_recv"); NodeBuilder node_builder(opts.WithName(name).GetNameForOp("_XlaRecvAtHost"), "_XlaRecvAtHost", opts.op_registry()); node_builder.Input(std::move(key_input)); return opts.WithAttr("Toutputs", dtypes) .WithAttr("key", key) .WithAttr("device_ordinal", 0) .WithAttr("_encapsulate", cluster) .WithAttr("_outside", oc_cluster) .FinalizeBuilder(&node_builder); } Node* SendFromHost(ops::NodeOut key_input, const string& cluster, const string& new_func_name, const string& oc_cluster, const std::vector<ops::NodeOut>& inputs, const GraphDefBuilder::Options& opts) { if (opts.HaveError()) return nullptr; string key = absl::StrCat("host_compute_channel_", cluster, "_", new_func_name, "_", oc_cluster); string name = absl::StrCat("outside_compilation_", cluster, "_", new_func_name, "_", oc_cluster, "_send"); NodeBuilder node_builder(opts.WithName(name).GetNameForOp("_XlaSendFromHost"), "_XlaSendFromHost", opts.op_registry()); node_builder.Input(inputs); node_builder.Input(std::move(key_input)); std::vector<DataType> dtypes; for (const auto& node : inputs) { dtypes.push_back(node.dt); } return opts.WithAttr("Tinputs", dtypes) .WithAttr("key", key) .WithAttr("device_ordinal", 0) .WithAttr("_encapsulate", cluster) .WithAttr("_outside", oc_cluster) .FinalizeBuilder(&node_builder); } Node* Unary(ops::NodeOut a, const GraphDefBuilder::Options& opts) { return ops::UnaryOp("UnaryTest", std::move(a), opts); } Node* Binary(ops::NodeOut a, ops::NodeOut b, const GraphDefBuilder::Options& opts) { return ops::BinaryOp("BinaryTest", std::move(a), std::move(b), opts); } Node* BinaryUnknownShape(ops::NodeOut a, ops::NodeOut b, const GraphDefBuilder::Options& opts) { return ops::BinaryOp("BinaryTest2", std::move(a), std::move(b), opts); } Node* AddNLike(const std::vector<ops::NodeOut>& inputs, const GraphDefBuilder::Options& opts) { if (opts.HaveError()) return nullptr; NodeBuilder node_builder(opts.GetNameForOp("AddN"), "AddNLikeTest", opts.op_registry()); node_builder.Input(inputs); return opts.FinalizeBuilder(&node_builder); } Node* ArgOp(int index, DataType type, const GraphDefBuilder::Options& opts) { return ops::SourceOp("_Arg", opts.WithAttr("T", type).WithAttr("index", index)); } Node* RetOp(int index, ops::NodeOut a, const GraphDefBuilder::Options& opts) { if (opts.HaveError()) return nullptr; NodeBuilder node_builder(opts.GetNameForOp("Retval"), "_Retval", opts.op_registry()); node_builder.Input(std::move(a)).Attr("index", index); return opts.FinalizeBuilder(&node_builder); } Status Encapsulate(GraphDef* graphdef, FunctionDefLibrary* library, const std::vector<string>& encapsulated_functions) { Status s; std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), *library)); GraphConstructorOptions options; options.allow_internal_ops = true; std::unique_ptr<Graph> graph(new Graph(lib_def.get())); s = ConvertGraphDefToGraph(options, *graphdef, graph.get()); if (!s.ok()) return s; s = PerformStaticShapeInferenceBeforeEncapsulation(graph.get()); if (!s.ok()) return s; SessionOptions session_options; std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::AddDevices( session_options, "/job:localhost/replica:0/task:0", &devices)); OptimizerOptions opts; auto device_mgr = std::make_unique<StaticDeviceMgr>(std::move(devices)); auto pflr = std::make_unique<ProcessFunctionLibraryRuntime>( device_mgr.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, lib_def.get(), opts, nullptr, nullptr); auto flr = pflr->GetFLR("/job:localhost/replica:0/task:0/cpu:0"); std::unique_ptr<Graph> graph_out; s = EncapsulateSubgraphsInFunctions("_encapsulate", *graph, {}, false, &graph_out, lib_def.get()); if (!s.ok()) return s; std::unordered_map<string, XlaClusterInfo> clusters; for (const auto& func : encapsulated_functions) { Node* xla_computation_node; for (Node* n : graph_out->nodes()) { if (n->name() == func) { xla_computation_node = n; } } if (!xla_computation_node) { return errors::Internal("Cannot find node ", func); } NameAttrList func_name_attrs; func_name_attrs.set_name(func); clusters.emplace(func, XlaClusterInfo{func, func_name_attrs, xla_computation_node, std::map<string, int>{}}); } bool modified; s = ExtractOutsideCompilation("_encapsulate", "_outside", clusters, graph_out.get(), flr, lib_def.get(), &modified); if (!s.ok()) return s; GraphDef graphdef_out; graph_out->ToGraphDef(&graphdef_out); graphdef->Swap(&graphdef_out); *library = lib_def->ToProto(); for (FunctionDef& fdef : *library->mutable_function()) { for (NodeDef& node_def : *fdef.mutable_node_def()) { node_def.mutable_attr()->erase("_xla_inferred_shapes"); } } return s; } Status Encapsulate(GraphDef* graphdef, FunctionDefLibrary* library) { std::vector<string> encapsulated_functions; return Encapsulate(graphdef, library, encapsulated_functions); } TEST(EncapsulateSubgraphsTest, NoFunctions) { GraphDefBuilder builder(GraphDefBuilder::kFailImmediately); Node* a = Input(builder.opts().WithName("A")); Node* b = Input(builder.opts().WithName("B")); Node* c = Unary(a, builder.opts().WithName("C")); Binary(b, c, builder.opts().WithName("D")); GraphDef graphdef_in; FunctionDefLibrary library_in; TF_EXPECT_OK(builder.ToGraphDef(&graphdef_in)); *library_in.add_function() = test::function::XTimesTwo(); GraphDef graphdef_out = graphdef_in; FunctionDefLibrary library_out = library_in; TF_EXPECT_OK(Encapsulate(&graphdef_out, &library_out)); TF_EXPECT_GRAPH_EQ(graphdef_in, graphdef_out); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_in, library_out); } TEST(EncapsulateSubgraphsTest, OneFunction) { FunctionDefLibrary library; GraphDef graphdef; { *library.add_function() = test::function::XTimesTwo(); GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = Input(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("c").WithControlInput(c).WithAttr( "_encapsulate", "F1")); Binary(a, d, b1.opts().WithName("E")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } TF_EXPECT_OK(Encapsulate(&graphdef, &library)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; *library_expected.add_function() = test::function::XTimesTwo(); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"c_0_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, {{"c"}, "BinaryTest", {"b_0_arg", "C:o:0"}, {}, {"C"}}, }, {{"c_0_retval", "c:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = Input(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); NodeBuilder node_builder("F1", "F1", lib_def.get()); node_builder.Input(a).Input(b); Node* call = b2.opts().FinalizeBuilder(&node_builder); Binary(a, call, b2.opts().WithName("E")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, TwoFunctions) { FunctionDefLibrary library; GraphDef graphdef; { *library.add_function() = test::function::XTimesTwo(); GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = Input(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* control = Input(b1.opts().WithName("Control")); Node* c = Unary(a, b1.opts().WithName("C").WithControlInput(control).WithAttr( "_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("D").WithControlInput(control).WithAttr( "_encapsulate", "F2")); Binary(a, d, b1.opts().WithName("E")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } TF_EXPECT_OK(Encapsulate(&graphdef, &library)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; *library_expected.add_function() = test::function::XTimesTwo(); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float"}, {"c_0_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, }, {{"c_0_retval", "C:o:0"}}); *library_expected.add_function() = FunctionDefHelper::Create( "F2", {"b_0_arg:float", "c_0_arg:float"}, {"d_0_retval:float"}, {}, { {{"D"}, "BinaryTest", {"b_0_arg", "c_0_arg"}}, }, {{"d_0_retval", "D:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = Input(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); Node* control = Input(b2.opts().WithName("Control")); NodeBuilder nb("F1", "F1", lib_def.get()); nb.Input(a).ControlInput(control); Node* call1 = b2.opts().FinalizeBuilder(&nb); NodeBuilder nb2("F2", "F2", lib_def.get()); nb2.Input(b).Input(call1).ControlInput(control); Node* call2 = b2.opts().FinalizeBuilder(&nb2); Binary(a, call2, b2.opts().WithName("E")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } std::vector<string> GraphNodes(const Graph& graph) { std::vector<string> nodes; for (const auto& node : graph.nodes()) { if (!node->IsSource() && !node->IsSink()) { nodes.push_back(node->name()); } } std::sort(nodes.begin(), nodes.end()); return nodes; } std::vector<std::pair<string, string>> GraphEdges(const Graph& graph) { std::vector<std::pair<string, string>> edges; for (const Edge* edge : graph.edges()) { if (edge->src()->IsSource() || edge->dst()->IsSink()) continue; edges.emplace_back( absl::StrCat(edge->src()->name(), ":", edge->src_output()), absl::StrCat(edge->dst()->name(), ":", edge->dst_input())); } std::sort(edges.begin(), edges.end()); return edges; } TEST(EncapsulateSubgraphsTest, InputDeduplication) { Scope root = Scope::NewRootScope().ExitOnError().WithDevice( "/job:localhost/replica:0/task:0/cpu:0"); auto x = ops::Placeholder(root.WithOpName("x"), DT_FLOAT); auto add1 = ops::Add(root.WithOpName("add1"), x, x); add1.node()->AddAttr("_cluster", "cluster1"); auto add2 = ops::Add(root.WithOpName("add2"), add1, add1); add2.node()->AddAttr("_cluster", "cluster2"); auto out = ops::Mul(root.WithOpName("mul"), add1, add2); Graph graph_before_encapsulation(OpRegistry::Global()); TF_ASSERT_OK(root.ToGraph(&graph_before_encapsulation)); FunctionLibraryDefinition library(OpRegistry::Global(), FunctionDefLibrary()); std::unique_ptr<Graph> graph; TF_ASSERT_OK(EncapsulateSubgraphsInFunctions( "_cluster", graph_before_encapsulation, {}, false, &graph, &library)); std::vector<string> expected_nodes = {"cluster1", "cluster2", "mul", "x"}; EXPECT_EQ(expected_nodes, GraphNodes(*graph)); std::vector<std::pair<string, string>> expected_edges = { {"cluster1:0", "cluster2:0"}, {"cluster1:0", "mul:0"}, {"cluster2:0", "mul:1"}, {"x:0", "cluster1:0"}}; EXPECT_EQ(expected_edges, GraphEdges(*graph)); } const Node* FindNodeByName(const Graph& graph, const string& name) { for (const Node* node : graph.nodes()) { if (node->name() == name) return node; } return nullptr; } bool HasGuaranteeConstAttr(const Node& n) { bool is_guaranteed_constant = false; if (!GetNodeAttr(n.attrs(), "_is_guaranteed_constant", &is_guaranteed_constant) .ok()) { return false; } return is_guaranteed_constant; } TEST(EncapsulateSubgraphsWithGuaranteeConstOpTest, Simple) { Scope root = Scope::NewRootScope().ExitOnError().WithDevice( "/job:localhost/replica:0/task:0/cpu:0"); auto x1 = ops::Placeholder(root.WithOpName("x1"), DT_FLOAT); auto x2 = ops::Placeholder(root.WithOpName("x2"), DT_FLOAT); auto const_guarantee_x2 = ops::GuaranteeConst(root.WithOpName("const_guarantee_x2"), x2); auto const_guarantee_x1 = ops::GuaranteeConst(root.WithOpName("const_guarantee_x1"), x1); auto add1 = ops::Add(root.WithOpName("add1"), const_guarantee_x1, const_guarantee_x2); add1.node()->AddAttr("_encapsulate", "encapsulate1"); Graph graph_before(OpRegistry::Global()); TF_ASSERT_OK(root.ToGraph(&graph_before)); std::unique_ptr<Graph> graph_after; FunctionLibraryDefinition library(OpRegistry::Global(), FunctionDefLibrary()); int guaranteed_consts = 0; TF_ASSERT_OK(EncapsulateSubgraphsInFunctions( "_encapsulate", graph_before, [&guaranteed_consts](const std::vector<OutputTensor>& arg_source_tensors, std::unique_ptr<Graph>* graph_ptr, std::vector<int>* input_permutation, std::vector<int>* output_permutation, NodeDef* call_def) { Graph* graph = graph_ptr->get(); for (const Node* n : graph->nodes()) { if (n->type_string() == "_Arg" && absl::StartsWith(n->name(), "const")) { ++guaranteed_consts; EXPECT_TRUE(HasGuaranteeConstAttr(*n)); } else { EXPECT_FALSE(HasGuaranteeConstAttr(*n)); } } return absl::OkStatus(); }, false, &graph_after, &library)); EXPECT_EQ(2, guaranteed_consts); } TEST(EncapsulateSubgraphsWithGuaranteeConstOpTest, Add) { Scope root = Scope::NewRootScope().ExitOnError().WithDevice( "/job:localhost/replica:0/task:0/cpu:0"); auto x1 = ops::Placeholder(root.WithOpName("x1"), DT_FLOAT); auto x2 = ops::Placeholder(root.WithOpName("x2"), DT_FLOAT); auto const_guarantee_x1 = ops::GuaranteeConst(root.WithOpName("const_guarantee_x1"), x1); auto const_guarantee_x2 = ops::GuaranteeConst(root.WithOpName("const_guarantee_x2"), x2); auto const_guarantee_add1 = ops::Add(root.WithOpName("const_guarantee_add1"), const_guarantee_x1, const_guarantee_x2); auto add2 = ops::Add(root.WithOpName("add2"), const_guarantee_x1, x2); auto mul1 = ops::Mul(root.WithOpName("mul1"), const_guarantee_add1, add2); mul1.node()->AddAttr("_encapsulate", "encapsulate1"); Graph graph_before(OpRegistry::Global()); TF_ASSERT_OK(root.ToGraph(&graph_before)); std::unique_ptr<Graph> graph_after; FunctionLibraryDefinition library(OpRegistry::Global(), FunctionDefLibrary()); int guaranteed_consts = 0; TF_ASSERT_OK(EncapsulateSubgraphsInFunctions( "_encapsulate", graph_before, [&guaranteed_consts](const std::vector<OutputTensor>& arg_source_tensors, std::unique_ptr<Graph>* graph_ptr, std::vector<int>* input_permutation, std::vector<int>* output_permutation, NodeDef* call_def) { Graph* graph = graph_ptr->get(); for (const Node* n : graph->nodes()) { if (n->type_string() == "_Arg" && absl::StartsWith(n->name(), "const")) { ++guaranteed_consts; EXPECT_TRUE(HasGuaranteeConstAttr(*n)); } else { EXPECT_FALSE(HasGuaranteeConstAttr(*n)); } } return absl::OkStatus(); }, false, &graph_after, &library)); EXPECT_EQ(1, guaranteed_consts); } TEST(EncapsulateSubgraphsTest, OneFunctionOneOutside) { FunctionDefLibrary library; GraphDef graphdef; { *library.add_function() = test::function::XTimesTwo(); GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = Input(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("c").WithControlInput(c).WithAttr( "_encapsulate", "F1")); Node* e = Binary(c, d, b1.opts() .WithName("E") .WithControlInputs({b, d}) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Binary(c, e, b1.opts().WithName("F").WithControlInput(e).WithAttr( "_encapsulate", "F1")); Binary(a, f, b1.opts().WithName("G").WithControlInput(e)); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; { GraphDefBuilder shape(GraphDefBuilder::kFailImmediately); Node* key_constant = KeyPlaceholder("F1", shape.opts()); Node* recv = RecvAtHost( ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT, DT_FLOAT}, shape.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Binary(ops::NodeOut(recv, 0), ops::NodeOut(recv, 1), shape.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, shape.opts().WithAttr(kXlaHasHostTransferAttrName, true)); TF_EXPECT_OK( AddGraphDefToFunctionLibrary(shape, "F1_F1_O1", &library_expected)); } NameAttrList shape_inference_graph; shape_inference_graph.set_name( "_outside_compilation_shape_inference_F1_F1_O1"); *library_expected.add_function() = test::function::XTimesTwo(); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"f_0_retval_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, {{"c"}, "BinaryTest", {"b_0_arg", "C:o:0"}, {}, {"C"}}, {{"F"}, "BinaryTest", {"C:o:0", "outside_compilation_O1_host_compute:outputs:0"}, {}, {"outside_compilation_O1_host_compute"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"C:o:0", "c:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT, DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", shape_inference_graph}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const DataType>({})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}, {"c"}}, }, {{"f_0_retval_retval", "F:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = Input(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); Node* key_constant = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv = RecvAtHost( ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT, DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Binary(ops::NodeOut(recv, 0), ops::NodeOut(recv, 1), b2.opts() .WithName("E") .WithControlInputs({recv}) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, b2.opts().WithControlInput(e).WithAttr( kXlaHasHostTransferAttrName, true)); Node* s = Sequencer( b2.opts().WithName("F1_sequencer").WithControlInputs({recv, send}), "F1"); NodeBuilder node_builder("F1", "F1", lib_def.get()); node_builder.Input(a).Input(b); Node* call = b2.opts().WithControlInputs({s, b}).FinalizeBuilder(&node_builder); Binary(a, call, b2.opts().WithName("G").WithControlInputs({call})); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, OneFunctionTwoOutside) { FunctionDefLibrary library; GraphDef graphdef; { GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = Input(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("D").WithAttr("_encapsulate", "F1")); Node* e = Binary(c, d, b1.opts() .WithName("E") .WithControlInputs({b, d}) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Binary(c, e, b1.opts().WithName("F").WithControlInput(e).WithAttr( "_encapsulate", "F1")); Node* g = Binary(e, f, b1.opts() .WithName("G") .WithControlInputs({e, f}) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2")); Node* h = Binary(d, e, b1.opts() .WithName("H") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2")); Node* i = Unary(h, b1.opts().WithName("I").WithAttr("_encapsulate", "F1")); Binary(g, i, b1.opts().WithName("J")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; { GraphDefBuilder shape1(GraphDefBuilder::kFailImmediately); Node* key_constant = KeyPlaceholder("F1", shape1.opts()); Node* recv = RecvAtHost( ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT, DT_FLOAT}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Binary(ops::NodeOut(recv, 0), ops::NodeOut(recv, 1), shape1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); TF_EXPECT_OK( AddGraphDefToFunctionLibrary(shape1, "F1_F1_O1", &library_expected)); } { GraphDefBuilder shape2(GraphDefBuilder::kFailImmediately); Node* key_constant = KeyPlaceholder("F1", shape2.opts()); Node* recv1 = RecvAtHost( ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT, DT_FLOAT}, shape2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Binary(ops::NodeOut(recv1, 0), ops::NodeOut(recv1, 1), shape2.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* recv2 = RecvAtHost( ops::NodeOut(key_constant, 0), "F1", "F1", "O2", {DT_FLOAT, DT_FLOAT}, shape2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* g = Binary(e, ops::NodeOut(recv2, 0), shape2.opts() .WithName("G") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2")); Node* h = Binary(ops::NodeOut(recv2, 1), e, shape2.opts() .WithName("H") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2")); SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O2", {g, h}, shape2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); TF_EXPECT_OK( AddGraphDefToFunctionLibrary(shape2, "F1_F1_O2", &library_expected)); } NameAttrList shape_inference_graph1, shape_inference_graph2; shape_inference_graph1.set_name( "_outside_compilation_shape_inference_F1_F1_O1"); shape_inference_graph2.set_name( "_outside_compilation_shape_inference_F1_F1_O2"); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"g_0_retval_retval:float", "i_0_retval_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, {{"D"}, "BinaryTest", {"b_0_arg", "C:o:0"}, {}}, {{"I"}, "UnaryTest", {"outside_compilation_O2_host_compute:outputs:1"}}, {{"F"}, "BinaryTest", {"C:o:0", "outside_compilation_O1_host_compute:outputs:0"}, {}, {"outside_compilation_O1_host_compute"}}, {{"outside_compilation_O2_host_compute"}, "XlaHostCompute", {"F:o:0", "D:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT, DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT, DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O2"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", shape_inference_graph2}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const DataType>({})}, {"_outside_compilation_subgraph", "O2"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node", "outside_compilation_O1_host_compute"})}, {"_xla_original_oc_node_name", "outside_compilation_O2_host_compute"}}, {"F", "outside_compilation_O1_host_compute"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"C:o:0", "D:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT, DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", shape_inference_graph1}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const DataType>({})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}, {"D"}}, }, {{"g_0_retval_retval", "outside_compilation_O2_host_compute:outputs:0"}, {"i_0_retval_retval", "I:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = Input(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); Node* key_constant = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv1 = RecvAtHost( ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT, DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Binary(ops::NodeOut(recv1, 0), ops::NodeOut(recv1, 1), b2.opts() .WithName("E") .WithControlInputs({recv1}) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send1 = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, b2.opts().WithControlInput(e).WithAttr( kXlaHasHostTransferAttrName, true)); Node* recv2 = RecvAtHost( ops::NodeOut(key_constant, 0), "F1", "F1", "O2", {DT_FLOAT, DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* g = Binary(e, ops::NodeOut(recv2, 0), b2.opts() .WithName("G") .WithControlInputs({recv2, e}) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2")); Node* h = Binary(ops::NodeOut(recv2, 1), e, b2.opts() .WithName("H") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2")); Node* send2 = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O2", {g, h}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* s = Sequencer(b2.opts() .WithName("F1_sequencer") .WithControlInputs({recv1, send1, recv2, send2}), "F1"); NodeBuilder node_builder("F1", "F1", lib_def.get()); node_builder.Input(a).Input(b); Node* call = b2.opts().WithControlInputs({s, b}).FinalizeBuilder(&node_builder); Binary(ops::NodeOut(call, 0), ops::NodeOut(call, 1), b2.opts().WithName("J")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, TwoFunctionsTwoOutside) { FunctionDefLibrary library; GraphDef graphdef; { GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = InputShaped(b1.opts().WithName("A")); Node* b = InputShaped(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("D").WithAttr("_encapsulate", "F1")); Node* e = Binary(c, d, b1.opts() .WithName("E") .WithControlInputs({b, d}) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Binary(c, e, b1.opts().WithName("F").WithControlInput(e).WithAttr( "_encapsulate", "F1")); Node* g = Binary(e, f, b1.opts().WithName("G").WithControlInputs({e, f}).WithAttr( "_encapsulate", "F2")); Node* h = Binary(d, g, b1.opts() .WithName("H") .WithAttr("_encapsulate", "F2") .WithAttr("_outside", "O1")); Node* i = Binary(f, h, b1.opts().WithName("I").WithAttr("_encapsulate", "F2")); Binary(g, i, b1.opts().WithName("J")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1", "F2"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; TensorShapeProto shape_proto_expected; shape_proto_expected.add_dim()->set_size(2); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"e_0_retval_retval:float", "f_0_retval_retval:float", "d_0_retval_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, {{"D"}, "BinaryTest", {"b_0_arg", "C:o:0"}}, {{"F"}, "BinaryTest", {"C:o:0", "outside_compilation_O1_host_compute:outputs:0"}, {}, {"outside_compilation_O1_host_compute"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"C:o:0", "D:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT, DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", NameAttrList()}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({shape_proto_expected})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}, {"D"}}, }, {{"e_0_retval_retval", "outside_compilation_O1_host_compute:outputs:0"}, {"d_0_retval_retval", "D:o:0"}, {"f_0_retval_retval", "F:o:0"}}); *library_expected.add_function() = FunctionDefHelper::Create( "F2", {"e_0_arg:float", "f_0_arg:float", "d_0_arg:float"}, {"g_0_retval_retval:float", "i_0_retval_retval:float"}, {}, { {{"G"}, "BinaryTest", {"e_0_arg", "f_0_arg"}}, {{"I"}, "BinaryTest", {"f_0_arg", "outside_compilation_O1_host_compute:outputs:0"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"d_0_arg", "G:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT, DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F2_F2_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", NameAttrList()}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({shape_proto_expected})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}}, }, {{"g_0_retval_retval", "G:o:0"}, {"i_0_retval_retval", "I:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = InputShaped(b2.opts().WithName("A")); Node* b = InputShaped(b2.opts().WithName("B")); Node* key_constant1 = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv1 = RecvAtHost( ops::NodeOut(key_constant1, 0), "F1", "F1", "O1", {DT_FLOAT, DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Binary(ops::NodeOut(recv1, 0), ops::NodeOut(recv1, 1), b2.opts() .WithName("E") .WithControlInputs({recv1}) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send1 = SendFromHost(ops::NodeOut(key_constant1, 0), "F1", "F1", "O1", {e}, b2.opts().WithControlInput(e).WithAttr( kXlaHasHostTransferAttrName, true)); Node* s1 = Sequencer( b2.opts().WithName("F1_sequencer").WithControlInputs({recv1, send1}), "F1"); NodeBuilder node_builder1("F1", "F1", lib_def.get()); node_builder1.Input(a).Input(b); Node* call1 = b2.opts().WithControlInputs({s1, b}).FinalizeBuilder(&node_builder1); Node* key_constant2 = KeyPlaceholder("F2", b2.opts().WithName("F2_key_placeholder")); Node* recv2 = RecvAtHost( ops::NodeOut(key_constant2, 0), "F2", "F2", "O1", {DT_FLOAT, DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* h = Binary(recv2, ops::NodeOut(recv2, 1), b2.opts() .WithName("H") .WithAttr("_encapsulate", "F2") .WithAttr("_outside", "O1")); Node* send2 = SendFromHost(ops::NodeOut(key_constant2, 0), "F2", "F2", "O1", {h}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* s2 = Sequencer( b2.opts().WithName("F2_sequencer").WithControlInputs({recv2, send2}), "F2"); NodeBuilder node_builder2("F2", "F2", lib_def.get()); node_builder2.Input(call1) .Input(ops::NodeOut(call1, 1)) .Input(ops::NodeOut(call1, 2)); Node* call2 = b2.opts() .WithControlInputs({s2, call1}) .FinalizeBuilder(&node_builder2); Binary(call2, ops::NodeOut(call2, 1), b2.opts().WithName("J")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, TwoFunctionsTwoOutsideDependencyFromOutside) { FunctionDefLibrary library; GraphDef graphdef; { GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = InputShaped(b1.opts().WithName("A")); Node* b = InputShaped(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("D").WithAttr("_encapsulate", "F1")); Node* e = Binary(c, d, b1.opts() .WithName("E") .WithControlInputs({b, d}) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Binary(c, e, b1.opts().WithName("F").WithControlInput(e).WithAttr( "_encapsulate", "F1")); Node* g = Binary(a, b, b1.opts().WithName("G").WithAttr("_encapsulate", "F2")); Node* h = Unary(g, b1.opts() .WithName("H") .WithAttr("_encapsulate", "F2") .WithAttr("_outside", "O1")); Node* i = Unary(h, b1.opts().WithName("I").WithAttr("_encapsulate", "F2")); Binary(f, i, b1.opts().WithName("J")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1", "F2"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; TensorShapeProto shape_proto_expected; shape_proto_expected.add_dim()->set_size(2); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"f_0_retval_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, {{"D"}, "BinaryTest", {"b_0_arg", "C:o:0"}}, {{"F"}, "BinaryTest", {"C:o:0", "outside_compilation_O1_host_compute:outputs:0"}, {}, {"outside_compilation_O1_host_compute"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"C:o:0", "D:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT, DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", NameAttrList()}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({shape_proto_expected})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}, {"D"}}, }, {{"f_0_retval_retval", "F:o:0"}}); *library_expected.add_function() = FunctionDefHelper::Create( "F2", {"a_0_arg:float", "b_0_arg:float"}, {"i_0_retval_retval:float"}, {}, { {{"G"}, "BinaryTest", {"a_0_arg", "b_0_arg"}}, {{"I"}, "UnaryTest", {"outside_compilation_O1_host_compute:outputs:0"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"G:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F2_F2_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", NameAttrList()}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({shape_proto_expected})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}}, }, {{"i_0_retval_retval", "I:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = InputShaped(b2.opts().WithName("A")); Node* b = InputShaped(b2.opts().WithName("B")); Node* key_constant1 = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv1 = RecvAtHost(ops::NodeOut(key_constant1, 0), "F1", "F1", "O1", {DT_FLOAT, DT_FLOAT}, b2.opts()); Node* e = Binary(ops::NodeOut(recv1, 0), ops::NodeOut(recv1, 1), b2.opts() .WithName("E") .WithControlInputs({recv1}) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send1 = SendFromHost(ops::NodeOut(key_constant1, 0), "F1", "F1", "O1", {e}, b2.opts().WithControlInput(e)); Node* s1 = Sequencer( b2.opts().WithName("F1_sequencer").WithControlInputs({recv1, send1}), "F1"); NodeBuilder node_builder1("F1", "F1", lib_def.get()); node_builder1.Input(a).Input(b); Node* call1 = b2.opts().WithControlInputs({s1, b}).FinalizeBuilder(&node_builder1); Node* key_constant2 = KeyPlaceholder("F2", b2.opts().WithName("F2_key_placeholder")); Node* recv2 = RecvAtHost(ops::NodeOut(key_constant2, 0), "F2", "F2", "O1", {DT_FLOAT}, b2.opts()); Node* h = Unary(recv2, b2.opts() .WithName("H") .WithAttr("_encapsulate", "F2") .WithAttr("_outside", "O1")); Node* send2 = SendFromHost(ops::NodeOut(key_constant2, 0), "F2", "F2", "O1", {h}, b2.opts()); Node* s2 = Sequencer( b2.opts().WithName("F2_sequencer").WithControlInputs({recv2, send2}), "F2"); NodeBuilder node_builder2("F2", "F2", lib_def.get()); node_builder2.Input(a).Input(b); Node* call2 = b2.opts().WithControlInputs({s2}).FinalizeBuilder(&node_builder2); Binary(call1, call2, b2.opts().WithName("J")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, OutsideCompilationNoInputs) { FunctionDefLibrary library; GraphDef graphdef; { GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = InputShaped(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("D").WithAttr("_encapsulate", "F1")); Node* e = Unary(a, b1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Binary(d, e, b1.opts().WithName("F").WithAttr("_encapsulate", "F1")); Unary(f, b1.opts().WithName("G")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; TensorShapeProto shape_proto_expected; shape_proto_expected.add_dim()->set_size(2); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"f_0_retval_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, {{"D"}, "BinaryTest", {"b_0_arg", "C:o:0"}}, {{"F"}, "BinaryTest", {"D:o:0", "outside_compilation_O1_host_compute:outputs:0"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"a_0_arg"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", NameAttrList()}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({shape_proto_expected})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}}, }, {{"f_0_retval_retval", "F:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = InputShaped(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); Node* key_constant = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv1 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, b2.opts()); Node* e = Unary(recv1, b2.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send1 = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, b2.opts()); Node* s1 = Sequencer( b2.opts().WithName("F1_sequencer").WithControlInputs({send1, recv1}), "F1"); NodeBuilder node_builder1("F1", "F1", lib_def.get()); node_builder1.Input(a).Input(b); Node* call1 = b2.opts().WithControlInput(s1).FinalizeBuilder(&node_builder1); Unary(call1, b2.opts().WithName("G")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, OutsideCompilationControlInput) { FunctionDefLibrary library; GraphDef graphdef; { GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = InputShaped(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("D").WithAttr("_encapsulate", "F1")); Node* e = Unary(a, b1.opts() .WithName("E") .WithControlInput(d) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Binary(d, e, b1.opts().WithName("F").WithAttr("_encapsulate", "F1")); Unary(f, b1.opts().WithName("G")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; TensorShapeProto shape_proto_expected; shape_proto_expected.add_dim()->set_size(2); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"f_0_retval_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, {{"D"}, "BinaryTest", {"b_0_arg", "C:o:0"}}, {{"F"}, "BinaryTest", {"D:o:0", "outside_compilation_O1_host_compute:outputs:0"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"a_0_arg"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", NameAttrList()}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({shape_proto_expected})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}, {"D"}}, }, {{"f_0_retval_retval", "F:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = InputShaped(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); Node* key_constant = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv1 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, b2.opts()); Node* e = Unary(recv1, b2.opts() .WithName("E") .WithControlInput(recv1) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send1 = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, b2.opts()); Node* s1 = Sequencer( b2.opts().WithName("F1_sequencer").WithControlInputs({recv1, send1}), "F1"); NodeBuilder node_builder1("F1", "F1", lib_def.get()); node_builder1.Input(a).Input(b); Node* call1 = b2.opts().WithControlInput(s1).FinalizeBuilder(&node_builder1); Unary(call1, b2.opts().WithName("G")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, OutsideCompilationNoOutputs) { FunctionDefLibrary library; GraphDef graphdef; { GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = Input(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("D").WithAttr("_encapsulate", "F1")); Node* e = Unary(d, b1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Unary(d, b1.opts().WithName("F").WithAttr("_encapsulate", "F1")); Binary(e, f, b1.opts().WithName("G")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; { GraphDefBuilder shape1(GraphDefBuilder::kFailImmediately); Node* key_constant = KeyPlaceholder("F1", shape1.opts()); Node* recv1 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Unary(ops::NodeOut(recv1, 0), shape1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); TF_EXPECT_OK( AddGraphDefToFunctionLibrary(shape1, "F1_F1_O1", &library_expected)); } NameAttrList shape_inference_graph; shape_inference_graph.set_name( "_outside_compilation_shape_inference_F1_F1_O1"); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"e_0_retval_retval:float", "f_0_retval_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, {{"D"}, "BinaryTest", {"b_0_arg", "C:o:0"}}, {{"F"}, "UnaryTest", {"D:o:0"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"D:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", shape_inference_graph}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}}, }, {{"e_0_retval_retval", "outside_compilation_O1_host_compute:outputs:0"}, {"f_0_retval_retval", "F:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = Input(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); Node* key_constant = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv1 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, b2.opts()); Node* e = Unary(recv1, b2.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send1 = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, b2.opts()); Node* s1 = Sequencer( b2.opts().WithName("F1_sequencer").WithControlInputs({recv1, send1}), "F1"); NodeBuilder node_builder1("F1", "F1", lib_def.get()); node_builder1.Input(a).Input(b); Node* call1 = b2.opts().WithControlInput(s1).FinalizeBuilder(&node_builder1); Binary(call1, ops::NodeOut(call1, 1), b2.opts().WithName("G")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, OutsideCompilationControlOutput) { FunctionDefLibrary library; GraphDef graphdef; { GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = Input(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("D").WithAttr("_encapsulate", "F1")); Node* e = Unary(d, b1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Unary(d, b1.opts().WithName("F").WithControlInput(e).WithAttr( "_encapsulate", "F1")); Binary(e, f, b1.opts().WithName("G")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; { GraphDefBuilder shape1(GraphDefBuilder::kFailImmediately); Node* key_constant = KeyPlaceholder("F1", shape1.opts()); Node* recv1 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Unary(ops::NodeOut(recv1, 0), shape1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); TF_EXPECT_OK( AddGraphDefToFunctionLibrary(shape1, "F1_F1_O1", &library_expected)); } NameAttrList shape_inference_graph; shape_inference_graph.set_name( "_outside_compilation_shape_inference_F1_F1_O1"); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"e_0_retval_retval:float", "f_0_retval_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, {{"D"}, "BinaryTest", {"b_0_arg", "C:o:0"}}, {{"F"}, "UnaryTest", {"D:o:0"}, {}, {"outside_compilation_O1_host_compute"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"D:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", shape_inference_graph}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}}, }, {{"e_0_retval_retval", "outside_compilation_O1_host_compute:outputs:0"}, {"f_0_retval_retval", "F:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = Input(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); Node* key_constant = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv1 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, b2.opts()); Node* e = Unary(recv1, b2.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send1 = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, b2.opts().WithControlInput(e)); Node* s1 = Sequencer( b2.opts().WithName("F1_sequencer").WithControlInputs({recv1, send1}), "F1"); NodeBuilder node_builder1("F1", "F1", lib_def.get()); node_builder1.Input(a).Input(b); Node* call1 = b2.opts().WithControlInput(s1).FinalizeBuilder(&node_builder1); Binary(call1, ops::NodeOut(call1, 1), b2.opts().WithName("G")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, OutsideCompilationClusterDependencyNoSrcCluster) { FunctionDefLibrary library; GraphDef graphdef; { GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = Input(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("D").WithAttr("_encapsulate", "F1")); Node* e = Unary(a, b1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Unary(d, b1.opts().WithName("F").WithAttr("_encapsulate", "F1")); Node* g = Unary(f, b1.opts() .WithName("G") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2") .WithControlInput(e)); Node* h = Unary(g, b1.opts().WithName("H").WithAttr("_encapsulate", "F1")); Binary(e, h, b1.opts().WithName("I")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; { GraphDefBuilder shape1(GraphDefBuilder::kFailImmediately); Node* key_constant = KeyPlaceholder("F1", shape1.opts()); Node* recv1 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Unary(ops::NodeOut(recv1, 0), shape1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); TF_EXPECT_OK( AddGraphDefToFunctionLibrary(shape1, "F1_F1_O1", &library_expected)); } { GraphDefBuilder shape2(GraphDefBuilder::kFailImmediately); Node* key_constant = KeyPlaceholder("F1", shape2.opts()); Node* recv2 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O2", {DT_FLOAT}, shape2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* g = Unary(ops::NodeOut(recv2, 0), shape2.opts() .WithName("G") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2")); SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O2", {g}, shape2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); TF_EXPECT_OK( AddGraphDefToFunctionLibrary(shape2, "F1_F1_O2", &library_expected)); } NameAttrList shape_inference_graph1; shape_inference_graph1.set_name( "_outside_compilation_shape_inference_F1_F1_O1"); NameAttrList shape_inference_graph2; shape_inference_graph2.set_name( "_outside_compilation_shape_inference_F1_F1_O2"); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"e_0_retval_retval:float", "h_0_retval_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, {{"D"}, "BinaryTest", {"b_0_arg", "C:o:0"}}, {{"F"}, "UnaryTest", {"D:o:0"}}, {{"H"}, "UnaryTest", {"outside_compilation_O2_host_compute:outputs:0"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"a_0_arg"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", shape_inference_graph1}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}}, {{"outside_compilation_O2_host_compute"}, "XlaHostCompute", {"F:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O2"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", shape_inference_graph2}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({})}, {"_outside_compilation_subgraph", "O2"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node", "outside_compilation_O1_host_compute"})}, {"_xla_original_oc_node_name", "outside_compilation_O2_host_compute"}}, {"outside_compilation_O1_host_compute"}}, }, {{"e_0_retval_retval", "outside_compilation_O1_host_compute:outputs:0"}, {"h_0_retval_retval", "H:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = Input(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); Node* key_constant = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv1 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Unary(recv1, b2.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send1 = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* recv2 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O2", {DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* g = Unary(recv2, b2.opts() .WithName("G") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2") .WithControlInput(e)); Node* send2 = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O2", {g}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* s1 = Sequencer(b2.opts() .WithName("F1_sequencer") .WithControlInputs({recv1, send1, recv2, send2}), "F1"); NodeBuilder node_builder1("F1", "F1", lib_def.get()); node_builder1.Input(a).Input(b).ControlInput(s1); Node* call1 = b2.opts().FinalizeBuilder(&node_builder1); Binary(call1, ops::NodeOut(call1, 1), b2.opts().WithName("I")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, OutsideCompilationClusterDependencyNoDstCluster) { FunctionDefLibrary library; GraphDef graphdef; { GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = Input(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("D").WithAttr("_encapsulate", "F1")); Node* e = Unary(d, b1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Unary(e, b1.opts().WithName("F").WithAttr("_encapsulate", "F1")); Unary(a, b1.opts() .WithName("G") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2") .WithControlInput(e)); Node* h = Unary(f, b1.opts().WithName("H").WithAttr("_encapsulate", "F1")); Binary(e, h, b1.opts().WithName("I")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; { GraphDefBuilder shape1(GraphDefBuilder::kFailImmediately); Node* key_constant = KeyPlaceholder("F1", shape1.opts()); Node* recv2 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Unary(ops::NodeOut(recv2, 0), shape1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); TF_EXPECT_OK( AddGraphDefToFunctionLibrary(shape1, "F1_F1_O1", &library_expected)); } NameAttrList shape_inference_graph; shape_inference_graph.set_name( "_outside_compilation_shape_inference_F1_F1_O1"); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"e_0_retval_retval:float", "h_0_retval_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, {{"D"}, "BinaryTest", {"b_0_arg", "C:o:0"}}, {{"F"}, "UnaryTest", {"outside_compilation_O1_host_compute:outputs:0"}}, {{"H"}, "UnaryTest", {"F:o:0"}}, {{"outside_compilation_O2_host_compute"}, "XlaHostCompute", {"a_0_arg"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O2"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", NameAttrList()}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({})}, {"_outside_compilation_subgraph", "O2"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node", "outside_compilation_O1_host_compute"})}, {"_xla_original_oc_node_name", "outside_compilation_O2_host_compute"}}, {"outside_compilation_O1_host_compute"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"D:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", shape_inference_graph}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}}, }, {{"e_0_retval_retval", "outside_compilation_O1_host_compute:outputs:0"}, {"h_0_retval_retval", "H:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = Input(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); Node* key_constant = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv1 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Unary(recv1, b2.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* recv2 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O2", {DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Unary(recv2, b2.opts() .WithName("G") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2") .WithControlInput(e)); Node* s1 = Sequencer(b2.opts() .WithName("F1_sequencer") .WithControlInputs({recv1, recv2, send}), "F1"); NodeBuilder node_builder1("F1", "F1", lib_def.get()); node_builder1.Input(a).Input(b).ControlInput(s1); Node* call1 = b2.opts().FinalizeBuilder(&node_builder1); Binary(call1, ops::NodeOut(call1, 1), b2.opts().WithName("I")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, OutsideCompilationClusterDependency) { FunctionDefLibrary library; GraphDef graphdef; { GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = Input(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("D").WithAttr("_encapsulate", "F1")); Node* e = Unary(d, b1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Unary(e, b1.opts().WithName("F").WithAttr("_encapsulate", "F1")); Node* g = Unary(d, b1.opts() .WithName("G") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2") .WithControlInput(e)); Node* h = Unary(f, b1.opts().WithName("H").WithAttr("_encapsulate", "F1")); Binary(d, e, b1.opts() .WithName("I") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O3") .WithControlInput(g)); Binary(e, h, b1.opts().WithName("J")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; { GraphDefBuilder shape1(GraphDefBuilder::kFailImmediately); Node* key_constant = KeyPlaceholder("F1", shape1.opts()); Node* recv2 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Unary(ops::NodeOut(recv2, 0), shape1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); TF_EXPECT_OK( AddGraphDefToFunctionLibrary(shape1, "F1_F1_O1", &library_expected)); } NameAttrList shape_inference_graph; shape_inference_graph.set_name( "_outside_compilation_shape_inference_F1_F1_O1"); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"e_0_retval_retval:float", "h_0_retval_retval:float"}, {}, {{{"C"}, "UnaryTest", {"a_0_arg"}}, {{"D"}, "BinaryTest", {"b_0_arg", "C:o:0"}}, {{"F"}, "UnaryTest", {"outside_compilation_O1_host_compute:outputs:0"}}, {{"H"}, "UnaryTest", {"F:o:0"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"D:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", shape_inference_graph}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}}, {{"outside_compilation_O2_host_compute"}, "XlaHostCompute", {"D:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O2"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", NameAttrList()}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({})}, {"_outside_compilation_subgraph", "O2"}, {"_xla_token_input_nodes", absl::Span<const string>( {"_xla_token_arg_node", "outside_compilation_O1_host_compute"})}, {"_xla_original_oc_node_name", "outside_compilation_O2_host_compute"}}, {"outside_compilation_O1_host_compute"}}, {{"outside_compilation_O3_host_compute"}, "XlaHostCompute", {"D:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O3"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", NameAttrList()}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({})}, {"_outside_compilation_subgraph", "O3"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node", "outside_compilation_O1_host_compute", "outside_compilation_O2_host_compute"})}, {"_xla_original_oc_node_name", "outside_compilation_O3_host_compute"}}, {"outside_compilation_O1_host_compute", "outside_compilation_O2_host_compute"}}}, {{"e_0_retval_retval", "outside_compilation_O1_host_compute:outputs:0"}, {"h_0_retval_retval", "H:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = Input(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); Node* key_constant = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv1 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Unary(recv1, b2.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* recv2 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O2", {DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* g = Unary(recv2, b2.opts() .WithName("G") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O2") .WithControlInput(e)); Node* recv3 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O3", {DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Binary(recv3, e, b2.opts() .WithName("I") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O3") .WithControlInput(g)); Node* s1 = Sequencer(b2.opts() .WithName("F1_sequencer") .WithControlInputs({recv1, send, recv2, recv3}), "F1"); NodeBuilder node_builder1("F1", "F1", lib_def.get()); node_builder1.Input(a).Input(b).ControlInput(s1); Node* call1 = b2.opts().FinalizeBuilder(&node_builder1); Binary(call1, ops::NodeOut(call1, 1), b2.opts().WithName("J")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, OutsideCompilationNoInputsOrOutputs) { FunctionDefLibrary library; GraphDef graphdef; { GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = Input(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C").WithAttr("_encapsulate", "F1")); Node* d = Binary(b, c, b1.opts().WithName("D").WithAttr("_encapsulate", "F1")); Node* e = Unary(a, b1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Unary(d, b1.opts().WithName("F").WithAttr("_encapsulate", "F1")); Binary(e, f, b1.opts().WithName("G")); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; { GraphDefBuilder shape1(GraphDefBuilder::kFailImmediately); Node* key_constant = KeyPlaceholder("F1", shape1.opts()); Node* recv2 = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Unary(ops::NodeOut(recv2, 0), shape1.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, shape1.opts().WithAttr(kXlaHasHostTransferAttrName, true)); TF_EXPECT_OK( AddGraphDefToFunctionLibrary(shape1, "F1_F1_O1", &library_expected)); } NameAttrList shape_inference_graph; shape_inference_graph.set_name( "_outside_compilation_shape_inference_F1_F1_O1"); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"a_0_arg:float", "b_0_arg:float"}, {"e_0_retval_retval:float", "f_0_retval_retval:float"}, {}, { {{"C"}, "UnaryTest", {"a_0_arg"}}, {{"D"}, "BinaryTest", {"b_0_arg", "C:o:0"}}, {{"F"}, "UnaryTest", {"D:o:0"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"a_0_arg"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", shape_inference_graph}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const TensorShapeProto>({})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}}, }, {{"e_0_retval_retval", "outside_compilation_O1_host_compute:outputs:0"}, {"f_0_retval_retval", "F:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = Input(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); Node* key_constant = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv = RecvAtHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = Unary(recv, b2.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* s = Sequencer( b2.opts().WithName("F1_sequencer").WithControlInputs({recv, send}), "F1"); NodeBuilder node_builder1("F1", "F1", lib_def.get()); node_builder1.Input(a).Input(b).ControlInput(s); Node* call1 = b2.opts().FinalizeBuilder(&node_builder1); Binary(call1, ops::NodeOut(call1, 1), b2.opts().WithName("G")); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } TEST(EncapsulateSubgraphsTest, OutsideCompilationShapeInference) { FunctionDefLibrary library; GraphDef graphdef; { *library.add_function() = test::function::XTimesTwo(); GraphDefBuilder b1(GraphDefBuilder::kFailImmediately); Node* a = InputShaped(b1.opts().WithName("A")); Node* b = Input(b1.opts().WithName("B")); Node* c = Unary(a, b1.opts().WithName("C")); Node* d = Unary(b, b1.opts().WithName("c").WithControlInput(c).WithAttr( "_encapsulate", "F1")); Node* e = BinaryUnknownShape(c, d, b1.opts() .WithName("E") .WithControlInputs({b, d}) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* f = Binary(c, e, b1.opts().WithName("F").WithControlInput(e).WithAttr( "_encapsulate", "F1")); Binary(a, f, b1.opts().WithName("G").WithControlInput(e)); TF_EXPECT_OK(b1.ToGraphDef(&graphdef)); } std::vector<string> encapsulated_functions{"F1"}; TF_EXPECT_OK(Encapsulate(&graphdef, &library, encapsulated_functions)); FunctionDefLibrary library_expected; GraphDef graphdef_expected; { GraphDefBuilder shape(GraphDefBuilder::kFailImmediately); Node* key_constant = KeyPlaceholder("F1", shape.opts()); Node* recv = RecvAtHost( ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT, DT_FLOAT}, shape.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = BinaryUnknownShape(recv, ops::NodeOut(recv, 1), shape.opts() .WithName("E") .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, shape.opts().WithAttr(kXlaHasHostTransferAttrName, true)); TF_EXPECT_OK( AddGraphDefToFunctionLibrary(shape, "F1_F1_O1", &library_expected)); } NameAttrList shape_inference_graph; shape_inference_graph.set_name( "_outside_compilation_shape_inference_F1_F1_O1"); *library_expected.add_function() = test::function::XTimesTwo(); *library_expected.add_function() = FunctionDefHelper::Create( "F1", {"b_0_arg:float", "c_0_arg:float"}, {"f_0_retval_retval:float"}, {}, { {{"c"}, "UnaryTest", {"b_0_arg"}, {}, {}}, {{"F"}, "BinaryTest", {"c_0_arg", "outside_compilation_O1_host_compute:outputs:0"}, {}, {"outside_compilation_O1_host_compute"}}, {{"outside_compilation_O1_host_compute"}, "XlaHostCompute", {"c_0_arg", "c:o:0"}, {{"Tinputs", absl::Span<const DataType>({DT_FLOAT, DT_FLOAT})}, {"Toutputs", absl::Span<const DataType>({DT_FLOAT})}, {"ancestors", absl::Span<const string>({})}, {"key", "host_compute_channel_F1_F1_O1"}, {"send_key", ""}, {"recv_key", ""}, {"shape_inference_graph", shape_inference_graph}, {"tpu_core", 0}, {"cost_estimate_ns", 1000000}, {"shapes", absl::Span<const DataType>({})}, {"_outside_compilation_subgraph", "O1"}, {"_xla_token_input_nodes", absl::Span<const string>({"_xla_token_arg_node"})}, {"_xla_original_oc_node_name", "outside_compilation_O1_host_compute"}}, {"c"}}, }, {{"f_0_retval_retval", "F:o:0"}}); { std::unique_ptr<FunctionLibraryDefinition> lib_def( new FunctionLibraryDefinition(OpRegistry::Global(), library_expected)); GraphDefBuilder b2(GraphDefBuilder::kFailImmediately, lib_def.get()); Node* a = InputShaped(b2.opts().WithName("A")); Node* b = Input(b2.opts().WithName("B")); Node* c = Unary(a, b2.opts().WithName("C")); Node* key_constant = KeyPlaceholder("F1", b2.opts().WithName("F1_key_placeholder")); Node* recv = RecvAtHost( ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {DT_FLOAT, DT_FLOAT}, b2.opts().WithAttr(kXlaHasHostTransferAttrName, true)); Node* e = BinaryUnknownShape(recv, ops::NodeOut(recv, 1), b2.opts() .WithName("E") .WithControlInputs({recv}) .WithAttr("_encapsulate", "F1") .WithAttr("_outside", "O1")); Node* send = SendFromHost(ops::NodeOut(key_constant, 0), "F1", "F1", "O1", {e}, b2.opts().WithControlInput(e).WithAttr( kXlaHasHostTransferAttrName, true)); Node* s = Sequencer( b2.opts().WithName("F1_sequencer").WithControlInputs({recv, send}), "F1"); NodeBuilder node_builder("F1", "F1", lib_def.get()); node_builder.Input(b).Input(c); Node* call = b2.opts().WithControlInputs({s, b, c}).FinalizeBuilder(&node_builder); Binary(a, call, b2.opts().WithName("G").WithControlInputs({call})); TF_EXPECT_OK(b2.ToGraphDef(&graphdef_expected)); } TF_EXPECT_GRAPH_EQ(graphdef_expected, graphdef); TF_EXPECT_FUNCTIONDEFLIBRARY_EQ(library_expected, library); } void CreateSubgraphTouchingRefVar(const Scope& s) { Output variable = ops::Variable(s.WithOpName("variable"), PartialTensorShape{}, DT_FLOAT); Output read = ops::Identity(s.WithOpName("read_ref_var"), variable); Output neg = ops::Negate(s.WithOpName("negate_ref"), read); Output add = ops::Add(s.WithOpName("add_ref"), neg, neg); Output constant = ops::Const(s.WithOpName("constant_ref"), Input::Initializer(0.0)); s.graph()->AddControlEdge(constant.node(), variable.node()); } TEST(EncapsulateSubgraphsTest, RefVariablesMarked) { Scope root = Scope::NewRootScope().ExitOnError(); CreateSubgraphTouchingRefVar(root); auto graph = std::make_unique<Graph>(OpRegistry::Global()); TF_ASSERT_OK(root.ToGraph(graph.get())); GraphOptimizationPassWrapper wrapper; GraphOptimizationPassOptions options = wrapper.CreateGraphOptimizationPassOptions(&graph); EncapsulateSubgraphsPass pass; TF_ASSERT_OK(pass.Run(options)); for (const Node* node : graph->nodes()) { bool has_ref_var; TF_ASSERT_OK( GetNodeAttr(node->attrs(), kXlaHasReferenceVarsAttr, &has_ref_var)); EXPECT_TRUE(node->IsSink() || node->IsSource() || has_ref_var) << "All nodes apart from source and sink can access reference variable"; } } void CreateSubgraphNotTouchingRefVar(const Scope& s) { Output constant = ops::Const(s.WithOpName("constant_normal"), Input::Initializer(0.0)); Output neg = ops::Negate(s.WithOpName("negate_normal"), constant); Output add = ops::Add(s.WithOpName("add_normal"), neg, neg); } TEST(EncapsulateSubgraphsTest, NoRefVarsNoAttr) { Scope root = Scope::NewRootScope().ExitOnError(); CreateSubgraphNotTouchingRefVar(root); auto graph = std::make_unique<Graph>(OpRegistry::Global()); TF_ASSERT_OK(root.ToGraph(graph.get())); GraphOptimizationPassWrapper wrapper; GraphOptimizationPassOptions options = wrapper.CreateGraphOptimizationPassOptions(&graph); EncapsulateSubgraphsPass pass; TF_ASSERT_OK(pass.Run(options)); for (const Node* node : graph->nodes()) { bool has_ref_var; TF_ASSERT_OK( GetNodeAttr(node->attrs(), kXlaHasReferenceVarsAttr, &has_ref_var)); EXPECT_FALSE(has_ref_var) << "The graph does not have reference variables"; } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/encapsulate_subgraphs_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/encapsulate_subgraphs_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
877ed332-87ba-4632-88e8-c712cc99cafa
cpp
tensorflow/tensorflow
unary_ops_composition
tensorflow/compiler/tf2xla/kernels/unary_ops_composition.cc
tensorflow/compiler/tests/unary_ops_composition_test.cc
#include <functional> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/strings/string_view.h" #include "tensorflow/compiler/tf2xla/kernels/elu_op.h" #include "tensorflow/compiler/tf2xla/kernels/relu_op.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/math.h" #include "xla/hlo/builder/xla_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { using XlaUnaryOpGenerator = std::function<xla::XlaOp(xla::XlaOp)>; using XlaOpGeneratorMap = absl::flat_hash_map<string, XlaUnaryOpGenerator>; void PopulateXlaOpGeneratorMap(XlaOpGeneratorMap* op_generator_map) { auto add_xla_op_generator = [&](std::string name, XlaUnaryOpGenerator xla_op_generator) { CHECK(op_generator_map->insert({name, xla_op_generator}).second); }; #define ADD_XLA_OP_GENERATOR(Name) add_xla_op_generator(#Name, xla::Name); ADD_XLA_OP_GENERATOR(Abs); ADD_XLA_OP_GENERATOR(Acos); ADD_XLA_OP_GENERATOR(Acosh); ADD_XLA_OP_GENERATOR(Asin); ADD_XLA_OP_GENERATOR(Asinh); ADD_XLA_OP_GENERATOR(Atan); ADD_XLA_OP_GENERATOR(Atanh); ADD_XLA_OP_GENERATOR(Ceil); ADD_XLA_OP_GENERATOR(Cos); ADD_XLA_OP_GENERATOR(Cosh); ADD_XLA_OP_GENERATOR(Expm1); ADD_XLA_OP_GENERATOR(Exp); ADD_XLA_OP_GENERATOR(Floor); add_xla_op_generator( "Inv", [](xla::XlaOp x) { return xla::ScalarLike(x, 1.0) / x; }); ADD_XLA_OP_GENERATOR(Log); ADD_XLA_OP_GENERATOR(Log1p); ADD_XLA_OP_GENERATOR(Neg); ADD_XLA_OP_GENERATOR(Reciprocal); add_xla_op_generator("Rint", xla::RoundToEven); ADD_XLA_OP_GENERATOR(Round); ADD_XLA_OP_GENERATOR(Rsqrt); add_xla_op_generator("Sigmoid", xla::Logistic); ADD_XLA_OP_GENERATOR(Sin); ADD_XLA_OP_GENERATOR(Sinh); ADD_XLA_OP_GENERATOR(Sqrt); ADD_XLA_OP_GENERATOR(Square); ADD_XLA_OP_GENERATOR(Tan); ADD_XLA_OP_GENERATOR(Tanh); ADD_XLA_OP_GENERATOR(Elu); ADD_XLA_OP_GENERATOR(Relu); ADD_XLA_OP_GENERATOR(Relu6); ADD_XLA_OP_GENERATOR(Selu); #undef ADD_XLA_OP_GENERATOR } const XlaOpGeneratorMap& GetXlaOpGeneratorMap() { static XlaOpGeneratorMap* result = []() { auto* result = new XlaOpGeneratorMap; PopulateXlaOpGeneratorMap(result); return result; }(); return *result; } class UnaryOpsCompositionOp : public XlaOpKernel { public: explicit UnaryOpsCompositionOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("op_names", &op_names_)); const XlaOpGeneratorMap& op_generator_map = GetXlaOpGeneratorMap(); for (absl::string_view op_name : op_names_) { OP_REQUIRES(ctx, op_generator_map.contains(op_name), errors::Unimplemented( op_name, " not supported in _UnaryOpsComposition")); } } void Compile(XlaOpKernelContext* ctx) override { xla::XlaOp x = ctx->Input(0); const XlaOpGeneratorMap& op_generator_map = GetXlaOpGeneratorMap(); for (absl::string_view op_name : op_names_) { x = op_generator_map.find(op_name)->second(x); } ctx->SetOutput(0, x); } private: std::vector<string> op_names_; }; REGISTER_XLA_OP(Name("_UnaryOpsComposition"), UnaryOpsCompositionOp); } }
#include <algorithm> #include <cmath> #include <memory> #include <string> #include <vector> #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/port.h" #include "tsl/platform/status.h" namespace tensorflow { namespace { static bool Initialized = [] { tensorflow::GetXlaDeviceFlags()->tf_xla_enable_xla_devices = true; return true; }(); class UnaryOpsCompositionTest : public OpsTestBase { protected: template <typename T> void RunComposedOp(const std::vector<string> op_names, T input_scalar_value, T expected_scalar_value) { string xla_device_name = tensorflow::IsGoogleCudaEnabled() ? DEVICE_XLA_GPU : DEVICE_XLA_CPU; SetDevice(DeviceType(xla_device_name), std::unique_ptr<tensorflow::Device>(DeviceFactory::NewDevice( xla_device_name, {}, "/job:a/replica:0/task:0"))); TF_ASSERT_OK(NodeDefBuilder("unary_op_composition", "_UnaryOpsComposition") .Input(FakeInput(DataTypeToEnum<T>::v())) .Attr("T", DataTypeToEnum<T>::v()) .Attr("op_names", op_names) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); TensorShape shape({}); AllocatorAttributes host_alloc_attrs; host_alloc_attrs.set_gpu_compatible(true); host_alloc_attrs.set_on_host(true); Allocator* cpu_allocator = device_->GetAllocator(host_alloc_attrs); DataType dtype = DataTypeToEnum<T>::value; Tensor input_on_host(cpu_allocator, dtype, shape); test::FillValues<T>(&input_on_host, {input_scalar_value}); Tensor* input = AddInput(dtype, shape); DeviceContext* device_context = device_->tensorflow_accelerator_device_info()->default_context; TF_CHECK_OK(device_context->CopyCPUTensorToDeviceSync(&input_on_host, device_, input)); TF_ASSERT_OK(RunOpKernel()); Tensor expected_tensor(cpu_allocator, dtype, shape); test::FillValues<T>(&expected_tensor, {expected_scalar_value}); Tensor* output = GetOutput(0); Tensor output_on_host(cpu_allocator, output->dtype(), output->shape()); TF_CHECK_OK(device_context->CopyDeviceTensorToCPUSync( output, "output 0", device_, &output_on_host)); test::ExpectClose(expected_tensor, output_on_host, 1e-5, 1e-5); } }; TEST_F(UnaryOpsCompositionTest, Compose_Sqrt_Sqrt_F) { RunComposedOp<float>({"Sqrt", "Sqrt"}, 81.0, 3.0); } TEST_F(UnaryOpsCompositionTest, Compose_Sqrt_Sqrt_D) { RunComposedOp<double>({"Sqrt", "Sqrt"}, 81.0, 3.0); } TEST_F(UnaryOpsCompositionTest, Compose_Sqrt_Sin_F) { RunComposedOp<float>({"Sqrt", "Sin"}, 81.0, std::sin(9.0f)); } TEST_F(UnaryOpsCompositionTest, Compose_Cos_Acos_F) { RunComposedOp<float>({"Cos", "Acos"}, 0.5, std::acos(std::cos(0.5f))); } TEST_F(UnaryOpsCompositionTest, Compose_Tanh_Relu_F) { RunComposedOp<float>({"Tanh", "Relu"}, 0.5, std::max(0.0f, std::tanh(0.5f))); } TEST_F(UnaryOpsCompositionTest, Compose_Tanh_Relu_D) { RunComposedOp<double>({"Tanh", "Relu"}, 0.5, std::max(0.0, std::tanh(0.5))); } TEST_F(UnaryOpsCompositionTest, Compose_Tanh_Relu6_F) { RunComposedOp<float>({"Relu6"}, 11.0f, 6.0f); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/unary_ops_composition.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tests/unary_ops_composition_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ea1e268f-3784-4aec-8ec6-1cd57ff2d4cd
cpp
tensorflow/tensorflow
ragged_fill_empty_rows_op
tensorflow/core/kernels/ragged_fill_empty_rows_op.cc
tensorflow/core/kernels/ragged_fill_empty_rows_op_test.cc
#define EIGEN_USE_THREADS #include <algorithm> #include <numeric> #include <unordered_map> #include <utility> #include <vector> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/fill_empty_rows_functor.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/platform/errors.h" namespace tensorflow { using CPUDevice = Eigen::ThreadPoolDevice; using GPUDevice = Eigen::GpuDevice; namespace { template <typename Device, typename T, typename Tindex> void RaggedFillEmptyRowsOpImpl(OpKernelContext* context, AsyncOpKernel::DoneCallback done = nullptr) { if (!done) { done = [] {}; } const int kValueRowidsInput = 0; const int kValuesInput = 1; const int kNRowsInput = 2; const int kDefaultValueInput = 3; const Tensor& value_rowids_t = context->input(kValueRowidsInput); const Tensor& values_t = context->input(kValuesInput); const Tensor& nrows_t = context->input(kNRowsInput); const Tensor& default_value_t = context->input(kDefaultValueInput); OP_REQUIRES_ASYNC(context, TensorShapeUtils::IsScalar(nrows_t.shape()), errors::InvalidArgument("nrows must be a scalar, saw: ", nrows_t.shape().DebugString()), done); OP_REQUIRES_ASYNC( context, TensorShapeUtils::IsVector(value_rowids_t.shape()), errors::InvalidArgument("value_rowids must be a vector, saw: ", value_rowids_t.shape().DebugString()), done); OP_REQUIRES_ASYNC(context, TensorShapeUtils::IsVector(values_t.shape()), errors::InvalidArgument("values must be a vector, saw: ", values_t.shape().DebugString()), done); OP_REQUIRES_ASYNC(context, value_rowids_t.dim_size(0) == values_t.dim_size(0), errors::InvalidArgument( "The length of `values` (", values_t.dim_size(0), ") must match the first dimension of `value_rowids` (", value_rowids_t.dim_size(0), ")."), done); OP_REQUIRES_ASYNC( context, TensorShapeUtils::IsScalar(default_value_t.shape()), errors::InvalidArgument("default_value must be a scalar, saw: ", default_value_t.shape().DebugString()), done); using FunctorType = functor::FillEmptyRows<Device, T, Tindex, true>; OP_REQUIRES_OK_ASYNC(context, FunctorType()(context, default_value_t, value_rowids_t, values_t, nrows_t, done), done); } } template <typename Device, typename T, typename Tindex> class RaggedFillEmptyRowsOp : public OpKernel { public: explicit RaggedFillEmptyRowsOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { RaggedFillEmptyRowsOpImpl<Device, T, Tindex>(context); } }; #define REGISTER_KERNELS(D, T, Tindex) \ REGISTER_KERNEL_BUILDER(Name("RaggedFillEmptyRows") \ .Device(DEVICE_##D) \ .HostMemory("nrows") \ .TypeConstraint<T>("T"), \ RaggedFillEmptyRowsOp<D##Device, T, Tindex>) #define REGISTER_CPU_KERNELS(T) REGISTER_KERNELS(CPU, T, int64) TF_CALL_ALL_TYPES(REGISTER_CPU_KERNELS); #undef REGISTER_CPU_KERNELS #undef REGISTER_KERNELS #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM template <typename T, typename Tindex> class RaggedFillEmptyRowsGPUOp : public AsyncOpKernel { public: explicit RaggedFillEmptyRowsGPUOp(OpKernelConstruction* context) : AsyncOpKernel(context) {} void ComputeAsync(OpKernelContext* context, DoneCallback done) override { RaggedFillEmptyRowsOpImpl<GPUDevice, T, Tindex>(context, done); } }; #define REGISTER_KERNELS(T, Tindex) \ REGISTER_KERNEL_BUILDER(Name("RaggedFillEmptyRows") \ .Device(DEVICE_GPU) \ .HostMemory("nrows") \ .TypeConstraint<T>("T"), \ RaggedFillEmptyRowsGPUOp<T, Tindex>) #define REGISTER_KERNELS_TINDEX(T) REGISTER_KERNELS(T, int64) TF_CALL_POD_TYPES(REGISTER_KERNELS_TINDEX) #undef REGISTER_KERNELS_TINDEX #undef REGISTER_KERNELS #endif template <typename Device, typename T, typename Tindex> class RaggedFillEmptyRowsGradOp : public OpKernel { public: explicit RaggedFillEmptyRowsGradOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { const Tensor* reverse_index_map_t; const Tensor* grad_values_t; OP_REQUIRES_OK(context, context->input("reverse_index_map", &reverse_index_map_t)); OP_REQUIRES_OK(context, context->input("grad_values", &grad_values_t)); OP_REQUIRES( context, TensorShapeUtils::IsVector(reverse_index_map_t->shape()), errors::InvalidArgument("reverse_index_map must be a vector, saw: ", reverse_index_map_t->shape().DebugString())); OP_REQUIRES(context, TensorShapeUtils::IsVector(grad_values_t->shape()), errors::InvalidArgument("grad_values must be a vector, saw: ", grad_values_t->shape().DebugString())); const auto reverse_index_map = reverse_index_map_t->vec<Tindex>(); const auto grad_values = grad_values_t->vec<T>(); const Tindex N = reverse_index_map_t->shape().dim_size(0); Tensor* d_values_t; OP_REQUIRES_OK(context, context->allocate_output( "d_values", TensorShape({N}), &d_values_t)); auto d_values = d_values_t->vec<T>(); Tensor* d_default_value_t; OP_REQUIRES_OK(context, context->allocate_output("d_default_value", TensorShape({}), &d_default_value_t)); auto d_default_value = d_default_value_t->scalar<T>(); OP_REQUIRES_OK(context, functor::FillEmptyRowsGrad<Device, T, Tindex>()( context, reverse_index_map, grad_values, d_values, d_default_value)); } }; #define REGISTER_KERNELS(D, T, Tindex) \ REGISTER_KERNEL_BUILDER(Name("RaggedFillEmptyRowsGrad") \ .Device(DEVICE_##D) \ .TypeConstraint<T>("T"), \ RaggedFillEmptyRowsGradOp<D##Device, T, Tindex>) #define REGISTER_CPU_KERNELS(T) REGISTER_KERNELS(CPU, T, int64) TF_CALL_NUMBER_TYPES(REGISTER_CPU_KERNELS); #undef REGISTER_CPU_KERNELS #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER_GPU_KERNELS(T) REGISTER_KERNELS(GPU, T, int64) TF_CALL_REAL_NUMBER_TYPES(REGISTER_GPU_KERNELS); #undef REGISTER_GPU_KERNELS #endif #undef REGISTER_KERNELS }
#include <gtest/gtest.h> #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class RaggedFillEmptyRowsOpTest : public ::tensorflow::OpsTestBase { protected: const int kValueRowidsOutput = 0; const int kValuesOutput = 1; const int kEmptyRowIndicatorOutput = 2; const int kReverseIndexMapOutput = 3; template <typename T> void BuildFillEmptyRowsGraph() { const auto& dtype = DataTypeToEnum<T>::v(); const auto& dtype_int64 = DataTypeToEnum<int64_t>::v(); TF_ASSERT_OK(NodeDefBuilder("tested_op", "RaggedFillEmptyRows") .Input(FakeInput(dtype_int64)) .Input(FakeInput(dtype)) .Input(FakeInput(dtype_int64)) .Input(FakeInput(dtype)) .Attr("T", dtype) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(RaggedFillEmptyRowsOpTest, IntValues) { BuildFillEmptyRowsGraph<int>(); AddInputFromArray<int64_t>(TensorShape({4}), {1, 2, 2, 5}); AddInputFromArray<int>(TensorShape({4}), {2, 4, 6, 8}); AddInputFromArray<int64_t>(TensorShape({}), {7}); AddInputFromArray<int>(TensorShape({}), {-1}); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>( *GetOutput(kValueRowidsOutput), test::AsTensor<int64_t>({0, 1, 2, 2, 3, 4, 5, 6})); test::ExpectTensorEqual<int>( *GetOutput(kValuesOutput), test::AsTensor<int>({-1, 2, 4, 6, -1, -1, 8, -1})); } TEST_F(RaggedFillEmptyRowsOpTest, FloatValues) { BuildFillEmptyRowsGraph<float>(); AddInputFromArray<int64_t>(TensorShape({4}), {1, 2, 2, 5}); AddInputFromArray<float>(TensorShape({4}), {2., 4., 6., 8.}); AddInputFromArray<int64_t>(TensorShape({}), {7}); AddInputFromArray<float>(TensorShape({}), {-1.}); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>( *GetOutput(kValueRowidsOutput), test::AsTensor<int64_t>({0, 1, 2, 2, 3, 4, 5, 6})); test::ExpectTensorEqual<float>( *GetOutput(kValuesOutput), test::AsTensor<float>({-1., 2., 4., 6., -1., -1., 8., -1.})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/ragged_fill_empty_rows_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/ragged_fill_empty_rows_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d8467ab7-3264-4340-a4dd-5ef9bc2415d2
cpp
google/quiche
connect_udp_datagram_payload
quiche/common/masque/connect_udp_datagram_payload.cc
quiche/common/masque/connect_udp_datagram_payload_test.cc
#include "quiche/common/masque/connect_udp_datagram_payload.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_data_reader.h" #include "quiche/common/quiche_data_writer.h" namespace quiche { std::unique_ptr<ConnectUdpDatagramPayload> ConnectUdpDatagramPayload::Parse( absl::string_view datagram_payload) { QuicheDataReader data_reader(datagram_payload); uint64_t context_id; if (!data_reader.ReadVarInt62(&context_id)) { QUICHE_DVLOG(1) << "Could not parse malformed UDP proxy payload"; return nullptr; } if (ContextId{context_id} == ConnectUdpDatagramUdpPacketPayload::kContextId) { return std::make_unique<ConnectUdpDatagramUdpPacketPayload>( data_reader.ReadRemainingPayload()); } else { return std::make_unique<ConnectUdpDatagramUnknownPayload>( ContextId{context_id}, data_reader.ReadRemainingPayload()); } } std::string ConnectUdpDatagramPayload::Serialize() const { std::string buffer(SerializedLength(), '\0'); QuicheDataWriter writer(buffer.size(), buffer.data()); bool result = SerializeTo(writer); QUICHE_DCHECK(result); QUICHE_DCHECK_EQ(writer.remaining(), 0u); return buffer; } ConnectUdpDatagramUdpPacketPayload::ConnectUdpDatagramUdpPacketPayload( absl::string_view udp_packet) : udp_packet_(udp_packet) {} ConnectUdpDatagramPayload::ContextId ConnectUdpDatagramUdpPacketPayload::GetContextId() const { return kContextId; } ConnectUdpDatagramPayload::Type ConnectUdpDatagramUdpPacketPayload::GetType() const { return Type::kUdpPacket; } absl::string_view ConnectUdpDatagramUdpPacketPayload::GetUdpProxyingPayload() const { return udp_packet_; } size_t ConnectUdpDatagramUdpPacketPayload::SerializedLength() const { return udp_packet_.size() + QuicheDataWriter::GetVarInt62Len(uint64_t{kContextId}); } bool ConnectUdpDatagramUdpPacketPayload::SerializeTo( QuicheDataWriter& writer) const { if (!writer.WriteVarInt62(uint64_t{kContextId})) { return false; } if (!writer.WriteStringPiece(udp_packet_)) { return false; } return true; } ConnectUdpDatagramUnknownPayload::ConnectUdpDatagramUnknownPayload( ContextId context_id, absl::string_view udp_proxying_payload) : context_id_(context_id), udp_proxying_payload_(udp_proxying_payload) { if (context_id == ConnectUdpDatagramUdpPacketPayload::kContextId) { QUICHE_BUG(udp_proxy_unknown_payload_udp_context) << "ConnectUdpDatagramUnknownPayload created with UDP packet context " "type (0). Should instead create a " "ConnectUdpDatagramUdpPacketPayload."; } } ConnectUdpDatagramPayload::ContextId ConnectUdpDatagramUnknownPayload::GetContextId() const { return context_id_; } ConnectUdpDatagramPayload::Type ConnectUdpDatagramUnknownPayload::GetType() const { return Type::kUnknown; } absl::string_view ConnectUdpDatagramUnknownPayload::GetUdpProxyingPayload() const { return udp_proxying_payload_; } size_t ConnectUdpDatagramUnknownPayload::SerializedLength() const { return udp_proxying_payload_.size() + QuicheDataWriter::GetVarInt62Len(uint64_t{context_id_}); } bool ConnectUdpDatagramUnknownPayload::SerializeTo( QuicheDataWriter& writer) const { if (!writer.WriteVarInt62(uint64_t{context_id_})) { return false; } if (!writer.WriteStringPiece(udp_proxying_payload_)) { return false; } return true; } }
#include "quiche/common/masque/connect_udp_datagram_payload.h" #include <memory> #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_test.h" namespace quiche::test { namespace { TEST(ConnectUdpDatagramPayloadTest, ParseUdpPacket) { static constexpr char kDatagramPayload[] = "\x00packet"; std::unique_ptr<ConnectUdpDatagramPayload> parsed = ConnectUdpDatagramPayload::Parse( absl::string_view(kDatagramPayload, sizeof(kDatagramPayload) - 1)); ASSERT_TRUE(parsed); EXPECT_EQ(parsed->GetContextId(), ConnectUdpDatagramUdpPacketPayload::kContextId); EXPECT_EQ(parsed->GetType(), ConnectUdpDatagramPayload::Type::kUdpPacket); EXPECT_EQ(parsed->GetUdpProxyingPayload(), "packet"); } TEST(ConnectUdpDatagramPayloadTest, SerializeUdpPacket) { static constexpr absl::string_view kUdpPacket = "packet"; ConnectUdpDatagramUdpPacketPayload payload(kUdpPacket); EXPECT_EQ(payload.GetUdpProxyingPayload(), kUdpPacket); EXPECT_EQ(payload.Serialize(), std::string("\x00packet", 7)); } TEST(ConnectUdpDatagramPayloadTest, ParseUnknownPacket) { static constexpr char kDatagramPayload[] = "\x05packet"; std::unique_ptr<ConnectUdpDatagramPayload> parsed = ConnectUdpDatagramPayload::Parse( absl::string_view(kDatagramPayload, sizeof(kDatagramPayload) - 1)); ASSERT_TRUE(parsed); EXPECT_EQ(parsed->GetContextId(), 5); EXPECT_EQ(parsed->GetType(), ConnectUdpDatagramPayload::Type::kUnknown); EXPECT_EQ(parsed->GetUdpProxyingPayload(), "packet"); } TEST(ConnectUdpDatagramPayloadTest, SerializeUnknownPacket) { static constexpr absl::string_view kInnerUdpProxyingPayload = "packet"; ConnectUdpDatagramUnknownPayload payload(4u, kInnerUdpProxyingPayload); EXPECT_EQ(payload.GetUdpProxyingPayload(), kInnerUdpProxyingPayload); EXPECT_EQ(payload.Serialize(), std::string("\x04packet", 7)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/masque/connect_udp_datagram_payload.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/masque/connect_udp_datagram_payload_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
d8c52ca2-a890-4b74-982d-b4eca24afbf8
cpp
tensorflow/tensorflow
mutable_op_resolver
tensorflow/lite/mutable_op_resolver.cc
tensorflow/lite/mutable_op_resolver_test.cc
#include "tensorflow/lite/mutable_op_resolver.h" #include <unordered_map> #include <utility> #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/api/op_resolver_internal.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { const TfLiteRegistration* MutableOpResolver::FindOp(tflite::BuiltinOperator op, int version) const { auto it = builtins_.find(std::make_pair(op, version)); if (it != builtins_.end()) { return &it->second; } for (const OpResolver* other : other_op_resolvers_) { const TfLiteRegistration* result = other->FindOp(op, version); if (result != nullptr) { return result; } } return nullptr; } const TfLiteRegistration* MutableOpResolver::FindOp(const char* op, int version) const { auto it = custom_ops_.find(std::make_pair(op, version)); if (it != custom_ops_.end()) { return &it->second; } for (const OpResolver* other : other_op_resolvers_) { const TfLiteRegistration* result = other->FindOp(op, version); if (result != nullptr) { return result; } } return nullptr; } void MutableOpResolver::AddBuiltin(tflite::BuiltinOperator op, const TfLiteRegistration* registration, int version) { if (registration == nullptr) { return; } TfLiteRegistration new_registration = *registration; new_registration.custom_name = nullptr; new_registration.builtin_code = op; new_registration.version = version; auto op_key = std::make_pair(op, version); builtins_[op_key] = new_registration; may_directly_contain_user_defined_ops_ = true; } void MutableOpResolver::AddBuiltin(tflite::BuiltinOperator op, const TfLiteRegistration* registration, int min_version, int max_version) { for (int version = min_version; version <= max_version; ++version) { AddBuiltin(op, registration, version); } } void MutableOpResolver::AddCustom(const char* name, const TfLiteRegistration* registration, int version) { TfLiteRegistration new_registration = *registration; new_registration.builtin_code = BuiltinOperator_CUSTOM; new_registration.custom_name = name; new_registration.version = version; auto op_key = std::make_pair(name, version); custom_ops_[op_key] = new_registration; may_directly_contain_user_defined_ops_ = true; } void MutableOpResolver::AddCustom(const char* name, const TfLiteRegistration* registration, int min_version, int max_version) { for (int version = min_version; version <= max_version; ++version) { AddCustom(name, registration, version); } } void MutableOpResolver::AddAll(const MutableOpResolver& other) { for (const auto& other_builtin : other.builtins_) { builtins_[other_builtin.first] = other_builtin.second; } for (const auto& other_custom_op : other.custom_ops_) { custom_ops_[other_custom_op.first] = other_custom_op.second; } other_op_resolvers_.insert(other_op_resolvers_.begin(), other.other_op_resolvers_.begin(), other.other_op_resolvers_.end()); } void MutableOpResolver::ChainOpResolver(const OpResolver* other) { other_op_resolvers_.push_back(other); } bool MutableOpResolver::MayContainUserDefinedOps() const { if (may_directly_contain_user_defined_ops_) { return true; } for (const OpResolver* other : other_op_resolvers_) { if (OpResolverInternal::MayContainUserDefinedOps(*other)) { return true; } } return false; } }
#include "tensorflow/lite/mutable_op_resolver.h" #include <stddef.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { TfLiteStatus DummyInvoke(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteRegistration* GetDummyRegistration() { static TfLiteRegistration registration = { .init = nullptr, .free = nullptr, .prepare = nullptr, .invoke = DummyInvoke, }; return &registration; } TfLiteStatus Dummy2Invoke(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus Dummy2Prepare(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } void* Dummy2Init(TfLiteContext* context, const char* buffer, size_t length) { return nullptr; } void Dummy2free(TfLiteContext* context, void* buffer) {} TfLiteRegistration* GetDummy2Registration() { static TfLiteRegistration registration = { .init = Dummy2Init, .free = Dummy2free, .prepare = Dummy2Prepare, .invoke = Dummy2Invoke, }; return &registration; } TEST(MutableOpResolverTest, FindOp) { MutableOpResolver resolver; resolver.AddBuiltin(BuiltinOperator_ADD, GetDummyRegistration()); const TfLiteRegistration* found_registration = resolver.FindOp(BuiltinOperator_ADD, 1); ASSERT_NE(found_registration, nullptr); EXPECT_TRUE(found_registration->invoke == DummyInvoke); EXPECT_EQ(found_registration->builtin_code, BuiltinOperator_ADD); EXPECT_EQ(found_registration->version, 1); } TEST(MutableOpResolverTest, FindMissingOp) { MutableOpResolver resolver; resolver.AddBuiltin(BuiltinOperator_ADD, GetDummyRegistration()); const TfLiteRegistration* found_registration = resolver.FindOp(BuiltinOperator_CONV_2D, 1); EXPECT_EQ(found_registration, nullptr); } TEST(MutableOpResolverTest, RegisterOpWithSingleVersion) { MutableOpResolver resolver; resolver.AddBuiltin(BuiltinOperator_ADD, GetDummyRegistration(), 2); const TfLiteRegistration* found_registration; found_registration = resolver.FindOp(BuiltinOperator_ADD, 1); ASSERT_EQ(found_registration, nullptr); found_registration = resolver.FindOp(BuiltinOperator_ADD, 2); ASSERT_NE(found_registration, nullptr); EXPECT_TRUE(found_registration->invoke == DummyInvoke); EXPECT_EQ(found_registration->version, 2); found_registration = resolver.FindOp(BuiltinOperator_ADD, 3); ASSERT_EQ(found_registration, nullptr); } TEST(MutableOpResolverTest, RegisterOpWithMultipleVersions) { MutableOpResolver resolver; resolver.AddBuiltin(BuiltinOperator_ADD, GetDummyRegistration(), 2, 3); const TfLiteRegistration* found_registration; found_registration = resolver.FindOp(BuiltinOperator_ADD, 2); ASSERT_NE(found_registration, nullptr); EXPECT_TRUE(found_registration->invoke == DummyInvoke); EXPECT_EQ(found_registration->version, 2); found_registration = resolver.FindOp(BuiltinOperator_ADD, 3); ASSERT_NE(found_registration, nullptr); EXPECT_TRUE(found_registration->invoke == DummyInvoke); EXPECT_EQ(found_registration->version, 3); } TEST(MutableOpResolverTest, FindOpWithUnsupportedVersions) { MutableOpResolver resolver; resolver.AddBuiltin(BuiltinOperator_ADD, GetDummyRegistration(), 2, 3); const TfLiteRegistration* found_registration; found_registration = resolver.FindOp(BuiltinOperator_ADD, 1); EXPECT_EQ(found_registration, nullptr); found_registration = resolver.FindOp(BuiltinOperator_ADD, 4); EXPECT_EQ(found_registration, nullptr); } TEST(MutableOpResolverTest, FindCustomOp) { MutableOpResolver resolver; resolver.AddCustom("AWESOME", GetDummyRegistration()); const TfLiteRegistration* found_registration = resolver.FindOp("AWESOME", 1); ASSERT_NE(found_registration, nullptr); EXPECT_EQ(found_registration->builtin_code, BuiltinOperator_CUSTOM); EXPECT_TRUE(found_registration->invoke == DummyInvoke); EXPECT_EQ(found_registration->version, 1); } TEST(MutableOpResolverTest, FindCustomName) { MutableOpResolver resolver; TfLiteRegistration* reg = GetDummyRegistration(); reg->custom_name = "UPDATED"; resolver.AddCustom(reg->custom_name, reg); const TfLiteRegistration* found_registration = resolver.FindOp(reg->custom_name, 1); ASSERT_NE(found_registration, nullptr); EXPECT_EQ(found_registration->builtin_code, BuiltinOperator_CUSTOM); EXPECT_EQ(found_registration->invoke, GetDummyRegistration()->invoke); EXPECT_EQ(found_registration->version, 1); EXPECT_EQ(found_registration->custom_name, "UPDATED"); } TEST(MutableOpResolverTest, FindBuiltinName) { MutableOpResolver resolver1; TfLiteRegistration* reg = GetDummy2Registration(); reg->custom_name = "UPDATED"; resolver1.AddBuiltin(BuiltinOperator_ADD, reg); ASSERT_EQ(resolver1.FindOp(BuiltinOperator_ADD, 1)->invoke, GetDummy2Registration()->invoke); ASSERT_EQ(resolver1.FindOp(BuiltinOperator_ADD, 1)->prepare, GetDummy2Registration()->prepare); ASSERT_EQ(resolver1.FindOp(BuiltinOperator_ADD, 1)->init, GetDummy2Registration()->init); ASSERT_EQ(resolver1.FindOp(BuiltinOperator_ADD, 1)->free, GetDummy2Registration()->free); EXPECT_EQ(resolver1.FindOp(BuiltinOperator_ADD, 1)->custom_name, nullptr); } TEST(MutableOpResolverTest, FindMissingCustomOp) { MutableOpResolver resolver; resolver.AddCustom("AWESOME", GetDummyRegistration()); const TfLiteRegistration* found_registration = resolver.FindOp("EXCELLENT", 1); EXPECT_EQ(found_registration, nullptr); } TEST(MutableOpResolverTest, FindCustomOpWithUnsupportedVersion) { MutableOpResolver resolver; resolver.AddCustom("AWESOME", GetDummyRegistration()); const TfLiteRegistration* found_registration = resolver.FindOp("AWESOME", 2); EXPECT_EQ(found_registration, nullptr); } TEST(MutableOpResolverTest, AddAll) { MutableOpResolver resolver1; resolver1.AddBuiltin(BuiltinOperator_ADD, GetDummyRegistration()); resolver1.AddBuiltin(BuiltinOperator_MUL, GetDummy2Registration()); MutableOpResolver resolver2; resolver2.AddBuiltin(BuiltinOperator_SUB, GetDummyRegistration()); resolver2.AddBuiltin(BuiltinOperator_ADD, GetDummy2Registration()); resolver1.AddAll(resolver2); ASSERT_EQ(resolver1.FindOp(BuiltinOperator_ADD, 1)->invoke, GetDummy2Registration()->invoke); ASSERT_EQ(resolver1.FindOp(BuiltinOperator_MUL, 1)->invoke, GetDummy2Registration()->invoke); ASSERT_EQ(resolver1.FindOp(BuiltinOperator_SUB, 1)->invoke, GetDummyRegistration()->invoke); } class ChainingMutableOpResolver : public MutableOpResolver { public: using MutableOpResolver::ChainOpResolver; }; TEST(MutableOpResolverTest, ChainOpResolver) { ChainingMutableOpResolver resolver1; resolver1.AddBuiltin(BuiltinOperator_ADD, GetDummyRegistration()); resolver1.AddBuiltin(BuiltinOperator_MUL, GetDummy2Registration()); MutableOpResolver resolver2; resolver2.AddBuiltin(BuiltinOperator_SUB, GetDummyRegistration()); resolver2.AddBuiltin(BuiltinOperator_ADD, GetDummy2Registration()); resolver1.ChainOpResolver(&resolver2); ASSERT_EQ(resolver1.FindOp(BuiltinOperator_ADD, 1)->invoke, GetDummyRegistration()->invoke); ASSERT_EQ(resolver1.FindOp(BuiltinOperator_MUL, 1)->invoke, GetDummy2Registration()->invoke); ASSERT_EQ(resolver1.FindOp(BuiltinOperator_SUB, 1)->invoke, GetDummyRegistration()->invoke); } TEST(MutableOpResolverTest, CopyConstructChainedOpResolver) { MutableOpResolver resolver; resolver.AddBuiltin(BuiltinOperator_ADD, GetDummyRegistration()); resolver.AddBuiltin(BuiltinOperator_SUB, GetDummy2Registration()); resolver.AddCustom("MyCustom", GetDummy2Registration()); ChainingMutableOpResolver resolver2; resolver2.ChainOpResolver(&resolver); MutableOpResolver resolver3(resolver2); ASSERT_EQ(resolver3.FindOp(BuiltinOperator_ADD, 1)->invoke, GetDummyRegistration()->invoke); ASSERT_EQ(resolver3.FindOp(BuiltinOperator_SUB, 1)->invoke, GetDummy2Registration()->invoke); ASSERT_EQ(resolver3.FindOp(BuiltinOperator_MUL, 1), nullptr); ASSERT_EQ(resolver3.FindOp("MyCustom", 1)->invoke, GetDummy2Registration()->invoke); ASSERT_EQ(resolver3.FindOp("NotMyCustom", 1), nullptr); } TEST(MutableOpResolverTest, AssignChainedOpResolver) { MutableOpResolver resolver; resolver.AddBuiltin(BuiltinOperator_ADD, GetDummyRegistration()); resolver.AddBuiltin(BuiltinOperator_SUB, GetDummy2Registration()); resolver.AddCustom("MyCustom", GetDummy2Registration()); ChainingMutableOpResolver resolver2; resolver2.ChainOpResolver(&resolver); MutableOpResolver resolver3; resolver3 = resolver2; ASSERT_EQ(resolver3.FindOp(BuiltinOperator_ADD, 1)->invoke, GetDummyRegistration()->invoke); ASSERT_EQ(resolver3.FindOp(BuiltinOperator_SUB, 1)->invoke, GetDummy2Registration()->invoke); ASSERT_EQ(resolver3.FindOp(BuiltinOperator_MUL, 1), nullptr); ASSERT_EQ(resolver3.FindOp("MyCustom", 1)->invoke, GetDummy2Registration()->invoke); ASSERT_EQ(resolver3.FindOp("NotMyCustom", 1), nullptr); } TEST(MutableOpResolverTest, AddAllChainedOpResolver) { MutableOpResolver resolver; resolver.AddBuiltin(BuiltinOperator_ADD, GetDummyRegistration()); resolver.AddBuiltin(BuiltinOperator_SUB, GetDummy2Registration()); resolver.AddCustom("MyCustom", GetDummy2Registration()); ChainingMutableOpResolver resolver2; resolver2.ChainOpResolver(&resolver); MutableOpResolver resolver3; resolver3.AddAll(resolver2); ASSERT_EQ(resolver3.FindOp(BuiltinOperator_ADD, 1)->invoke, GetDummyRegistration()->invoke); ASSERT_EQ(resolver3.FindOp(BuiltinOperator_SUB, 1)->invoke, GetDummy2Registration()->invoke); ASSERT_EQ(resolver3.FindOp(BuiltinOperator_MUL, 1), nullptr); ASSERT_EQ(resolver3.FindOp("MyCustom", 1)->invoke, GetDummy2Registration()->invoke); ASSERT_EQ(resolver3.FindOp("NotMyCustom", 1), nullptr); } TEST(MutableOpResolverTest, ChainOpResolverCustomOpPrecedence) { MutableOpResolver resolver1; resolver1.AddCustom("MyCustom", GetDummyRegistration()); MutableOpResolver resolver2; resolver2.AddCustom("MyCustom", GetDummy2Registration()); ChainingMutableOpResolver resolver3; resolver3.ChainOpResolver(&resolver1); resolver3.ChainOpResolver(&resolver2); ASSERT_EQ(resolver3.FindOp("MyCustom", 1)->invoke, GetDummyRegistration()->invoke); } TEST(MutableOpResolverTest, ChainOpResolverBuiltinOpPrecedence) { MutableOpResolver resolver1; resolver1.AddBuiltin(BuiltinOperator_ADD, GetDummyRegistration()); MutableOpResolver resolver2; resolver2.AddBuiltin(BuiltinOperator_ADD, GetDummy2Registration()); ChainingMutableOpResolver resolver3; resolver3.ChainOpResolver(&resolver1); resolver3.ChainOpResolver(&resolver2); ASSERT_EQ(resolver3.FindOp(BuiltinOperator_ADD, 1)->invoke, GetDummyRegistration()->invoke); } TEST(MutableOpResolverTest, ChainOpResolverAddVersusChainPrecedence) { MutableOpResolver resolver1; resolver1.AddCustom("MyCustom", GetDummyRegistration()); ChainingMutableOpResolver resolver2; resolver2.ChainOpResolver(&resolver1); MutableOpResolver resolver3; resolver3.AddCustom("MyCustom", GetDummy2Registration()); ChainingMutableOpResolver resolver4; resolver4.ChainOpResolver(&resolver2); resolver4.ChainOpResolver(&resolver3); ASSERT_EQ(resolver4.FindOp("MyCustom", 1)->invoke, GetDummyRegistration()->invoke); } TEST(MutableOpResolverTest, AddAllAddVersusChainPrecedence) { MutableOpResolver resolver1; resolver1.AddCustom("MyCustom", GetDummyRegistration()); ChainingMutableOpResolver resolver2; resolver2.ChainOpResolver(&resolver1); MutableOpResolver resolver3; resolver3.AddCustom("MyCustom", GetDummy2Registration()); MutableOpResolver resolver4; resolver4.AddAll(resolver2); resolver4.AddAll(resolver3); ASSERT_EQ(resolver4.FindOp("MyCustom", 1)->invoke, GetDummy2Registration()->invoke); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/mutable_op_resolver.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/mutable_op_resolver_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
590fbe25-44c9-4631-8316-7cac1d6d4be9
cpp
google/arolla
dynamic_lifting
arolla/expr/operators/dynamic_lifting.cc
arolla/expr/operators/dynamic_lifting_test.cc
#include "arolla/expr/operators/dynamic_lifting.h" #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/lambda_expr_operator.h" #include "arolla/expr/operators/restricted_operator.h" #include "arolla/expr/operators/type_meta_eval_strategies.h" #include "arolla/expr/overloaded_expr_operator.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/qtype/array_like/array_like_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr_operators { namespace { using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::ExprOperatorSignature; using ::arolla::expr::Literal; using ::arolla::expr::MakeOverloadedOperator; using ::arolla::expr::Placeholder; using ::arolla::expr_operators::type_meta::QTypes; absl::StatusOr<QTypes> NoArrayArgs(absl::Span<const QTypePtr> types) { for (QTypePtr t : types) { if (IsArrayLikeQType(t)) { return absl::InvalidArgumentError("array argument found"); } } return QTypes{types.begin(), types.end()}; } } absl::StatusOr<ExprOperatorPtr> LiftDynamically( const absl::StatusOr<ExprOperatorPtr>& op_or) { ASSIGN_OR_RETURN(const ExprOperatorPtr& op, op_or); ASSIGN_OR_RETURN(ExprOperatorPtr map_op, expr::LookupOperator("core.map")); return MakeOverloadedOperator( op->display_name(), RestrictOperator(op, NoArrayArgs), MakeLambdaOperator( ExprOperatorSignature::Make("*args"), ::arolla::expr::CallOp( "core.apply_varargs", {Literal(std::move(map_op)), Literal(op), Placeholder("args")}))); } }
#include "arolla/expr/operators/dynamic_lifting.h" #include <memory> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/log/check.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/expr/backend_wrapping_operator.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/operators/type_meta_eval_strategies.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/expr/testing/testing.h" #include "arolla/expr/tuple_expr_operator.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype_traits.h" namespace arolla::expr_operators { namespace { using ::absl_testing::IsOkAndHolds; using ::arolla::expr::BackendWrappingOperator; using ::arolla::expr::CallOp; using ::arolla::expr::ExprNodePtr; using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::ExprOperatorSignature; using ::arolla::expr::Leaf; using ::arolla::expr::Literal; using ::arolla::expr_operators::type_meta::CallableStrategy; using ::arolla::expr_operators::type_meta::Chain; using ::arolla::expr_operators::type_meta::CommonType; using ::arolla::expr_operators::type_meta::Ternary; using ::arolla::testing::EqualsExpr; using ::arolla::testing::WithQTypeAnnotation; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::Field; TEST(DynamicLiftingTest, LiftDynamically) { ASSERT_OK_AND_ASSIGN(auto scalar_signature, ExprOperatorSignature::Make("a, b, c")); auto scalar_operator = std::make_shared<BackendWrappingOperator>( "test.scalar_operator", scalar_signature, CallableStrategy(Chain(Ternary, CommonType))); ASSERT_OK_AND_ASSIGN(auto lifted_operator, LiftDynamically(scalar_operator)); EXPECT_THAT(lifted_operator->display_name(), Eq("test.scalar_operator")); EXPECT_THAT( lifted_operator->GetSignature(), IsOkAndHolds(Field( &ExprOperatorSignature::parameters, ElementsAre(Field(&ExprOperatorSignature::Parameter::name, "a"), Field(&ExprOperatorSignature::Parameter::name, "b"), Field(&ExprOperatorSignature::Parameter::name, "c"))))); { auto scalar_args = { WithQTypeAnnotation(Leaf("a"), GetQType<float>()), WithQTypeAnnotation(Leaf("b"), GetOptionalQType<float>()), WithQTypeAnnotation(Leaf("c"), GetQType<double>())}; ASSERT_OK_AND_ASSIGN(auto scalar_expr, CallOp(lifted_operator, scalar_args)); EXPECT_THAT(scalar_expr->qtype(), Eq(GetOptionalQType<double>())); ASSERT_OK_AND_ASSIGN(auto expected_expr, CallOp(scalar_operator, scalar_args)); EXPECT_THAT(ToLowest(scalar_expr), IsOkAndHolds(EqualsExpr(ToLowest(expected_expr)))); } { std::vector<absl::StatusOr<ExprNodePtr>> array_args = { WithQTypeAnnotation(Leaf("a"), GetQType<float>()), WithQTypeAnnotation(Leaf("b"), GetDenseArrayQType<float>()), WithQTypeAnnotation(Leaf("c"), GetOptionalQType<double>())}; ASSERT_OK_AND_ASSIGN(auto array_expr, CallOp(lifted_operator, array_args)); EXPECT_THAT(array_expr->qtype(), Eq(GetDenseArrayQType<double>())); ASSERT_OK_AND_ASSIGN(ExprOperatorPtr map_op, expr::LookupOperator("core.map")); ASSERT_OK_AND_ASSIGN( auto expected_expr, CallOp("core.apply_varargs", {Literal(map_op), Literal<ExprOperatorPtr>(scalar_operator), CallOp(expr::MakeTupleOperator::Make(), array_args)})); EXPECT_THAT(ToLowest(array_expr), IsOkAndHolds(EqualsExpr(ToLowest(expected_expr)))); } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operators/dynamic_lifting.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operators/dynamic_lifting_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
5df53855-dc84-4c12-a642-74b1e73fc48e
cpp
tensorflow/tensorflow
transfer_manager
third_party/xla/xla/service/transfer_manager.cc
third_party/xla/xla/tests/transfer_manager_test.cc
#include "xla/service/transfer_manager.h" #include <cstdint> #include <functional> #include <memory> #include <utility> #include <vector> #include "absl/base/const_init.h" #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/literal.h" #include "xla/service/compiler.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/notification.h" #include "tsl/platform/statusor.h" namespace xla { absl::Mutex TransferManager::platform_transfer_manager_mutex_( absl::kConstInit); absl::flat_hash_map<se::Platform::Id, TransferManager::State>* TransferManager::GetPlatformTransferManagers() { static auto* r = new absl::flat_hash_map<se::Platform::Id, TransferManager::State>; return r; } absl::StatusOr<Literal> TransferManager::TransferLiteralFromDevice( se::Stream* stream, const ShapedBuffer& device_buffer, const TransferMetadata* transfer_metadata) { Literal literal(device_buffer.on_host_shape()); TF_RETURN_IF_ERROR(TransferLiteralFromDevice(stream, device_buffer, &literal, transfer_metadata)); return std::move(literal); } absl::Status TransferManager::TransferLiteralFromDevice( se::Stream* stream, const ShapedBuffer& device_buffer, const MutableBorrowingLiteral& literal, const TransferMetadata* transfer_metadata) { TF_ASSIGN_OR_RETURN(se::Stream * substream, stream->GetOrCreateSubStream()); TF_RETURN_IF_ERROR(substream->WaitFor(stream)); absl::Cleanup cleanup = [&]() { stream->ReturnSubStream(substream); }; absl::Status ret; tsl::Notification n; TransferLiteralFromDevice( substream, device_buffer, literal, [&](absl::Status status) { ret = status; n.Notify(); }, transfer_metadata); n.WaitForNotification(); return ret; } absl::Status TransferManager::TransferLiteralToDevice( se::Stream* stream, const LiteralSlice& literal, const ShapedBuffer& device_buffer, const TransferMetadata* transfer_metadata) { TF_ASSIGN_OR_RETURN(se::Stream * substream, stream->GetOrCreateSubStream()); TF_RETURN_IF_ERROR(substream->WaitFor(stream)); absl::Cleanup cleanup = [&]() { stream->ReturnSubStream(substream); }; TF_RETURN_IF_ERROR(TransferLiteralToDeviceAsync( substream, literal, device_buffer, transfer_metadata)); return substream->BlockHostUntilDone(); } absl::StatusOr<Literal> TransferManager::TransferArrayFromDevice( se::Stream* stream, const Shape& shape, const se::DeviceMemoryBase& source, const TransferMetadata* transfer_metadata) { TF_RET_CHECK(shape.IsArray()); TF_RET_CHECK(Shape::Equal().MinorToMajorOnlyInLayout()( HostShapeToDeviceShape(shape), shape)); Literal literal(shape); ShapedBuffer shaped_buffer(shape, stream->parent()->device_ordinal()); shaped_buffer.set_buffer(source, {}); TF_RETURN_IF_ERROR(TransferLiteralFromDevice(stream, shaped_buffer, &literal, transfer_metadata)); return std::move(literal); } absl::Status TransferManager::TransferArrayToDevice( se::Stream* stream, const LiteralSlice& literal, const se::DeviceMemoryBase& dest, const TransferMetadata* transfer_metadata) { TF_ASSIGN_OR_RETURN(se::Stream * substream, stream->GetOrCreateSubStream()); TF_RETURN_IF_ERROR(substream->WaitFor(stream)); absl::Cleanup cleanup = [&]() { stream->ReturnSubStream(substream); }; TF_RETURN_IF_ERROR( TransferArrayToDeviceAsync(substream, literal, dest, transfer_metadata)); return substream->BlockHostUntilDone(); } absl::Status TransferManager::TransferArrayToDeviceAsync( se::Stream* stream, const LiteralSlice& literal, const se::DeviceMemoryBase& dest, const TransferMetadata* transfer_metadata) { TF_RET_CHECK(literal.shape().IsArray()); ShapedBuffer shaped_buffer(HostShapeToDeviceShape(literal.shape()), stream->parent()->device_ordinal()); shaped_buffer.set_buffer(dest, {}); return TransferLiteralToDeviceAsync(stream, literal, shaped_buffer, transfer_metadata); } absl::Status TransferManager::ReadDynamicShapes( se::Stream* stream, const ShapedBuffer* device_buffer, Shape* device_shape) { DCHECK(device_shape->is_dynamic()); Shape original_device_shape = *device_shape; TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); TF_ASSIGN_OR_RETURN( auto compiler, Compiler::GetForPlatform(stream->parent()->GetPlatform())); TF_RETURN_IF_ERROR(device_buffer->buffers().ForEachElementWithStatus( [&](const ShapeIndex& index, const se::DeviceMemoryBase& buffer) -> absl::Status { const Shape& buffer_shape = ShapeUtil::GetSubshape(*device_shape, index); if (buffer_shape.IsTuple()) { return absl::OkStatus(); } Shape& device_sub_shape = *ShapeUtil::GetMutableSubshape(device_shape, index); if (device_sub_shape.is_static()) { return absl::OkStatus(); } auto shape_size_fn = compiler->ShapeSizeBytesFunction(); Shape buffer_shape_static = ShapeUtil::MakeStaticShape(buffer_shape); const int64_t offset = shape_size_fn(buffer_shape_static); int64_t metadata_size = shape_size_fn(buffer_shape) - offset; if (metadata_size == 0) { return InvalidArgument("Dynamic shape metadata size should not be 0"); } auto buffer_8 = se::DeviceMemory<uint8_t>(buffer); auto metadata_buffer = buffer_8.GetSlice(offset, metadata_size); TF_ASSIGN_OR_RETURN( auto metadata, TransferArrayFromDevice( stream, ShapeUtil::MakeShape(S32, {buffer_shape.dimensions_size()}), metadata_buffer)); for (int64_t i = 0; i < metadata.element_count(); ++i) { device_sub_shape.mutable_dimensions()[i] = metadata.Get<int32_t>({i}); } return absl::OkStatus(); })); device_shape->clear_dynamic_dimensions(); TF_RET_CHECK(ShapeUtil::DynamicShapeIsCompatible(*device_shape, original_device_shape)); return absl::OkStatus(); } void TransferManager::RegisterTransferManager( se::Platform::Id platform_id, TransferManagerCreationFunction creation_function) { absl::MutexLock lock(&TransferManager::platform_transfer_manager_mutex_); auto* managers = GetPlatformTransferManagers(); CHECK(managers->find(platform_id) == managers->end()); (*managers)[platform_id].creation_function = creation_function; } absl::StatusOr<TransferManager*> TransferManager::GetForPlatform( const se::Platform* platform) { absl::MutexLock lock(&TransferManager::platform_transfer_manager_mutex_); auto* managers = GetPlatformTransferManagers(); auto it = managers->find(platform->id()); if (it == managers->end()) { return NotFound( "could not find registered transfer manager for platform %s -- check " "target linkage", platform->Name()); } if (it->second.manager == nullptr) { it->second.manager = (*it->second.creation_function)(); } return it->second.manager.get(); } absl::Status TransferManager::WriteTupleIndexTables( se::Stream* stream, const ShapedBuffer& device_buffer) { TF_RETURN_IF_ERROR(WriteTupleIndexTablesAsync(stream, device_buffer)); return stream->BlockHostUntilDone(); } absl::Status TransferManager::WriteTupleIndexTablesAsync( se::Stream* stream, const ShapedBuffer& device_buffer) { VLOG(2) << "Writing tuple index tables for " << device_buffer; return ShapeUtil::ForEachSubshapeWithStatus( device_buffer.on_device_shape(), [&](const Shape& device_subshape, const ShapeIndex& index) -> absl::Status { if (device_subshape.IsTuple() && ShapeUtil::TupleElementCount(device_subshape) > 0) { se::DeviceMemoryBase device_memory = device_buffer.buffer(index); TF_RET_CHECK(GetByteSizeRequirement(device_subshape) == device_memory.size()); std::vector<se::DeviceMemoryBase> elements; ShapeIndex element_index = index; for (int64_t i = 0; i < ShapeUtil::TupleElementCount(device_subshape); ++i) { element_index.push_back(i); elements.push_back(device_buffer.buffer(element_index)); element_index.pop_back(); } return WriteSingleTupleIndexTable(stream, elements, device_subshape, &device_memory); } return absl::OkStatus(); }); } absl::Status TransferManager::WriteRootTupleIndexTable( se::Stream* stream, const ShapedBuffer& device_buffer) { TF_RET_CHECK(device_buffer.on_device_shape().IsTuple()); if (ShapeUtil::TupleElementCount(device_buffer.on_device_shape()) == 0) { return absl::OkStatus(); } se::DeviceMemoryBase device_memory = device_buffer.buffer({}); TF_RET_CHECK(GetByteSizeRequirement(device_buffer.on_device_shape()) == device_memory.size()); std::vector<se::DeviceMemoryBase> elements; elements.reserve( ShapeUtil::TupleElementCount(device_buffer.on_device_shape())); for (int64_t i = 0; i < ShapeUtil::TupleElementCount(device_buffer.on_device_shape()); ++i) { elements.push_back(device_buffer.buffer({i})); } return WriteSingleTupleIndexTable( stream, elements, device_buffer.on_device_shape(), &device_memory); } absl::Status TransferManager::WriteRootTupleIndexTable( se::Stream* stream, const ShapeTree<MaybeOwningDeviceMemory>& buffer_tree) { TF_RET_CHECK(buffer_tree.shape().IsTuple()); if (ShapeUtil::TupleElementCount(buffer_tree.shape()) == 0) { return absl::OkStatus(); } se::DeviceMemoryBase device_memory = buffer_tree.element({}).AsDeviceMemoryBase(); TF_RET_CHECK(GetByteSizeRequirement(buffer_tree.shape()) == device_memory.size()); std::vector<se::DeviceMemoryBase> elements; elements.reserve(ShapeUtil::TupleElementCount(buffer_tree.shape())); for (int64_t i = 0; i < ShapeUtil::TupleElementCount(buffer_tree.shape()); ++i) { elements.push_back(buffer_tree.element({i}).AsDeviceMemoryBase()); } return WriteSingleTupleIndexTable(stream, elements, buffer_tree.shape(), &device_memory); } absl::StatusOr<ScopedShapedBuffer> TransferManager::AllocateScopedShapedBuffer( const Shape& on_host_shape, se::DeviceMemoryAllocator* allocator, int device_ordinal, int physical_device_ordinal, DeviceShapeRepresentationFn shape_representation_fn) { if (!LayoutUtil::HasLayout(on_host_shape)) { return InvalidArgument("Shape must have a layout: %s", ShapeUtil::HumanStringWithLayout(on_host_shape)); } TF_RETURN_IF_ERROR(ShapeUtil::ValidateShape(on_host_shape)); Shape on_device_shape = (shape_representation_fn == nullptr) ? HostShapeToDeviceShape(on_host_shape) : shape_representation_fn(on_host_shape); TF_RET_CHECK(LayoutUtil::HasLayout(on_device_shape)); ScopedShapedBuffer shaped_buffer(std::move(on_device_shape), allocator, device_ordinal, physical_device_ordinal); for (auto& pair : shaped_buffer.buffers()) { const ShapeIndex& index = pair.first; se::DeviceMemoryBase& memory_base = pair.second; const Shape& subshape = ShapeUtil::GetSubshape(shaped_buffer.on_device_shape(), index); TF_ASSIGN_OR_RETURN(auto memory, allocator->Allocate(shaped_buffer.device_ordinal(), GetByteSizeRequirement(subshape), true, LayoutUtil::MemorySpace(subshape))); memory_base = memory.Release(); } return std::move(shaped_buffer); } absl::StatusOr<Shape> TransferManager::ChooseCompactLayoutForShape( const Shape& host_shape) const { return LayoutUtil::GetWithDefaultLayout(host_shape); } xla::Shape TransferManager::ChooseGoodInfeedLayout(const Shape& shape) const { return LayoutUtil::GetWithDefaultLayout(shape); } }
#include <memory> #include <string> #include <vector> #include "absl/status/statusor.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/service/generic_transfer_manager.h" #include "xla/service/hlo_parser.h" #include "xla/service/shaped_buffer.h" #include "xla/service/stream_pool.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/local_client_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { class TransferManagerTest : public LocalClientTestBase { protected: TransferManagerTest() : shape_size_fn_([this](const Shape& shape) { return transfer_manager_->GetByteSizeRequirement(shape); }) { stream_ptr_ = local_client_->mutable_backend() ->BorrowStream(stream_executor_) .value(); stream_ = stream_ptr_.get(); } ~TransferManagerTest() override = default; ScopedShapedBuffer AllocateDeviceBuffer(const Shape& shape) { return transfer_manager_ ->AllocateScopedShapedBuffer( shape, GetOrCreateAllocator(local_client_->platform()), 0) .value(); } protected: StreamPool::Ptr stream_ptr_; se::Stream* stream_; private: std::function<int64_t(const Shape&)> shape_size_fn_; }; XLA_TEST_F(TransferManagerTest, TransferR0U32) { Literal literal = LiteralUtil::CreateR0<uint32_t>(42); const Shape& shape = literal.shape(); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); LiteralTestUtil::ExpectR0Equal<uint32_t>(42, result); } XLA_TEST_F(TransferManagerTest, TransferR1F32) { Literal literal = LiteralUtil::CreateR1<float>({1.25f, 2.5f, -17.0f, -20.125f}); const Shape& shape = literal.shape(); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); LiteralTestUtil::ExpectR1Equal<float>({1.25f, 2.5f, -17.0f, -20.125f}, result); } XLA_TEST_F(TransferManagerTest, TransferR1F32AwkwardSizes) { constexpr int kMaxR1Size = (1 << 11); for (int i = 0; i < kMaxR1Size; ++i) { std::vector<float> inputs(i); std::iota(inputs.begin(), inputs.end(), 0); Literal literal = LiteralUtil::CreateR1<float>(inputs); const Shape& shape = literal.shape(); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); LiteralTestUtil::ExpectR1Equal<float>(inputs, result); } } XLA_TEST_F(TransferManagerTest, TransferR1LargeF32) { std::vector<float> test_vector(1024 * 1024); std::iota(test_vector.begin(), test_vector.end(), 0); Literal literal = LiteralUtil::CreateR1<float>(test_vector); const Shape& shape = literal.shape(); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); LiteralTestUtil::ExpectR1Equal<float>(test_vector, result); } XLA_TEST_F(TransferManagerTest, TransferR1LargeUnalignedF32) { std::vector<float> test_vector(1025); std::iota(test_vector.begin(), test_vector.end(), 0); Shape shape = ShapeUtil::MakeShape(F32, {1024}); BorrowingLiteral literal(reinterpret_cast<const char*>(&test_vector[1]), shape); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); std::vector<float> expected_output(1024); std::iota(expected_output.begin(), expected_output.end(), 1); LiteralTestUtil::ExpectR1Equal<float>(expected_output, result); } XLA_TEST_F(TransferManagerTest, TransferR1U8) { const char* test_string = "0123456789abcdef"; Literal literal = LiteralUtil::CreateR1U8(test_string); const Shape& shape = literal.shape(); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_EQ(result.GetR1U8AsString(), test_string); } XLA_TEST_F(TransferManagerTest, TransferR2F32) { Literal literal = LiteralUtil::CreateR2<float>({{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}}); const Shape& shape = literal.shape(); auto device_buffer = AllocateDeviceBuffer(shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); LiteralTestUtil::ExpectR2Equal<float>( {{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}}, result); } XLA_TEST_F(TransferManagerTest, TransferR2F32AndChangeLayoutTransferringToDevice) { Literal literal = LiteralUtil::CreateR2WithLayout<float>( {{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}}, LayoutUtil::MakeLayout({0, 1})); const Shape ondevice_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 3}, {1, 0}); auto device_buffer = AllocateDeviceBuffer(ondevice_shape); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_FALSE( LayoutUtil::Equal(result.shape().layout(), literal.shape().layout())); LiteralTestUtil::ExpectR2Equal<float>( {{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}}, result); } XLA_TEST_F(TransferManagerTest, TransferTuple) { Literal literal = LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR0<float>(123.0f), LiteralUtil::CreateR2<float>({{1.0f, 2.0f}, {4.0f, 5.0f}}), LiteralUtil::CreateR1<float>({44.0f, -10.0f, 3333333.3f})}); auto device_buffer = AllocateDeviceBuffer(literal.shape()); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } XLA_TEST_F(TransferManagerTest, TransferEmptyTuple) { Literal literal = LiteralUtil::MakeTuple({}); auto device_buffer = AllocateDeviceBuffer(literal.shape()); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } XLA_TEST_F(TransferManagerTest, TransferNestedTuple) { Literal literal = LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR0<float>(123.0f), LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR2<float>({{1.0f, 2.0f}, {4.0f, 5.0f}}), LiteralUtil::CreateR1<float>({44.0f, -10.0f, 3333333.3f})}), LiteralUtil::CreateR1<float>({-10.0f, 123.0f})}); auto device_buffer = AllocateDeviceBuffer(literal.shape()); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } XLA_TEST_F(TransferManagerTest, TransferComplexValue) { Literal literal = LiteralUtil::CreateR1<complex64>( {complex64(1.0f, 2.0f), complex64(42.0f, -123.4f)}); auto device_buffer = AllocateDeviceBuffer(literal.shape()); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } XLA_TEST_F(TransferManagerTest, TransferComplexValueInTuple) { Literal literal = LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR1<complex64>( {complex64(1.0f, 2.0f), complex64(42.0f, -123.4f)}), LiteralUtil::CreateR1<int32_t>({1, 2, 3, 4, 5, 6}), LiteralUtil::CreateR0<complex64>(complex64(0.3f, -0.4f))}); auto device_buffer = AllocateDeviceBuffer(literal.shape()); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } XLA_TEST_F(TransferManagerTest, TransferTokenFromDevice) { auto device_buffer = AllocateDeviceBuffer(ShapeUtil::MakeTokenShape()); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateToken(), result)); } XLA_TEST_F(TransferManagerTest, OVERSIZE_ON_GRM(MultiStreamRoundTripSoak)) { const int64_t kIterationCount = 5000; Literal literal1 = LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR0<float>(123.0f), LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR2<float>({{1.0f, 2.0f}, {4.0f, 5.0f}}), LiteralUtil::CreateR1<float>({44.0f, -10.0f, 3333333.3f})}), LiteralUtil::CreateR1<float>({-10.0f, 123.0f})}); Literal literal2 = LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR0<float>(456.0f), LiteralUtil::MakeTupleFromSlices( {LiteralUtil::CreateR2<float>({{5.0f, 7.0f}, {9.0f, 4.0f}}), LiteralUtil::CreateR1<float>({44.0f, -11.0f, 3333333.3f})}), LiteralUtil::CreateR1<float>({-98.0f, 153.0f})}); auto device_buffer1 = AllocateDeviceBuffer(literal1.shape()); auto device_buffer2 = AllocateDeviceBuffer(literal2.shape()); auto stream1 = stream_; auto stream2 = stream_->GetOrCreateSubStream().value(); Literal result1, result2; for (int i = 0; i < kIterationCount; ++i) { ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream1, literal1, device_buffer1)); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream2, literal2, device_buffer2)); TF_ASSERT_OK_AND_ASSIGN( Literal this_result1, transfer_manager_->TransferLiteralFromDevice(stream1, device_buffer1)); TF_ASSERT_OK_AND_ASSIGN( Literal this_result2, transfer_manager_->TransferLiteralFromDevice(stream2, device_buffer2)); result1 = std::move(this_result1); result2 = std::move(this_result2); } EXPECT_TRUE(LiteralTestUtil::Equal(literal1, result1)); EXPECT_TRUE(LiteralTestUtil::Equal(literal2, result2)); } XLA_TEST_F(TransferManagerTest, DISABLED_ON_TPU(TransferDynamicShape)) { TF_ASSERT_OK_AND_ASSIGN( Shape s, ParseShape("(s64[], s32[<=1048576,3], f32[<=1048576,48])")); Literal literal(s); literal.SetDynamicSize(0, {1}, 1048574); literal.SetDynamicSize(0, {2}, 1048575); ASSERT_IS_OK(MutableBorrowingLiteral(&literal, {0}) .Populate<int64_t>( [](absl::Span<const int64_t> indices) { return 42; })); ASSERT_IS_OK(MutableBorrowingLiteral(&literal, {1}) .Populate<int32_t>([](absl::Span<const int64_t> indices) { return indices[0] + indices[1]; })); ASSERT_IS_OK(MutableBorrowingLiteral(&literal, {2}) .Populate<float>([](absl::Span<const int64_t> indices) { return indices[0] + indices[1]; })); ScopedShapedBuffer device_buffer = AllocateDeviceBuffer(literal.shape()); ASSERT_IS_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); EXPECT_EQ(literal.GetDynamicSize(0, {1}), result.GetDynamicSize(0, {1})); EXPECT_EQ(literal.GetDynamicSize(0, {2}), result.GetDynamicSize(0, {2})); EXPECT_TRUE(LiteralTestUtil::Equal(literal, result)); } class TransferDeviceToHostBenchmark : public TransferManagerTest { public: using TransferManagerTest::TransferManagerTest; ~TransferDeviceToHostBenchmark() override {} void Run(::testing::benchmark::State& state, int num_tuple_elements, int array_size) { SetUp(); std::vector<Literal> tuple_elements; for (int i = 0; i < num_tuple_elements; ++i) { tuple_elements.push_back( LiteralUtil::CreateR2F32Linspace(0.0f, 1.0f, array_size, array_size)); } Literal literal = LiteralUtil::MakeTupleOwned(std::move(tuple_elements)); auto device_buffer = AllocateDeviceBuffer(literal.shape()); TF_CHECK_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); for (auto s : state) { TF_ASSERT_OK_AND_ASSIGN( Literal result, transfer_manager_->TransferLiteralFromDevice(stream_, device_buffer)); } TearDown(); } void TestBody() override {} }; class TransferHostToDeviceBenchmark : public TransferManagerTest { public: using TransferManagerTest::TransferManagerTest; ~TransferHostToDeviceBenchmark() override {} void Run(::testing::benchmark::State& state, int num_tuple_elements, int array_size) { SetUp(); std::vector<Literal> tuple_elements; for (int i = 0; i < num_tuple_elements; ++i) { tuple_elements.push_back( LiteralUtil::CreateR2F32Linspace(0.0f, 1.0f, array_size, array_size)); } Literal literal = LiteralUtil::MakeTupleOwned(std::move(tuple_elements)); auto device_buffer = AllocateDeviceBuffer(literal.shape()); for (auto s : state) { TF_CHECK_OK(transfer_manager_->TransferLiteralToDevice(stream_, literal, device_buffer)); } TearDown(); } void TestBody() override {} }; void BM_TransferDeviceToHost(::testing::benchmark::State& state) { const int num_tuple_elements = state.range(0); const int array_size = state.range(1); TransferDeviceToHostBenchmark bm; bm.Run(state, num_tuple_elements, array_size); } void BM_TransferHostToDevice(::testing::benchmark::State& state) { const int num_tuple_elements = state.range(0); const int array_size = state.range(1); TransferHostToDeviceBenchmark bm; bm.Run(state, num_tuple_elements, array_size); } BENCHMARK(BM_TransferHostToDevice) ->ArgPair(1, 256) ->ArgPair(1, 257) ->ArgPair(100, 256) ->ArgPair(100, 257); BENCHMARK(BM_TransferDeviceToHost) ->ArgPair(1, 256) ->ArgPair(1, 257) ->ArgPair(100, 256) ->ArgPair(100, 257); int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); tsl::testing::RunBenchmarks(); return RUN_ALL_TESTS(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/transfer_manager.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tests/transfer_manager_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
27ddbda0-b0b4-4bd1-becc-a1d64dcc555f
cpp
tensorflow/tensorflow
assert_prev_dataset_op
tensorflow/core/kernels/data/experimental/assert_prev_dataset_op.cc
tensorflow/core/kernels/data/experimental/assert_prev_dataset_op_test.cc
#include "tensorflow/core/kernels/data/experimental/assert_prev_dataset_op.h" #include <map> #include <string> #include <utility> #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/data/rewrite_utils.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace data { namespace experimental { constexpr char AssertPrevDatasetOp::kInputDataset[]; constexpr char AssertPrevDatasetOp::kDatasetType[]; constexpr char AssertPrevDatasetOp::kTransformations[]; constexpr char AssertPrevDatasetOp::kOutputTypes[]; constexpr char AssertPrevDatasetOp::kOutputShapes[]; namespace { absl::StatusOr<NameAttrList> GetAssertions(const tstring& transformation) { NameAttrList assertions; if (!std::is_base_of<protobuf::Message, NameAttrList>()) { return errors::InvalidArgument( "Portable proto implementations are not supported."); } if (!protobuf::TextFormat::ParseFromString( transformation, reinterpret_cast<protobuf::Message*>(&assertions))) { return errors::InvalidArgument("Couldn't parse transformation '", transformation, "'."); } return assertions; } absl::StatusOr<const DatasetBase*> GetPreviousDataset( const DatasetBase& dataset) { std::vector<const DatasetBase*> inputs; TF_RETURN_IF_ERROR(dataset.InputDatasets(&inputs)); if (inputs.empty()) { return errors::InvalidArgument("No previous transformation found."); } return inputs.back(); } Status CheckOpName(const DatasetBase& dataset, const NameAttrList& assertions) { if (!MatchesAnyVersion(assertions.name(), dataset.type_string())) { return errors::InvalidArgument("Asserted transformation matching '", assertions.name(), "', but found '", dataset.type_string(), "'."); } return absl::OkStatus(); } absl::StatusOr<NodeDef> GetDatasetNode(const DatasetBase& dataset, absl::string_view op_name) { SerializationContext serialization_ctx((SerializationContext::Params())); GraphDefBuilder b; GraphDef graph_def; TF_RETURN_IF_ERROR( AsGraphDef(&dataset, std::move(serialization_ctx), &graph_def)); TF_ASSIGN_OR_RETURN(NodeDef node, GetDatasetNodeDef(graph_def)); return node; } Status CheckAttributes(const DatasetBase& dataset, const NameAttrList& assertions) { if (assertions.attr().empty()) return absl::OkStatus(); TF_ASSIGN_OR_RETURN(NodeDef node, GetDatasetNode(dataset, assertions.name())); std::vector<std::string> attrs_not_found; for (const auto& attr : assertions.attr()) { auto it = node.attr().find(attr.first); if (it != node.attr().end()) { if (!std::is_base_of<protobuf::Message, AttrValue>()) { return errors::InvalidArgument( "Portable proto implementations are not supported."); } if (!protobuf::util::MessageDifferencer::Equivalent( *reinterpret_cast<const protobuf::Message*>(&it->second), *reinterpret_cast<const protobuf::Message*>(&attr.second))) { return errors::InvalidArgument( "Asserted attribute '", attr.first, "' having a value of '", attr.second.DebugString(), "', but found value of '", it->second.DebugString(), "'."); } } else { return errors::InvalidArgument( "Asserted attribute '", attr.first, "' having a value of '", attr.second.DebugString(), "', but found no such attribute defined."); } } return absl::OkStatus(); } Status CheckTransformation(const DatasetBase& dataset, const tstring& transformation) { TF_ASSIGN_OR_RETURN(NameAttrList assertions, GetAssertions(transformation)); TF_RETURN_IF_ERROR(CheckOpName(dataset, assertions)); TF_RETURN_IF_ERROR(CheckAttributes(dataset, assertions)); return absl::OkStatus(); } } class AssertPrevDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, const DatasetBase* input, const std::vector<tstring>& transformations, const DataTypeVector& output_types, const std::vector<PartialTensorShape>& output_shapes) : DatasetBase(DatasetContext(ctx)), input_(input), transformations_(transformations), output_types_(output_types), output_shapes_(output_shapes) { input_->Ref(); } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix)}); } const DataTypeVector& output_dtypes() const override { return output_types_; } const std::vector<PartialTensorShape>& output_shapes() const override { return output_shapes_; } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } int64_t CardinalityInternal(CardinalityOptions options) const override { return input_->Cardinality(options); } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { return input_->CheckExternalState(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* transformations_node = nullptr; TF_RETURN_IF_ERROR(b->AddVector(transformations_, &transformations_node)); TF_RETURN_IF_ERROR( b->AddDataset(this, {input_graph_node, transformations_node}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params) {} Status Initialize(IteratorContext* ctx) override { const DatasetBase* current_dataset = dataset(); for (int i = 0; i < dataset()->transformations_.size(); ++i) { absl::StatusOr<const DatasetBase*> previous_dataset = GetPreviousDataset(*current_dataset); if (!previous_dataset.ok()) { return errors::InvalidArgument( "Asserted previous ", dataset()->transformations_.size(), " transformations but encountered only ", i, "."); } Status s = CheckTransformation(**previous_dataset, dataset()->transformations_[i]); if (!s.ok()) { return errors::InvalidArgument( "Failure checking transformations at offset ", i, ": ", s.message()); } current_dataset = *previous_dataset; } return dataset()->input_->MakeIterator(ctx, this, prefix(), &input_impl_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { return input_impl_->GetNext(ctx, out_tensors, end_of_sequence); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeKnownRatioNode(std::move(args), 1); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); return absl::OkStatus(); } private: std::unique_ptr<IteratorBase> input_impl_; }; const DatasetBase* input_; const std::vector<tstring> transformations_; const DataTypeVector output_types_; const std::vector<PartialTensorShape> output_shapes_; }; AssertPrevDatasetOp::AssertPrevDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); } void AssertPrevDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { std::vector<tstring> transformations; OP_REQUIRES_OK(ctx, ParseVectorArgument<tstring>(ctx, kTransformations, &transformations)); *output = new Dataset(ctx, input, transformations, output_types_, output_shapes_); } namespace { REGISTER_KERNEL_BUILDER(Name("AssertPrevDataset").Device(DEVICE_CPU), AssertPrevDatasetOp); } } } }
#include "tensorflow/core/kernels/data/experimental/assert_prev_dataset_op.h" #include <algorithm> #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/kernels/data/range_dataset_op.h" #include "tensorflow/core/kernels/data/take_dataset_op.h" #include "tensorflow/core/kernels/data/tensor_slice_dataset_op.h" namespace tensorflow { namespace data { namespace experimental { namespace { constexpr char kNodeName[] = "assert_prev_dataset"; std::string GetTransformation( absl::string_view name, std::initializer_list<std::pair<std::string, bool>> attrs = {}) { NameAttrList message; message.set_name(absl::StrCat(name, "Dataset")); for (const auto& attr : attrs) { AttrValue value; value.set_b(attr.second); message.mutable_attr()->insert({attr.first, value}); } std::string output; protobuf::TextFormat::PrintToString(message, &output); return output; } class AssertPrevDatasetParams : public DatasetParams { public: template <typename T> AssertPrevDatasetParams(T input_dataset_params, const std::vector<tstring>& transformations, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), transformations_(transformations) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { int num_transformations = transformations_.size(); return {CreateTensor<tstring>(TensorShape({num_transformations}), transformations_)}; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->reserve(input_dataset_params_.size() + 1); input_names->emplace_back(AssertPrevDatasetOp::kInputDataset); input_names->emplace_back(AssertPrevDatasetOp::kTransformations); return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { *attr_vector = {{AssertPrevDatasetOp::kOutputShapes, output_shapes_}, {AssertPrevDatasetOp::kOutputTypes, output_dtypes_}}; return absl::OkStatus(); } string dataset_type() const override { return AssertPrevDatasetOp::kDatasetType; } private: std::vector<tstring> transformations_; }; class AssertPrevDatasetOpTest : public DatasetOpsTestBase {}; AssertPrevDatasetParams AssertPrevDatasetParams1() { TakeDatasetParams take_dataset_params = TakeDatasetParams(RangeDatasetParams(0, 10, 1), 3, {DT_INT64}, {PartialTensorShape({})}, "take_dataset"); return AssertPrevDatasetParams( std::move(take_dataset_params), {GetTransformation(TakeDatasetOp::kDatasetType)}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AssertPrevDatasetParams AssertPrevDatasetParams2() { TakeDatasetParams take_dataset_params = TakeDatasetParams(RangeDatasetParams(0, 10, 1), 3, {DT_INT64}, {PartialTensorShape({})}, "take_dataset"); return AssertPrevDatasetParams( std::move(take_dataset_params), {GetTransformation(TakeDatasetOp::kDatasetType), GetTransformation(RangeDatasetOp::kDatasetType)}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AssertPrevDatasetParams AssertPrevDatasetParams2WithAttrs() { TakeDatasetParams take_dataset_params = TakeDatasetParams( TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"), 3, {DT_INT64}, {PartialTensorShape({})}, "take_dataset"); return AssertPrevDatasetParams( std::move(take_dataset_params), {GetTransformation(TakeDatasetOp::kDatasetType), GetTransformation(TensorSliceDatasetOp::kDatasetType, {{"is_files", false}})}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AssertPrevDatasetParams InvalidAssertPrevDatasetParams() { TakeDatasetParams take_dataset_params = TakeDatasetParams(RangeDatasetParams(0, 10, 1), 3, {DT_INT64}, {PartialTensorShape({})}, "take_dataset"); return AssertPrevDatasetParams( std::move(take_dataset_params), {GetTransformation("Whoops")}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AssertPrevDatasetParams ShortAssertPrevDatasetParams() { TakeDatasetParams take_dataset_params = TakeDatasetParams(RangeDatasetParams(0, 10, 1), 3, {DT_INT64}, {PartialTensorShape({})}, "take_dataset"); return AssertPrevDatasetParams( std::move(take_dataset_params), {GetTransformation(TakeDatasetOp::kDatasetType), GetTransformation(RangeDatasetOp::kDatasetType), GetTransformation("Whoops")}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } std::vector<GetNextTestCase<AssertPrevDatasetParams>> GetNextTestCases() { return {{AssertPrevDatasetParams1(), CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}})}, {AssertPrevDatasetParams2(), CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}})}}; } ITERATOR_GET_NEXT_TEST_P(AssertPrevDatasetOpTest, AssertPrevDatasetParams, GetNextTestCases()) TEST_F(AssertPrevDatasetOpTest, DatasetNodeName) { auto dataset_params = AssertPrevDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(AssertPrevDatasetOpTest, DatasetAttrs) { auto dataset_params = AssertPrevDatasetParams2WithAttrs(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(AssertPrevDatasetOpTest, DatasetTypeString) { auto dataset_params = AssertPrevDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(AssertPrevDatasetOp::kDatasetType))); } TEST_F(AssertPrevDatasetOpTest, DatasetOutputDtypes) { auto dataset_params = AssertPrevDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes({DT_INT64})); } TEST_F(AssertPrevDatasetOpTest, DatasetOutputShapes) { auto dataset_params = AssertPrevDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputShapes({PartialTensorShape({})})); } TEST_F(AssertPrevDatasetOpTest, Cardinality) { auto dataset_params = AssertPrevDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetCardinality(3)); } TEST_F(AssertPrevDatasetOpTest, IteratorOutputDtypes) { auto dataset_params = AssertPrevDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes({DT_INT64})); } TEST_F(AssertPrevDatasetOpTest, IteratorOutputShapes) { auto dataset_params = AssertPrevDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputShapes({PartialTensorShape({})})); } TEST_F(AssertPrevDatasetOpTest, IteratorPrefix) { auto dataset_params = AssertPrevDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( AssertPrevDatasetOp::kDatasetType, dataset_params.iterator_prefix()))); } std::vector<IteratorSaveAndRestoreTestCase<AssertPrevDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{AssertPrevDatasetParams1(), {0, 2, 5}, CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}})}, {AssertPrevDatasetParams2(), {0, 2, 5}, CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}})}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(AssertPrevDatasetOpTest, AssertPrevDatasetParams, IteratorSaveAndRestoreTestCases()) TEST_F(AssertPrevDatasetOpTest, InvalidArguments) { auto dataset_params = InvalidAssertPrevDatasetParams(); EXPECT_EQ(Initialize(dataset_params).code(), absl::StatusCode::kInvalidArgument); } TEST_F(AssertPrevDatasetOpTest, ShortAssertPrev) { auto dataset_params = ShortAssertPrevDatasetParams(); EXPECT_EQ(Initialize(dataset_params).code(), absl::StatusCode::kInvalidArgument); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/experimental/assert_prev_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/experimental/assert_prev_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5293b335-1054-4251-bbc9-edecf54c9bf3
cpp
tensorflow/tensorflow
inject_prefetch
tensorflow/core/grappler/optimizers/data/inject_prefetch.cc
tensorflow/core/grappler/optimizers/data/inject_prefetch_test.cc
#include "tensorflow/core/grappler/optimizers/data/inject_prefetch.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kPrefetchDataset[] = "PrefetchDataset"; constexpr std::array<const char*, 5> kAsyncTransforms = { "MapAndBatchDataset", "ParallelBatchDataset", "ParallelInterleaveDataset", "ParallelMapDataset", "PrefetchDataset"}; constexpr std::array<const char*, 8> kDatasetsToSkip = { "AssertNextDataset", "ExperimentalAssertNextDataset", "IgnoreErrorsDataset", "OptionsDataset", "ModelDataset", "OptimizeDataset", "MaxIntraOpParallelismDataset", "PrivateThreadPoolDataset", }; bool ShouldInjectPrefetch(const NodeDef* last_node, const MutableGraphView& graph) { while (last_node != nullptr && absl::c_any_of(kDatasetsToSkip, [last_node](const char* dataset) { return data::MatchesAnyVersion(dataset, last_node->op()); })) { last_node = graph_utils::GetInputNode(*last_node, graph); } if (last_node == nullptr) { VLOG(1) << "The optimization inject_prefetch is not applied because graph " "rewrite failed to find a dataset node."; return false; } if (absl::c_any_of(kAsyncTransforms, [last_node](const char* dataset) { return data::MatchesAnyVersion(dataset, last_node->op()); })) { VLOG(1) << "The optimization inject_prefetch is not applied because the " "last transformation of the input pipeline is an asynchronous " "transformation: " << last_node->op(); return false; } return true; } } Status InjectPrefetch::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; if (!autotune_) { VLOG(1) << "The optimization inject_prefetch is not applied if autotune is " "off."; return absl::OkStatus(); } MutableGraphView graph(output); if (graph_utils::IsItemDerivedFromFunctionDef(item, graph)) { return absl::OkStatus(); } if (item.fetch.size() != 1) { return errors::InvalidArgument( "Expected only one fetch node but there were ", item.fetch.size(), ": ", absl::StrJoin(item.fetch, ", ")); } NodeDef* sink_node = graph.GetNode(item.fetch.at(0)); NodeDef* last_node = graph_utils::GetInputNode(*sink_node, graph); if (!ShouldInjectPrefetch(last_node, graph)) { return absl::OkStatus(); } NodeDef prefetch_node; graph_utils::SetUniqueGraphNodeName( strings::StrCat("inject/prefetch_", last_node->name()), graph.graph(), &prefetch_node); prefetch_node.set_op(kPrefetchDataset); *prefetch_node.mutable_input()->Add() = last_node->name(); NodeDef* autotune_value = graph_utils::AddScalarConstNode(data::model::kAutotune, &graph); *prefetch_node.mutable_input()->Add() = autotune_value->name(); if (!graph_utils::CopyShapesAndTypesAttrs(*last_node, &prefetch_node)) return absl::OkStatus(); TF_RETURN_IF_ERROR( graph_utils::SetMetadataName(prefetch_node.name(), &prefetch_node)); auto* added_node = graph.AddNode(std::move(prefetch_node)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(last_node->name(), added_node->name())); stats->num_changes++; return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(InjectPrefetch, "inject_prefetch"); } }
#include "tensorflow/core/grappler/optimizers/data/inject_prefetch.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using test::function::NDef; constexpr char kOptionsDataset[] = "OptionsDataset"; constexpr char kParallelMapDataset[] = "ParallelMapDatasetV2"; constexpr char kPrefetchDataset[] = "PrefetchDataset"; Status Optimize(InjectPrefetch &optimizer, const GrapplerItem &item, GraphDef *output, bool autotune) { RewriterConfig_CustomGraphOptimizer config; if (autotune) { (*config.mutable_parameter_map())["autotune"].set_s("true"); } else { (*config.mutable_parameter_map())["autotune"].set_s("false"); } TF_RETURN_IF_ERROR(optimizer.Init(&config)); return optimizer.Optimize(nullptr, item, output); } Status OptimizeWithInjectPrefetch(const GrapplerItem &item, GraphDef *output, bool autotune) { InjectPrefetch optimizer; return Optimize(optimizer, item, output, autotune); } class InjectPrefetchParameterizedTest : public ::testing::TestWithParam<bool> { }; TEST_P(InjectPrefetchParameterizedTest, TestAutotuneSetting) { const bool autotune = GetParam(); GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("Sink", "Identity", {"range"}, {})}); item.fetch.push_back("Sink"); GraphDef inject_prefetch_output; TF_ASSERT_OK( OptimizeWithInjectPrefetch(item, &inject_prefetch_output, autotune)); EXPECT_EQ(autotune, graph_utils::ContainsNodeWithOp(kPrefetchDataset, inject_prefetch_output)); EXPECT_EQ(autotune, graph_utils::ContainsGraphNodeWithName( "inject/prefetch_range", inject_prefetch_output)); } INSTANTIATE_TEST_SUITE_P(AutotuneSetting, InjectPrefetchParameterizedTest, ::testing::Values(false, true)); TEST(InjectPrefetchTest, FromFunctionDef) { GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("Sink", "_Retval", {"range"}, {})}); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectPrefetch(item, &output, true)); EXPECT_FALSE(graph_utils::ContainsNodeWithOp(kPrefetchDataset, output)); } TEST(InjectPrefetchTest, AlreadyPrefetched) { GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("prefetch", kPrefetchDataset, {"range"}, {}), NDef("Sink", "Identity", {"prefetch"}, {})}); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectPrefetch(item, &output, true)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp(kPrefetchDataset, output)); EXPECT_EQ(6, output.node_size()); } TEST(InjectPrefetchTest, AlreadyParallelMap) { GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("parallel_map", kParallelMapDataset, {"range"}, {{"f", "__inference_Dataset_map_normalize_8232"}, {"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("Sink", "Identity", {"parallel_map"}, {})}); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectPrefetch(item, &output, true)); EXPECT_FALSE(graph_utils::ContainsNodeWithOp(kPrefetchDataset, output)); EXPECT_EQ(6, output.node_size()); } TEST(InjectPrefetchTest, OptionsFollowedByPrefetched) { GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("prefetch", kPrefetchDataset, {"range"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("options", kOptionsDataset, {"prefetch"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("Sink", "Identity", {"options"}, {})}); item.fetch.push_back("Sink"); GraphDef output; TF_ASSERT_OK(OptimizeWithInjectPrefetch(item, &output, true)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("inject/prefetch_options", output)); EXPECT_EQ(7, output.node_size()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/inject_prefetch.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/inject_prefetch_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6e0a30ac-5324-4c52-88ed-dcda49ff08f4
cpp
tensorflow/tensorflow
collective_ops
tensorflow/core/ops/collective_ops.cc
third_party/xla/xla/tests/collective_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { REGISTER_OP("CollectiveReduce") .Input("input: T") .Output("data: T") .Attr("T: {bfloat16, float, float16, float64, int32, int64}") .Attr("group_size: int") .Attr("group_key: int") .Attr("instance_key: int") .Attr("merge_op: {'Min', 'Max', 'Mul', 'Add'}") .Attr("final_op: {'Id', 'Div'}") .Attr("subdiv_offsets: list(int)") .Attr("wait_for: list(int) = []") .Attr("communication_hint: string = 'auto'") .Attr("timeout_seconds: float = 0") .SetIsStateful() .SetIsDistributedCommunication() .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("CollectiveGather") .Input("input: T") .Output("data: T") .Attr("T: {float, float16, float64, int32, int64}") .Attr("group_size: int") .Attr("group_key: int") .Attr("instance_key: int") .Attr("shape: shape") .Attr("communication_hint: string = 'auto'") .Attr("timeout_seconds: float = 0") .SetIsStateful() .SetIsDistributedCommunication() .SetShapeFn([](shape_inference::InferenceContext* c) { shape_inference::ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 1, &unused)); shape_inference::ShapeHandle in_subshape; TF_RETURN_IF_ERROR(c->Subshape(c->input(0), 1, &in_subshape)); auto input_first_dim_value = c->Value(c->Dim(c->input(0), 0)); shape_inference::ShapeHandle output_first_dim_as_shape; if (input_first_dim_value == shape_inference::InferenceContext::kUnknownDim) { output_first_dim_as_shape = c->Vector(shape_inference::InferenceContext::kUnknownDim); } else { int group_size; TF_CHECK_OK(c->GetAttr("group_size", &group_size)); std::vector<shape_inference::DimensionHandle> output_first_dim; output_first_dim.push_back( c->MakeDim(group_size * input_first_dim_value)); output_first_dim_as_shape = c->MakeShape(output_first_dim); } shape_inference::ShapeHandle out; TF_RETURN_IF_ERROR( c->Concatenate(output_first_dim_as_shape, in_subshape, &out)); c->set_output(0, out); return absl::OkStatus(); }); REGISTER_OP("CollectiveBcastSend") .Input("input: T") .Output("data: T") .Attr("T: {bool, float, float16, float64, int32, int64}") .Attr("group_size: int") .Attr("group_key: int") .Attr("instance_key: int") .Attr("shape: shape") .Attr("communication_hint: string = 'auto'") .Attr("timeout_seconds: float = 0") .SetIsStateful() .SetIsDistributedCommunication() .SetShapeFn(shape_inference::ExplicitShape); REGISTER_OP("CollectiveBcastRecv") .Output("data: T") .Attr("T: {bool, float, float16, float64, int32, int64}") .Attr("group_size: int") .Attr("group_key: int") .Attr("instance_key: int") .Attr("shape: shape") .Attr("communication_hint: string = 'auto'") .Attr("timeout_seconds: float = 0") .SetIsStateful() .SetIsDistributedCommunication() .SetShapeFn(shape_inference::ExplicitShape); REGISTER_OP("CollectiveAssignGroupV2") .Input("group_assignment: int32") .Input("device_index: int32") .Input("base_key: int32") .Output("group_size: int32") .Output("group_key: int32") .SetDoNotOptimize() .SetIsDistributedCommunication() .SetShapeFn([](shape_inference::InferenceContext* c) { c->set_output(0, c->Scalar()); c->set_output(1, c->Scalar()); return absl::OkStatus(); }); REGISTER_OP("CollectiveReduceV2") .Input("input: T") .Output("data: T") .Attr("T: {bfloat16, float, float16, float64, int32, int64}") .Input("group_size: int32") .Input("group_key: int32") .Input("instance_key: int32") .Input("ordering_token: Nordering_token * resource") .Attr("merge_op: {'Min', 'Max', 'Mul', 'Add'}") .Attr("final_op: {'Id', 'Div'}") .Attr("communication_hint: string = 'auto'") .Attr("timeout_seconds: float = 0") .Attr("is_stateless: bool = false") .Attr("Nordering_token: int >= 0 = 0") .Attr("max_subdivs_per_device: int = -1") .SetIsStateful() .SetIsDistributedCommunication() .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("CollectiveReduceScatterV2") .Input("input: T") .Output("data: T") .Attr("T: {bfloat16, float, float16, float64, int32, int64}") .Input("group_size: int32") .Input("group_key: int32") .Input("instance_key: int32") .Input("ordering_token: Nordering_token * resource") .Attr("merge_op: {'Min', 'Max', 'Mul', 'Add'}") .Attr("final_op: {'Id', 'Div'}") .Attr("communication_hint: string = 'auto'") .Attr("timeout_seconds: float = 0") .Attr("is_stateless: bool = false") .Attr("Nordering_token: int >= 0 = 0") .Attr("max_subdivs_per_device: int = -1") .SetIsStateful() .SetIsDistributedCommunication() .SetShapeFn([](shape_inference::InferenceContext* c) { shape_inference::ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 1, &unused)); shape_inference::ShapeHandle out; TF_RETURN_IF_ERROR( c->ReplaceDim(c->input(0), 0, c->UnknownDim(), &out)); c->set_output(0, out); return absl::OkStatus(); }); REGISTER_OP("CollectiveGatherV2") .Input("input: T") .Output("data: T") .Attr("T: {float, float16, float64, int32, int64}") .Input("group_size: int32") .Input("group_key: int32") .Input("instance_key: int32") .Input("ordering_token: Nordering_token * resource") .Attr("communication_hint: string = 'auto'") .Attr("timeout_seconds: float = 0") .Attr("is_stateless: bool = false") .Attr("Nordering_token: int >= 0 = 0") .SetIsStateful() .SetIsDistributedCommunication() .SetShapeFn([](shape_inference::InferenceContext* c) { shape_inference::ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 1, &unused)); shape_inference::ShapeHandle out; TF_RETURN_IF_ERROR( c->ReplaceDim(c->input(0), 0, c->UnknownDim(), &out)); c->set_output(0, out); return absl::OkStatus(); }); REGISTER_OP("CollectiveBcastSendV2") .Input("input: T") .Output("data: T") .Attr("T: {bool, float, float16, float64, int32, int64}") .Input("group_size: int32") .Input("group_key: int32") .Input("instance_key: int32") .Attr("communication_hint: string = 'auto'") .Attr("timeout_seconds: float = 0") .SetIsStateful() .SetIsDistributedCommunication() .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("CollectiveBcastRecvV2") .Output("data: T") .Attr("T: {bool, float, float16, float64, int32, int64}") .Input("group_size: int32") .Input("group_key: int32") .Input("instance_key: int32") .Input("shape: Tshape") .Attr("Tshape: {int32, int64} = DT_INT32") .Attr("communication_hint: string = 'auto'") .Attr("timeout_seconds: float = 0") .SetIsStateful() .SetIsDistributedCommunication() .SetShapeFn([](shape_inference::InferenceContext* c) { shape_inference::ShapeHandle out; TF_RETURN_IF_ERROR(c->MakeShapeFromShapeTensor(3, &out)); c->set_output(0, out); return absl::OkStatus(); }); REGISTER_OP("CollectiveInitializeCommunicator") .Input("group_key: int32") .Input("rank: int32") .Input("group_size: int32") .Attr("communication_hint: string = 'auto'") .Attr("timeout_seconds: float = 0") .Output("communicator: resource") .SetDoNotOptimize() .SetIsDistributedCommunication() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("CollectiveReduceV3") .Input("input: T") .Input("communicator: resource") .Input("group_assignment: int32") .Output("data: T") .Attr("T: {bfloat16, float, float16, float64, int32, int64}") .Attr("reduction: {'Min', 'Max', 'Mul', 'Add'}") .Attr("timeout_seconds: float = 0") .SetIsStateful() .SetIsDistributedCommunication() .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("CollectiveAllToAllV2") .Input("input: T") .Output("data: T") .Attr("T: {bfloat16, float, float16, float64, int32, int64}") .Input("group_size: int32") .Input("group_key: int32") .Input("instance_key: int32") .Input("ordering_token: Nordering_token * resource") .Attr("communication_hint: string = 'auto'") .Attr("timeout_seconds: float = 0") .Attr("is_stateless: bool = false") .Attr("Nordering_token: int >= 0 = 0") .SetIsStateful() .SetIsDistributedCommunication() .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("CollectiveAllToAllV3") .Input("input: T") .Input("communicator: resource") .Input("group_assignment: int32") .Output("data: T") .Attr("T: {bfloat16, float, float16, float64, int32, int64}") .Attr("timeout_seconds: float = 0") .SetIsStateful() .SetIsDistributedCommunication() .SetShapeFn(shape_inference::UnchangedShape); }
#include <array> #include <cstdint> #include <limits> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/str_replace.h" #include "absl/types/span.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/computation_placer.h" #include "xla/service/executable.h" #include "xla/service/hlo_module_config.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/tests/test_utils.h" #include "xla/tests/verified_hlo_module.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/env.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { class CollectiveOpsTest : public HloTestBase { public: CollectiveOpsTest() { VLOG(1) << "Running with " << num_devices() << " devices"; } protected: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.add_xla_disable_hlo_passes( "gpu-convert-async-collectives-to-sync"); return debug_options; } std::unique_ptr<HloModule> MakeCrsModule( const Shape& shape, std::vector<std::vector<int64_t>> replica_groups, const HloModuleConfig& config, std::string op = "add", std::string datatype = "f32") { std::string hlo_template = R"( HloModule test apply_op { x = DATATYPE[] parameter(0) y = DATATYPE[] parameter(1) ROOT apply_op = DATATYPE[] OP(x, y) } ENTRY test_computation { p = SHAPE parameter(0) p2 = SHAPE reshape(p) crs = SHAPE all-reduce(p2), replica_groups=REPLICA_GROUPS, to_apply=apply_op copy = SHAPE copy(crs) ROOT out = SHAPE reshape(copy) } )"; std::vector<std::string> replica_group_strs; replica_group_strs.reserve(replica_groups.size()); for (const auto& g : replica_groups) { replica_group_strs.push_back( absl::StrFormat("{%s}", absl::StrJoin(g, ","))); } std::string shape_str = shape.ToString(false); if (shape_str == "f32[1]") { hlo_template = absl::StrReplaceAll( hlo_template, {{"DATATYPE[SHAPE] reshape(p)", "DATATYPE[] reshape(p)"}, {"DATATYPE[SHAPE] all-reduce", "DATATYPE[] all-reduce"}, {"DATATYPE[SHAPE] copy", "DATATYPE[] copy"}}); } std::string parameterized_hlo = absl::StrReplaceAll( hlo_template, {{"SHAPE", shape_str}, {"REPLICA_GROUPS", absl::StrFormat("{%s}", absl::StrJoin(replica_group_strs, ", "))}, {"OP", op}, {"DATATYPE", datatype}}); return ParseAndReturnVerifiedModule(parameterized_hlo, config).value(); } template <typename LiteralType> void TestTwoReplicasOneOperand(std::string op, Literal input_value, Literal expected_value) { const int kNumReplicas = 2; std::string dtype = primitive_util::LowercasePrimitiveTypeName( primitive_util::NativeToPrimitiveType<LiteralType>()); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); auto module = MakeCrsModule( input_value.shape(), {}, config, op, dtype); TF_ASSERT_OK_AND_ASSIGN(std::vector<Literal> results, ExecuteReplicated(std::move(module), {&input_value}, kNumReplicas, true, true)); for (int replica_idx = 0; replica_idx < kNumReplicas; replica_idx++) { EXPECT_TRUE(LiteralTestUtil::NearOrEqual( expected_value, results[replica_idx], ErrorSpec{1e-5, 1e-5})); } } template <typename LiteralType> void TestAllOpsForReduce() { auto cast = [&](int value) { return static_cast<LiteralType>(value); }; auto to_literal = [&](absl::Span<const LiteralType> values) { return LiteralUtil::CreateR1<LiteralType>(values); }; Literal input_value = to_literal({cast(1), cast(2), cast(3)}); TestTwoReplicasOneOperand<LiteralType>( "add", input_value.Clone(), to_literal({cast(2), cast(4), cast(6)})); TestTwoReplicasOneOperand<LiteralType>( "multiply", input_value.Clone(), to_literal({cast(1), cast(4), cast(9)})); TestTwoReplicasOneOperand<LiteralType>( "maximum", input_value.Clone(), to_literal({cast(1), cast(2), cast(3)})); TestTwoReplicasOneOperand<LiteralType>( "minimum", input_value.Clone(), to_literal({cast(1), cast(2), cast(3)})); if constexpr (std::numeric_limits<LiteralType>::is_signed) { input_value = to_literal({cast(-1), cast(-2), cast(-3)}); TestTwoReplicasOneOperand<LiteralType>( "add", input_value.Clone(), to_literal({cast(-2), cast(-4), cast(-6)})); TestTwoReplicasOneOperand<LiteralType>( "multiply", input_value.Clone(), to_literal({cast(1), cast(4), cast(9)})); TestTwoReplicasOneOperand<LiteralType>( "maximum", input_value.Clone(), to_literal({cast(-1), cast(-2), cast(-3)})); TestTwoReplicasOneOperand<LiteralType>( "minimum", input_value.Clone(), to_literal({cast(-1), cast(-2), cast(-3)})); } } }; std::vector<std::vector<int64_t>> PowerSetOfIota(int64_t n) { std::vector<std::vector<int64_t>> power_set; for (int64_t i = 1; i < (1 << n); ++i) { power_set.emplace_back(); for (int64_t j = 0; j < n; ++j) { if (i & (1 << j)) { power_set.back().push_back(j); } } } return power_set; } DeviceAssignment MakeDeviceAssn(std::vector<int64_t> devices) { DeviceAssignment assn(devices.size(), 1); for (int64_t i = 0; i < devices.size(); ++i) { assn(i, 0) = devices[i]; } return assn; } template <typename T> static Eigen::half ToHalf(T value) { return static_cast<Eigen::half>(value); } XLA_TEST_F(CollectiveOpsTest, AllReduce_sum_float32_2D) { TestTwoReplicasOneOperand<float>( "add", LiteralUtil::CreateR2<float>({{1, 2}, {3, 4}}), LiteralUtil::CreateR2<float>({{2, 4}, {6, 8}})); } XLA_TEST_F(CollectiveOpsTest, AllReduceSingleOutput_float32) { TestTwoReplicasOneOperand<float>( "add", LiteralUtil::CreateR1<float>({1}), LiteralUtil::CreateR1<float>({2})); } XLA_TEST_F(CollectiveOpsTest, AllReduceTwoReplicasOneOperand_int8) { TestAllOpsForReduce<int8_t>(); } XLA_TEST_F(CollectiveOpsTest, AllReduceTwoReplicasOneOperand_uint8) { TestAllOpsForReduce<uint8_t>(); } XLA_TEST_F(CollectiveOpsTest, AllReduceTwoReplicasOneOperand_uint32) { TestAllOpsForReduce<uint32_t>(); } XLA_TEST_F(CollectiveOpsTest, AllReduceTwoReplicasOneOperand_int32) { TestAllOpsForReduce<int32_t>(); } XLA_TEST_F(CollectiveOpsTest, AllReduceTwoReplicasOneOperand_int64) { TestAllOpsForReduce<int64_t>(); } XLA_TEST_F(CollectiveOpsTest, AllReduceTwoReplicasOneOperand_uint64) { TestAllOpsForReduce<uint64_t>(); } XLA_TEST_F(CollectiveOpsTest, AllReduceTwoReplicasOneOperand_float32) { TestAllOpsForReduce<float>(); } XLA_TEST_F(CollectiveOpsTest, AllReduceTwoReplicasOneOperand_double) { TestAllOpsForReduce<double>(); } XLA_TEST_F(CollectiveOpsTest, AllReduceTwoReplicasOneOperand_half) { TestAllOpsForReduce<Eigen::half>(); } XLA_TEST_F(CollectiveOpsTest, AllReduceTwoReplicasOneOperand_bfloat16) { TestAllOpsForReduce<bfloat16>(); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AllReduce_sum_complex64)) { TestTwoReplicasOneOperand<complex64>( "add", LiteralUtil::CreateR1<complex64>({{1, 2}, {3, 4}}), LiteralUtil::CreateR1<complex64>({{2, 4}, {6, 8}})); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AllReduce_sum_complex128)) { TestTwoReplicasOneOperand<complex128>( "add", LiteralUtil::CreateR1<complex128>({{1, 2}, {3, 4}}), LiteralUtil::CreateR1<complex128>({{2, 4}, {6, 8}})); } XLA_TEST_F(CollectiveOpsTest, AllReduceAnd_Pred) { TestTwoReplicasOneOperand<bool>( "and", LiteralUtil::CreateR1<bool>({true, false}), LiteralUtil::CreateR1<bool>({true, false})); const char* hlo_module = R"( HloModule test apply_op { x = pred[] parameter(0) y = pred[] parameter(1) ROOT apply_op = pred[] and(x, y) } ENTRY test_computation { id = u32[] replica-id() c = u32[] constant(0) p = pred[] compare(id, c), direction=EQ p2 = pred[1] reshape(p) crs = pred[1] all-reduce(p2), replica_groups={}, to_apply=apply_op copy = pred[1] copy(crs) ROOT out = pred[1] reshape(copy) } )"; HloModuleConfig config = GetModuleConfigForTest(2); auto module = ParseAndReturnVerifiedModule(hlo_module, config).value(); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, 2, true, true)); for (int replica_idx = 0; replica_idx < 2; replica_idx++) { EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<bool>({false}), results[replica_idx])); } } XLA_TEST_F(CollectiveOpsTest, AllReduceOr_Pred) { TestTwoReplicasOneOperand<bool>( "or", LiteralUtil::CreateR1<bool>({true, false}), LiteralUtil::CreateR1<bool>({true, false})); const char* hlo_module = R"( HloModule test apply_op { x = pred[] parameter(0) y = pred[] parameter(1) ROOT apply_op = pred[] or(x, y) } ENTRY test_computation { id = u32[] replica-id() c = u32[] constant(0) p = pred[] compare(id, c), direction=EQ p2 = pred[1] reshape(p) crs = pred[1] all-reduce(p2), replica_groups={}, to_apply=apply_op copy = pred[1] copy(crs) ROOT out = pred[1] reshape(copy) } )"; HloModuleConfig config = GetModuleConfigForTest(2); auto module = ParseAndReturnVerifiedModule(hlo_module, config).value(); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, 2, true, true)); for (int replica_idx = 0; replica_idx < 2; replica_idx++) { EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<bool>({true}), results[replica_idx])); } } XLA_TEST_F(CollectiveOpsTest, AllReduce_AllCombinations) { const int64_t kNumElems = 1024; for (std::vector<int64_t> devices : PowerSetOfIota(num_devices())) { SCOPED_TRACE(absl::StrFormat("Running on devices {%s}", absl::StrJoin(devices, ", "))); DeviceAssignment device_assn = MakeDeviceAssn(devices); HloModuleConfig config = GetModuleConfigForTest(devices.size()); config.set_static_device_assignment(device_assn); std::vector<float> input_vec(kNumElems); absl::c_iota(input_vec, 0); auto input_literal = LiteralUtil::CreateR1<float>(input_vec); auto module = MakeCrsModule(input_literal.shape(), {}, config); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), {&input_literal}, devices.size(), &device_assn, true, true)); } } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_GPU(AllReduce_ManyConcurrentAllReduces)) { const int64_t kNumElems = 1024; const int64_t kNumThreads = 200; const int64_t kRunsPerThread = 10; std::vector<float> input_vec(kNumElems); absl::c_iota(input_vec, 0); auto input_literal = LiteralUtil::CreateR1<float>(input_vec); HloModuleConfig config = GetModuleConfigForTest(2); auto executable = test_runner_ .CreateExecutable(MakeCrsModule(input_literal.shape(), {}, config), true) .value(); std::vector<int64_t> devices = {0, 1}; auto device_assn = MakeDeviceAssn(devices); HloRunner::ReplicatedExecuteOptions opts; opts.num_replicas = devices.size(); opts.use_threads = true; opts.arguments.push_back(&input_literal); tsl::BlockingCounter done(kNumThreads * kRunsPerThread); tsl::thread::ThreadPool pool(tsl::Env::Default(), TestName(), kNumThreads); for (int64_t i = 0; i < kNumThreads * kRunsPerThread; ++i) { pool.Schedule([&] { TF_ASSERT_OK( test_runner_.ExecuteReplicated(executable.get(), opts, &device_assn) .status()); done.DecrementCount(); }); } done.Wait(); } XLA_TEST_F(CollectiveOpsTest, AllReduce_CombinableAllReduces) { std::string hlo_string = R"( HloModule test apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY test_computation { p0 = f32[5] parameter(0) p1 = f32[5] parameter(1) crs0 = f32[5] all-reduce(p0), replica_groups={}, to_apply=apply_op crs1 = f32[5] all-reduce(p1), replica_groups={}, to_apply=apply_op ROOT out = (f32[5], f32[5]) tuple(f32[5] crs0, f32[5] crs1) } )"; static constexpr int kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, config)); std::vector<float> input0_vec = {1., 2., 3., 4., 5.}; auto input0_literal = LiteralUtil::CreateR1<float>(input0_vec); std::vector<float> input1_vec = {7., 3., 4., 1., 2.}; auto input1_literal = LiteralUtil::CreateR1<float>(input1_vec); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), {&input0_literal, &input1_literal}, kNumReplicas, true, true)); std::vector<float> expected0_vec = {2., 4., 6., 8., 10.}; auto expected0_literal = LiteralUtil::CreateR1<float>(expected0_vec); std::vector<float> expected1_vec = {14., 6., 8., 2., 4.}; auto expected1_literal = LiteralUtil::CreateR1<float>(expected1_vec); for (int replica_idx = 0; replica_idx < kNumReplicas; replica_idx++) { auto rs = results[replica_idx].DecomposeTuple(); EXPECT_TRUE(LiteralTestUtil::NearOrEqual(expected0_literal, rs[0], ErrorSpec{1e-5, 1e-5})); EXPECT_TRUE(LiteralTestUtil::NearOrEqual(expected1_literal, rs[1], ErrorSpec{1e-5, 1e-5})); } } XLA_TEST_F(CollectiveOpsTest, AllReduce_ThreeReplicaGroups) { const int64_t kNumElems = 137; const int64_t kNumReplicas = 4; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); std::vector<float> input_vec(kNumElems); absl::c_iota(input_vec, 0); auto input_literal = LiteralUtil::CreateR1<float>(input_vec); auto module = MakeCrsModule( input_literal.shape(), {{0}, {1, 2}, {3}}, config); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), {&input_literal}, 4, true, true)); ASSERT_EQ(results.size(), 4); std::vector<float> input_vec_doubled; input_vec_doubled.reserve(input_vec.size()); for (float n : input_vec) { input_vec_doubled.push_back(n * 2); } auto input_literal_doubled = LiteralUtil::CreateR1<float>(input_vec_doubled); EXPECT_TRUE(LiteralTestUtil::Equal(input_literal, results[0])); EXPECT_TRUE(LiteralTestUtil::Equal(input_literal_doubled, results[1])); EXPECT_TRUE(LiteralTestUtil::Equal(input_literal_doubled, results[2])); EXPECT_TRUE(LiteralTestUtil::Equal(input_literal, results[3])); } XLA_TEST_F(CollectiveOpsTest, AllReduce_Degenerate) { const char* const kModuleStr = R"( HloModule test apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() ROOT crs = u32[] all-reduce(id), replica_groups={{0},{1},{2},{3}}, to_apply=apply_op } )"; static constexpr int kNumReplicas = 4; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); for (int i = 0; i < kNumReplicas; ++i) { LiteralTestUtil::ExpectR0Equal<uint32_t>(i, results[i]); } } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AsyncAllReduce)) { const absl::string_view kModuleStr = R"( HloModule test apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, backend_config="{\"is_sync\":false}" ROOT done = u32[] all-reduce-done(start) } )"; HloModuleConfig config = GetModuleConfigForTest(num_devices()); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, num_devices(), true, false)); ASSERT_EQ(results.size(), num_devices()); uint32_t expected = num_devices() * (num_devices() - 1) / 2; for (int i = 0; i < num_devices(); ++i) { LiteralTestUtil::ExpectR0Equal<uint32_t>(expected, results[i]); } } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AsyncAllReduceTwoOperands)) { const absl::string_view kModuleStr = R"( HloModule test apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() id2 = u32[] multiply(id, id) start = (u32[], u32[]) all-reduce-start(id, id2), to_apply=apply_op, backend_config="{\"is_sync\":false}" ROOT done = (u32[], u32[]) all-reduce-done(start) } )"; HloModuleConfig config = GetModuleConfigForTest(num_devices()); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, num_devices(), true, false)); ASSERT_EQ(results.size(), num_devices()); uint32_t expected0 = num_devices() * (num_devices() - 1) / 2; uint32_t expected1 = num_devices() * (num_devices() - 1) * (2 * num_devices() - 1) / 6; for (int i = 0; i < num_devices(); ++i) { std::vector<Literal> replica_results = results[i].DecomposeTuple(); LiteralTestUtil::ExpectR0Equal<uint32_t>(expected0, replica_results[0]); LiteralTestUtil::ExpectR0Equal<uint32_t>(expected1, replica_results[1]); } } XLA_TEST_F(CollectiveOpsTest, ReplicaId) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id = u32[] replica-id() ROOT out = u32[] copy(id) } )"; HloModuleConfig config = GetModuleConfigForTest(num_devices()); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, num_devices(), true, true)); ASSERT_EQ(results.size(), num_devices()); for (uint32_t i = 0; i < num_devices(); ++i) { EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR0(i), results[i])); } } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(CollectiveBroadcast_TwoGPUs)) { const char* const kModuleStr = R"( HloModule test collective_broadcast { p0 = u32[2] parameter(0) ROOT result = u32[2] collective-broadcast(p0), replica_groups={{1, 0}} } ENTRY test_computation { replica = u32[] replica-id() ten = u32[] constant(10) sum = u32[] add(replica, ten) p = u32[2] broadcast(sum), dimensions={} cb = ((u32[2]), u32[2]) async-start(u32[2] %p), calls=collective_broadcast ROOT res = u32[2] async-done(cb), calls=collective_broadcast } )"; const int64_t kNumReplicas = 2; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true)); ASSERT_EQ(results.size(), kNumReplicas); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[0])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[1])); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(CollectiveBroadcast_Simple)) { const char* const kModuleStr = R"( HloModule test collective_broadcast { p0 = u32[2] parameter(0) ROOT result = u32[2] collective-broadcast(p0), replica_groups={{1, 0, 2, 3}} } ENTRY test_computation { replica = u32[] replica-id() ten = u32[] constant(10) sum = u32[] add(replica, ten) p = u32[2] broadcast(sum), dimensions={} cb = ((u32[2]), u32[2]) async-start(u32[2] %p), calls=collective_broadcast ROOT res = u32[2] async-done(cb), calls=collective_broadcast } )"; const int64_t kNumReplicas = 4; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true)); ASSERT_EQ(results.size(), kNumReplicas); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[0])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[1])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[2])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[3])); } XLA_TEST_F(CollectiveOpsTest, CollectivePermute_TwoGPUs) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { replica = u32[] replica-id() ten = u32[] constant(10) sum = u32[] add(replica, ten) p = u32[2] broadcast(sum), dimensions={} permute = u32[2] collective-permute(p), source_target_pairs={{1,0}, {0,1}} ROOT copy = u32[2] copy(permute) } )"; const int64_t kNumReplicas = 2; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[0])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({10, 10}), results[1])); } XLA_TEST_F(CollectiveOpsTest, CollectivePermute_Simple) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { replica = u32[] replica-id() ten = u32[] constant(10) sum = u32[] add(replica, ten) p = u32[2] broadcast(sum), dimensions={} permute = u32[2] collective-permute(p), source_target_pairs={{1,0}, {0,1}, {2,2}} ROOT copy = u32[2] copy(permute) } )"; const int64_t kNumReplicas = 4; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[0])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({10, 10}), results[1])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({12, 12}), results[2])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({0, 0}), results[3])); } XLA_TEST_F(CollectiveOpsTest, CollectivePermute_Degenerate) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { replica = u32[] replica-id() ten = u32[] constant(10) sum = u32[] add(replica, ten) p = u32[2] broadcast(sum), dimensions={} permute = u32[2] collective-permute(p), source_target_pairs={{0,0}, {1,1}, {2,2}, {3,3}} ROOT copy = u32[2] copy(permute) } )"; const int64_t kNumReplicas = 4; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({10, 10}), results[0])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[1])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({12, 12}), results[2])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({13, 13}), results[3])); } XLA_TEST_F(CollectiveOpsTest, CollectivePermute_NotDegenerate) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { replica = u32[] replica-id() ten = u32[] constant(10) sum = u32[] add(replica, ten) p = u32[2] broadcast(sum), dimensions={} permute = u32[2] collective-permute(p), source_target_pairs={{0,0}, {1,1}, {2,2}} ROOT copy = u32[2] copy(permute) } )"; const int64_t kNumReplicas = 4; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({10, 10}), results[0])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[1])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({12, 12}), results[2])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({0, 0}), results[3])); } XLA_TEST_F(CollectiveOpsTest, CollectivePermute_Rotate) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { replica = u32[] replica-id() ten = u32[] constant(10) sum = u32[] add(replica, ten) p = u32[2] broadcast(sum), dimensions={} permute = u32[2] collective-permute(p), source_target_pairs={{0,1}, {1,2}, {2,3}, {3,0}} ROOT copy = u32[2] copy(permute) } )"; const int64_t kNumReplicas = 4; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({13, 13}), results[0])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({10, 10}), results[1])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[2])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({12, 12}), results[3])); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AsyncCollectivePermute)) { const absl::string_view kModuleStr = R"( HloModule test ENTRY test_computation { replica = u32[] replica-id() ten = u32[] constant(10) sum = u32[] add(replica, ten) p = u32[2] broadcast(sum), dimensions={} start = (u32[2], u32[2]) collective-permute-start(p), source_target_pairs={{0,1}, {1,0}}, backend_config="{\"is_sync\":false}" ROOT done = u32[2] collective-permute-done(start) } )"; const int64_t kNumReplicas = 2; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, false)); ASSERT_EQ(results.size(), kNumReplicas); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[0])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({10, 10}), results[1])); } XLA_TEST_F(CollectiveOpsTest, AllToAll_EmptyReplicaGroups) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id = u32[] replica-id() id2 = u32[2] broadcast(id), dimensions={} a0 = u32[2] constant({10, 15}) b0 = u32[2] constant({20, 25}) c0 = u32[2] constant({30, 35}) d0 = u32[2] constant({40, 45}) a1 = u32[2] add(id2, a0) b1 = u32[2] add(id2, b0) c1 = u32[2] add(id2, c0) d1 = u32[2] add(id2, d0) all2all = (u32[2], u32[2], u32[2], u32[2]) all-to-all(a1, b1, c1, d1), replica_groups={} a_prime = u32[2] get-tuple-element(all2all), index=0 b_prime = u32[2] get-tuple-element(all2all), index=1 c_prime = u32[2] get-tuple-element(all2all), index=2 d_prime = u32[2] get-tuple-element(all2all), index=3 ROOT out = u32[8] concatenate(a_prime, b_prime, c_prime, d_prime), dimensions={0} } )"; const int64_t kNumReplicas = 4; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); LiteralTestUtil::ExpectR1Equal<uint32_t>({10, 15, 11, 16, 12, 17, 13, 18}, results[0]); LiteralTestUtil::ExpectR1Equal<uint32_t>({20, 25, 21, 26, 22, 27, 23, 28}, results[1]); LiteralTestUtil::ExpectR1Equal<uint32_t>({30, 35, 31, 36, 32, 37, 33, 38}, results[2]); LiteralTestUtil::ExpectR1Equal<uint32_t>({40, 45, 41, 46, 42, 47, 43, 48}, results[3]); } XLA_TEST_F(CollectiveOpsTest, AllToAll_OrderedReplicaGroups) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id = u32[] replica-id() id2 = u32[2] broadcast(id), dimensions={} a0 = u32[2] constant({10, 15}) b0 = u32[2] constant({20, 25}) c0 = u32[2] constant({30, 35}) d0 = u32[2] constant({40, 45}) a1 = u32[2] add(id2, a0) b1 = u32[2] add(id2, b0) c1 = u32[2] add(id2, c0) d1 = u32[2] add(id2, d0) all2all = (u32[2], u32[2], u32[2], u32[2]) all-to-all(a1, b1, c1, d1), replica_groups={{3,2,1,0}} a_prime = u32[2] get-tuple-element(all2all), index=0 b_prime = u32[2] get-tuple-element(all2all), index=1 c_prime = u32[2] get-tuple-element(all2all), index=2 d_prime = u32[2] get-tuple-element(all2all), index=3 ROOT out = u32[8] concatenate(a_prime, b_prime, c_prime, d_prime), dimensions={0} } )"; const int64_t kNumReplicas = 4; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); LiteralTestUtil::ExpectR1Equal<uint32_t>({43, 48, 42, 47, 41, 46, 40, 45}, results[0]); LiteralTestUtil::ExpectR1Equal<uint32_t>({33, 38, 32, 37, 31, 36, 30, 35}, results[1]); LiteralTestUtil::ExpectR1Equal<uint32_t>({23, 28, 22, 27, 21, 26, 20, 25}, results[2]); LiteralTestUtil::ExpectR1Equal<uint32_t>({13, 18, 12, 17, 11, 16, 10, 15}, results[3]); } XLA_TEST_F(CollectiveOpsTest, AllToAll_TwoReplicaGroups) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id = u32[] replica-id() id2 = u32[2] broadcast(id), dimensions={} a0 = u32[2] constant({10, 15}) b0 = u32[2] constant({20, 25}) a1 = u32[2] add(id2, a0) b1 = u32[2] add(id2, b0) all2all = (u32[2], u32[2]) all-to-all(a1, b1), replica_groups={{2,1},{3,0}} a_prime = u32[2] get-tuple-element(all2all), index=0 b_prime = u32[2] get-tuple-element(all2all), index=1 ROOT out = u32[4] concatenate(a_prime, b_prime), dimensions={0} } )"; const int64_t kNumReplicas = 4; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); LiteralTestUtil::ExpectR1Equal<uint32_t>({23, 28, 20, 25}, results[0]); LiteralTestUtil::ExpectR1Equal<uint32_t>({22, 27, 21, 26}, results[1]); LiteralTestUtil::ExpectR1Equal<uint32_t>({12, 17, 11, 16}, results[2]); LiteralTestUtil::ExpectR1Equal<uint32_t>({13, 18, 10, 15}, results[3]); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AllToAll_SplitDimension)) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id = u32[] replica-id() id2 = u32[4, 2] broadcast(id), dimensions={} a0 = u32[4, 2] constant({{10, 15}, {20, 25}, {30, 35}, {40, 45}}) a1 = u32[4, 2] add(id2, a0) all2all = u32[4, 2] all-to-all(a1), replica_groups={{0,1,2,3}}, dimensions={0} ROOT out = u32[8] reshape(all2all) } )"; const int64_t kNumReplicas = 4; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); LiteralTestUtil::ExpectR1Equal<uint32_t>({10, 15, 11, 16, 12, 17, 13, 18}, results[0]); LiteralTestUtil::ExpectR1Equal<uint32_t>({20, 25, 21, 26, 22, 27, 23, 28}, results[1]); LiteralTestUtil::ExpectR1Equal<uint32_t>({30, 35, 31, 36, 32, 37, 33, 38}, results[2]); LiteralTestUtil::ExpectR1Equal<uint32_t>({40, 45, 41, 46, 42, 47, 43, 48}, results[3]); } XLA_TEST_F(CollectiveOpsTest, AllGather_Dim0) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id = u32[] replica-id() id2 = u32[1, 2] broadcast(id), dimensions={} a0 = u32[1, 2] constant({{10, 15}}) a1 = u32[1, 2] add(id2, a0) allgather = u32[2, 2] all-gather(a1), dimensions={0} ROOT out = u32[4] reshape(allgather) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); for (const Literal& result : results) { LiteralTestUtil::ExpectR1Equal<uint32_t>({10, 15, 11, 16}, result); } } XLA_TEST_F(CollectiveOpsTest, AllGather_Dim0_UseGlobalDevices) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id = u32[] replica-id() id2 = u32[1, 2] broadcast(id), dimensions={} a0 = u32[1, 2] constant({{10, 15}}) a1 = u32[1, 2] add(id2, a0) allgather = u32[2, 2] all-gather(a1), dimensions={0}, use_global_device_ids=true, channel_id=7, replica_groups={{0, 1}} ROOT out = u32[4] reshape(allgather) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); for (const Literal& result : results) { LiteralTestUtil::ExpectR1Equal<uint32_t>({10, 15, 11, 16}, result); } } XLA_TEST_F(CollectiveOpsTest, AllGather_Dim1) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id = u32[] replica-id() id2 = u32[2, 1] broadcast(id), dimensions={} a0 = u32[2, 1] constant({{10}, {15}}) a1 = u32[2, 1] add(id2, a0) allgather = u32[2, 2] all-gather(a1), dimensions={1} ROOT out = u32[4] reshape(allgather) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); for (const Literal& result : results) { LiteralTestUtil::ExpectR1Equal<uint32_t>({10, 11, 15, 16}, result); } } XLA_TEST_F(CollectiveOpsTest, AllReduce_TupleAllReduce) { if (IsMlirLoweringEnabled()) { GTEST_SKIP(); } std::string hlo_string = R"( HloModule test apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY test_computation { p0 = f32[5] parameter(0) p1 = f32[7] parameter(1) ROOT out = (f32[5], f32[7]) all-reduce(p0, p1), replica_groups={}, to_apply=apply_op } )"; static constexpr int kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, config)); std::vector<float> input0_vec = {1., 2., 3., 4., 5.}; auto input0_literal = LiteralUtil::CreateR1<float>(input0_vec); std::vector<float> input1_vec = { 7., 3., 4., 1., 2., 3., 4., }; auto input1_literal = LiteralUtil::CreateR1<float>(input1_vec); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), {&input0_literal, &input1_literal}, kNumReplicas, true, true)); std::vector<float> expected0_vec = {2., 4., 6., 8., 10.}; auto expected0_literal = LiteralUtil::CreateR1<float>(expected0_vec); std::vector<float> expected1_vec = {14., 6., 8., 2., 4., 6., 8.}; auto expected1_literal = LiteralUtil::CreateR1<float>(expected1_vec); for (int replica_idx = 0; replica_idx < kNumReplicas; replica_idx++) { auto rs = results[replica_idx].DecomposeTuple(); EXPECT_TRUE(LiteralTestUtil::NearOrEqual(expected0_literal, rs[0], ErrorSpec{1e-5, 1e-5})); EXPECT_TRUE(LiteralTestUtil::NearOrEqual(expected1_literal, rs[1], ErrorSpec{1e-5, 1e-5})); } } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AllGatherMixedTypes)) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id = u32[] replica-id() p0 = u32[2, 1] broadcast(id), dimensions={} p1 = f32[2, 1] convert(p0) allgather = (u32[2, 2], f32[2, 2]) all-gather(p0, p1), dimensions={1} ag0 = u32[2, 2] get-tuple-element(allgather), index=0 ag1 = f32[2, 2] get-tuple-element(allgather), index=1 r0 = u32[4] reshape(ag0) r1 = f32[4] reshape(ag1) ROOT out = (u32[4], f32[4]) tuple(r0, r1) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); for (int replica_idx = 0; replica_idx < kNumReplicas; replica_idx++) { auto rs = results[replica_idx].DecomposeTuple(); LiteralTestUtil::ExpectR1Equal<uint32_t>({0, 1, 0, 1}, rs[0]); LiteralTestUtil::ExpectR1Near<float>({0.0, 1.0, 0.0, 1.0}, rs[1], ErrorSpec{1e-5, 1e-5}); } } XLA_TEST_F(CollectiveOpsTest, ReduceScatter) { const char* const kModuleStr = R"( HloModule test add { lhs = u32[] parameter(0) rhs = u32[] parameter(1) ROOT add = u32[] add(lhs, rhs) } ENTRY main { c0 = u32[8] constant({1, 2, 3, 4, 5, 6, 7, 8}) c1 = u32[8] constant({10, 11, 12, 13, 14, 15, 16, 17}) zero = u32[] constant(0) id = u32[] replica-id() p = pred[] compare(id, zero), direction=EQ pb = pred[8] broadcast(p), dimensions={} data = u32[8] select(pb, c0, c1) ROOT ars = u32[4] reduce-scatter(data), replica_groups={}, dimensions={0}, to_apply=add } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); LiteralTestUtil::ExpectR1Equal<uint32_t>({11, 13, 15, 17}, results[0]); LiteralTestUtil::ExpectR1Equal<uint32_t>({19, 21, 23, 25}, results[1]); } XLA_TEST_F(CollectiveOpsTest, ReduceScatterConstrainLayout) { const char* const kModuleStr = R"( HloModule reduce-scatter %sum (a: u32[], b: u32[]) -> u32[] { %a = u32[] parameter(0) %b = u32[] parameter(1) ROOT %add = u32[] add(u32[] a, u32[] b) } ENTRY main { %param = u32[16] parameter(0) ROOT %rs = u32[8] reduce-scatter(u32[16] %param), replica_groups={}, constrain_layout=true, to_apply=%sum, dimensions={0} } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); std::vector<uint32_t> input_vec = { {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}}; auto input_literal = LiteralUtil::CreateR1<uint32_t>(input_vec); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), {&input_literal}, kNumReplicas, true, true)); LiteralTestUtil::ExpectR1Equal<uint32_t>({2, 4, 6, 8, 10, 12, 14, 16}, results[0]); LiteralTestUtil::ExpectR1Equal<uint32_t>({18, 20, 22, 24, 26, 28, 30, 32}, results[1]); } XLA_TEST_F(CollectiveOpsTest, ReduceScatter_Dim1) { const char* const kModuleStr = R"( HloModule test add { lhs = u32[] parameter(0) rhs = u32[] parameter(1) ROOT add = u32[] add(lhs, rhs) } ENTRY main { c0 = u32[2, 4] constant({{ 1, 2, 3, 4}, { 5, 6, 7, 8}}) c1 = u32[2, 4] constant({{10, 11, 12, 13}, {14, 15, 16, 17}}) zero = u32[] constant(0) id = u32[] replica-id() p = pred[] compare(id, zero), direction=EQ pb = pred[2, 4] broadcast(p), dimensions={} data = u32[2, 4] select(pb, c0, c1) ars = u32[2, 2] reduce-scatter(data), replica_groups={}, dimensions={1}, to_apply=add ROOT r = u32[4] reshape(ars) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); LiteralTestUtil::ExpectR1Equal<uint32_t>({11, 13, 19, 21}, results[0]); LiteralTestUtil::ExpectR1Equal<uint32_t>({15, 17, 23, 25}, results[1]); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(ReduceScatterReassociate)) { const char* const kModuleStr = R"( HloModule m sum { a = u32[] parameter(0) b = u32[] parameter(1) ROOT add.2 = u32[] add(a, b) } ENTRY main { c0 = u32[8] constant({ 1, 2, 3, 4, 5, 6, 7, 8}) c1 = u32[8] constant({ 11, 12, 13, 14, 15, 16, 17, 18}) c2 = u32[8] constant({ 2, 3, 4, 5, 6, 7, 8, 9}) c3 = u32[8] constant({ 12, 13, 14, 15, 16, 17, 18, 19}) zero = u32[] constant(0) id = u32[] replica-id() p = pred[] compare(id, zero), direction=EQ pb = pred[8] broadcast(p), dimensions={} data0 = u32[8] select(pb, c0, c1) data1 = u32[8] select(pb, c2, c3) rs0 = u32[4] reduce-scatter(data0), replica_groups={}, dimensions={0}, to_apply=sum rs1 = u32[4] reduce-scatter(data1), replica_groups={}, dimensions={0}, to_apply=sum ROOT add = u32[4] add(rs0, rs1) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); const ErrorSpec es{1e-5, 1e-5}; LiteralTestUtil::ExpectR1Equal<uint32_t>({26, 30, 34, 38}, results[0]); LiteralTestUtil::ExpectR1Equal<uint32_t>({42, 46, 50, 54}, results[1]); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(ReduceScatterReassociate_ReduceScatterCreator)) { const char* const kModuleStr = R"( HloModule m sum { a = u32[] parameter(0) b = u32[] parameter(1) ROOT add.2 = u32[] add(a, b) } ENTRY main { c0 = u32[8] constant({ 1, 2, 3, 4, 5, 6, 7, 8}) c1 = u32[8] constant({ 11, 12, 13, 14, 15, 16, 17, 18}) c2 = u32[8] constant({ 2, 3, 4, 5, 6, 7, 8, 9}) c3 = u32[8] constant({ 12, 13, 14, 15, 16, 17, 18, 19}) zero = u32[] constant(0) id = u32[] replica-id() p = pred[] compare(id, zero), direction=EQ pb = pred[8] broadcast(p), dimensions={} data0 = u32[8] select(pb, c0, c1) data1 = u32[8] select(pb, c2, c3) ar0 = u32[8] all-reduce(data0), replica_groups={}, to_apply=sum ar1 = u32[8] all-reduce(data1), replica_groups={}, to_apply=sum rid = u32[] replica-id() slice_size = u32[] constant(4) offset = u32[] multiply(rid, slice_size) ds0 = u32[4] dynamic-slice(ar0, offset), dynamic_slice_sizes={4} ds1 = u32[4] dynamic-slice(ar1, offset), dynamic_slice_sizes={4} ROOT add = u32[4] add(ds0, ds1) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); const ErrorSpec es{1e-5, 1e-5}; LiteralTestUtil::ExpectR1Equal<uint32_t>({26, 30, 34, 38}, results[0]); LiteralTestUtil::ExpectR1Equal<uint32_t>({42, 46, 50, 54}, results[1]); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AllReduceReassociate)) { const char* const kModuleStr = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { c0 = f32[8] constant({ 1, 2, 3, 4, 5, 6, 7, 8}) c1 = f32[8] constant({ 11, 12, 13, 14, 15, 16, 17, 18}) c2 = f32[8] constant({ 2, 3, 4, 5, 6, 7, 8, 9}) c3 = f32[8] constant({ 12, 13, 14, 15, 16, 17, 18, 19}) zero = u32[] constant(0) id = u32[] replica-id() p = pred[] compare(id, zero), direction=EQ pb = pred[8] broadcast(p), dimensions={} data0 = f32[8] select(pb, c0, c1) data1 = f32[8] select(pb, c2, c3) ar0 = f32[8] all-reduce(data0), replica_groups={}, to_apply=sum ar1 = f32[8] all-reduce(data1), replica_groups={}, to_apply=sum ROOT add = f32[8] add(ar0, ar1) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); const ErrorSpec es{1e-5, 1e-5}; EXPECT_TRUE(LiteralTestUtil::NearOrEqual(results[0], results[1], es)); LiteralTestUtil::ExpectR1Near<float>( {26.0, 30.0, 34.0, 38.0, 42.0, 46.0, 50.0, 54.0}, results[0], es); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AllGatherBroadcastReorder_NonUniform)) { const char* const kModuleStr = R"( HloModule m ENTRY main { c0 = u32[2, 3] constant({{ 1, 2, 3}, { 4, 5, 6}}) c1 = u32[2, 3] constant({{10, 11, 12}, {13, 14, 15}}) zero = u32[] constant(0) id = u32[] replica-id() p = pred[] compare(id, zero), direction=EQ pb = pred[2, 3] broadcast(p), dimensions={} data = u32[2, 3] select(pb, c0, c1) bc = u32[2, 4, 3] broadcast(data), dimensions={0, 2} ROOT ag = u32[2, 4, 6] all-gather(bc), dimensions={2}, replica_groups={{0, 1}} } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); EXPECT_TRUE(LiteralTestUtil::Equal(results[0], results[1])); LiteralTestUtil::ExpectR3Equal<uint32_t>({{{1, 2, 3, 10, 11, 12}, {1, 2, 3, 10, 11, 12}, {1, 2, 3, 10, 11, 12}, {1, 2, 3, 10, 11, 12}}, {{4, 5, 6, 13, 14, 15}, {4, 5, 6, 13, 14, 15}, {4, 5, 6, 13, 14, 15}, {4, 5, 6, 13, 14, 15}}}, results[0]); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AllGatherBroadcastReorder_Uniform)) { const char* const kModuleStr = R"( HloModule m ENTRY main { c0 = u32[2, 3] constant({{ 1, 2, 3}, { 4, 5, 6}}) c1 = u32[2, 3] constant({{10, 11, 12}, {13, 14, 15}}) zero = u32[] constant(0) id = u32[] replica-id() p = pred[] compare(id, zero), direction=EQ pb = pred[2, 3] broadcast(p), dimensions={} data = u32[2, 3] select(pb, c0, c1) bc = u32[2, 4, 3] broadcast(data), dimensions={0, 2} ROOT ag = u32[2, 8, 3] all-gather(bc), dimensions={1}, replica_groups={{0, 1}} } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); EXPECT_TRUE(LiteralTestUtil::Equal(results[0], results[1])); LiteralTestUtil::ExpectR3Equal<uint32_t>({{{1, 2, 3}, {1, 2, 3}, {1, 2, 3}, {1, 2, 3}, {10, 11, 12}, {10, 11, 12}, {10, 11, 12}, {10, 11, 12}}, {{4, 5, 6}, {4, 5, 6}, {4, 5, 6}, {4, 5, 6}, {13, 14, 15}, {13, 14, 15}, {13, 14, 15}, {13, 14, 15}}}, results[0]); } XLA_TEST_F(CollectiveOpsTest, AllGather_16BitInt) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id32 = u32[] replica-id() id = u16[] convert(id32) id2 = u16[1, 2] broadcast(id), dimensions={} a0 = u16[1, 2] constant({{10, 15}}) a1 = u16[1, 2] add(id2, a0) allgather = u16[2, 2] all-gather(a1), dimensions={0} ROOT out = u16[4] reshape(allgather) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); for (const Literal& result : results) { LiteralTestUtil::ExpectR1Equal<uint16_t>({10, 15, 11, 16}, result); } } XLA_TEST_F(CollectiveOpsTest, AllToAll_16BitInt) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id32 = u32[] replica-id() id = u16[] convert(id32) id2 = u16[2] broadcast(id), dimensions={} a0 = u16[2] constant({10, 15}) a1 = u16[2] add(id2, a0) ROOT a2a = u16[2] all-to-all(a1), dimensions={0} } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); LiteralTestUtil::ExpectR1Equal<uint16_t>({10, 11}, results[0]); LiteralTestUtil::ExpectR1Equal<uint16_t>({15, 16}, results[1]); } XLA_TEST_F(CollectiveOpsTest, CollectivePermute_16BitInt) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id32 = u32[] replica-id() id = u16[] convert(id32) id2 = u16[2] broadcast(id), dimensions={} a0 = u16[2] constant({10, 15}) a1 = u16[2] add(id2, a0) ROOT cp = u16[2] collective-permute(a1), source_target_pairs={{0,1}, {1,0}} } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); LiteralTestUtil::ExpectR1Equal<uint16_t>({11, 16}, results[0]); LiteralTestUtil::ExpectR1Equal<uint16_t>({10, 15}, results[1]); } XLA_TEST_F(CollectiveOpsTest, AllReduce_16BitInt) { const char* const kModuleStr = R"( HloModule test sum { a = u16[] parameter(0) b = u16[] parameter(1) ROOT add.2 = u16[] add(a, b) } ENTRY test_computation { id32 = u32[] replica-id() id = u16[] convert(id32) id2 = u16[2] broadcast(id), dimensions={} a0 = u16[2] constant({10, 15}) a1 = u16[2] add(id2, a0) ROOT cp = u16[2] all-reduce(a1), replica_groups={}, to_apply=sum } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); for (const Literal& result : results) { LiteralTestUtil::ExpectR1Equal<uint16_t>({21, 31}, result); } } XLA_TEST_F(CollectiveOpsTest, ReduceScatter_16BitInt) { const char* const kModuleStr = R"( HloModule test sum { a = u16[] parameter(0) b = u16[] parameter(1) ROOT add.2 = u16[] add(a, b) } ENTRY test_computation { id32 = u32[] replica-id() id = u16[] convert(id32) id2 = u16[2] broadcast(id), dimensions={} a0 = u16[2] constant({10, 15}) a1 = u16[2] add(id2, a0) ROOT cp = u16[1]reduce-scatter(a1), dimensions={0}, replica_groups={}, to_apply=sum } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); LiteralTestUtil::ExpectR1Equal<uint16_t>({21}, results[0]); LiteralTestUtil::ExpectR1Equal<uint16_t>({31}, results[1]); } XLA_TEST_F(CollectiveOpsTest, AllReduceBFloat16Min) { const char* const kModuleStr = R"( HloModule test min { a = bf16[] parameter(0) b = bf16[] parameter(1) ROOT min.2 = bf16[] minimum(a, b) } ENTRY test_computation { id32 = u32[] replica-id() one = u32[] constant(1) id32_1 = u32[] add(id32, one) id = bf16[] convert(id32_1) id2 = bf16[2] broadcast(id), dimensions={} ROOT cp = bf16[2] all-reduce(id2), replica_groups={}, to_apply=min } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); const bfloat16 one = static_cast<bfloat16>(1.0f); for (const Literal& result : results) { LiteralTestUtil::ExpectR1Equal<bfloat16>({one, one}, result); } } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AsyncAllGather)) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id = u32[] replica-id() id2 = u32[1, 2] broadcast(id), dimensions={} a0 = u32[1, 2] constant({{10, 15}}) a1 = u32[1, 2] add(id2, a0) ags = (u32[1, 2], u32[2, 2]) all-gather-start(a1), dimensions={0}, backend_config="{\"is_sync\":false}" allgather = u32[2,2] all-gather-done(ags) ROOT out = u32[4] reshape(allgather) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, false)); ASSERT_EQ(results.size(), kNumReplicas); for (const Literal& result : results) { LiteralTestUtil::ExpectR1Equal<uint32_t>({10, 15, 11, 16}, result); } } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AsyncReduceScatter)) { const char* const kModuleStr = R"( HloModule test add { lhs = u32[] parameter(0) rhs = u32[] parameter(1) ROOT add = u32[] add(lhs, rhs) } reduce_scatter { p0 = u32[8] parameter(0) ROOT result = u32[4] reduce-scatter(p0), replica_groups={}, dimensions={0}, to_apply=add } ENTRY main { c0 = u32[8] constant({1, 2, 3, 4, 5, 6, 7, 8}) c1 = u32[8] constant({10, 11, 12, 13, 14, 15, 16, 17}) zero = u32[] constant(0) id = u32[] replica-id() p = pred[] compare(id, zero), direction=EQ pb = pred[8] broadcast(p), dimensions={} data = u32[8] select(pb, c0, c1) rs-start = ((u32[8]{0}), u32[4]{0}) async-start(u32[8]{0} %data), calls=reduce_scatter, backend_config="{\"is_sync\":false}" ROOT %ars = u32[4]{0} async-done(((u32[8]{0}), u32[4]{0}) %rs-start), calls=reduce_scatter } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, false)); LiteralTestUtil::ExpectR1Equal<uint32_t>({11, 13, 15, 17}, results[0]); LiteralTestUtil::ExpectR1Equal<uint32_t>({19, 21, 23, 25}, results[1]); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(AsyncAllToAll)) { const char* const kModuleStr = R"( HloModule test all_to_all { p0 = u32[2] parameter(0) ROOT result = u32[2] all-to-all(p0), dimensions={0} } ENTRY test_computation { id = u32[] replica-id() id2 = u32[2] broadcast(id), dimensions={} a0 = u32[2] constant({10, 15}) a1 = u32[2] add(id2, a0) a2a-start = ((u32[2]), u32[2]) async-start(u32[2] %a1), calls=all_to_all, backend_config="{\"is_sync\":false}" ROOT a2s = u32[2] async-done(a2a-start), calls=all_to_all } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, false)); ASSERT_EQ(results.size(), kNumReplicas); LiteralTestUtil::ExpectR1Equal<uint32_t>({10, 11}, results[0]); LiteralTestUtil::ExpectR1Equal<uint32_t>({15, 16}, results[1]); } XLA_TEST_F(CollectiveOpsTest, AllGather_Dim1UnitDimensions) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { id = u32[] replica-id() id2 = u32[1, 1, 2, 1, 2] broadcast(id), dimensions={} offset = u32[4] iota(), iota_dimension=0 offset_reshape = u32[1, 1, 2, 1, 2] reshape(offset) agi = u32[1, 1, 2, 1, 2] add(id2, offset_reshape) allgather = u32[1, 1, 4, 1, 2] all-gather(agi), dimensions={2} ROOT out = u32[8] reshape(allgather) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); for (const Literal& result : results) { LiteralTestUtil::ExpectR1Equal<uint32_t>({0, 1, 2, 3, 1, 2, 3, 4}, result); } } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(SendRecv_Simple)) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { %replica = u32[] replica-id() %ten = u32[] constant(10) %sum = u32[] add(%replica, %ten) %p = u32[2] broadcast(%sum), dimensions={} %after-all = token[] after-all() %recv = (u32[2], u32[], token[]) recv(%after-all), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}" } %send = (u32[2], u32[], token[]) send(%p, %after-all), channel_id=0, control-predecessors={%recv}, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}" } %recv-done = (u32[2], token[]) recv-done(%recv), channel_id=0 %recv-data = u32[2] get-tuple-element(%recv-done), index=0 %send-done = token[] send-done(%send), channel_id=0, control-predecessors={%recv} ROOT copy = u32[2] copy(%recv-data) } )"; const int64_t kNumReplicas = 2; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true)); ASSERT_EQ(results.size(), kNumReplicas); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({11, 11}), results[0])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({0, 0}), results[1])); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(SendRecv_TwoConcurrentChains)) { const char* const kModuleStr = R"( HloModule test, is_scheduled=true ENTRY test_computation { c0 = u32[] constant(0) c1 = u32[] constant(1) replica = u32[] replica-id() a = u32[] add(c1, replica) send-data = u32[2] broadcast(a), dimensions={} after-all.0 = token[] after-all() recv.0 = (u32[2], u32[], token[]) recv(after-all.0), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="1" } send.0 = (u32[2], u32[], token[]) send(send-data, after-all.0), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="1" } after-all.1 = token[] after-all() recv.1 = (u32[2], u32[], token[]) recv(after-all.1), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}}" } send.1 = (u32[2], u32[], token[]) send(send-data, after-all.1), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}}" } recv-done.0 = (u32[2], token[]) recv-done(recv.0), channel_id=0, frontend_attributes={ _xla_send_recv_pipeline="1" } recv-data.0 = u32[2] get-tuple-element(recv-done.0), index=0 recv-done.1 = (u32[2], token[]) recv-done(recv.1), channel_id=0, frontend_attributes={ _xla_send_recv_pipeline="0" } recv-data.1 = u32[2] get-tuple-element(recv-done.1), index=0 compare0 = pred[] compare(replica, c0), direction=EQ compare = pred[2] broadcast(compare0), dimensions={} recv-data = u32[2] select(compare, recv-data.0, recv-data.1) send-done.0 = token[] send-done(send.0), channel_id=0, frontend_attributes={ _xla_send_recv_pipeline="1" } send-done.1 = token[] send-done(send.1), channel_id=0, frontend_attributes={ _xla_send_recv_pipeline="0" } c1b = u32[2] broadcast(c1), dimensions={} ROOT result = u32[2] add(c1b, recv-data) })"; const int64_t kNumReplicas = 2; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, false)); ASSERT_EQ(results.size(), kNumReplicas); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({3, 3}), results[0])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({2, 2}), results[1])); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(SendRecv_ValidationAttr1)) { const char* const kModuleStr = R"( HloModule test, is_scheduled=true ENTRY test_computation { c0 = u32[] constant(0) c1 = u32[] constant(1) replica = u32[] replica-id() a = u32[] add(c1, replica) send-data = u32[2] broadcast(a), dimensions={} after-all.0 = token[] after-all() recv.0 = (u32[2], u32[], token[]) recv(after-all.0), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_validation="invalid" } send.0 = (u32[2], u32[], token[]) send(send-data, after-all.0), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_validation="invalid" } recv-done.0 = (u32[2], token[]) recv-done(recv.0), channel_id=0, frontend_attributes={ _xla_send_recv_pipeline="0" } recv-data.0 = u32[2] get-tuple-element(recv-done.0), index=0 send-done.0 = token[] send-done(send.0), channel_id=0, frontend_attributes={ _xla_send_recv_pipeline="0" } after-all.1 = token[] after-all() recv.1 = (u32[2], u32[], token[]) recv(after-all.1), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}}" } send.1 = (u32[2], u32[], token[]) send(send-data, after-all.1), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}}" } recv-done.1 = (u32[2], token[]) recv-done(recv.1), channel_id=0, frontend_attributes={ _xla_send_recv_pipeline="0" } recv-data.1 = u32[2] get-tuple-element(recv-done.1), index=0 compare0 = pred[] compare(replica, c0), direction=EQ compare = pred[2] broadcast(compare0), dimensions={} recv-data = u32[2] select(compare, recv-data.0, recv-data.1) send-done.1 = token[] send-done(send.1), channel_id=0, frontend_attributes={ _xla_send_recv_pipeline="0" } c1b = u32[2] broadcast(c1), dimensions={} ROOT result = u32[2] add(c1b, recv-data) })"; const int64_t kNumReplicas = 2; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, false)); ASSERT_EQ(results.size(), kNumReplicas); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({2, 2}), results[1])); } XLA_TEST_F(CollectiveOpsTest, DISABLED_ON_CPU(SendRecv_ValidationAttr2)) { const char* const kModuleStr = R"( HloModule test, is_scheduled=true cond { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(2) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(%param), index=0 send-data = get-tuple-element(%param), index=1 after-all.0 = token[] after-all() recv.0 = (u32[2], u32[], token[]) recv(after-all.0), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_validation="{{0,1}}" } send.0 = (u32[2], u32[], token[]) send(send-data, after-all.0), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_validation="{{0,1}}" } recv-done.0 = (u32[2], token[]) recv-done(recv.0), channel_id=0, frontend_attributes={ _xla_send_recv_pipeline="0" } recv-data.0 = u32[2] get-tuple-element(recv-done.0), index=0 send-done.0 = token[] send-done(send.0), channel_id=0, frontend_attributes={ _xla_send_recv_pipeline="0" } after-all.1 = token[] after-all() recv.1 = (u32[2], u32[], token[]) recv(after-all.1), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}}" } send.1 = (u32[2], u32[], token[]) send(send-data, after-all.1), channel_id=0, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}}" } recv-done.1 = (u32[2], token[]) recv-done(recv.1), channel_id=0, frontend_attributes={ _xla_send_recv_pipeline="0" } recv-data.1 = u32[2] get-tuple-element(recv-done.1), index=0 replica = u32[] replica-id() constant0 = u32[] constant(0) compare0 = pred[] compare(replica, constant0), direction=EQ compare = pred[2] broadcast(compare0), dimensions={} recv-data = u32[2] select(compare, recv-data.0, recv-data.1) c1 = u32[] constant(1) new_count = u32[] add(count, c1) r = u32[2] broadcast(c1), dimensions={} s = u32[2] add(r, recv-data) send-done.1 = token[] send-done(send.1), channel_id=0, frontend_attributes={ _xla_send_recv_pipeline="0" } ROOT result = (u32[], u32[2]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) r = u32[] replica-id() init = u32[2] broadcast(r), dimensions={} while_init = (u32[], u32[2]) tuple(c0, init) while_result = (u32[], u32[2]) while(while_init), body=body, condition=cond ROOT result = u32[2] get-tuple-element(while_result), index=1 })"; const int64_t kNumReplicas = 2; SKIP_TEST_IF_NUM_DEVICES_LESS_THAN(kNumReplicas); HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, false)); ASSERT_EQ(results.size(), kNumReplicas); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({2, 2}), results[0])); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<uint32_t>({3, 3}), results[1])); } class Fp8CollectiveOpsTest : public CollectiveOpsTest { public: Fp8CollectiveOpsTest() { replacements_[kF8E4M3DatatypePlaceholder] = IsCuda() ? "f8e4m3fn" : "f8e4m3fnuz"; replacements_[kF8E5M2DatatypePlaceholder] = IsCuda() ? "f8e5m2" : "f8e5m2fnuz"; } protected: bool IsCuda() { return std::holds_alternative<se::CudaComputeCapability>(Capability()); } const se::GpuComputeCapability& Capability() { return backend() .default_stream_executor() ->GetDeviceDescription() .gpu_compute_capability(); } absl::flat_hash_map<absl::string_view, absl::string_view> replacements_; private: static constexpr const char* kF8E4M3DatatypePlaceholder{"<<F8E4M3>>"}; static constexpr const char* kF8E5M2DatatypePlaceholder{"<<F8E5M2>>"}; }; XLA_TEST_F(Fp8CollectiveOpsTest, DISABLED_ON_CPU(AllGather_8BitFloat)) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { a0 = <<F8E4M3>>[1,2] constant({{1,2}}) allgather = <<F8E4M3>>[2, 2] all-gather(a0), dimensions={0} p = <<F8E4M3>>[4] reshape(allgather) ROOT out = f32[4] convert(p) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( absl::StrReplaceAll(kModuleStr, replacements_), config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); for (const Literal& result : results) { LiteralTestUtil::ExpectR1Equal<float>({1, 2, 1, 2}, result); } } XLA_TEST_F(Fp8CollectiveOpsTest, DISABLED_ON_CPU(AllToAll_8BitFloat)) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { a0 = <<F8E4M3>>[2] constant({1,2}) a2a = <<F8E4M3>>[2] all-to-all(a0), dimensions={0} ROOT out = f32[2] convert(a2a) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( absl::StrReplaceAll(kModuleStr, replacements_), config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); LiteralTestUtil::ExpectR1Equal<float>({1, 1}, results[0]); LiteralTestUtil::ExpectR1Equal<float>({2, 2}, results[1]); } XLA_TEST_F(Fp8CollectiveOpsTest, DISABLED_ON_CPU(CollectivePermute_8BitFloat)) { const char* const kModuleStr = R"( HloModule test ENTRY test_computation { a0 = <<F8E5M2>>[2] constant({1,2}) a1 = <<F8E5M2>>[2] collective-permute(a0), source_target_pairs={{0,1}, {1,0}} ROOT out = f32[2] convert(a1) } )"; const int64_t kNumReplicas = 2; HloModuleConfig config = GetModuleConfigForTest(kNumReplicas); TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( absl::StrReplaceAll(kModuleStr, replacements_), config)); TF_ASSERT_OK_AND_ASSIGN( std::vector<Literal> results, ExecuteReplicated(std::move(module), absl::Span<Literal* const>{}, kNumReplicas, true, true)); ASSERT_EQ(results.size(), kNumReplicas); LiteralTestUtil::ExpectR1Equal<float>({1, 2}, results[0]); LiteralTestUtil::ExpectR1Equal<float>({1, 2}, results[1]); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/collective_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tests/collective_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8e50f42a-d4e9-4044-b05a-302eaf7a972f
cpp
tensorflow/tensorflow
codegen
tensorflow/compiler/aot/codegen.cc
tensorflow/compiler/aot/codegen_test.cc
#include "tensorflow/compiler/aot/codegen.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/str_split.h" #include "absl/strings/substitute.h" #include "absl/types/span.h" #include "tensorflow/compiler/aot/embedded_protocol_buffers.h" #include "tensorflow/compiler/tf2xla/tf2xla.pb.h" #include "tensorflow/compiler/tf2xla/tf2xla_util.h" #include "xla/cpu_function_runtime.h" #include "xla/service/compiler.h" #include "xla/service/cpu/buffer_info_util.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { namespace tfcompile { namespace { using BufferInfo = xla::cpu_function_runtime::BufferInfo; bool IsAlpha(char c) { return (c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z'); } bool IsAlphaNum(char c) { return IsAlpha(c) || (c >= '0' && c <= '9'); } Status XLATypeToCpp(xla::PrimitiveType type, string* str) { switch (type) { case xla::PRED: *str = "bool"; break; case xla::S8: *str = "tensorflow::int8"; break; case xla::S16: *str = "tensorflow::int16"; break; case xla::S32: *str = "tensorflow::int32"; break; case xla::S64: *str = "int64_t"; break; case xla::U8: *str = "tensorflow::uint8"; break; case xla::U16: *str = "tensorflow::uint16"; break; case xla::U32: *str = "tensorflow::uint32"; break; case xla::U64: *str = "tensorflow::uint64"; break; case xla::F32: *str = "float"; break; case xla::F64: *str = "double"; break; default: return errors::Unimplemented("XLA type ", xla::PrimitiveType_Name(type), " has no equivalent in C++"); } return absl::OkStatus(); } size_t TotalBufferBytes(const std::vector<BufferInfo>& buffer_infos) { return std::accumulate(buffer_infos.begin(), buffer_infos.end(), size_t{0}, [](size_t size, const BufferInfo& buffer_info) { return size + buffer_info.size(); }); } std::vector<BufferInfo> ExtractEntryParamBufferInfos( const std::vector<BufferInfo>& buffer_infos) { std::vector<BufferInfo> result; std::copy_if(buffer_infos.begin(), buffer_infos.end(), std::back_inserter(result), [](const BufferInfo& buffer_info) { return buffer_info.is_entry_parameter(); }); return result; } std::vector<BufferInfo> ExtractTempBufferInfos( const std::vector<BufferInfo>& buffer_infos) { std::vector<BufferInfo> result; std::copy_if(buffer_infos.begin(), buffer_infos.end(), std::back_inserter(result), [](const BufferInfo& buffer_info) { return buffer_info.is_temp_buffer(); }); return result; } Status AddRewritesForShape(int i, const xla::Shape& shape, std::vector<std::pair<string, string>>* rewrites) { string type; TF_RETURN_IF_ERROR(XLATypeToCpp(shape.element_type(), &type)); std::vector<string> dim_vars; string dim_sizes, indices; int count = 1; if (shape.rank() == 0 || (shape.dimensions_size() == 1 && shape.dimensions(0) == 1)) { dim_sizes = "[1]"; indices = "[0]"; } else { for (int dim = 0; dim < shape.dimensions_size(); ++dim) { dim_vars.push_back(absl::StrCat("size_t dim", dim)); dim_sizes += absl::StrCat("[", shape.dimensions(dim), "]"); indices += absl::StrCat("[dim", dim, "]"); count *= shape.dimensions(dim); } } rewrites->push_back({"{{I}}", absl::StrCat(i)}); rewrites->push_back({"{{TYPE}}", type}); rewrites->push_back({"{{DIM_VARS}}", absl::StrJoin(dim_vars, ", ")}); rewrites->push_back({"{{DIM_SIZES}}", dim_sizes}); rewrites->push_back({"{{INDICES}}", indices}); rewrites->push_back({"{{COUNT}}", absl::StrCat(count)}); return absl::OkStatus(); } string RewriteWithName(const string& name, string code, const std::vector<std::pair<string, string>>& rewrites) { absl::StrReplaceAll(rewrites, &code); absl::StrReplaceAll({{"{{NAME}}", name}}, &code); return code; } Status GenArgMethods(const tf2xla::Config& config, const xla::ProgramShapeProto& ps, const CompileResult& compile_result, string* methods) { const int num_args = ps.parameters_size(); if (config.feed_size() + config.variable_size() < num_args) { return errors::InvalidArgument( "mismatch between feed_size(", config.feed_size(), ")+variable_size(", config.variable_size(), ") and num_args(", num_args, ")"); } for (int i = 0; i < config.feed_size(); ++i) { std::vector<std::pair<string, string>> rewrites; TF_RETURN_IF_ERROR( AddRewritesForShape(i, xla::Shape(ps.parameters(i)), &rewrites)); const string code = R"( void set_arg{{NAME}}_data(const void* data) { set_arg_data({{I}}, data); } {{TYPE}}* arg{{NAME}}_data() { return static_cast<{{TYPE}}*>(arg_data({{I}})); } {{TYPE}}& arg{{NAME}}({{DIM_VARS}}) { return (*static_cast<{{TYPE}}(*){{DIM_SIZES}}>( arg_data({{I}}))){{INDICES}}; } const {{TYPE}}* arg{{NAME}}_data() const { return static_cast<const {{TYPE}}*>(arg_data({{I}})); } const {{TYPE}}& arg{{NAME}}({{DIM_VARS}}) const { return (*static_cast<const {{TYPE}}(*){{DIM_SIZES}}>( arg_data({{I}}))){{INDICES}}; } int arg{{NAME}}_size() const { return {{COUNT}} * sizeof({{TYPE}}); } int arg{{NAME}}_count() const { return {{COUNT}}; } )"; *methods += RewriteWithName(absl::StrCat(i), code, rewrites); if (!config.feed(i).name().empty()) { *methods += RewriteWithName("_" + config.feed(i).name(), code, rewrites); } } return absl::OkStatus(); } Status GenResultMethods(const tf2xla::Config& config, const xla::ProgramShapeProto& ps, string* methods) { if (ps.result().element_type() != xla::TUPLE) { return errors::Internal("codegen requires the XLA result to be a tuple"); } size_t num_results = ps.result().tuple_shapes_size(); int readonly_variables = absl::c_count_if( config.variable(), [](const tf2xla::Variable& var) { return var.readonly(); }); const int actual_num_results = config.fetch_size() + config.variable_size() - readonly_variables; if (actual_num_results != num_results) { return errors::InvalidArgument("mismatch between fetch_size(", config.fetch_size(), ")+variable_size(", config.variable_size(), ") and tuple_size(", ps.result().tuple_shapes_size(), ")"); } for (int i = 0; i < config.fetch_size(); ++i) { std::vector<std::pair<string, string>> rewrites; TF_RETURN_IF_ERROR(AddRewritesForShape( i, xla::Shape(ps.result().tuple_shapes(i)), &rewrites)); string code = R"( {{TYPE}}* result{{NAME}}_data() { return static_cast<{{TYPE}}*>(result_data({{I}})); } {{TYPE}}& result{{NAME}}({{DIM_VARS}}) { return (*static_cast<{{TYPE}}(*){{DIM_SIZES}}>( result_data({{I}}))){{INDICES}}; } const {{TYPE}}* result{{NAME}}_data() const { return static_cast<const {{TYPE}}*>(result_data({{I}})); } const {{TYPE}}& result{{NAME}}({{DIM_VARS}}) const { return (*static_cast<const {{TYPE}}(*){{DIM_SIZES}}>( result_data({{I}}))){{INDICES}}; } int result{{NAME}}_size() const { return {{COUNT}} * sizeof({{TYPE}}); } int result{{NAME}}_count() const { return {{COUNT}}; } )"; *methods += RewriteWithName(absl::StrCat(i), code, rewrites); if (!config.fetch(i).name().empty()) { *methods += RewriteWithName("_" + config.fetch(i).name(), code, rewrites); } } return absl::OkStatus(); } Status GenVariableMethods(const tf2xla::Config& config, const xla::ProgramShapeProto& ps, string* methods) { const int num_args = ps.parameters_size(); for (int i = config.feed_size(); i < num_args; ++i) { std::vector<std::pair<string, string>> rewrites; TF_RETURN_IF_ERROR( AddRewritesForShape(i, xla::Shape(ps.parameters(i)), &rewrites)); const string code = R"( void set_var_{{NAME}}_data({{MAYBE_CONST}}{{TYPE}}* data) { set_arg_data({{I}}, data); } {{MAYBE_CONST}}{{TYPE}}* var_{{NAME}}_data() { return static_cast<{{MAYBE_CONST}}{{TYPE}}*>(arg_data({{I}})); } {{MAYBE_CONST}}{{TYPE}}& var_{{NAME}}({{DIM_VARS}}) { return (*static_cast<{{MAYBE_CONST}}{{TYPE}}(*){{DIM_SIZES}}>( arg_data({{I}}))){{INDICES}}; } const {{TYPE}}* var_{{NAME}}_data() const { return static_cast<const {{TYPE}}*>(arg_data({{I}})); } const {{TYPE}}& var_{{NAME}}({{DIM_VARS}}) const { return (*static_cast<const {{TYPE}}(*){{DIM_SIZES}}>( arg_data({{I}}))){{INDICES}}; } int var_{{NAME}}_size() const { return {{COUNT}} * sizeof({{TYPE}}); } int var_{{NAME}}_count() const { return {{COUNT}}; } )"; const tf2xla::Variable& var = config.variable(i - config.feed_size()); rewrites.emplace_back("{{MAYBE_CONST}}", var.readonly() ? "const " : ""); *methods += RewriteWithName( var.name().empty() ? var.node_name() : var.name(), code, rewrites); } return absl::OkStatus(); } Status GenArgShapeInfos(const xla::ProgramShapeProto& ps, string* infos) { for (int i = 0; i < ps.parameters_size(); ++i) { const xla::ShapeProto& shape = ps.parameters(i); if (shape.element_type() == xla::TUPLE) { return absl::InternalError( absl::StrCat("parameter ", i, ": codegen requires XLA parameters to " "be non-tuples.")); } *infos += absl::Substitute(R"( static constexpr int32_t kArg$0Shapes[] = { $1 }; )", i, shape.dimensions_size() > 0 ? absl::StrJoin(shape.dimensions(), ", ") : "-1"); } *infos += R"( static const ShapeInfo* ArgShapeInfos() { static constexpr ShapeInfo kArgShapeInfoTable[kNumArgs] = { )"; for (int i = 0; i < ps.parameters_size(); ++i) { const xla::ShapeProto& shape = ps.parameters(i); *infos += absl::Substitute("{ kArg$0Shapes, $1 },\n", i, shape.dimensions_size()); } *infos += R"( }; return kArgShapeInfoTable; })"; return absl::OkStatus(); } Status GenResultShapeInfos(const xla::ProgramShapeProto& ps, string* infos) { if (ps.result().element_type() != xla::TUPLE) { return absl::InternalError("codegen requires the XLA result to be a tuple"); } for (int i = 0; i < ps.result().tuple_shapes_size(); ++i) { const xla::ShapeProto& shape = ps.result().tuple_shapes(i); *infos += absl::Substitute( R"( static constexpr int32_t kResult$0Shapes[] = { $1 }; )", i, shape.dimensions_size() > 0 ? absl::StrJoin(shape.dimensions(), ", ") : "-1"); } *infos += R"( static const ShapeInfo* ResultShapeInfos() { static constexpr ShapeInfo kResultShapeInfoTable[kNumResults] = { )"; for (int i = 0; i < ps.result().tuple_shapes_size(); ++i) { const xla::ShapeProto& shape = ps.result().tuple_shapes(i); *infos += absl::Substitute("{ kResult$0Shapes, $1 },\n", i, shape.dimensions_size()); } *infos += R"( }; return kResultShapeInfoTable; })"; return absl::OkStatus(); } template <typename T> string GenNameToIndexCode(const T& entries, bool generate) { if (!generate) { return "{\n return nullptr;\n }"; } int end = entries.size(); for (int i = entries.size() - 1; i >= 0; --i) { if (!entries[i].name().empty()) { break; } end = i; } string code = "{\n static const char* kNames[] = {"; for (int i = 0; i < end; ++i) { if (i > 0) { code += ", "; } code += "\""; code += entries[i].name(); code += "\""; } if (end > 0) { code += ", "; } code += "nullptr};\n return kNames;\n }"; return code; } Status ValidateFeedFetchCppNames(const tf2xla::Config& config) { for (const tf2xla::Feed& feed : config.feed()) { if (!feed.name().empty()) { TF_RETURN_IF_ERROR(ValidateCppIdent(feed.name(), "feed name")); } } for (const tf2xla::Fetch& fetch : config.fetch()) { if (!fetch.name().empty()) { TF_RETURN_IF_ERROR(ValidateCppIdent(fetch.name(), "fetch name")); } } for (const tf2xla::Variable& variable : config.variable()) { if (!variable.name().empty()) { TF_RETURN_IF_ERROR(ValidateCppIdent(variable.name(), "variable name")); } else { TF_RETURN_IF_ERROR( ValidateCppIdent(variable.node_name(), "variable name")); } } return absl::OkStatus(); } std::vector<string> BufferInfosToCppExpression( const std::vector<BufferInfo>& buffer_infos) { std::vector<string> buffer_infos_as_strings; std::transform(buffer_infos.begin(), buffer_infos.end(), std::back_inserter(buffer_infos_as_strings), [](const BufferInfo& buffer_info) { xla::cpu_function_runtime::EncodedBufferInfo encoded = buffer_info.Encode(); auto param_to_str = [](uint32_t param) -> std::string { return param == ~0U ? "~0U" : absl::StrCat(param, "U"); }; return absl::StrCat( "::xla::cpu_function_runtime::BufferInfo(" "::xla::cpu_function_runtime::EncodedBufferInfo{", encoded.packed_kind_and_size, "ULL, ", param_to_str(encoded.entry_param_number), ", ", param_to_str(encoded.result_param_number), "})"); }); return buffer_infos_as_strings; } Status CheckEqual(size_t a, size_t b, absl::string_view error_msg) { if (a != b) { return absl::InternalError( absl::StrCat(error_msg, ". Expected ", a, ", got ", b, ".")); } return absl::OkStatus(); } } Status GenerateHeader(const CodegenOpts& opts, const tf2xla::Config& config, const CompileResult& compile_result, const MetadataResult& metadata_result, string* header) { TF_RETURN_IF_ERROR(ValidateConfig(config)); TF_RETURN_IF_ERROR(ValidateFeedFetchCppNames(config)); const int64_t result_index = compile_result.aot->result_buffer_index(); const std::vector<BufferInfo>& buffer_infos = compile_result.aot->buffer_infos(); const std::vector<int32> arg_index_table = ::xla::cpu::CreateArgIndexTableFromBufferInfos(buffer_infos); const std::vector<int32> result_index_table = ::xla::cpu::CreateResultIndexTableFromBufferInfos(buffer_infos); std::vector<string> buffer_infos_as_strings = BufferInfosToCppExpression(buffer_infos); const int64_t buffer_infos_size = buffer_infos.size(); if (result_index < 0 || result_index >= buffer_infos_size) { return errors::InvalidArgument("result index: ", result_index, " is outside the range of temp sizes: [0,", buffer_infos.size(), ")"); } std::vector<BufferInfo> buffer_infos_for_args = ExtractEntryParamBufferInfos(buffer_infos); std::vector<BufferInfo> buffer_infos_for_temps = ExtractTempBufferInfos(buffer_infos); const xla::ProgramShapeProto& ps = compile_result.program_shape; string methods_arg, methods_result, methods_variable; TF_RETURN_IF_ERROR(GenArgMethods(config, ps, compile_result, &methods_arg)); TF_RETURN_IF_ERROR(GenResultMethods(config, ps, &methods_result)); TF_RETURN_IF_ERROR(GenVariableMethods(config, ps, &methods_variable)); string arg_shape_infos, result_shape_infos; TF_RETURN_IF_ERROR(GenArgShapeInfos(ps, &arg_shape_infos)); TF_RETURN_IF_ERROR( CheckEqual(ps.parameters_size(), arg_index_table.size(), "Arg number mismatch, proto vs. arg_index_table")); TF_RETURN_IF_ERROR(GenResultShapeInfos(ps, &result_shape_infos)); TF_RETURN_IF_ERROR( CheckEqual(ps.result().tuple_shapes_size(), result_index_table.size(), "Result number mismatch, proto vs. result_index_table")); const size_t arg_bytes_aligned = xla::cpu_function_runtime::AlignedBufferBytes( buffer_infos_for_args.data(), buffer_infos_for_args.size(), true); const size_t arg_bytes_total = TotalBufferBytes(buffer_infos_for_args); const size_t temp_bytes_aligned = xla::cpu_function_runtime::AlignedBufferBytes( buffer_infos_for_temps.data(), buffer_infos_for_temps.size(), true); const size_t temp_bytes_total = TotalBufferBytes(buffer_infos_for_temps); string ns_start; for (const string& n : opts.namespaces) { ns_start += absl::StrCat("namespace ", n, " {\n"); } ns_start += "\n"; string ns_end("\n"); for (int i = opts.namespaces.size() - 1; i >= 0; --i) { const string& n = opts.namespaces[i]; ns_end += absl::StrCat("} } const string arg_names_code = GenNameToIndexCode(config.feed(), opts.gen_name_to_index); auto variable_copy = config.variable(); for (auto& var : variable_copy) { if (var.name().empty()) { var.set_name(var.node_name()); } } const string variable_names_code = GenNameToIndexCode(variable_copy, opts.gen_name_to_index); const string result_names_code = GenNameToIndexCode(config.fetch(), opts.gen_name_to_index); const string include_xla_data_proto = opts.gen_program_shape ? R"(#include "xla/xla_data.pb.h")" : ""; const string include_hlo_profile_printer_data_proto = opts.gen_hlo_profile_printer_data ? R"(#include "xla/service/hlo_profile_printer_data.pb.h")" : ""; const string assign_profile_counters_size = opts.gen_hlo_profile_printer_data ? "set_static_data_profile_counters_size(data, " "get_static_data_hlo_profile_printer_data(data)->" "profile_counters_size());" : ""; *header = R"( #ifndef TFCOMPILE_GENERATED_{{ENTRY}}_H_ #define TFCOMPILE_GENERATED_{{ENTRY}}_H_ {{INCLUDE_XLA_DATA_PROTO}} {{INCLUDE_HLO_PROFILE_PRINTER_DATA_PROTO}} #include "tensorflow/compiler/tf2xla/xla_compiled_cpu_function.h" #include "tensorflow/core/platform/types.h" namespace Eigen { struct ThreadPoolDevice; } namespace xla { class ExecutableRunOptions; } extern "C" void {{ENTRY}}( void* result, const ::xla::ExecutableRunOptions* run_options, const void** args, void** temps, XlaCustomCallStatus* status, int64_t* profile_counters); {{DECLS_FROM_OBJ_FILE}} {{NS_START}} class {{CLASS}} final : public tensorflow::XlaCompiledCpuFunction { public: static constexpr size_t kNumArgs = {{ARG_NUM}}; static constexpr size_t kNumResults = {{RESULT_NUM}}; static constexpr size_t kNumVariables = {{VARIABLE_NUM}}; static const ::int64_t ArgSize(::tensorflow::int32 index) { return BufferInfos()[ArgIndexToBufferIndex()[index]].size(); } static const tensorflow::XlaCompiledCpuFunction::StaticData& StaticData() { static XlaCompiledCpuFunction::StaticData* kStaticData = [](){ XlaCompiledCpuFunction::StaticData* data = new XlaCompiledCpuFunction::StaticData; set_static_data_raw_function(data, {{ENTRY}}); set_static_data_buffer_infos(data, BufferInfos()); set_static_data_num_buffers(data, kNumBuffers); set_static_data_result_index_table(data, ResultIndexToBufferIndex()); set_static_data_num_results(data, kNumResults); set_static_data_arg_index_table(data, ArgIndexToBufferIndex()); set_static_data_num_args(data, kNumArgs); set_static_data_num_variables(data, kNumVariables); set_static_data_result_index(data, kResultIndex); set_static_data_arg_shape_infos(data, ArgShapeInfos()); set_static_data_result_shape_infos(data, ResultShapeInfos()); set_static_data_arg_names(data, StaticArgNames()); set_static_data_variable_names(data, StaticVariableNames()); set_static_data_result_names(data, StaticResultNames()); set_static_data_program_shape(data, StaticProgramShape()); set_static_data_hlo_profile_printer_data( data, StaticHloProfilePrinterData()); {{ASSIGN_PROFILE_COUNTERS_SIZE}} return data; }(); return *kStaticData; } {{CLASS}}(AllocMode alloc_mode = AllocMode::ARGS_VARIABLES_RESULTS_PROFILES_AND_TEMPS) : XlaCompiledCpuFunction(StaticData(), alloc_mode) {} {{CLASS}}(const {{CLASS}}&) = delete; {{CLASS}}& operator=(const {{CLASS}}&) = delete; {{METHODS_ARG}} {{METHODS_RESULT}} {{METHODS_VARIABLE}} private: static constexpr size_t kNumBuffers = {{NUM_BUFFERS}}; static const ::xla::cpu_function_runtime::BufferInfo* BufferInfos() { static const ::xla::cpu_function_runtime::BufferInfo kBufferInfos[kNumBuffers] = { {{BUFFER_INFOS_AS_STRING}} }; return kBufferInfos; } static const ::tensorflow::int32* ResultIndexToBufferIndex() { static constexpr ::tensorflow::int32 kResultIndexToBufferIndex[kNumResults] = { {{RESULT_INDEX_TABLE}} }; return kResultIndexToBufferIndex; } static const ::tensorflow::int32* ArgIndexToBufferIndex() { static constexpr ::tensorflow::int32 kArgIndexToBufferIndex[kNumArgs] = { {{ARG_INDEX_TABLE}} }; return kArgIndexToBufferIndex; } static constexpr size_t kResultIndex = {{RESULT_INDEX}}; {{ARG_SHAPE_INFOS}}; {{RESULT_SHAPE_INFOS}}; static const char** StaticArgNames() {{ARG_NAMES_CODE}} static const char** StaticVariableNames() {{VARIABLE_NAMES_CODE}} static const char** StaticResultNames() {{RESULT_NAMES_CODE}} static const ::xla::ProgramShapeProto* StaticProgramShape() { static const ::xla::ProgramShapeProto* kShape = {{PROGRAM_SHAPE_SHIM_EXPRESSION}}; return kShape; } static const ::xla::HloProfilePrinterData* StaticHloProfilePrinterData() { static const ::xla::HloProfilePrinterData* kHloProfilePrinterData = {{HLO_PROFILE_PRINTER_DATA_SHIM_EXPRESSION}}; return kHloProfilePrinterData; } }; {{NS_END}} #endif )"; const std::vector<std::pair<string, string>> rewrites = { {"{{ARG_BYTES_ALIGNED}}", absl::StrCat(arg_bytes_aligned)}, {"{{ARG_BYTES_TOTAL}}", absl::StrCat(arg_bytes_total)}, {"{{ARG_NAMES_CODE}}", arg_names_code}, {"{{ARG_NUM}}", absl::StrCat(arg_index_table.size())}, {"{{ARG_SHAPE_INFOS}}", arg_shape_infos}, {"{{VARIABLE_NUM}}", absl::StrCat(config.variable_size())}, {"{{ARG_INDEX_TABLE}}", absl::StrJoin(arg_index_table, ", ")}, {"{{RESULT_NUM}}", absl::StrCat(result_index_table.size())}, {"{{RESULT_INDEX_TABLE}}", absl::StrJoin(result_index_table, ", ")}, {"{{ASSIGN_PROFILE_COUNTERS_SIZE}}", assign_profile_counters_size}, {"{{CLASS}}", opts.class_name}, {"{{DECLS_FROM_OBJ_FILE}}", absl::StrJoin(metadata_result.header_variable_decls, "\n")}, {"{{ENTRY}}", compile_result.entry_point}, {"{{HLO_PROFILE_PRINTER_DATA_SHIM_EXPRESSION}}", metadata_result.hlo_profile_printer_data_access_shim}, {"{{INCLUDE_XLA_DATA_PROTO}}", include_xla_data_proto}, {"{{INCLUDE_HLO_PROFILE_PRINTER_DATA_PROTO}}", include_hlo_profile_printer_data_proto}, {"{{METHODS_ARG}}\n", methods_arg}, {"{{METHODS_RESULT}}\n", methods_result}, {"{{METHODS_VARIABLE}}\n", methods_variable}, {"{{NS_END}}\n", ns_end}, {"{{NS_START}}\n", ns_start}, {"{{PROGRAM_SHAPE}}", xla::ShapeUtil::HumanString(xla::ProgramShape(ps))}, {"{{PROGRAM_SHAPE_SHIM_EXPRESSION}}", metadata_result.program_shape_access_shim}, {"{{VARIABLE_NAMES_CODE}}", variable_names_code}, {"{{RESULT_INDEX}}", absl::StrCat(result_index)}, {"{{RESULT_NAMES_CODE}}", result_names_code}, {"{{RESULT_SHAPE_INFOS}}", result_shape_infos}, {"{{TEMP_BYTES_ALIGNED}}", absl::StrCat(temp_bytes_aligned)}, {"{{TEMP_BYTES_TOTAL}}", absl::StrCat(temp_bytes_total)}, {"{{NUM_BUFFERS}}", absl::StrCat(buffer_infos.size())}, {"{{BUFFER_INFOS_AS_STRING}}", absl::StrJoin(buffer_infos_as_strings, ",\n")}}; absl::StrReplaceAll(rewrites, header); return absl::OkStatus(); } static string CreateUniqueIdentifier(const CodegenOpts& opts, absl::string_view suffix) { string result = "__tfcompile"; for (const string& n : opts.namespaces) { absl::StrAppend(&result, "_", n); } absl::StrAppend(&result, "_", opts.class_name, "_", suffix); return result; } Status GenerateMetadata(const CodegenOpts& opts, const CompileResult& compile_result, MetadataResult* metadata_result) { std::unique_ptr<xla::ProgramShapeProto> program_shape; if (opts.gen_program_shape) { program_shape = std::make_unique<xla::ProgramShapeProto>(compile_result.program_shape); program_shape->clear_parameter_names(); } ProtobufToEmbed program_shape_protobuf{ CreateUniqueIdentifier(opts, "ProgramShapeProto"), "::xla::ProgramShapeProto", program_shape.get()}; ProtobufToEmbed hlo_profile_printer_data_protobuf{ CreateUniqueIdentifier(opts, "HloProfilePrinterData"), "::xla::HloProfilePrinterData", compile_result.aot->hlo_profile_printer_data()}; TF_ASSIGN_OR_RETURN( EmbeddedProtocolBuffers embedded_protobufs, CreateEmbeddedProtocolBuffers( opts.target_triple, {program_shape_protobuf, hlo_profile_printer_data_protobuf})); metadata_result->program_shape_access_shim = std::move(embedded_protobufs.cpp_shims[0].expression); metadata_result->hlo_profile_printer_data_access_shim = std::move(embedded_protobufs.cpp_shims[1].expression); metadata_result->header_variable_decls.emplace_back( std::move(embedded_protobufs.cpp_shims[0].variable_decl)); metadata_result->header_variable_decls.emplace_back( std::move(embedded_protobufs.cpp_shims[1].variable_decl)); metadata_result->object_file_data = std::move(embedded_protobufs.object_file_data); return absl::OkStatus(); } Status ParseCppClass(const string& cpp_class, string* class_name, std::vector<string>* namespaces) { class_name->clear(); namespaces->clear(); if (cpp_class.empty()) { return errors::InvalidArgument("empty cpp_class: " + cpp_class); } std::vector<string> parts = absl::StrSplit(cpp_class, "::"); if (parts.front().empty()) { parts.erase(parts.begin()); } for (int i = 0, end = parts.size(); i < end; ++i) { if (i < end - 1) { TF_RETURN_IF_ERROR(ValidateCppIdent( parts[i], "in namespace component of cpp_class: " + cpp_class)); namespaces->push_back(parts[i]); } else { TF_RETURN_IF_ERROR(ValidateCppIdent( parts[i], "in class name of cpp_class: " + cpp_class)); *class_name = parts[i]; } } return absl::OkStatus(); } Status ValidateCppIdent(absl::string_view ident, absl::string_view msg) { if (ident.empty()) { return errors::InvalidArgument("empty identifier: ", msg); } if (ident[0] != '_' && !IsAlpha(ident[0])) { return errors::InvalidArgument("illegal leading char: ", msg); } for (size_t pos = 1; pos < ident.size(); ++pos) { if (ident[pos] != '_' && !IsAlphaNum(ident[pos])) { return errors::InvalidArgument("illegal char: ", msg); } } return absl::OkStatus(); } } }
#include "tensorflow/compiler/aot/codegen.h" #include <algorithm> #include <string> #include <vector> #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "llvm/Support/TargetSelect.h" #include "xla/cpu_function_runtime.h" #include "xla/shape_util.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace tfcompile { namespace { using ::xla::cpu_function_runtime::BufferInfo; void ExpectErrorContains(const Status& status, absl::string_view str) { EXPECT_NE(absl::OkStatus(), status); EXPECT_TRUE(absl::StrContains(status.message(), str)) << "expected error: " << status.message() << " to contain: " << str; } TEST(ValidateCppIdent, Simple) { TF_EXPECT_OK(ValidateCppIdent("a", "")); TF_EXPECT_OK(ValidateCppIdent("abc", "")); TF_EXPECT_OK(ValidateCppIdent("_abc", "")); TF_EXPECT_OK(ValidateCppIdent("_abc123", "")); string ident; for (char c = 'a'; c <= 'z'; c++) { ident.append(1, c); } for (char c = 'A'; c <= 'Z'; c++) { ident.append(1, c); } for (char c = '0'; c <= '9'; c++) { ident.append(1, c); } ident += "_"; TF_EXPECT_OK(ValidateCppIdent(ident, "")); ExpectErrorContains(ValidateCppIdent("", ""), "empty identifier"); ExpectErrorContains(ValidateCppIdent(" ", ""), "illegal leading char"); ExpectErrorContains(ValidateCppIdent("0", ""), "illegal leading char"); ExpectErrorContains(ValidateCppIdent(".", ""), "illegal leading char"); ExpectErrorContains(ValidateCppIdent(":", ""), "illegal leading char"); ExpectErrorContains(ValidateCppIdent("a.", ""), "illegal char"); ExpectErrorContains(ValidateCppIdent("a:", ""), "illegal char"); ExpectErrorContains(ValidateCppIdent("a:", ""), "illegal char"); } class ParseCppClassTest : public ::testing::Test { protected: void ExpectOK(const string& cpp_class, const string& want_class_name, const std::vector<string>& want_namespaces) { string class_name; std::vector<string> namespaces; TF_EXPECT_OK(ParseCppClass(cpp_class, &class_name, &namespaces)); EXPECT_EQ(class_name, want_class_name); EXPECT_EQ(namespaces, want_namespaces); } void ExpectFail(const string& cpp_class) { string class_name; std::vector<string> namespaces; EXPECT_NE(ParseCppClass(cpp_class, &class_name, &namespaces), absl::OkStatus()) << cpp_class; } }; TEST_F(ParseCppClassTest, ParseOK) { ExpectOK("MyClass", "MyClass", {}); ExpectOK("_MyClass", "_MyClass", {}); ExpectOK("a::MyClass", "MyClass", {"a"}); ExpectOK("a::foo::MyClass", "MyClass", {"a", "foo"}); ExpectOK("a::foo::b::MyClass", "MyClass", {"a", "foo", "b"}); ExpectOK("a::foo::b::bar::MyClass", "MyClass", {"a", "foo", "b", "bar"}); ExpectOK("foo::MyClass", "MyClass", {"foo"}); ExpectOK("_foo::MyClass", "MyClass", {"_foo"}); ExpectOK("_foo::_MyClass", "_MyClass", {"_foo"}); ExpectOK("::foo::bar::MyClass", "MyClass", {"foo", "bar"}); ExpectOK("::_foo::MyClass", "MyClass", {"_foo"}); ExpectOK("::_foo::_MyClass", "_MyClass", {"_foo"}); string ident; for (char c = 'a'; c <= 'z'; c++) { ident.append(1, c); } for (char c = 'A'; c <= 'Z'; c++) { ident.append(1, c); } for (char c = '0'; c <= '9'; c++) { ident.append(1, c); } ident += "_"; ExpectOK(ident, ident, {}); ExpectOK(ident + "::" + ident, ident, {ident}); ExpectOK(ident + "::" + ident + "::" + ident, ident, {ident, ident}); } TEST_F(ParseCppClassTest, ParseFail) { ExpectFail(""); ExpectFail("::"); ExpectFail("0"); ExpectFail("a.b"); ExpectFail("a:b"); ExpectFail(":foo::bar"); ExpectFail("good::.bad"); ExpectFail("good:::bad"); ExpectFail("good::bad::"); ExpectFail("good::::bad"); ExpectFail("::::bad"); ExpectFail("good:: bad"); ExpectFail("good::0bad"); } static void CompareWithGoldenFile( const string& tensorflow_relative_golden_file_name, const string& expected_contents, bool ignore_cr) { string sanitized_expected_contents(expected_contents); if (ignore_cr) { sanitized_expected_contents.erase( std::remove(sanitized_expected_contents.begin(), sanitized_expected_contents.end(), '\r'), sanitized_expected_contents.end()); } const bool update_golden = false; string golden_file_name = GetDataDependencyFilepath(tensorflow_relative_golden_file_name); if (update_golden) { TF_EXPECT_OK( WriteStringToFile(Env::Default(), golden_file_name, expected_contents)); } string golden_file_contents; TF_ASSERT_OK(ReadFileToString(Env::Default(), golden_file_name, &golden_file_contents)); if (ignore_cr) { golden_file_contents.erase(std::remove(golden_file_contents.begin(), golden_file_contents.end(), '\r'), golden_file_contents.end()); } EXPECT_EQ(golden_file_contents, expected_contents); } #if TF_LLVM_X86_AVAILABLE TEST(CodegenTest, Golden) { LLVMInitializeX86Target(); LLVMInitializeX86TargetInfo(); LLVMInitializeX86TargetMC(); LLVMInitializeX86AsmPrinter(); CodegenOpts opts; opts.class_name = "MyClass"; opts.target_triple = "x86_64-pc-linux"; opts.namespaces = {"foo", "bar"}; opts.gen_name_to_index = true; opts.gen_program_shape = true; tf2xla::Config config; tf2xla::Feed* feed = config.add_feed(); feed->mutable_id()->set_node_name("feed0"); feed->set_name("myfeed"); feed = config.add_feed(); feed->mutable_id()->set_node_name("feed1"); tf2xla::Fetch* fetch = config.add_fetch(); fetch->mutable_id()->set_node_name("fetch0"); fetch->set_name("myfetch"); tf2xla::Variable* variable = config.add_variable(); variable->set_node_name("myvar_readonly"); variable->mutable_shape()->add_dim()->set_size(1); variable->set_type(DT_FLOAT); variable->set_readonly(true); tf2xla::Variable* variable2 = config.add_variable(); variable2->set_node_name("myvar"); variable2->mutable_shape()->add_dim()->set_size(1); variable2->set_type(DT_FLOAT); tf2xla::Variable* variable3 = config.add_variable(); variable3->set_node_name("my/var"); variable3->set_name("myvar2"); variable3->mutable_shape()->add_dim()->set_size(5); variable3->set_type(DT_INT32); CompileResult compile_result; compile_result.aot.reset(new xla::cpu::CpuAotCompilationResult( {}, {BufferInfo::MakeTempBuffer(3 * 8), BufferInfo::MakeEntryParameter(8, 0), BufferInfo::MakeTempBuffer(1), BufferInfo::MakeEntryParameter(96, 1), BufferInfo::MakeTempBuffer(1), BufferInfo::MakeEntryParameter(96, 2), BufferInfo::MakeTempBuffer(1), BufferInfo::MakeEntryParameter(96, 3), BufferInfo::MakeResultParameter(5 * 6 * 4, 0), BufferInfo::MakeEntryParameter(96, 4), BufferInfo::MakeResultParameter(1 * 4, 1), BufferInfo::MakeResultParameter(5 * 4, 2)}, 0, nullptr, {})); compile_result.program_shape = xla::ShapeUtil::MakeProgramShape( { xla::ShapeUtil::MakeShape(xla::F32, {1, 2}), xla::ShapeUtil::MakeShape(xla::S64, {3, 4}), xla::ShapeUtil::MakeShape(xla::F32, {1}), xla::ShapeUtil::MakeShape(xla::F32, {1}), xla::ShapeUtil::MakeShape(xla::S32, {5}), }, xla::ShapeUtil::MakeTupleShape({ xla::ShapeUtil::MakeShape(xla::U32, {5, 6}), xla::ShapeUtil::MakeShape(xla::F32, {1}), xla::ShapeUtil::MakeShape(xla::S32, {5}), })) .ToProto(); compile_result.entry_point = "entry_point"; compile_result.pointer_size = 8; MetadataResult metadata_result; TF_ASSERT_OK(GenerateMetadata(opts, compile_result, &metadata_result)); CompareWithGoldenFile("tensorflow/compiler/aot/codegen_test_o.golden", metadata_result.object_file_data, false); string header; TF_ASSERT_OK( GenerateHeader(opts, config, compile_result, metadata_result, &header)); CompareWithGoldenFile("tensorflow/compiler/aot/codegen_test_h.golden", header, true); } #endif } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/aot/codegen.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/aot/codegen_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
74fda3c0-aa6b-4ac7-b8c6-35e66f71e68a
cpp
tensorflow/tensorflow
logical
tensorflow/lite/kernels/logical.cc
tensorflow/lite/kernels/logical_test.cc
#include <stddef.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/reference/binary_function.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace logical { namespace { constexpr int kInputTensor1 = 0; constexpr int kInputTensor2 = 1; constexpr int kOutputTensor = 0; struct OpData { bool requires_broadcast; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* data = new OpData; data->requires_broadcast = false; return data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor2, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); const TfLiteType type = input1->type; if (type != kTfLiteBool) { TF_LITE_KERNEL_LOG(context, "Logical ops only support bool type."); return kTfLiteError; } output->type = type; data->requires_broadcast = !HaveSameShapes(input1, input2); TfLiteIntArray* output_size = nullptr; if (data->requires_broadcast) { TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast( context, input1, input2, &output_size)); } else { output_size = TfLiteIntArrayCopy(input1->dims); } return context->ResizeTensor(context, output, output_size); } TfLiteStatus LogicalImpl(TfLiteContext* context, TfLiteNode* node, bool (*func)(bool, bool)) { OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor2, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if (data->requires_broadcast) { reference_ops::BroadcastBinaryFunction4DSlow<bool, bool, bool>( GetTensorShape(input1), GetTensorData<bool>(input1), GetTensorShape(input2), GetTensorData<bool>(input2), GetTensorShape(output), GetTensorData<bool>(output), func); } else { reference_ops::BinaryFunction<bool, bool, bool>( GetTensorShape(input1), GetTensorData<bool>(input1), GetTensorShape(input2), GetTensorData<bool>(input2), GetTensorShape(output), GetTensorData<bool>(output), func); } return kTfLiteOk; } bool LogicalOr(bool x, bool y) { return x || y; } TfLiteStatus LogicalOrEval(TfLiteContext* context, TfLiteNode* node) { return LogicalImpl(context, node, LogicalOr); } bool LogicalAnd(bool x, bool y) { return x && y; } TfLiteStatus LogicalAndEval(TfLiteContext* context, TfLiteNode* node) { return LogicalImpl(context, node, LogicalAnd); } } } TfLiteRegistration* Register_LOGICAL_OR() { static TfLiteRegistration r = {logical::Init, logical::Free, logical::Prepare, logical::LogicalOrEval}; return &r; } TfLiteRegistration* Register_LOGICAL_AND() { static TfLiteRegistration r = {logical::Init, logical::Free, logical::Prepare, logical::LogicalAndEval}; return &r; } } } }
#include <initializer_list> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAre; class LogicalOpModel : public SingleOpModel { public: LogicalOpModel(std::initializer_list<int> input1_shape, std::initializer_list<int> input2_shape, BuiltinOperator op) { input1_ = AddInput(TensorType_BOOL); input2_ = AddInput(TensorType_BOOL); output_ = AddOutput(TensorType_BOOL); ConfigureBuiltinOp(op); BuildInterpreter({input1_shape, input2_shape}); } int input1() { return input1_; } int input2() { return input2_; } std::vector<bool> GetOutput() { return ExtractVector<bool>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } private: int input1_; int input2_; int output_; void ConfigureBuiltinOp(BuiltinOperator op) { switch (op) { case BuiltinOperator_LOGICAL_OR: { SetBuiltinOp(op, BuiltinOptions_LogicalOrOptions, CreateLogicalOrOptions(builder_).Union()); break; } case BuiltinOperator_LOGICAL_AND: { SetBuiltinOp(op, BuiltinOptions_LogicalAndOptions, CreateLogicalAndOptions(builder_).Union()); break; } default: { FAIL() << "We shouldn't get here."; } } } }; TEST(LogicalTest, LogicalOr) { LogicalOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, BuiltinOperator_LOGICAL_OR); model.PopulateTensor<bool>(model.input1(), {true, false, false, true}); model.PopulateTensor<bool>(model.input2(), {true, false, true, false}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, true, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(LogicalTest, BroadcastLogicalOr) { LogicalOpModel model({1, 1, 1, 4}, {1, 1, 1, 1}, BuiltinOperator_LOGICAL_OR); model.PopulateTensor<bool>(model.input1(), {true, false, false, true}); model.PopulateTensor<bool>(model.input2(), {false}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(LogicalTest, LogicalAnd) { LogicalOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, BuiltinOperator_LOGICAL_AND); model.PopulateTensor<bool>(model.input1(), {true, false, false, true}); model.PopulateTensor<bool>(model.input2(), {true, false, true, false}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(LogicalTest, BroadcastLogicalAnd) { LogicalOpModel model({1, 1, 1, 4}, {1, 1, 1, 1}, BuiltinOperator_LOGICAL_AND); model.PopulateTensor<bool>(model.input1(), {true, false, false, true}); model.PopulateTensor<bool>(model.input2(), {true}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/logical.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/logical_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0f329122-8f19-41a9-81b2-7b068f84edbb
cpp
abseil/abseil-cpp
decode_rust_punycode
absl/debugging/internal/decode_rust_punycode.cc
absl/debugging/internal/decode_rust_punycode_test.cc
#include "absl/debugging/internal/decode_rust_punycode.h" #include <cstddef> #include <cstdint> #include <cstring> #include "absl/base/config.h" #include "absl/base/nullability.h" #include "absl/debugging/internal/bounded_utf8_length_sequence.h" #include "absl/debugging/internal/utf8_for_code_point.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace debugging_internal { namespace { constexpr uint32_t kMaxChars = 256; constexpr uint32_t kBase = 36, kTMin = 1, kTMax = 26, kSkew = 38, kDamp = 700; constexpr uint32_t kMaxCodePoint = 0x10ffff; constexpr uint32_t kMaxI = 1 << 30; bool ConsumeOptionalAsciiPrefix(const char*& punycode_begin, const char* const punycode_end, char* const out_begin, char* const out_end, uint32_t& num_ascii_chars) { num_ascii_chars = 0; int last_underscore = -1; for (int i = 0; i < punycode_end - punycode_begin; ++i) { const char c = punycode_begin[i]; if (c == '_') { last_underscore = i; continue; } if ('a' <= c && c <= 'z') continue; if ('A' <= c && c <= 'Z') continue; if ('0' <= c && c <= '9') continue; return false; } if (last_underscore < 0) return true; if (last_underscore == 0) return false; if (last_underscore + 1 > out_end - out_begin) return false; num_ascii_chars = static_cast<uint32_t>(last_underscore); std::memcpy(out_begin, punycode_begin, num_ascii_chars); out_begin[num_ascii_chars] = '\0'; punycode_begin += num_ascii_chars + 1; return true; } int DigitValue(char c) { if ('0' <= c && c <= '9') return c - '0' + 26; if ('a' <= c && c <= 'z') return c - 'a'; if ('A' <= c && c <= 'Z') return c - 'A'; return -1; } bool ScanNextDelta(const char*& punycode_begin, const char* const punycode_end, uint32_t bias, uint32_t& i) { uint64_t w = 1; for (uint32_t k = kBase; punycode_begin != punycode_end; k += kBase) { const int digit_value = DigitValue(*punycode_begin++); if (digit_value < 0) return false; const uint64_t new_i = i + static_cast<uint64_t>(digit_value) * w; static_assert( kMaxI >= kMaxChars * kMaxCodePoint, "kMaxI is too small to prevent spurious failures on good input"); if (new_i > kMaxI) return false; static_assert( kMaxI < (uint64_t{1} << 32), "Make kMaxI smaller or i 64 bits wide to prevent silent wraparound"); i = static_cast<uint32_t>(new_i); uint32_t t; if (k <= bias + kTMin) { t = kTMin; } else if (k >= bias + kTMax) { t = kTMax; } else { t = k - bias; } if (static_cast<uint32_t>(digit_value) < t) return true; w *= kBase - t; } return false; } } absl::Nullable<char*> DecodeRustPunycode(DecodeRustPunycodeOptions options) { const char* punycode_begin = options.punycode_begin; const char* const punycode_end = options.punycode_end; char* const out_begin = options.out_begin; char* const out_end = options.out_end; const size_t out_size = static_cast<size_t>(out_end - out_begin); if (out_size == 0) return nullptr; *out_begin = '\0'; uint32_t n = 128, i = 0, bias = 72, num_chars = 0; if (!ConsumeOptionalAsciiPrefix(punycode_begin, punycode_end, out_begin, out_end, num_chars)) { return nullptr; } uint32_t total_utf8_bytes = num_chars; BoundedUtf8LengthSequence<kMaxChars> utf8_lengths; while (punycode_begin != punycode_end) { if (num_chars >= kMaxChars) return nullptr; const uint32_t old_i = i; if (!ScanNextDelta(punycode_begin, punycode_end, bias, i)) return nullptr; uint32_t delta = i - old_i; delta /= (old_i == 0 ? kDamp : 2); delta += delta/(num_chars + 1); bias = 0; while (delta > ((kBase - kTMin) * kTMax)/2) { delta /= kBase - kTMin; bias += kBase; } bias += ((kBase - kTMin + 1) * delta)/(delta + kSkew); static_assert( kMaxI + kMaxCodePoint < (uint64_t{1} << 32), "Make kMaxI smaller or n 64 bits wide to prevent silent wraparound"); n += i/(num_chars + 1); i %= num_chars + 1; Utf8ForCodePoint utf8_for_code_point(n); if (!utf8_for_code_point.ok()) return nullptr; if (total_utf8_bytes + utf8_for_code_point.length + 1 > out_size) { return nullptr; } uint32_t n_index = utf8_lengths.InsertAndReturnSumOfPredecessors( i, utf8_for_code_point.length); std::memmove( out_begin + n_index + utf8_for_code_point.length, out_begin + n_index, total_utf8_bytes + 1 - n_index); std::memcpy(out_begin + n_index, utf8_for_code_point.bytes, utf8_for_code_point.length); total_utf8_bytes += utf8_for_code_point.length; ++num_chars; ++i; } return out_begin + total_utf8_bytes; } } ABSL_NAMESPACE_END }
#include "absl/debugging/internal/decode_rust_punycode.h" #include <cstddef> #include <cstring> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace debugging_internal { namespace { using ::testing::AllOf; using ::testing::Eq; using ::testing::IsNull; using ::testing::Pointee; using ::testing::ResultOf; using ::testing::StrEq; class DecodeRustPunycodeTest : public ::testing::Test { protected: void FillBufferWithNonzeroBytes() { std::memset(buffer_storage_, 0xab, sizeof(buffer_storage_)); } DecodeRustPunycodeOptions WithAmpleSpace() { FillBufferWithNonzeroBytes(); DecodeRustPunycodeOptions options; options.punycode_begin = punycode_.data(); options.punycode_end = punycode_.data() + punycode_.size(); options.out_begin = buffer_storage_; options.out_end = buffer_storage_ + sizeof(buffer_storage_); return options; } DecodeRustPunycodeOptions WithJustEnoughSpace() { FillBufferWithNonzeroBytes(); const size_t begin_offset = sizeof(buffer_storage_) - plaintext_.size() - 1; DecodeRustPunycodeOptions options; options.punycode_begin = punycode_.data(); options.punycode_end = punycode_.data() + punycode_.size(); options.out_begin = buffer_storage_ + begin_offset; options.out_end = buffer_storage_ + sizeof(buffer_storage_); return options; } DecodeRustPunycodeOptions WithOneByteTooFew() { FillBufferWithNonzeroBytes(); const size_t begin_offset = sizeof(buffer_storage_) - plaintext_.size(); DecodeRustPunycodeOptions options; options.punycode_begin = punycode_.data(); options.punycode_end = punycode_.data() + punycode_.size(); options.out_begin = buffer_storage_ + begin_offset; options.out_end = buffer_storage_ + sizeof(buffer_storage_); return options; } auto PointsToTheNulAfter(const std::string& golden) { const size_t golden_size = golden.size(); return AllOf( Pointee(Eq('\0')), ResultOf("preceding string body", [golden_size](const char* p) { return p - golden_size; }, StrEq(golden))); } std::string punycode_; std::string plaintext_; char buffer_storage_[1024]; }; TEST_F(DecodeRustPunycodeTest, MapsEmptyToEmpty) { punycode_ = ""; plaintext_ = ""; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, StripsTheTrailingDelimiterFromAPureRunOfBasicChars) { punycode_ = "foo_"; plaintext_ = "foo"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, TreatsTheLastUnderscoreAsTheDelimiter) { punycode_ = "foo_bar_"; plaintext_ = "foo_bar"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsALeadingUnderscoreIfNotTheDelimiter) { punycode_ = "_foo_"; plaintext_ = "_foo"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, RejectsALeadingUnderscoreDelimiter) { punycode_ = "_foo"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); } TEST_F(DecodeRustPunycodeTest, RejectsEmbeddedNul) { punycode_ = std::string("foo\0bar_", 8); EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); } TEST_F(DecodeRustPunycodeTest, RejectsAsciiCharsOtherThanIdentifierChars) { punycode_ = "foo\007_"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); punycode_ = "foo-_"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); punycode_ = "foo;_"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); punycode_ = "foo\177_"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); } TEST_F(DecodeRustPunycodeTest, RejectsRawNonAsciiChars) { punycode_ = "\x80"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); punycode_ = "\x80_"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); punycode_ = "\xff"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); punycode_ = "\xff_"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); } TEST_F(DecodeRustPunycodeTest, RecognizesU0080) { punycode_ = "a"; plaintext_ = "\xc2\x80"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, OneByteDeltaSequencesMustBeA) { punycode_ = "b"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); punycode_ = "z"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); punycode_ = "0"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); punycode_ = "9"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsDeltaSequenceBA) { punycode_ = "ba"; plaintext_ = "\xc2\x81"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsOtherDeltaSequencesWithSecondByteA) { punycode_ = "ca"; plaintext_ = "\xc2\x82"; EXPECT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); punycode_ = "za"; plaintext_ = "\xc2\x99"; EXPECT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); punycode_ = "0a"; plaintext_ = "\xc2\x9a"; EXPECT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); punycode_ = "1a"; plaintext_ = "\xc2\x9b"; EXPECT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); punycode_ = "9a"; plaintext_ = "£"; EXPECT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); } TEST_F(DecodeRustPunycodeTest, RejectsDeltaWhereTheSecondAndLastDigitIsNotA) { punycode_ = "bb"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); punycode_ = "zz"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); punycode_ = "00"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); punycode_ = "99"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsDeltasWithSecondByteBFollowedByA) { punycode_ = "bba"; plaintext_ = "¤"; EXPECT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); punycode_ = "cba"; plaintext_ = "¥"; EXPECT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); punycode_ = "zba"; plaintext_ = "¼"; EXPECT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); punycode_ = "0ba"; plaintext_ = "½"; EXPECT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); punycode_ = "1ba"; plaintext_ = "¾"; EXPECT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); punycode_ = "9ba"; plaintext_ = "Æ"; EXPECT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); } TEST_F(DecodeRustPunycodeTest, AcceptsTwoByteCharAlone) { punycode_ = "0ca"; plaintext_ = "à"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsTwoByteCharBeforeBasicChars) { punycode_ = "_la_mode_yya"; plaintext_ = "à_la_mode"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsTwoByteCharAmidBasicChars) { punycode_ = "verre__vin_m4a"; plaintext_ = "verre_à_vin"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsTwoByteCharAfterBasicChars) { punycode_ = "belt_3na"; plaintext_ = "beltà"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsRepeatedTwoByteChar) { punycode_ = "0caaaa"; plaintext_ = "àààà"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsNearbyTwoByteCharsInOrder) { punycode_ = "3camsuz"; plaintext_ = "ãéïôù"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsNearbyTwoByteCharsOutOfOrder) { punycode_ = "3caltsx"; plaintext_ = "ùéôãï"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsThreeByteCharAlone) { punycode_ = "fiq"; plaintext_ = "中"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsRepeatedThreeByteChar) { punycode_ = "fiqaaaa"; plaintext_ = "中中中中中"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsThreeByteCharsInOrder) { punycode_ = "fiq228c"; plaintext_ = "中文"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsNearbyThreeByteCharsOutOfOrder) { punycode_ = "fiq128c"; plaintext_ = "文中"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsFourByteCharAlone) { punycode_ = "uy7h"; plaintext_ = "🂻"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsFourByteCharBeforeBasicChars) { punycode_ = "jack__uh63d"; plaintext_ = "jack_🂻"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsFourByteCharAmidBasicChars) { punycode_ = "jack__of_hearts_ki37n"; plaintext_ = "jack_🂻_of_hearts"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsFourByteCharAfterBasicChars) { punycode_ = "_of_hearts_kz45i"; plaintext_ = "🂻_of_hearts"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsRepeatedFourByteChar) { punycode_ = "uy7haaaa"; plaintext_ = "🂻🂻🂻🂻🂻"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsNearbyFourByteCharsInOrder) { punycode_ = "8x7hcjmf"; plaintext_ = "🂦🂧🂪🂭🂮"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsNearbyFourByteCharsOutOfOrder) { punycode_ = "8x7hcild"; plaintext_ = "🂮🂦🂭🂪🂧"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, AcceptsAMixtureOfByteLengths) { punycode_ = "3caltsx2079ivf8aiuy7cja3a6ak"; plaintext_ = "ùéôãï中文🂮🂦🂭🂪🂧"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, RejectsOverlargeDeltas) { punycode_ = "123456789a"; EXPECT_THAT(DecodeRustPunycode(WithAmpleSpace()), IsNull()); } TEST_F(DecodeRustPunycodeTest, Beowulf) { punycode_ = "hwt_we_gardena_in_geardagum_" "eodcyninga_rym_gefrunon_" "hu_a_elingas_ellen_fremedon_hxg9c70do9alau"; plaintext_ = "hwæt_we_gardena_in_geardagum_" "þeodcyninga_þrym_gefrunon_" "hu_ða_æþelingas_ellen_fremedon"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, MengHaoran) { punycode_ = "gmq4ss0cfvao1e2wg8mcw8b0wkl9a7tt90a8riuvbk7t8kbv9a66ogofvzlf6" "3d01ybn1u28dyqi5q2cxyyxnk5d2gx1ks9ddvfm17bk6gbsd6wftrav60u4ta"; plaintext_ = "故人具雞黍" "邀我至田家" "綠樹村邊合" "青山郭外斜" "開軒面場圃" "把酒話桑麻" "待到重陽日" "還來就菊花"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, YamanoueNoOkura) { punycode_ = "48jdaa3a6ccpepjrsmlb0q4bwcdtid8fg6c0cai9822utqeruk3om0u4f2wbp0" "em23do0op23cc2ff70mb6tae8aq759gja"; plaintext_ = "瓜食めば" "子ども思ほゆ" "栗食めば" "まして偲はゆ" "何処より" "来りしものそ" "眼交に" "もとな懸りて" "安眠し寝さぬ"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } TEST_F(DecodeRustPunycodeTest, EshmunazarSarcophagus) { punycode_ = "wj9caaabaabbaaohcacxvhdc7bgxbccbdcjeacddcedcdlddbdbddcdbdcknfcee" "ifel8del2a7inq9fhcpxikms7a4a9ac9ataaa0g"; plaintext_ = "𐤁𐤉𐤓𐤇𐤁𐤋𐤁𐤔𐤍𐤕𐤏𐤎𐤓" "𐤅𐤀𐤓𐤁𐤏𐤗𐤖𐤖𐤖𐤖𐤋𐤌𐤋𐤊𐤉𐤌𐤋𐤊" "𐤀𐤔𐤌𐤍𐤏𐤆𐤓𐤌𐤋𐤊𐤑𐤃𐤍𐤌" "𐤁𐤍𐤌𐤋𐤊𐤕𐤁𐤍𐤕𐤌𐤋𐤊𐤑𐤃𐤍𐤌" "𐤃𐤁𐤓𐤌𐤋𐤊𐤀𐤔𐤌𐤍𐤏𐤆𐤓𐤌𐤋𐤊" "𐤑𐤃𐤍𐤌𐤋𐤀𐤌𐤓𐤍𐤂𐤆𐤋𐤕"; ASSERT_THAT(DecodeRustPunycode(WithAmpleSpace()), PointsToTheNulAfter(plaintext_)); ASSERT_THAT(DecodeRustPunycode(WithJustEnoughSpace()), PointsToTheNulAfter(plaintext_)); EXPECT_THAT(DecodeRustPunycode(WithOneByteTooFew()), IsNull()); } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/debugging/internal/decode_rust_punycode.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/debugging/internal/decode_rust_punycode_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
4a05b0eb-d44a-4a63-8905-bc98c7271120
cpp
google/cel-cpp
benchmark
internal/benchmark.h
eval/tests/benchmark_test.cc
#ifndef THIRD_PARTY_CEL_CPP_INTERNAL_BENCHMARK_H_ #define THIRD_PARTY_CEL_CPP_INTERNAL_BENCHMARK_H_ #include "benchmark/benchmark.h" #endif
#include "internal/benchmark.h" #include <string> #include <utility> #include <vector> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "google/protobuf/struct.pb.h" #include "google/rpc/context/attribute_context.pb.h" #include "google/protobuf/text_format.h" #include "absl/base/attributes.h" #include "absl/container/btree_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/node_hash_set.h" #include "absl/flags/flag.h" #include "absl/strings/match.h" #include "eval/public/activation.h" #include "eval/public/builtin_func_registrar.h" #include "eval/public/cel_expr_builder_factory.h" #include "eval/public/cel_expression.h" #include "eval/public/cel_options.h" #include "eval/public/cel_value.h" #include "eval/public/containers/container_backed_list_impl.h" #include "eval/public/containers/container_backed_map_impl.h" #include "eval/public/structs/cel_proto_wrapper.h" #include "eval/tests/request_context.pb.h" #include "internal/status_macros.h" #include "internal/testing.h" #include "parser/parser.h" #include "google/protobuf/arena.h" ABSL_FLAG(bool, enable_optimizations, false, "enable const folding opt"); ABSL_FLAG(bool, enable_recursive_planning, false, "enable recursive planning"); namespace google { namespace api { namespace expr { namespace runtime { namespace { using ::google::api::expr::v1alpha1::Expr; using ::google::api::expr::v1alpha1::ParsedExpr; using ::google::api::expr::v1alpha1::SourceInfo; using ::google::rpc::context::AttributeContext; InterpreterOptions GetOptions(google::protobuf::Arena& arena) { InterpreterOptions options; if (absl::GetFlag(FLAGS_enable_optimizations)) { options.constant_arena = &arena; options.constant_folding = true; } if (absl::GetFlag(FLAGS_enable_recursive_planning)) { options.max_recursion_depth = -1; } return options; } static void BM_Eval(benchmark::State& state) { google::protobuf::Arena arena; InterpreterOptions options = GetOptions(arena); auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); int len = state.range(0); Expr root_expr; Expr* cur_expr = &root_expr; for (int i = 0; i < len; i++) { Expr::Call* call = cur_expr->mutable_call_expr(); call->set_function("_+_"); call->add_args()->mutable_const_expr()->set_int64_value(1); cur_expr = call->add_args(); } cur_expr->mutable_const_expr()->set_int64_value(1); SourceInfo source_info; ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&root_expr, &source_info)); for (auto _ : state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsInt64()); ASSERT_TRUE(result.Int64OrDie() == len + 1); } } BENCHMARK(BM_Eval)->Range(1, 10000); absl::Status EmptyCallback(int64_t expr_id, const CelValue& value, google::protobuf::Arena* arena) { return absl::OkStatus(); } static void BM_Eval_Trace(benchmark::State& state) { google::protobuf::Arena arena; InterpreterOptions options = GetOptions(arena); options.enable_recursive_tracing = true; auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); int len = state.range(0); Expr root_expr; Expr* cur_expr = &root_expr; for (int i = 0; i < len; i++) { Expr::Call* call = cur_expr->mutable_call_expr(); call->set_function("_+_"); call->add_args()->mutable_const_expr()->set_int64_value(1); cur_expr = call->add_args(); } cur_expr->mutable_const_expr()->set_int64_value(1); SourceInfo source_info; ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&root_expr, &source_info)); for (auto _ : state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Trace(activation, &arena, EmptyCallback)); ASSERT_TRUE(result.IsInt64()); ASSERT_TRUE(result.Int64OrDie() == len + 1); } } BENCHMARK(BM_Eval_Trace)->Range(1, 10000); static void BM_EvalString(benchmark::State& state) { google::protobuf::Arena arena; InterpreterOptions options = GetOptions(arena); auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); int len = state.range(0); Expr root_expr; Expr* cur_expr = &root_expr; for (int i = 0; i < len; i++) { Expr::Call* call = cur_expr->mutable_call_expr(); call->set_function("_+_"); call->add_args()->mutable_const_expr()->set_string_value("a"); cur_expr = call->add_args(); } cur_expr->mutable_const_expr()->set_string_value("a"); SourceInfo source_info; ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&root_expr, &source_info)); for (auto _ : state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsString()); ASSERT_TRUE(result.StringOrDie().value().size() == len + 1); } } BENCHMARK(BM_EvalString)->Range(1, 10000); static void BM_EvalString_Trace(benchmark::State& state) { google::protobuf::Arena arena; InterpreterOptions options = GetOptions(arena); options.enable_recursive_tracing = true; auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); int len = state.range(0); Expr root_expr; Expr* cur_expr = &root_expr; for (int i = 0; i < len; i++) { Expr::Call* call = cur_expr->mutable_call_expr(); call->set_function("_+_"); call->add_args()->mutable_const_expr()->set_string_value("a"); cur_expr = call->add_args(); } cur_expr->mutable_const_expr()->set_string_value("a"); SourceInfo source_info; ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&root_expr, &source_info)); for (auto _ : state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Trace(activation, &arena, EmptyCallback)); ASSERT_TRUE(result.IsString()); ASSERT_TRUE(result.StringOrDie().value().size() == len + 1); } } BENCHMARK(BM_EvalString_Trace)->Range(1, 10000); const char kIP[] = "10.0.1.2"; const char kPath[] = "/admin/edit"; const char kToken[] = "admin"; ABSL_ATTRIBUTE_NOINLINE bool NativeCheck(absl::btree_map<std::string, std::string>& attributes, const absl::flat_hash_set<std::string>& denylists, const absl::flat_hash_set<std::string>& allowlists) { auto& ip = attributes["ip"]; auto& path = attributes["path"]; auto& token = attributes["token"]; if (denylists.find(ip) != denylists.end()) { return false; } if (absl::StartsWith(path, "v1")) { if (token == "v1" || token == "v2" || token == "admin") { return true; } } else if (absl::StartsWith(path, "v2")) { if (token == "v2" || token == "admin") { return true; } } else if (absl::StartsWith(path, "/admin")) { if (token == "admin") { if (allowlists.find(ip) != allowlists.end()) { return true; } } } return false; } void BM_PolicyNative(benchmark::State& state) { const auto denylists = absl::flat_hash_set<std::string>{"10.0.1.4", "10.0.1.5", "10.0.1.6"}; const auto allowlists = absl::flat_hash_set<std::string>{"10.0.1.1", "10.0.1.2", "10.0.1.3"}; auto attributes = absl::btree_map<std::string, std::string>{ {"ip", kIP}, {"token", kToken}, {"path", kPath}}; for (auto _ : state) { auto result = NativeCheck(attributes, denylists, allowlists); ASSERT_TRUE(result); } } BENCHMARK(BM_PolicyNative); void BM_PolicySymbolic(benchmark::State& state) { google::protobuf::Arena arena; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse(R"cel( !(ip in ["10.0.1.4", "10.0.1.5", "10.0.1.6"]) && ((path.startsWith("v1") && token in ["v1", "v2", "admin"]) || (path.startsWith("v2") && token in ["v2", "admin"]) || (path.startsWith("/admin") && token == "admin" && ip in [ "10.0.1.1", "10.0.1.2", "10.0.1.3" ]) ))cel")); InterpreterOptions options = GetOptions(arena); options.constant_folding = true; options.constant_arena = &arena; auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); SourceInfo source_info; ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression( &parsed_expr.expr(), &source_info)); Activation activation; activation.InsertValue("ip", CelValue::CreateStringView(kIP)); activation.InsertValue("path", CelValue::CreateStringView(kPath)); activation.InsertValue("token", CelValue::CreateStringView(kToken)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.BoolOrDie()); } } BENCHMARK(BM_PolicySymbolic); class RequestMap : public CelMap { public: absl::optional<CelValue> operator[](CelValue key) const override { if (!key.IsString()) { return {}; } auto value = key.StringOrDie().value(); if (value == "ip") { return CelValue::CreateStringView(kIP); } else if (value == "path") { return CelValue::CreateStringView(kPath); } else if (value == "token") { return CelValue::CreateStringView(kToken); } return {}; } int size() const override { return 3; } absl::StatusOr<const CelList*> ListKeys() const override { return absl::UnimplementedError("CelMap::ListKeys is not implemented"); } }; void BM_PolicySymbolicMap(benchmark::State& state) { google::protobuf::Arena arena; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse(R"cel( !(request.ip in ["10.0.1.4", "10.0.1.5", "10.0.1.6"]) && ((request.path.startsWith("v1") && request.token in ["v1", "v2", "admin"]) || (request.path.startsWith("v2") && request.token in ["v2", "admin"]) || (request.path.startsWith("/admin") && request.token == "admin" && request.ip in ["10.0.1.1", "10.0.1.2", "10.0.1.3"]) ))cel")); InterpreterOptions options = GetOptions(arena); auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); SourceInfo source_info; ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression( &parsed_expr.expr(), &source_info)); Activation activation; RequestMap request; activation.InsertValue("request", CelValue::CreateMap(&request)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.BoolOrDie()); } } BENCHMARK(BM_PolicySymbolicMap); void BM_PolicySymbolicProto(benchmark::State& state) { google::protobuf::Arena arena; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse(R"cel( !(request.ip in ["10.0.1.4", "10.0.1.5", "10.0.1.6"]) && ((request.path.startsWith("v1") && request.token in ["v1", "v2", "admin"]) || (request.path.startsWith("v2") && request.token in ["v2", "admin"]) || (request.path.startsWith("/admin") && request.token == "admin" && request.ip in ["10.0.1.1", "10.0.1.2", "10.0.1.3"]) ))cel")); InterpreterOptions options = GetOptions(arena); auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); SourceInfo source_info; ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression( &parsed_expr.expr(), &source_info)); Activation activation; RequestContext request; request.set_ip(kIP); request.set_path(kPath); request.set_token(kToken); activation.InsertValue("request", CelProtoWrapper::CreateMessage(&request, &arena)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.BoolOrDie()); } } BENCHMARK(BM_PolicySymbolicProto); constexpr char kListSum[] = R"( id: 1 comprehension_expr: < accu_var: "__result__" iter_var: "x" iter_range: < id: 2 ident_expr: < name: "list_var" > > accu_init: < id: 3 const_expr: < int64_value: 0 > > loop_step: < id: 4 call_expr: < function: "_+_" args: < id: 5 ident_expr: < name: "__result__" > > args: < id: 6 ident_expr: < name: "x" > > > > loop_condition: < id: 7 const_expr: < bool_value: true > > result: < id: 8 ident_expr: < name: "__result__" > > >)"; void BM_Comprehension(benchmark::State& state) { google::protobuf::Arena arena; Expr expr; Activation activation; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(kListSum, &expr)); int len = state.range(0); std::vector<CelValue> list; list.reserve(len); for (int i = 0; i < len; i++) { list.push_back(CelValue::CreateInt64(1)); } ContainerBackedListImpl cel_list(std::move(list)); activation.InsertValue("list_var", CelValue::CreateList(&cel_list)); InterpreterOptions options = GetOptions(arena); options.comprehension_max_iterations = 10000000; auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&expr, nullptr)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsInt64()); ASSERT_EQ(result.Int64OrDie(), len); } } BENCHMARK(BM_Comprehension)->Range(1, 1 << 20); void BM_Comprehension_Trace(benchmark::State& state) { google::protobuf::Arena arena; Expr expr; Activation activation; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(kListSum, &expr)); int len = state.range(0); std::vector<CelValue> list; list.reserve(len); for (int i = 0; i < len; i++) { list.push_back(CelValue::CreateInt64(1)); } ContainerBackedListImpl cel_list(std::move(list)); activation.InsertValue("list_var", CelValue::CreateList(&cel_list)); InterpreterOptions options = GetOptions(arena); options.enable_recursive_tracing = true; options.comprehension_max_iterations = 10000000; auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&expr, nullptr)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Trace(activation, &arena, EmptyCallback)); ASSERT_TRUE(result.IsInt64()); ASSERT_EQ(result.Int64OrDie(), len); } } BENCHMARK(BM_Comprehension_Trace)->Range(1, 1 << 20); void BM_HasMap(benchmark::State& state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse("has(request.path) && !has(request.ip)")); InterpreterOptions options = GetOptions(arena); auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&parsed_expr.expr(), nullptr)); std::vector<std::pair<CelValue, CelValue>> map_pairs{ {CelValue::CreateStringView("path"), CelValue::CreateStringView("path")}}; auto cel_map = CreateContainerBackedMap(absl::Span<std::pair<CelValue, CelValue>>( map_pairs.data(), map_pairs.size())); activation.InsertValue("request", CelValue::CreateMap((*cel_map).get())); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsBool()); ASSERT_TRUE(result.BoolOrDie()); } } BENCHMARK(BM_HasMap); void BM_HasProto(benchmark::State& state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse("has(request.path) && !has(request.ip)")); InterpreterOptions options = GetOptions(arena); auto builder = CreateCelExpressionBuilder(options); auto reg_status = RegisterBuiltinFunctions(builder->GetRegistry(), options); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&parsed_expr.expr(), nullptr)); RequestContext request; request.set_path(kPath); request.set_token(kToken); activation.InsertValue("request", CelProtoWrapper::CreateMessage(&request, &arena)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsBool()); ASSERT_TRUE(result.BoolOrDie()); } } BENCHMARK(BM_HasProto); void BM_HasProtoMap(benchmark::State& state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse("has(request.headers.create_time) && " "!has(request.headers.update_time)")); InterpreterOptions options = GetOptions(arena); auto builder = CreateCelExpressionBuilder(options); auto reg_status = RegisterBuiltinFunctions(builder->GetRegistry(), options); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&parsed_expr.expr(), nullptr)); RequestContext request; request.mutable_headers()->insert({"create_time", "2021-01-01"}); activation.InsertValue("request", CelProtoWrapper::CreateMessage(&request, &arena)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsBool()); ASSERT_TRUE(result.BoolOrDie()); } } BENCHMARK(BM_HasProtoMap); void BM_ReadProtoMap(benchmark::State& state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse(R"cel( request.headers.create_time == "2021-01-01" )cel")); InterpreterOptions options = GetOptions(arena); auto builder = CreateCelExpressionBuilder(options); auto reg_status = RegisterBuiltinFunctions(builder->GetRegistry(), options); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&parsed_expr.expr(), nullptr)); RequestContext request; request.mutable_headers()->insert({"create_time", "2021-01-01"}); activation.InsertValue("request", CelProtoWrapper::CreateMessage(&request, &arena)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsBool()); ASSERT_TRUE(result.BoolOrDie()); } } BENCHMARK(BM_ReadProtoMap); void BM_NestedProtoFieldRead(benchmark::State& state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse(R"cel( !request.a.b.c.d.e )cel")); InterpreterOptions options = GetOptions(arena); auto builder = CreateCelExpressionBuilder(options); auto reg_status = RegisterBuiltinFunctions(builder->GetRegistry(), options); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&parsed_expr.expr(), nullptr)); RequestContext request; request.mutable_a()->mutable_b()->mutable_c()->mutable_d()->set_e(false); activation.InsertValue("request", CelProtoWrapper::CreateMessage(&request, &arena)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsBool()); ASSERT_TRUE(result.BoolOrDie()); } } BENCHMARK(BM_NestedProtoFieldRead); void BM_NestedProtoFieldReadDefaults(benchmark::State& state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse(R"cel( !request.a.b.c.d.e )cel")); InterpreterOptions options = GetOptions(arena); auto builder = CreateCelExpressionBuilder(options); auto reg_status = RegisterBuiltinFunctions(builder->GetRegistry(), options); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&parsed_expr.expr(), nullptr)); RequestContext request; activation.InsertValue("request", CelProtoWrapper::CreateMessage(&request, &arena)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsBool()); ASSERT_TRUE(result.BoolOrDie()); } } BENCHMARK(BM_NestedProtoFieldReadDefaults); void BM_ProtoStructAccess(benchmark::State& state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse(R"cel( has(request.auth.claims.iss) && request.auth.claims.iss == 'accounts.google.com' )cel")); InterpreterOptions options = GetOptions(arena); auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&parsed_expr.expr(), nullptr)); AttributeContext::Request request; auto* auth = request.mutable_auth(); (*auth->mutable_claims()->mutable_fields())["iss"].set_string_value( "accounts.google.com"); activation.InsertValue("request", CelProtoWrapper::CreateMessage(&request, &arena)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsBool()); ASSERT_TRUE(result.BoolOrDie()); } } BENCHMARK(BM_ProtoStructAccess); void BM_ProtoListAccess(benchmark::State& state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse(R"cel( " )cel")); InterpreterOptions options = GetOptions(arena); auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&parsed_expr.expr(), nullptr)); AttributeContext::Request request; auto* auth = request.mutable_auth(); auth->add_access_levels(" auth->add_access_levels(" auth->add_access_levels(" auth->add_access_levels(" auth->add_access_levels(" activation.InsertValue("request", CelProtoWrapper::CreateMessage(&request, &arena)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsBool()); ASSERT_TRUE(result.BoolOrDie()); } } BENCHMARK(BM_ProtoListAccess); constexpr char kNestedListSum[] = R"( id: 1 comprehension_expr: < accu_var: "__result__" iter_var: "x" iter_range: < id: 2 ident_expr: < name: "list_var" > > accu_init: < id: 3 const_expr: < int64_value: 0 > > loop_step: < id: 4 call_expr: < function: "_+_" args: < id: 5 ident_expr: < name: "__result__" > > args: < id: 6 comprehension_expr: < accu_var: "__result__" iter_var: "x" iter_range: < id: 9 ident_expr: < name: "list_var" > > accu_init: < id: 10 const_expr: < int64_value: 0 > > loop_step: < id: 11 call_expr: < function: "_+_" args: < id: 12 ident_expr: < name: "__result__" > > args: < id: 13 ident_expr: < name: "x" > > > > loop_condition: < id: 14 const_expr: < bool_value: true > > result: < id: 15 ident_expr: < name: "__result__" > > > > > > loop_condition: < id: 7 const_expr: < bool_value: true > > result: < id: 8 ident_expr: < name: "__result__" > > >)"; void BM_NestedComprehension(benchmark::State& state) { google::protobuf::Arena arena; Expr expr; Activation activation; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(kNestedListSum, &expr)); int len = state.range(0); std::vector<CelValue> list; list.reserve(len); for (int i = 0; i < len; i++) { list.push_back(CelValue::CreateInt64(1)); } ContainerBackedListImpl cel_list(std::move(list)); activation.InsertValue("list_var", CelValue::CreateList(&cel_list)); InterpreterOptions options = GetOptions(arena); options.comprehension_max_iterations = 10000000; auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&expr, nullptr)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsInt64()); ASSERT_EQ(result.Int64OrDie(), len * len); } } BENCHMARK(BM_NestedComprehension)->Range(1, 1 << 10); void BM_NestedComprehension_Trace(benchmark::State& state) { google::protobuf::Arena arena; Expr expr; Activation activation; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(kNestedListSum, &expr)); int len = state.range(0); std::vector<CelValue> list; list.reserve(len); for (int i = 0; i < len; i++) { list.push_back(CelValue::CreateInt64(1)); } ContainerBackedListImpl cel_list(std::move(list)); activation.InsertValue("list_var", CelValue::CreateList(&cel_list)); InterpreterOptions options = GetOptions(arena); options.comprehension_max_iterations = 10000000; options.enable_comprehension_list_append = true; options.enable_recursive_tracing = true; auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&expr, nullptr)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Trace(activation, &arena, EmptyCallback)); ASSERT_TRUE(result.IsInt64()); ASSERT_EQ(result.Int64OrDie(), len * len); } } BENCHMARK(BM_NestedComprehension_Trace)->Range(1, 1 << 10); void BM_ListComprehension(benchmark::State& state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse("list_var.map(x, x * 2)")); int len = state.range(0); std::vector<CelValue> list; list.reserve(len); for (int i = 0; i < len; i++) { list.push_back(CelValue::CreateInt64(1)); } ContainerBackedListImpl cel_list(std::move(list)); activation.InsertValue("list_var", CelValue::CreateList(&cel_list)); InterpreterOptions options = GetOptions(arena); options.comprehension_max_iterations = 10000000; options.enable_comprehension_list_append = true; auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); ASSERT_OK_AND_ASSIGN( auto cel_expr, builder->CreateExpression(&(parsed_expr.expr()), nullptr)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsList()); ASSERT_EQ(result.ListOrDie()->size(), len); } } BENCHMARK(BM_ListComprehension)->Range(1, 1 << 16); void BM_ListComprehension_Trace(benchmark::State& state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse("list_var.map(x, x * 2)")); int len = state.range(0); std::vector<CelValue> list; list.reserve(len); for (int i = 0; i < len; i++) { list.push_back(CelValue::CreateInt64(1)); } ContainerBackedListImpl cel_list(std::move(list)); activation.InsertValue("list_var", CelValue::CreateList(&cel_list)); InterpreterOptions options = GetOptions(arena); options.comprehension_max_iterations = 10000000; options.enable_comprehension_list_append = true; options.enable_recursive_tracing = true; auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry(), options)); ASSERT_OK_AND_ASSIGN( auto cel_expr, builder->CreateExpression(&(parsed_expr.expr()), nullptr)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Trace(activation, &arena, EmptyCallback)); ASSERT_TRUE(result.IsList()); ASSERT_EQ(result.ListOrDie()->size(), len); } } BENCHMARK(BM_ListComprehension_Trace)->Range(1, 1 << 16); void BM_ListComprehension_Opt(benchmark::State& state) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, parser::Parse("list_var.map(x, x * 2)")); int len = state.range(0); std::vector<CelValue> list; list.reserve(len); for (int i = 0; i < len; i++) { list.push_back(CelValue::CreateInt64(1)); } ContainerBackedListImpl cel_list(std::move(list)); activation.InsertValue("list_var", CelValue::CreateList(&cel_list)); InterpreterOptions options; options.constant_arena = &arena; options.constant_folding = true; options.comprehension_max_iterations = 10000000; options.enable_comprehension_list_append = true; auto builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(builder->GetRegistry())); ASSERT_OK_AND_ASSIGN( auto cel_expr, builder->CreateExpression(&(parsed_expr.expr()), nullptr)); for (auto _ : state) { ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(result.IsList()); ASSERT_EQ(result.ListOrDie()->size(), len); } } BENCHMARK(BM_ListComprehension_Opt)->Range(1, 1 << 16); void BM_ComprehensionCpp(benchmark::State& state) { google::protobuf::Arena arena; Activation activation; int len = state.range(0); std::vector<CelValue> list; list.reserve(len); for (int i = 0; i < len; i++) { list.push_back(CelValue::CreateInt64(1)); } auto op = [&list]() { int sum = 0; for (const auto& value : list) { sum += value.Int64OrDie(); } return sum; }; for (auto _ : state) { int result = op(); ASSERT_EQ(result, len); } } BENCHMARK(BM_ComprehensionCpp)->Range(1, 1 << 20); } } } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/benchmark.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/tests/benchmark_test.cc
4552db5798fb0853b131b783d8875794334fae7f
2366ba18-350e-4b10-bef5-ae4764ba8121
cpp
google/arolla
expr_utils
arolla/expr/eval/expr_utils.cc
arolla/expr/eval/expr_utils_test.cc
#include "arolla/expr/eval/expr_utils.h" #include <functional> #include <stack> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/lambda_expr_operator.h" #include "arolla/util/fingerprint.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr::eval_internal { absl::StatusOr<ExprNodePtr> ExtractLambda( const ExprNodePtr& expr, std::function<absl::StatusOr<bool>(const ExprNodePtr&)> is_in_lambda) { struct Task { enum class Stage { kPreorder, kPostorder }; ExprNodePtr node; Stage stage; }; std::vector<ExprNodePtr> lambda_args; ExprOperatorSignature lambda_signature; absl::flat_hash_set<Fingerprint> previsited; absl::flat_hash_map<Fingerprint, ExprNodePtr> new_nodes; std::stack<Task> tasks; tasks.push(Task{.node = expr, .stage = Task::Stage::kPreorder}); int next_placeholder = 0; while (!tasks.empty()) { auto [node, stage] = std::move(tasks.top()); tasks.pop(); if (stage == Task::Stage::kPreorder) { if (!previsited.insert(node->fingerprint()).second) { continue; } ASSIGN_OR_RETURN(bool in_lambda, is_in_lambda(node)); if (in_lambda) { tasks.push(Task{.node = node, .stage = Task::Stage::kPostorder}); for (auto dep = node->node_deps().rbegin(); dep != node->node_deps().rend(); ++dep) { tasks.push(Task{.node = *dep, .stage = Task::Stage::kPreorder}); } } else { auto [it, inserted] = new_nodes.insert({node->fingerprint(), nullptr}); if (inserted) { it->second = Placeholder(absl::StrCat("_", next_placeholder++)); lambda_args.emplace_back(node); lambda_signature.parameters.push_back( ExprOperatorSignature::Parameter{ .name = it->second->placeholder_key()}); } } } else { std::vector<ExprNodePtr> new_deps; new_deps.reserve(node->node_deps().size()); for (const auto& dep : node->node_deps()) { new_deps.push_back(new_nodes.at(dep->fingerprint())); } ASSIGN_OR_RETURN(new_nodes[node->fingerprint()], WithNewDependencies(node, new_deps)); } } ASSIGN_OR_RETURN( ExprOperatorPtr lambda, MakeLambdaOperator(lambda_signature, new_nodes.at(expr->fingerprint()))); return MakeOpNode(lambda, lambda_args); } }
#include "arolla/expr/eval/expr_utils.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/lambda_expr_operator.h" #include "arolla/expr/testing/testing.h" namespace arolla::expr::eval_internal { namespace { using ::absl_testing::StatusIs; using ::arolla::testing::EqualsExpr; using ::testing::ElementsAre; using ::testing::Pointee; using ::testing::Property; using ::testing::WhenDynamicCastTo; TEST(ExptUtilsTest, ExtractLambda) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("math.add", {CallOp("math.add", {Leaf("x"), Leaf("y")}), Literal(1.0)})); auto is_op = [](const ExprNodePtr& node) -> absl::StatusOr<bool> { return node->is_op(); }; ASSERT_OK_AND_ASSIGN(auto expr_as_lambda, ExtractLambda(expr, is_op)); EXPECT_THAT(expr_as_lambda->node_deps(), ElementsAre(EqualsExpr(Leaf("x")), EqualsExpr(Leaf("y")), EqualsExpr(Literal(1.0)))); EXPECT_THAT( expr_as_lambda->op().get(), WhenDynamicCastTo<const LambdaOperator*>(Pointee(Property( &LambdaOperator::lambda_body, EqualsExpr(CallOp( "math.add", {CallOp("math.add", {Placeholder("_0"), Placeholder("_1")}), Placeholder("_2")})))))); } TEST(ExptUtilsTest, ExtractLambda_WithSameSubnodes) { ASSERT_OK_AND_ASSIGN( auto to_keep_out, CallOp("math.add", {CallOp("math.add", {Leaf("x"), Leaf("y")}), Literal(1.0)})); ASSERT_OK_AND_ASSIGN(auto to_keep_in, CallOp("math.add", {Literal(2.0), Literal(1.0)})); ASSERT_OK_AND_ASSIGN( auto expr, CallOp("math.add", {CallOp("math.add", {to_keep_out, to_keep_in}), to_keep_out})); auto keep_in = [=](const ExprNodePtr& node) -> absl::StatusOr<bool> { return node->fingerprint() != to_keep_out->fingerprint(); }; ASSERT_OK_AND_ASSIGN(auto expr_as_lambda, ExtractLambda(expr, keep_in)); EXPECT_THAT(expr_as_lambda->node_deps(), ElementsAre(EqualsExpr(to_keep_out))); EXPECT_THAT( expr_as_lambda->op().get(), WhenDynamicCastTo<const LambdaOperator*>(Pointee(Property( &LambdaOperator::lambda_body, EqualsExpr(CallOp( "math.add", {CallOp("math.add", {Placeholder("_0"), to_keep_in}), Placeholder("_0")})))))); } TEST(ExptUtilsTest, ExtractLambda_AllFalse) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("math.add", {CallOp("math.add", {Leaf("x"), Leaf("y")}), Literal(1.0)})); auto all_false = [](const ExprNodePtr& node) -> absl::StatusOr<bool> { return false; }; ASSERT_OK_AND_ASSIGN(auto expr_as_lambda, ExtractLambda(expr, all_false)); EXPECT_THAT(expr_as_lambda->node_deps(), ElementsAre(EqualsExpr(expr))); EXPECT_THAT( expr_as_lambda->op().get(), WhenDynamicCastTo<const LambdaOperator*>(Pointee(Property( &LambdaOperator::lambda_body, EqualsExpr(Placeholder("_0")))))); } TEST(ExptUtilsTest, ExtractLambda_FilterFails) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("math.add", {CallOp("math.subtract", {Leaf("x"), Leaf("y")}), Literal(1.0)})); auto returns_error = [](const ExprNodePtr& node) -> absl::StatusOr<bool> { if (node->is_op() && node->op()->display_name() == "math.subtract") { return absl::InvalidArgumentError("foo"); } return true; }; EXPECT_THAT(ExtractLambda(expr, returns_error), StatusIs(absl::StatusCode::kInvalidArgument, "foo")); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/expr_utils.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/expr_utils_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
44ef2692-2606-4e6a-bfc5-981b4ffcf957
cpp
google/tensorstore
kvs_backed_chunk_driver
tensorstore/driver/kvs_backed_chunk_driver.cc
tensorstore/driver/kvs_backed_chunk_driver_test.cc
#include "tensorstore/driver/kvs_backed_chunk_driver.h" #include <stddef.h> #include <cassert> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/log/absl_log.h" #include "absl/meta/type_traits.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/batch.h" #include "tensorstore/box.h" #include "tensorstore/chunk_layout.h" #include "tensorstore/driver/driver.h" #include "tensorstore/driver/driver_handle.h" #include "tensorstore/driver/kvs_backed_chunk_driver_impl.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/internal/box_difference.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/async_initialized_cache_mixin.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/cache_pool_resource.h" #include "tensorstore/internal/cache/chunk_cache.h" #include "tensorstore/internal/cache/kvs_backed_chunk_cache.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/cache_key/std_optional.h" #include "tensorstore/internal/chunk_grid_specification.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/staleness_bound.h" #include "tensorstore/internal/json_binding/std_optional.h" #include "tensorstore/internal/mutex.h" #include "tensorstore/internal/open_mode_spec.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/unowned_to_shared.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/open_mode.h" #include "tensorstore/open_options.h" #include "tensorstore/rank.h" #include "tensorstore/resize_options.h" #include "tensorstore/schema.h" #include "tensorstore/staleness_bound.h" #include "tensorstore/transaction.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/garbage_collection.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/iterate_over_index_range.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #ifndef TENSORSTORE_KVS_DRIVER_DEBUG #define TENSORSTORE_KVS_DRIVER_DEBUG 0 #endif namespace tensorstore { namespace internal_kvs_backed_chunk_driver { MetadataOpenState::~MetadataOpenState() = default; DataCacheBase::~DataCacheBase() = default; Result<IndexTransform<>> DataCacheBase::GetExternalToInternalTransform( const void* metadata, size_t component_index) { return IndexTransform<>(); } MetadataOpenState::MetadataOpenState(Initializer initializer) : PrivateOpenState{std::move(initializer.request.transaction), std::move(initializer.request.batch), std::move(initializer.spec), initializer.request.read_write_mode} { request_time_ = absl::Now(); } std::string MetadataOpenState::GetMetadataCacheKey() { return {}; } Result<kvstore::DriverPtr> MetadataOpenState::GetMetadataKeyValueStore( kvstore::DriverPtr base_kv_store) { return base_kv_store; } Result<kvstore::DriverPtr> OpenState::GetDataKeyValueStore( kvstore::DriverPtr base_kv_store, const void* metadata) { return base_kv_store; } ReadWriteMode MetadataOpenState::GetReadWriteMode(const void* metadata) { return ReadWriteMode::read_write; } AtomicUpdateConstraint MetadataOpenState::GetCreateConstraint() { return AtomicUpdateConstraint::kRequireMissing; } bool OpenState::DataCacheUsesMetadataCachePool(const void* metadata_ptr) { return false; } MetadataCache::MetadataCache(Initializer initializer) : Base(kvstore::DriverPtr()), data_copy_concurrency_(std::move(initializer.data_copy_concurrency)), metadata_cache_pool_(std::move(initializer.cache_pool)) {} DataCacheBase::DataCacheBase(Initializer&& initializer) : metadata_cache_entry_(std::move(initializer.metadata_cache_entry)), initial_metadata_(std::move(initializer.metadata)), cache_pool_(std::move(initializer.cache_pool)) {} DataCache::DataCache(Initializer&& initializer, internal::ChunkGridSpecification&& grid) : KvsBackedChunkCache(std::move(initializer.store)), ChunkedDataCacheBase(std::move(initializer)), grid_(std::move(grid)) {} namespace { using MetadataPtr = std::shared_ptr<const void>; const char invalid_metadata = 0; absl::Status ShapeConstraintError(DimensionIndex output_dim, DimensionIndex affected_inclusive_min, DimensionIndex affected_exclusive_max) { assert(affected_inclusive_min != affected_exclusive_max); if (affected_inclusive_min < affected_exclusive_max) { return absl::FailedPreconditionError(tensorstore::StrCat( "Resize operation would also affect output dimension ", output_dim, " over the interval ", IndexInterval::UncheckedHalfOpen(affected_inclusive_min, affected_exclusive_max), " but `resize_tied_bounds` was not specified")); } return absl::FailedPreconditionError(tensorstore::StrCat( "Resize operation would also affect output dimension ", output_dim, " over the out-of-bounds interval ", IndexInterval::UncheckedHalfOpen(affected_exclusive_max, affected_inclusive_min))); } IndexInterval GetNewIndexInterval(IndexInterval existing, Index new_inclusive_min, Index new_exclusive_max) { return IndexInterval::UncheckedHalfOpen( ExplicitIndexOr(new_inclusive_min, existing.inclusive_min()), ExplicitIndexOr(new_exclusive_max, existing.exclusive_max())); } absl::Status ValidateResizeDomainConstraint( BoxView<> current_domain, span<const Index> inclusive_min_constraint, span<const Index> exclusive_max_constraint) { assert(current_domain.rank() == inclusive_min_constraint.size()); assert(current_domain.rank() == exclusive_max_constraint.size()); for (DimensionIndex i = 0; i < current_domain.rank(); ++i) { const IndexInterval cur_interval = current_domain[i]; if (!ImplicitOrEqual(inclusive_min_constraint[i], cur_interval.inclusive_min())) { return ShapeConstraintError(i, cur_interval.inclusive_min(), inclusive_min_constraint[i]); } if (!ImplicitOrEqual(exclusive_max_constraint[i], cur_interval.exclusive_max())) { return ShapeConstraintError(i, exclusive_max_constraint[i], cur_interval.exclusive_max()); } } return absl::OkStatus(); } absl::Status ValidateExpandShrinkConstraints( BoxView<> current_domain, span<const Index> new_inclusive_min, span<const Index> new_exclusive_max, bool expand_only, bool shrink_only) { assert(current_domain.rank() == new_inclusive_min.size()); assert(current_domain.rank() == new_exclusive_max.size()); for (DimensionIndex i = 0; i < current_domain.rank(); ++i) { const IndexInterval cur_interval = current_domain[i]; const IndexInterval new_interval = GetNewIndexInterval( cur_interval, new_inclusive_min[i], new_exclusive_max[i]); if (shrink_only && !Contains(cur_interval, new_interval)) { return absl::FailedPreconditionError( tensorstore::StrCat("Resize operation would expand output dimension ", i, " from ", cur_interval, " to ", new_interval, " but `shrink_only` was specified")); } if (expand_only && !Contains(new_interval, cur_interval)) { return absl::FailedPreconditionError( tensorstore::StrCat("Resize operation would shrink output dimension ", i, " from ", cur_interval, " to ", new_interval, " but `expand_only` was specified")); } } return absl::OkStatus(); } std::string GetMetadataMissingErrorMessage( MetadataCache::Entry* metadata_cache_entry) { return tensorstore::StrCat( "Metadata at ", GetOwningCache(*metadata_cache_entry) .kvstore_driver() ->DescribeKey(metadata_cache_entry->GetKeyValueStoreKey()), " does not exist"); } absl::Status ValidateNewMetadata(DataCacheBase* cache, const void* new_metadata) { if (!new_metadata) { return absl::FailedPreconditionError( GetMetadataMissingErrorMessage(cache->metadata_cache_entry_.get())); } auto* initial_metadata = cache->initial_metadata_.get(); if (initial_metadata != new_metadata) { TENSORSTORE_RETURN_IF_ERROR( cache->ValidateMetadataCompatibility(initial_metadata, new_metadata)); } return absl::OkStatus(); } Result<MetadataPtr> GetUpdatedMetadataWithAssumeCachedMetadata( KvsMetadataDriverBase& driver, DataCacheBase& cache, internal::OpenTransactionPtr transaction) { assert(driver.assumed_metadata_time_ != absl::InfiniteFuture() && driver.assumed_metadata_); assert(&cache == driver.cache()); const auto handle_entry_or_node = [&](auto& entry_or_node) -> Result<MetadataPtr> { MetadataPtr new_metadata; if (MetadataCache::ReadLock<void> lock(entry_or_node); lock.stamp().time > driver.assumed_metadata_time_) { new_metadata = lock.shared_data(); } else { new_metadata = driver.assumed_metadata_; } if constexpr (std::is_same_v<absl::remove_cvref_t<decltype(entry_or_node)>, MetadataCache::TransactionNode>) { TENSORSTORE_ASSIGN_OR_RETURN( new_metadata, entry_or_node.GetUpdatedMetadata(std::move(new_metadata)), cache.metadata_cache_entry_->AnnotateError(_, false)); } return new_metadata; }; if (transaction) { TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetTransactionNode(*cache.metadata_cache_entry_, transaction)); return handle_entry_or_node(*node); } else { return handle_entry_or_node(*cache.metadata_cache_entry_); } } Result<MetadataPtr> ValidateNewMetadata( KvsMetadataDriverBase& driver, internal::OpenTransactionPtr transaction) { MetadataPtr new_metadata; auto& cache = *driver.cache(); if (driver.assumed_metadata_) { if (driver.assumed_metadata_time_ == absl::InfiniteFuture()) { return driver.assumed_metadata_; } TENSORSTORE_ASSIGN_OR_RETURN(new_metadata, GetUpdatedMetadataWithAssumeCachedMetadata( driver, cache, std::move(transaction))); } else { TENSORSTORE_ASSIGN_OR_RETURN( new_metadata, cache.metadata_cache_entry_->GetMetadata(std::move(transaction))); } TENSORSTORE_RETURN_IF_ERROR(ValidateNewMetadata(&cache, new_metadata.get())); return new_metadata; } Result<IndexTransform<>> GetInitialTransform(DataCacheBase* cache, const void* metadata, size_t component_index) { TENSORSTORE_ASSIGN_OR_RETURN( auto new_transform, cache->GetExternalToInternalTransform( cache->initial_metadata_.get(), component_index)); return ResolveBoundsFromMetadata(cache, metadata, component_index, std::move(new_transform), {}); } } void ChunkedDataCacheBase::GetComponentBounds( const void* metadata, size_t component_index, Box<dynamic_rank(kMaxRank)>& bounds, DimensionSet& implicit_lower_bounds, DimensionSet& implicit_upper_bounds) { const auto& grid = this->grid(); const auto& component_spec = grid.components[component_index]; const DimensionIndex component_rank = component_spec.rank(); bounds.set_rank(component_rank); Box<dynamic_rank(kMaxRank)> grid_bounds(grid.chunk_shape.size()); DimensionSet grid_implicit_lower_bounds; DimensionSet grid_implicit_upper_bounds; this->GetChunkGridBounds(metadata, grid_bounds, grid_implicit_lower_bounds, grid_implicit_upper_bounds); span<const DimensionIndex> chunked_to_cell_dimensions = component_spec.chunked_to_cell_dimensions; bounds = component_spec.array_spec.overall_fill_value.domain(); implicit_lower_bounds = false; implicit_upper_bounds = false; for (DimensionIndex grid_dim = 0; grid_dim < grid_bounds.rank(); ++grid_dim) { const DimensionIndex cell_dim = chunked_to_cell_dimensions[grid_dim]; bounds[cell_dim] = grid_bounds[grid_dim]; implicit_lower_bounds[cell_dim] = grid_implicit_lower_bounds[grid_dim]; implicit_upper_bounds[cell_dim] = grid_implicit_upper_bounds[grid_dim]; } } Result<ChunkLayout> ChunkedDataCacheBase::GetChunkLayout( size_t component_index) { return GetChunkLayoutFromMetadata(initial_metadata_.get(), component_index); } Future<IndexTransform<>> KvsMetadataDriverBase::ResolveBounds( ResolveBoundsRequest request) { return ResolveBounds(std::move(request), metadata_staleness_bound_); } Future<MetadataPtr> KvsMetadataDriverBase::ResolveMetadata( internal::OpenTransactionPtr transaction, absl::Time metadata_staleness_bound) { if (assumed_metadata_ && assumed_metadata_time_ >= metadata_staleness_bound) { return ValidateNewMetadata(*this, std::move(transaction)); } auto* cache = this->cache(); if (transaction) { TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetTransactionNode(*cache->metadata_cache_entry_, transaction)); auto read_future = node->Read({metadata_staleness_bound}); return MapFuture( cache->executor(), [cache = DataCacheBase::Ptr(cache), node = std::move(node)]( const Result<void>& result) -> Result<MetadataPtr> { TENSORSTORE_RETURN_IF_ERROR(result); TENSORSTORE_ASSIGN_OR_RETURN( auto new_metadata, node->GetUpdatedMetadata(), cache->metadata_cache_entry_->AnnotateError(_, false)); TENSORSTORE_RETURN_IF_ERROR( ValidateNewMetadata(cache.get(), new_metadata.get())); return new_metadata; }, std::move(read_future)); } return MapFuture( cache->executor(), [cache = DataCacheBase::Ptr(cache)]( const Result<void>& result) -> Result<MetadataPtr> { TENSORSTORE_RETURN_IF_ERROR(result); auto new_metadata = cache->metadata_cache_entry_->GetMetadata(); TENSORSTORE_RETURN_IF_ERROR( ValidateNewMetadata(cache.get(), new_metadata.get())); return new_metadata; }, cache->metadata_cache_entry_->Read({metadata_staleness_bound})); } Future<IndexTransform<>> KvsMetadataDriverBase::ResolveBounds( ResolveBoundsRequest request, StalenessBound metadata_staleness_bound) { auto* cache = this->cache(); return MapFutureValue( cache->executor(), [cache = DataCacheBase::Ptr(cache), component_index = component_index(), options = std::move(request.options), transform = std::move(request.transform)]( const MetadataPtr& new_metadata) mutable { return ResolveBoundsFromMetadata(cache.get(), new_metadata.get(), component_index, std::move(transform), options); }, ResolveMetadata(std::move(request.transaction), metadata_staleness_bound.time)); } namespace { Future<const void> RequestResize(ChunkedDataCacheBase* cache, internal::OpenTransactionPtr transaction, ResizeParameters parameters) { return cache->metadata_cache_entry_->RequestAtomicUpdate( transaction, [parameters = std::move(parameters), cache = ChunkedDataCacheBase::Ptr(cache), metadata_constraint = cache->initial_metadata_]( const MetadataCache::MetadataPtr& current_metadata) -> Result<std::shared_ptr<const void>> { if (!current_metadata) { return absl::NotFoundError("Metadata was deleted"); } if (metadata_constraint.get() != current_metadata.get()) { TENSORSTORE_RETURN_IF_ERROR(cache->ValidateMetadataCompatibility( metadata_constraint.get(), current_metadata.get())); } Box<dynamic_rank(kMaxRank)> bounds(parameters.new_inclusive_min.size()); DimensionSet implicit_lower_bounds; DimensionSet implicit_upper_bounds; cache->GetChunkGridBounds(current_metadata.get(), bounds, implicit_lower_bounds, implicit_upper_bounds); TENSORSTORE_RETURN_IF_ERROR(ValidateResizeConstraints( bounds, parameters.new_inclusive_min, parameters.new_exclusive_max, parameters.inclusive_min_constraint, parameters.exclusive_max_constraint, parameters.expand_only, parameters.shrink_only)); return cache->GetResizedMetadata(current_metadata.get(), parameters.new_inclusive_min, parameters.new_exclusive_max); }, AtomicUpdateConstraint::kRequireExisting); } struct ResizeContinuation { internal::IntrusivePtr<KvsMetadataDriverBase> driver; internal::OpenTransactionPtr transaction; size_t component_index; IndexTransform<> transform; Result<IndexTransform<>> GetResult() { TENSORSTORE_ASSIGN_OR_RETURN( auto new_metadata, ValidateNewMetadata(*driver, std::move(transaction))); return ResolveBoundsFromMetadata(driver->cache(), new_metadata.get(), component_index, std::move(transform), {}); } void operator()(Promise<IndexTransform<>> promise, ReadyFuture<const void>) { promise.SetResult(GetResult()); } }; struct ResizeState { internal::IntrusivePtr<KvsChunkedDriverBase> driver; ChunkedDataCacheBase::Ptr cache; internal::OpenTransactionPtr transaction; size_t component_index; IndexTransform<> transform; ResizeParameters resize_parameters; }; void SubmitResizeRequest(Promise<IndexTransform<>> promise, ResizeState state) { auto* cache_ptr = state.cache.get(); LinkValue( WithExecutor(cache_ptr->executor(), ResizeContinuation{std::move(state.driver), state.transaction, state.component_index, std::move(state.transform)}), std::move(promise), RequestResize(cache_ptr, state.transaction, std::move(state.resize_parameters))); } struct DeleteChunksForResizeContinuation { std::unique_ptr<ResizeState> state; void operator()(Promise<IndexTransform<>> promise, ReadyFuture<const void>) { SubmitResizeRequest(std::move(promise), std::move(*state)); } }; Future<const void> DeleteChunksForResize( ChunkedDataCacheBase::Ptr cache, BoxView<> current_bounds, span<const Index> new_inclusive_min, span<const Index> new_exclusive_max, internal::OpenTransactionPtr transaction) { span<const Index> chunk_shape = cache->grid().chunk_shape; const DimensionIndex rank = chunk_shape.size(); assert(current_bounds.rank() == rank); assert(new_inclusive_min.size() == rank); assert(new_exclusive_max.size() == rank); auto pair = PromiseFuturePair<void>::Make(MakeResult(absl::Status())); pair.future.Force(); Box<dynamic_rank(internal::kNumInlinedDims)> current_grid_bounds(rank); Box<dynamic_rank(internal::kNumInlinedDims)> new_grid_bounds(rank); for (DimensionIndex i = 0; i < rank; ++i) { const IndexInterval cur_dim_bounds = current_bounds[i]; const IndexInterval new_dim_bounds = IndexInterval::UncheckedHalfOpen( ExplicitIndexOr(new_inclusive_min[i], cur_dim_bounds.inclusive_min()), ExplicitIndexOr(new_exclusive_max[i], cur_dim_bounds.exclusive_max())); const Index chunk_size = chunk_shape[i]; current_grid_bounds[i] = DividePositiveRoundOut(cur_dim_bounds, chunk_size); new_grid_bounds[i] = DividePositiveRoundOut(new_dim_bounds, chunk_size); } internal::BoxDifference box_difference(current_grid_bounds, new_grid_bounds); Box<dynamic_rank(internal::kNumInlinedDims)> part(rank); for (Index box_i = 0; box_i < box_difference.num_sub_boxes(); ++box_i) { box_difference.GetSubBox(box_i, part); IterateOverIndexRange(part, [&](span<const Index> cell_indices) { LinkError(pair.promise, cache->DeleteCell(cell_indices, transaction)); }); } return pair.future; } struct ResolveBoundsForDeleteAndResizeContinuation { std::unique_ptr<ResizeState> state; void operator()(Promise<IndexTransform<>> promise, ReadyFuture<const void>) { std::shared_ptr<const void> new_metadata; if (auto result = ValidateNewMetadata(*state->driver, state->transaction); result.ok()) { new_metadata = *std::move(result); } else { promise.SetResult(std::move(result).status()); return; } const DimensionIndex grid_rank = state->cache->grid().chunk_shape.size(); assert(!state->resize_parameters.expand_only); Box<dynamic_rank(internal::kNumInlinedDims)> bounds(grid_rank); DimensionSet implicit_lower_bounds; DimensionSet implicit_upper_bounds; state->cache->GetChunkGridBounds(new_metadata.get(), bounds, implicit_lower_bounds, implicit_upper_bounds); if (auto status = ValidateResizeConstraints( bounds, state->resize_parameters.new_inclusive_min, state->resize_parameters.new_exclusive_max, state->resize_parameters.inclusive_min_constraint, state->resize_parameters.exclusive_max_constraint, false, state->resize_parameters.shrink_only); !status.ok()) { promise.SetResult(std::move(status)); return; } auto* state_ptr = state.get(); LinkValue( WithExecutor(state_ptr->cache->executor(), DeleteChunksForResizeContinuation{std::move(state)}), std::move(promise), DeleteChunksForResize(state_ptr->cache, bounds, state_ptr->resize_parameters.new_inclusive_min, state_ptr->resize_parameters.new_exclusive_max, state_ptr->transaction)); } }; } Result<ChunkLayout> KvsChunkedDriverBase::GetChunkLayout( IndexTransformView<> transform) { auto* cache = this->cache(); return cache->GetChunkLayoutFromMetadata(cache->initial_metadata().get(), component_index()) | transform; } Future<IndexTransform<>> KvsChunkedDriverBase::Resize( internal::Driver::ResizeRequest request) { if (assumed_metadata_time_ == absl::InfiniteFuture()) { return absl::InvalidArgumentError( "Resize not supported because assume_metadata was specified"); } auto* cache = this->cache(); auto resize_parameters = GetResizeParameters( cache, cache->initial_metadata_.get(), component_index(), request.transform, request.inclusive_min, request.exclusive_max, request.options, request.transaction ? request.transaction->mode() : TransactionMode::no_transaction_mode); if (!resize_parameters) { if (resize_parameters.status().code() == absl::StatusCode::kAborted) { return ResolveBounds( {std::move(request.transaction), std::move(request.transform)}, {}); } return resize_parameters.status(); } auto pair = PromiseFuturePair<IndexTransform<>>::Make(); ResizeState resize_state{ internal::IntrusivePtr<KvsChunkedDriverBase>(this), ChunkedDataCacheBase::Ptr(cache), std::move(request.transaction), component_index(), std::move(request.transform), *std::move(resize_parameters), }; if ((request.options.mode & resize_metadata_only) == resize_metadata_only || (request.options.mode & expand_only) == expand_only) { SubmitResizeRequest(std::move(pair.promise), std::move(resize_state)); } else { LinkValue(WithExecutor( cache->executor(), ResolveBoundsForDeleteAndResizeContinuation{ std::make_unique<ResizeState>(std::move(resize_state))}), std::move(pair.promise), cache->metadata_cache_entry_->Read({absl::Now()})); } return std::move(pair.future); } Result<IndexTransform<>> KvsMetadataDriverBase::GetBoundSpecData( internal::OpenTransactionPtr transaction, KvsDriverSpec& spec, IndexTransformView<> transform_view) { auto* cache = this->cache(); auto* metadata_cache = cache->metadata_cache(); TENSORSTORE_ASSIGN_OR_RETURN(spec.store.driver, metadata_cache->base_store()->GetBoundSpec()); spec.store.path = cache->GetBaseKvstorePath(); spec.data_copy_concurrency = metadata_cache->data_copy_concurrency_; spec.cache_pool = cache->cache_pool_; if (spec.cache_pool != metadata_cache->metadata_cache_pool_) { spec.metadata_cache_pool = metadata_cache->metadata_cache_pool_; } spec.delete_existing = false; spec.open = true; spec.create = false; spec.assume_metadata = assumed_metadata_time_ == absl::InfiniteFuture(); spec.staleness.metadata = this->metadata_staleness_bound(); spec.staleness.data = this->data_staleness_bound(); spec.schema.Set(RankConstraint{this->rank()}).IgnoreError(); spec.schema.Set(this->dtype()).IgnoreError(); TENSORSTORE_ASSIGN_OR_RETURN( auto validated_metadata, ValidateNewMetadata(*this, std::move(transaction))); TENSORSTORE_RETURN_IF_ERROR(cache->GetBoundSpecData( spec, validated_metadata.get(), this->component_index())); IndexTransform<> transform(transform_view); TENSORSTORE_ASSIGN_OR_RETURN( auto external_to_internal_transform, cache->GetExternalToInternalTransform(validated_metadata.get(), component_index())); if (external_to_internal_transform.valid()) { TENSORSTORE_ASSIGN_OR_RETURN( auto internal_to_external_transform, InverseTransform(external_to_internal_transform)); TENSORSTORE_ASSIGN_OR_RETURN( transform, ComposeTransforms(internal_to_external_transform, transform)); } return transform; } absl::Status KvsDriverSpec::ApplyOptions(SpecOptions&& options) { if (options.recheck_cached_data.specified()) { staleness.data = StalenessBound(options.recheck_cached_data); } if (options.recheck_cached_metadata.specified()) { staleness.metadata = StalenessBound(options.recheck_cached_metadata); } if (options.kvstore.valid()) { if (store.valid()) { return absl::InvalidArgumentError("\"kvstore\" is already specified"); } store = std::move(options.kvstore); } TENSORSTORE_RETURN_IF_ERROR(schema.Set(static_cast<Schema&&>(options))); return OpenModeSpec::ApplyOptions(options); } OpenMode KvsDriverSpec::open_mode() const { auto mode = this->OpenModeSpec::open_mode(); return (mode == OpenMode{}) ? OpenMode::open : mode; } kvstore::Spec KvsDriverSpec::GetKvstore() const { return store; } KvStore KvsMetadataDriverBase::GetKvstore(const Transaction& transaction) { auto* cache = this->cache(); auto* metadata_cache = cache->metadata_cache(); return KvStore{kvstore::DriverPtr(metadata_cache->base_store()), cache->GetBaseKvstorePath(), transaction}; } namespace { Result<size_t> ValidateOpenRequest(OpenState* state, const void* metadata) { auto& base = *(PrivateOpenState*)state; if (!metadata) { return absl::NotFoundError( GetMetadataMissingErrorMessage(base.metadata_cache_entry_.get())); } return state->GetComponentIndex(metadata, base.spec_->open_mode()); } Result<internal::Driver::Handle> CreateTensorStoreFromMetadata( OpenState::Ptr state, std::shared_ptr<const void> metadata, size_t component_index) { ABSL_LOG_IF(INFO, TENSORSTORE_KVS_DRIVER_DEBUG) << "CreateTensorStoreFromMetadata: state=" << state.get(); auto& base = *(PrivateOpenState*)state.get(); auto read_write_mode = state->GetReadWriteMode(metadata.get()); if (base.read_write_mode_ != ReadWriteMode::dynamic) { TENSORSTORE_RETURN_IF_ERROR(internal::ValidateSupportsModes( read_write_mode, base.read_write_mode_)); read_write_mode = base.read_write_mode_; } std::string chunk_cache_identifier; bool data_cache_uses_metadata_cache_pool = state->DataCacheUsesMetadataCachePool(metadata.get()); if (!base.metadata_cache_key_.empty()) { auto data_cache_key = state->GetDataCacheKey(metadata.get()); if (!data_cache_key.empty()) { internal::EncodeCacheKey(&chunk_cache_identifier, data_cache_key, base.metadata_cache_entry_.get(), state->cache_pool()->get()); } } absl::Status data_key_value_store_status; const auto& state_ref = *state; auto data_cache = internal::GetCacheWithExplicitTypeInfo<DataCacheBase>( (data_cache_uses_metadata_cache_pool ? GetOwningCache(*base.metadata_cache_entry_).pool() : state->cache_pool()->get()), typeid(state_ref), chunk_cache_identifier, [&]() -> std::unique_ptr<DataCacheBase> { auto store_result = state->GetDataKeyValueStore( GetOwningCache(*base.metadata_cache_entry_).base_store_, metadata.get()); if (!store_result) { data_key_value_store_status = std::move(store_result).status(); return nullptr; } DataCacheInitializer initializer; initializer.store = *std::move(store_result); initializer.metadata_cache_entry = base.metadata_cache_entry_; initializer.metadata = metadata; initializer.cache_pool = state->cache_pool(); return state->GetDataCache(std::move(initializer)); }); TENSORSTORE_RETURN_IF_ERROR(data_key_value_store_status); TENSORSTORE_ASSIGN_OR_RETURN( auto new_transform, GetInitialTransform(data_cache.get(), metadata.get(), component_index)); if (base.transaction_ && !(base.spec_->assume_metadata || base.spec_->assume_cached_metadata)) { data_cache->metadata_cache_entry_ ->RequestAtomicUpdate( base.transaction_, [data_cache = data_cache, transform = new_transform, component_index]( const MetadataCache::MetadataPtr& existing_metadata) -> Result<MetadataCache::MetadataPtr> { TENSORSTORE_RETURN_IF_ERROR(ValidateNewMetadata( data_cache.get(), existing_metadata.get())); TENSORSTORE_ASSIGN_OR_RETURN( auto new_transform, GetInitialTransform(data_cache.get(), existing_metadata.get(), component_index)); if (transform != new_transform) { return absl::AbortedError("Metadata is inconsistent"); } return existing_metadata; }, AtomicUpdateConstraint::kRequireExisting) .IgnoreFuture(); } DriverInitializer initializer; initializer.cache = std::move(data_cache); initializer.component_index = component_index; initializer.data_staleness_bound = base.spec_->staleness.data.BoundAtOpen(base.request_time_); internal::ReadWritePtr<KvsMetadataDriverBase> driver( state->AllocateDriver(std::move(initializer)), read_write_mode); driver->metadata_staleness_bound_ = base.spec_->staleness.metadata.BoundAtOpen(base.request_time_); if (base.spec_->assume_metadata || base.spec_->assume_cached_metadata) { driver->assumed_metadata_ = metadata; driver->assumed_metadata_time_ = base.spec_->assume_cached_metadata ? base.request_time_ : absl::InfiniteFuture(); } return internal::Driver::Handle{ std::move(driver), std::move(new_transform), internal::TransactionState::ToTransaction(std::move(base.transaction_))}; } struct HandleWroteMetadata { MetadataOpenState::Ptr state; void operator()(Promise<internal::Driver::Handle> promise, ReadyFuture<const void> future) { auto& base = *(PrivateOpenState*)state.get(); auto& result = future.result(); ABSL_LOG_IF(INFO, TENSORSTORE_KVS_DRIVER_DEBUG) << "HandleWroteMetadata: state=" << state.get() << ", status=" << result.status(); if (!result) { if (result.status().code() != absl::StatusCode::kAlreadyExists || !base.spec_->open) { promise.SetResult(result.status()); return; } } promise.SetResult([&]() -> Result<internal::Driver::Handle> { TENSORSTORE_ASSIGN_OR_RETURN( auto metadata, base.metadata_cache_entry_->GetMetadata(base.transaction_)); return state->CreateDriverHandleFromMetadata(std::move(metadata)); }()); } }; void CreateMetadata(MetadataOpenState::Ptr state, Promise<internal::Driver::Handle> promise) { ABSL_LOG_IF(INFO, TENSORSTORE_KVS_DRIVER_DEBUG) << "CreateMetadata: state=" << state.get(); auto state_ptr = state.get(); auto& base = *(PrivateOpenState*)state.get(); internal::OpenTransactionPtr transaction = base.transaction_; auto state_copy = state; Link(WithExecutor(state_ptr->executor(), HandleWroteMetadata{std::move(state)}), std::move(promise), base.metadata_cache_entry_->RequestAtomicUpdate( transaction, [state = std::move(state_copy)]( const MetadataCache::MetadataPtr& existing_metadata) -> Result<MetadataCache::MetadataPtr> { return state->Create(existing_metadata.get(), {}); }, state_ptr->GetCreateConstraint(), base.request_time_)); } struct HandleReadMetadata { MetadataOpenState::Ptr state; void operator()(Promise<internal::Driver::Handle> promise, ReadyFuture<const void> metadata_future) { auto& base = *(PrivateOpenState*)state.get(); std::shared_ptr<const void> metadata; if (auto result = base.metadata_cache_entry_->GetMetadata(base.transaction_); result.ok()) { metadata = *std::move(result); } else { promise.SetResult(std::move(result).status()); return; } auto handle_result = state->CreateDriverHandleFromMetadata(metadata); if (handle_result) { promise.SetResult(std::move(handle_result)); return; } if (handle_result.status().code() == absl::StatusCode::kNotFound) { if (base.spec_->create) { CreateMetadata(std::move(state), std::move(promise)); return; } } promise.SetResult(std::move(handle_result).status()); } }; struct GetMetadataForOpen { MetadataOpenState::Ptr state; void operator()(Promise<internal::Driver::Handle> promise) { ABSL_LOG_IF(INFO, TENSORSTORE_KVS_DRIVER_DEBUG) << "GetMetadataForOpen: state=" << state.get(); auto& base = *(PrivateOpenState*)state.get(); auto state_ptr = state.get(); auto batch = std::move(base.batch_); if (base.spec_->open) { if (base.spec_->assume_metadata || base.spec_->assume_cached_metadata) { TENSORSTORE_ASSIGN_OR_RETURN( auto metadata, state->Create(nullptr, {true}), static_cast<void>(promise.SetResult(_))); promise.SetResult( state->CreateDriverHandleFromMetadata(std::move(metadata))); return; } LinkValue( WithExecutor(state_ptr->executor(), HandleReadMetadata{std::move(state)}), std::move(promise), base.metadata_cache_entry_->Read( {base.spec_->staleness.metadata.BoundAtOpen(base.request_time_) .time, batch})); return; } assert(base.spec_->create); CreateMetadata(std::move(state), std::move(promise)); } }; struct HandleKeyValueStoreReady { MetadataOpenState::Ptr state; void operator()(Promise<internal::Driver::Handle> promise, ReadyFuture<const void> store) { ABSL_LOG_IF(INFO, TENSORSTORE_KVS_DRIVER_DEBUG) << "Metadata kvstore ready: state=" << state.get(); auto& base = *(PrivateOpenState*)state.get(); auto* state_ptr = state.get(); if (base.spec_->delete_existing) { KeyRange range_to_delete = KeyRange::Prefix(state->GetPrefixForDeleteExisting()); auto* kvstore = GetOwningCache(*base.metadata_cache_entry_).base_store_.get(); if (!base.transaction_) { LinkValue(std::bind(WithExecutor(state_ptr->executor(), GetMetadataForOpen{std::move(state)}), std::placeholders::_1), std::move(promise), kvstore->DeleteRange(std::move(range_to_delete))); return; } if (auto status = kvstore->TransactionalDeleteRange( base.transaction_, std::move(range_to_delete)); !status.ok()) { promise.SetResult(status); return; } base.transaction_->Barrier(); } GetMetadataForOpen{std::move(state)}(std::move(promise)); } }; } Future<const void> MetadataCache::Entry::RequestAtomicUpdate( const internal::OpenTransactionPtr& transaction, UpdateFunction update, AtomicUpdateConstraint update_constraint, std::optional<absl::Time> read_time) { TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetWriteLockedTransactionNode(*this, transaction)); node->updated_metadata_base_state_ = internal::UnownedToShared(&invalid_metadata); node->updated_metadata_ = nullptr; if (node->transaction()->implicit_transaction()) { auto [promise, future] = PromiseFuturePair<void>::Make(); node->AddPendingWrite( PendingWrite{std::move(update), update_constraint, promise}); LinkError(std::move(promise), node.unlock()->transaction()->future()); return std::move(future); } node->AddPendingWrite(PendingWrite{std::move(update), update_constraint}); if (read_time) { return node->Read({*read_time}); } return MakeReadyFuture(); } Result<MetadataCache::MetadataPtr> MetadataCache::Entry::GetMetadata( internal::OpenTransactionPtr transaction) { if (!transaction) return GetMetadata(); TENSORSTORE_ASSIGN_OR_RETURN(auto node, GetTransactionNode(*this, transaction)); TENSORSTORE_ASSIGN_OR_RETURN(auto metadata, node->GetUpdatedMetadata(), this->AnnotateError(_, false)); return metadata; } Result<MetadataCache::MetadataPtr> MetadataCache::TransactionNode::GetUpdatedMetadata(MetadataPtr metadata) { UniqueWriterLock lock(*this); if (this->updated_metadata_base_state_ == metadata) { return this->updated_metadata_; } this->updated_metadata_base_state_ = metadata; for (const auto& request : this->pending_writes) { auto result = request.update(metadata); if (result) { assert(*result); assert(request.update_constraint != AtomicUpdateConstraint::kRequireMissing || metadata == nullptr); assert(request.update_constraint != AtomicUpdateConstraint::kRequireExisting || metadata != nullptr); metadata = std::move(*result); if (!request.promise.null()) { request.promise.raw_result() = MakeResult(); } } else { if (!request.promise.null()) { request.promise.raw_result() = GetOwningEntry(*this).AnnotateError( result.status(), false); } else { this->updated_metadata_ = result.status(); return std::move(result).status(); } } } this->updated_metadata_ = metadata; return metadata; } Result<MetadataCache::MetadataPtr> MetadataCache::TransactionNode::GetUpdatedMetadata() { auto metadata = ReadLock<void>(*this).shared_data(); return GetUpdatedMetadata(std::move(metadata)); } void MetadataCache::Entry::DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) { GetOwningCache(*this).executor()([this, value = std::move(value), receiver = std::move(receiver)]() mutable { MetadataPtr new_metadata; if (value) { if (auto result = GetOwningCache(*this).DecodeMetadata(this->key(), *std::move(value)); result.ok()) { new_metadata = *std::move(result); } else { execution::set_error( receiver, internal::ConvertInvalidArgumentToFailedPrecondition( std::move(result).status())); return; } } execution::set_value(receiver, std::move(new_metadata)); }); } std::string MetadataCache::Entry::GetKeyValueStoreKey() { return GetOwningCache(*this).GetMetadataStorageKey(this->key()); } void MetadataCache::TransactionNode::DoApply(ApplyOptions options, ApplyReceiver receiver) { if (this->pending_writes.empty() && options.apply_mode != ApplyOptions::kSpecifyUnchanged) { execution::set_value( receiver, ReadState{{}, TimestampedStorageGeneration::Unconditional()}); return; } auto continuation = [this, receiver = std::move(receiver)]( ReadyFuture<const void> future) mutable { if (!future.result().ok()) { return execution::set_error(receiver, future.result().status()); } ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "Apply metadata"; auto read_state = AsyncCache::ReadLock<void>(*this).read_state(); std::shared_ptr<const void> new_data; if (auto result = this->GetUpdatedMetadata(read_state.data); result.ok()) { new_data = *std::move(result); } else { execution::set_error(receiver, std::move(result).status()); return; } if (new_data != read_state.data) { read_state.stamp.generation.MarkDirty(); read_state.data = std::move(new_data); } execution::set_value(receiver, std::move(read_state)); }; this->Read({options.staleness_bound}) .ExecuteWhenReady(WithExecutor(GetOwningCache(*this).executor(), std::move(continuation))); } void MetadataCache::TransactionNode::InvalidateReadState() { Base::TransactionNode::InvalidateReadState(); this->updated_metadata_base_state_ = internal::UnownedToShared(&invalid_metadata); this->updated_metadata_ = nullptr; } void MetadataCache::Entry::DoEncode(std::shared_ptr<const void> data, EncodeReceiver receiver) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "Encoding metadata"; auto& entry = GetOwningEntry(*this); auto& cache = GetOwningCache(entry); if (auto encoded_result = cache.EncodeMetadata(entry.key(), data.get()); encoded_result.ok()) { execution::set_value(receiver, *std::move(encoded_result)); } else { execution::set_error(receiver, std::move(encoded_result).status()); } } Future<const void> DataCache::DeleteCell( span<const Index> grid_cell_indices, internal::OpenTransactionPtr transaction) { return internal::ChunkCache::DeleteCell(grid_cell_indices, std::move(transaction)); } namespace { internal::CachePtr<MetadataCache> GetOrCreateMetadataCache( MetadataOpenState* state) { auto& base = *(PrivateOpenState*)state; auto& spec = *base.spec_; internal::EncodeCacheKey(&base.metadata_cache_key_, spec.store.driver, typeid(*state), state->GetMetadataCacheKey()); return internal::GetOrCreateAsyncInitializedCache<MetadataCache>( state->metadata_cache_pool()->get(), base.metadata_cache_key_, [&] { ABSL_LOG_IF(INFO, TENSORSTORE_KVS_DRIVER_DEBUG) << "Creating metadata cache: open_state=" << state; return state->GetMetadataCache( {base.spec_->data_copy_concurrency, state->metadata_cache_pool()}); }, [&](Promise<void> initialized, internal::CachePtr<MetadataCache> metadata_cache) { ABSL_LOG_IF(INFO, TENSORSTORE_KVS_DRIVER_DEBUG) << "Opening metadata kvstore: open_state=" << state; LinkValue( [state = MetadataOpenState::Ptr(state), metadata_cache = std::move(metadata_cache)]( Promise<void> metadata_cache_promise, ReadyFuture<kvstore::DriverPtr> future) { metadata_cache->base_store_ = *future.result(); if (auto result = state->GetMetadataKeyValueStore( metadata_cache->base_store_); result.ok()) { metadata_cache->SetKvStoreDriver(*std::move(result)); } else { metadata_cache_promise.SetResult(std::move(result).status()); } }, initialized, kvstore::Open(spec.store.driver)); }); } } Result<internal::Driver::Handle> OpenState::CreateDriverHandleFromMetadata( std::shared_ptr<const void> metadata) { TENSORSTORE_ASSIGN_OR_RETURN(size_t component_index, ValidateOpenRequest(this, metadata.get())); return CreateTensorStoreFromMetadata(OpenState::Ptr(this), std::move(metadata), component_index); } Future<internal::Driver::Handle> OpenDriver(MetadataOpenState::Ptr state) { ABSL_LOG_IF(INFO, TENSORSTORE_KVS_DRIVER_DEBUG) << "OpenDriver: open_state=" << state.get(); auto& base = *(PrivateOpenState*)state.get(); auto& spec = *base.spec_; TENSORSTORE_RETURN_IF_ERROR( spec.OpenModeSpec::Validate(base.read_write_mode_)); if (!spec.store.valid()) { return absl::InvalidArgumentError("\"kvstore\" must be specified"); } auto* state_ptr = state.get(); auto metadata_cache = GetOrCreateMetadataCache(state_ptr); base.metadata_cache_entry_ = GetCacheEntry(metadata_cache, state->GetMetadataCacheEntryKey()); return PromiseFuturePair<internal::Driver::Handle>::LinkValue( HandleKeyValueStoreReady{std::move(state)}, metadata_cache->initialized_) .future; } Result<IndexTransform<>> ResolveBoundsFromMetadata( DataCacheBase* data_cache, const void* new_metadata, size_t component_index, IndexTransform<> transform, ResolveBoundsOptions options) { DimensionSet base_implicit_lower_bounds; DimensionSet base_implicit_upper_bounds; Box<dynamic_rank(kMaxRank)> base_bounds; data_cache->GetComponentBounds(new_metadata, component_index, base_bounds, base_implicit_lower_bounds, base_implicit_upper_bounds); if ((options.mode & fix_resizable_bounds) == fix_resizable_bounds) { base_implicit_lower_bounds = false; base_implicit_upper_bounds = false; } return PropagateBoundsToTransform( BoxView<>(base_bounds), base_implicit_lower_bounds, base_implicit_upper_bounds, std::move(transform)); } absl::Status ValidateResizeConstraints( BoxView<> current_domain, span<const Index> new_inclusive_min, span<const Index> new_exclusive_max, span<const Index> inclusive_min_constraint, span<const Index> exclusive_max_constraint, bool expand_only, bool shrink_only) { TENSORSTORE_RETURN_IF_ERROR(ValidateResizeDomainConstraint( current_domain, inclusive_min_constraint, exclusive_max_constraint)); TENSORSTORE_RETURN_IF_ERROR(ValidateExpandShrinkConstraints( current_domain, new_inclusive_min, new_exclusive_max, expand_only, shrink_only)); return absl::OkStatus(); } Result<ResizeParameters> GetResizeParameters( ChunkedDataCacheBase* data_cache, const void* metadata, size_t component_index, IndexTransformView<> transform, span<const Index> inclusive_min, span<const Index> exclusive_max, ResizeOptions options, TransactionMode transaction_mode) { assert(transform.input_rank() == inclusive_min.size()); assert(transform.input_rank() == exclusive_max.size()); const DimensionIndex output_rank = transform.output_rank(); DimensionSet base_implicit_lower_bounds; DimensionSet base_implicit_upper_bounds; Box<dynamic_rank(kMaxRank)> base_bounds; data_cache->GetComponentBounds(metadata, component_index, base_bounds, base_implicit_lower_bounds, base_implicit_upper_bounds); const auto& grid = data_cache->grid(); const DimensionIndex grid_rank = grid.grid_rank(); Index new_output_inclusive_min[kMaxRank]; Index new_output_exclusive_max[kMaxRank]; Index output_inclusive_min_constraint[kMaxRank]; Index output_exclusive_max_constraint[kMaxRank]; bool is_noop; TENSORSTORE_RETURN_IF_ERROR(PropagateInputDomainResizeToOutput( transform, inclusive_min, exclusive_max, (options.mode & resize_tied_bounds) == resize_tied_bounds, {&output_inclusive_min_constraint[0], output_rank}, {&output_exclusive_max_constraint[0], output_rank}, {&new_output_inclusive_min[0], output_rank}, {&new_output_exclusive_max[0], output_rank}, &is_noop)); if (is_noop) return absl::AbortedError(""); if (grid.components.size() != 1 && !(options.mode & resize_tied_bounds)) { return absl::FailedPreconditionError( "Resize operation would affect other fields but " "`resize_tied_bounds` was not specified"); } for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const IndexInterval dim_bounds = base_bounds[output_dim]; if (!base_implicit_lower_bounds[output_dim]) { const Index min_constraint = output_inclusive_min_constraint[output_dim]; if (!ImplicitOrEqual(min_constraint, dim_bounds.inclusive_min())) { return ShapeConstraintError(output_dim, dim_bounds.inclusive_min(), min_constraint); } const Index new_inclusive_min = new_output_inclusive_min[output_dim]; if (!ImplicitOrEqual(new_inclusive_min, dim_bounds.inclusive_min())) { return absl::FailedPreconditionError(tensorstore::StrCat( "Cannot change inclusive lower bound of output dimension ", output_dim, ", which is fixed at ", dim_bounds.inclusive_min(), ", to ", new_inclusive_min)); } } if (!base_implicit_upper_bounds[output_dim]) { const Index max_constraint = output_exclusive_max_constraint[output_dim]; if (!ImplicitOrEqual(max_constraint, dim_bounds.exclusive_max())) { return ShapeConstraintError(output_dim, max_constraint, dim_bounds.exclusive_max()); } const Index new_exclusive_max = new_output_exclusive_max[output_dim]; if (!ImplicitOrEqual(new_exclusive_max, dim_bounds.exclusive_max())) { return absl::FailedPreconditionError(tensorstore::StrCat( "Cannot change exclusive upper bound of output dimension ", output_dim, ", which is fixed at ", dim_bounds.exclusive_max(), ", to ", new_exclusive_max)); } } if (transaction_mode == TransactionMode::atomic_isolated && !(options.mode & resize_metadata_only) && !(options.mode & expand_only)) { output_inclusive_min_constraint[output_dim] = dim_bounds.inclusive_min(); output_exclusive_max_constraint[output_dim] = dim_bounds.exclusive_max(); } } span<const DimensionIndex> chunked_to_cell_dimensions = grid.components[component_index].chunked_to_cell_dimensions; std::vector<Index> new_grid_inclusive_min(grid_rank); std::vector<Index> new_grid_exclusive_max(grid_rank); std::vector<Index> grid_inclusive_min_constraint(grid_rank); std::vector<Index> grid_exclusive_max_constraint(grid_rank); for (DimensionIndex i = 0; i < grid_rank; ++i) { const DimensionIndex j = chunked_to_cell_dimensions[i]; new_grid_inclusive_min[i] = new_output_inclusive_min[j]; new_grid_exclusive_max[i] = new_output_exclusive_max[j]; grid_inclusive_min_constraint[i] = output_inclusive_min_constraint[j]; grid_exclusive_max_constraint[i] = output_exclusive_max_constraint[j]; } return ResizeParameters{ new_grid_inclusive_min, new_grid_exclusive_max, grid_inclusive_min_constraint, grid_exclusive_max_constraint, (options.mode & expand_only) == expand_only, (options.mode & shrink_only) == shrink_only}; } void KvsMetadataDriverBase::GarbageCollectionBase::Visit( garbage_collection::GarbageCollectionVisitor& visitor, const KvsMetadataDriverBase& value) { auto* cache = value.cache(); auto* metadata_cache = cache->metadata_cache(); garbage_collection::GarbageCollectionVisit(visitor, *metadata_cache->base_store()); } namespace jb = tensorstore::internal_json_binding; TENSORSTORE_DEFINE_JSON_BINDER( SpecJsonBinder, jb::Sequence( jb::Member(internal::DataCopyConcurrencyResource::id, jb::Projection<&KvsDriverSpec::data_copy_concurrency>()), jb::Member(internal::CachePoolResource::id, jb::Projection<&KvsDriverSpec::cache_pool>()), jb::Member("metadata_cache_pool", jb::Projection<&KvsDriverSpec::metadata_cache_pool>()), jb::Projection<&KvsDriverSpec::store>(jb::KvStoreSpecAndPathJsonBinder), jb::Initialize([](auto* obj) { internal::EnsureDirectoryPath(obj->store.path); return absl::OkStatus(); }), jb::Projection<&KvsDriverSpec::staleness>(jb::Sequence( jb::Member("recheck_cached_metadata", jb::Projection(&StalenessBounds::metadata, jb::DefaultValue([](auto* obj) { obj->bounded_by_open_time = true; }))), jb::Member("recheck_cached_data", jb::Projection(&StalenessBounds::data, jb::DefaultInitializedValue())))), internal::OpenModeSpecJsonBinder)); } }
#include "tensorstore/driver/kvs_backed_chunk_driver.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/box.h" #include "tensorstore/driver/kvs_backed_chunk_driver_impl.h" #include "tensorstore/index.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Box; using ::tensorstore::Index; using ::tensorstore::kImplicit; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_kvs_backed_chunk_driver:: ValidateResizeConstraints; using ISpan = ::tensorstore::span<const Index>; TEST(ValidateResizeConstraintsTest, Success) { EXPECT_EQ(absl::OkStatus(), ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 6}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), false, false)); EXPECT_EQ(absl::OkStatus(), ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({4, 6}), ISpan({0, 0}), ISpan({4, kImplicit}), false, false)); EXPECT_EQ(absl::OkStatus(), ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 6}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), true, false)); EXPECT_EQ(absl::OkStatus(), ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 3}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), false, true)); EXPECT_EQ(absl::OkStatus(), ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 5}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), true, true)); EXPECT_EQ(absl::OkStatus(), ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 5}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), true, true)); } TEST(ValidateResizeConstraintsTest, Failure) { EXPECT_THAT( ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 6}), ISpan({0, 0}), ISpan({5, kImplicit}), false, false), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Resize operation would also affect output dimension 0 " "over the out-of-bounds interval \\[4, 5\\)")); EXPECT_THAT( ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 6}), ISpan({0, 0}), ISpan({3, kImplicit}), false, false), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Resize operation would also affect output dimension 0 over the " "interval \\[3, 4\\) but `resize_tied_bounds` was not specified")); EXPECT_THAT( ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 6}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), false, true), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Resize operation would expand output dimension 1 from " "\\[0, 5\\) to \\[0, 6\\) but `shrink_only` was specified")); EXPECT_THAT( ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 4}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), true, false), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Resize operation would shrink output dimension 1 from " "\\[0, 5\\) to \\[0, 4\\) but `expand_only` was specified")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/kvs_backed_chunk_driver.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/kvs_backed_chunk_driver_test.cc
4f887a6430414cd6088e1743555015b10f116d50
aacfa9f6-1622-4f49-9337-a55a4bb65fda
cpp
tensorflow/tensorflow
sort
tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/sort.cc
third_party/xla/xla/tests/sort_test.cc
#include "tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/sort.h" #include <cstdint> #include "llvm/ADT/ilist.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/IR/Block.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/Region.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/DialectConversion.h" #include "tensorflow/compiler/mlir/lite/ir/tfl_ops.h" #include "tensorflow/compiler/mlir/lite/stablehlo/transforms/hlo_matchers.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" namespace mlir::odml { namespace { using OpListType = llvm::iplist<Operation>; template <typename ReturnOpType> bool MatchTopKComparator(Region& comparator) { if (!comparator.hasOneBlock()) return false; Block& comparator_blk = comparator.front(); OpListType& operations = comparator_blk.getOperations(); if (operations.size() != 2) return false; auto compare_op = llvm::dyn_cast_or_null<mhlo::CompareOp>(&operations.front()); auto return_op = llvm::dyn_cast_or_null<ReturnOpType>(&operations.back()); if (!compare_op || !return_op) return false; if (compare_op.getComparisonDirection() != mhlo::ComparisonDirection::GT) { return false; } if (compare_op.getOperands()[0] != comparator_blk.getArgument(0) || compare_op.getOperands()[1] != comparator_blk.getArgument(1)) { return false; } return return_op.getOperands().front() == compare_op.getResult(); } bool IsSortOpNotTopK(mhlo::SortOp op) { if (op->getNumOperands() != 2) { return true; } auto keys_opr = op.getInputs().front(); auto keys_type = llvm::cast<ShapedType>(keys_opr.getType()); if (!keys_type.hasStaticShape() || !keys_type.getElementType().isIntOrFloat()) { return true; } auto indices_opr = op.getInputs().back(); auto indices_type = llvm::cast<ShapedType>(indices_opr.getType()); if (!indices_type.hasStaticShape() || !indices_type.getElementType().isInteger(32)) { return true; } const int64_t sort_dim = op.getDimension(); const auto k = indices_type.getDimSize(sort_dim); const auto rank = keys_type.getRank(); if (sort_dim != rank - 1 || k < 1) { return true; } OpBuilder b(op->getContext()); if (!MatchIota(b.getI64TensorAttr({sort_dim}), indices_opr)) { return true; } if (!MatchTopKComparator<mhlo::ReturnOp>(op.getComparator())) { return true; } return false; } class LegalizeSortOp : public OpConversionPattern<mhlo::SortOp> { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite( mhlo::SortOp sort_op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const final; }; LogicalResult LegalizeSortOp::matchAndRewrite( mhlo::SortOp op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const { if (IsSortOpNotTopK(op)) { return failure(); } auto keys = op.getInputs().front(); auto indices = op.getInputs().back(); auto indices_type = llvm::cast<ShapedType>(indices.getType()); const int32_t k = indices_type.getShape().back(); auto k_cst_attr = DenseIntElementsAttr::get( RankedTensorType::get({}, rewriter.getI32Type()), k); auto k_cst = rewriter.create<arith::ConstantOp>(op->getLoc(), k_cst_attr); rewriter.replaceOpWithNewOp<TFL::TopKV2Op>(op, keys.getType(), indices.getType(), keys, k_cst); return success(); } } void PopulateSortPatterns(MLIRContext* ctx, RewritePatternSet& patterns, ConversionTarget& target) { patterns.add<LegalizeSortOp>(ctx); target.addDynamicallyLegalOp<mhlo::SortOp>(IsSortOpNotTopK); } }
#include <string> #include <string_view> #include <vector> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "xla/error_spec.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" namespace xla { namespace { class SortTest : public HloTestBase {}; XLA_TEST_F(SortTest, SortDim0) { std::string_view hlo_text_module = R"( HloModule sort compare { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT lt = pred[] compare(p0, p1), direction=LT } ENTRY e { x = f32[32,64] parameter(0) ROOT sort = f32[32,64] sort(x), dimensions={0}, to_apply=compare } )"; EXPECT_TRUE(RunAndCompare(hlo_text_module, ErrorSpec{0.0, 0.0})); } XLA_TEST_F(SortTest, SortDim1) { std::string_view hlo_text_module = R"( HloModule sort compare { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT lt = pred[] compare(p0, p1), direction=LT } ENTRY e { x = f32[32,64] parameter(0) ROOT sort = f32[32,64] sort(x), dimensions={1}, to_apply=compare } )"; EXPECT_TRUE(RunAndCompare(hlo_text_module, ErrorSpec{0.0, 0.0})); } XLA_TEST_F(SortTest, SortTwiceWithSameComparator) { std::string_view hlo_text_module = R"( HloModule sort compare { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT lt = pred[] compare(p0, p1), direction=LT } ENTRY e { x = f32[32,64] parameter(0) y = f32[64,32] parameter(1) sort_x = f32[32,64] sort(x), dimensions={0}, to_apply=compare sort_y = f32[64,32] sort(y), dimensions={1}, to_apply=compare ROOT tuple = (f32[32,64], f32[64,32]) tuple(sort_x, sort_y) } )"; EXPECT_TRUE(RunAndCompare(hlo_text_module, ErrorSpec{0.0, 0.0})); } class SortManyInputsTest : public SortTest, public ::testing::WithParamInterface<int> { public: static std::string Name(const ::testing::TestParamInfo<int>& info) { auto num_inputs = info.param; return absl::StrFormat("Sort%dInputs", num_inputs); } }; XLA_TEST_P(SortManyInputsTest, SortManyInputs) { int num_inputs = GetParam(); std::string_view hlo_text_module_template = R"( HloModule sort compare { ${COMPARE_DECLARATIONS} ROOT lt = pred[] compare(p0, p1), direction=LT } ENTRY e { ${SORT_DECLARATIONS} ROOT sort = (${SORT_SHAPE}) sort(${SORT_PARAMS}), dimensions={0}, to_apply=compare } )"; std::string sort_decls = ""; std::vector<std::string> param_names; param_names.reserve(num_inputs * 2); for (int i = 0; i < num_inputs; ++i) { sort_decls += absl::StrFormat("p%d = f32[32,64] parameter(%d)\n", i, i); param_names.emplace_back(absl::StrCat("p", i)); } std::string sort_params = absl::StrJoin(param_names, ", "); std::string sort_shape = absl::StrJoin(std::vector<std::string>(num_inputs, "f32[32,64]"), ","); std::string compare_decls = ""; for (int i = 0; i < num_inputs * 2; ++i) { compare_decls += absl::StrFormat("p%d = f32[] parameter(%d)\n", i, i); } std::string compare_params = absl::StrJoin(param_names, ", "); std::string hlo_text_module = absl::StrReplaceAll( hlo_text_module_template, {{"${SORT_DECLARATIONS}", sort_decls}, {"${SORT_SHAPE}", sort_shape}, {"${SORT_PARAMS}", sort_params}, {"${COMPARE_DECLARATIONS}", compare_decls}}); EXPECT_TRUE(RunAndCompare(hlo_text_module, ErrorSpec{0.0, 0.0})); } INSTANTIATE_TEST_SUITE_P(ManyInputs, SortManyInputsTest, ::testing::Values(17, 20), SortManyInputsTest::Name); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/sort.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tests/sort_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f058373b-e476-464a-856c-33de8c061930
cpp
tensorflow/tensorflow
activations
tensorflow/lite/kernels/activations.cc
tensorflow/lite/delegates/hexagon/builders/tests/activations_test.cc
#include <stddef.h> #include <algorithm> #include <cmath> #include <cstdint> #include <functional> #include <limits> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/cppmath.h" #include "tensorflow/lite/kernels/internal/optimized/integer_ops/leaky_relu.h" #include "tensorflow/lite/kernels/internal/optimized/integer_ops/lut.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/quantization_util.h" #include "tensorflow/lite/kernels/internal/reference/binary_function.h" #include "tensorflow/lite/kernels/internal/reference/gelu.h" #include "tensorflow/lite/kernels/internal/reference/integer_ops/log_softmax.h" #include "tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h" #include "tensorflow/lite/kernels/internal/reference/integer_ops/lut.h" #include "tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h" #include "tensorflow/lite/kernels/internal/reference/logistic.h" #include "tensorflow/lite/kernels/internal/reference/prelu.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/reference/softmax.h" #include "tensorflow/lite/kernels/internal/reference/tanh.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace activations { enum KernelType { kReference, kGenericOptimized, kFixedPointOptimized, }; struct OpData { int32_t input_multiplier = 0; int input_left_shift = 0; int32_t input_range_radius = 0; int diff_min = 0; union { uint8_t lut_uint8[LUTSize<uint8_t>()]; int8_t lut_int8[LUTSize<int8_t>()]; int16_t lut_int16[LUTSize<int16_t>()]; }; }; struct SoftmaxOpData { struct SoftmaxParams params = {}; float table[256]; #ifdef TFLITE_SOFTMAX_USE_UINT16_LUT uint8_t uint8_table1[256]; uint8_t uint8_table2[256]; #endif static constexpr int kInt16LUTArraySize = LUTSize<int16_t>(); int16_t exp_lut[kInt16LUTArraySize]; int16_t one_over_one_plus_x_lut[kInt16LUTArraySize]; }; struct LogSoftmaxOpData : public OpData { int32_t reverse_scaling_divisor = 0; int32_t reverse_scaling_right_shift = 0; struct SoftmaxParams params = {}; float f_table[256]; }; struct LeakyReluOpData : public OpData { int32_t output_multiplier_alpha = 0; int32_t output_shift_alpha = 0; int32_t output_multiplier_identity = 0; int32_t output_shift_identity = 0; }; struct PreluOpData : public OpData { int32_t output_multiplier_1 = 0; int32_t output_shift_1 = 0; int32_t output_multiplier_2 = 0; int32_t output_shift_2 = 0; bool requires_broadcast; }; struct HardSwishData { HardSwishParams params; }; struct ReluOpData : public OpData { int32_t output_multiplier = 0; int output_shift = 0; }; namespace { template <typename T> void QuantizedReluX(float act_min, float act_max, const TfLiteTensor* input, TfLiteTensor* output, const ReluOpData* data) { ReluParams params; params.quantized_activation_min = std::max(static_cast<int32_t>(std::numeric_limits<T>::min()), output->params.zero_point + static_cast<int32>(roundf(act_min / output->params.scale))); params.quantized_activation_max = act_max == std::numeric_limits<float>::infinity() ? static_cast<int32_t>(std::numeric_limits<T>::max()) : std::min( static_cast<int32_t>(std::numeric_limits<T>::max()), output->params.zero_point + static_cast<int32>(roundf(act_max / output->params.scale))); params.input_offset = input->params.zero_point; params.output_offset = output->params.zero_point; params.output_multiplier = data->output_multiplier; params.output_shift = data->output_shift; optimized_ops::ReluX(params, GetTensorShape(input), GetTensorData<T>(input), GetTensorShape(output), GetTensorData<T>(output)); } } void* Init(TfLiteContext* context, const char* buffer, size_t length) { return new OpData; } void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) { return new SoftmaxOpData; } void SoftmaxFree(TfLiteContext* context, void* buffer) { delete reinterpret_cast<SoftmaxOpData*>(buffer); } void* LogSoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) { return new LogSoftmaxOpData; } void* PreluInit(TfLiteContext* context, const char* buffer, size_t length) { return new PreluOpData; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } void LogSoftmaxFree(TfLiteContext* context, void* buffer) { delete reinterpret_cast<LogSoftmaxOpData*>(buffer); } void PreluFree(TfLiteContext* context, void* buffer) { delete reinterpret_cast<PreluOpData*>(buffer); } void* HardSwishInit(TfLiteContext* context, const char* buffer, size_t length) { return new HardSwishData; } TfLiteStatus GenericPrepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); } void* ReluInit(TfLiteContext* context, const char* buffer, size_t length) { return new ReluOpData; } void ReluFree(TfLiteContext* context, void* buffer) { delete reinterpret_cast<ReluOpData*>(buffer); } TfLiteStatus ReluPrepare(TfLiteContext* context, TfLiteNode* node) { ReluOpData* data = reinterpret_cast<ReluOpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8 || input->type == kTfLiteInt16) { double real_multiplier = input->params.scale / output->params.scale; QuantizeMultiplier(real_multiplier, &data->output_multiplier, &data->output_shift); } if (input->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); } return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); } void* LeakyReluInit(TfLiteContext* context, const char* buffer, size_t length) { return new LeakyReluOpData; } void LeakyReluFree(TfLiteContext* context, void* buffer) { delete reinterpret_cast<LeakyReluOpData*>(buffer); } void HardSwishFree(TfLiteContext* context, void* buffer) { delete static_cast<HardSwishData*>(buffer); } TfLiteStatus HardSwishPrepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_STATUS(GenericPrepare(context, node)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { HardSwishData* data = static_cast<HardSwishData*>(node->user_data); HardSwishParams* params = &data->params; const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); params->input_zero_point = input->params.zero_point; params->output_zero_point = output->params.zero_point; const float input_scale = input->params.scale; const float hires_input_scale = (1.0f / 128.0f) * input_scale; const float reluish_scale = 3.0f / 32768.0f; const float output_scale = output->params.scale; const float output_multiplier = hires_input_scale / output_scale; int32_t output_multiplier_fixedpoint_int32; QuantizeMultiplier(output_multiplier, &output_multiplier_fixedpoint_int32, &params->output_multiplier_exponent); DownScaleInt32ToInt16Multiplier( output_multiplier_fixedpoint_int32, &params->output_multiplier_fixedpoint_int16); TF_LITE_ENSURE(context, params->output_multiplier_exponent <= 0); const float reluish_multiplier = hires_input_scale / reluish_scale; int32_t reluish_multiplier_fixedpoint_int32; QuantizeMultiplier(reluish_multiplier, &reluish_multiplier_fixedpoint_int32, &params->reluish_multiplier_exponent); DownScaleInt32ToInt16Multiplier( reluish_multiplier_fixedpoint_int32, &params->reluish_multiplier_fixedpoint_int16); } return kTfLiteOk; } TfLiteStatus LeakyReluPrepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); LeakyReluOpData* data = reinterpret_cast<LeakyReluOpData*>(node->user_data); if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 || output->type == kTfLiteInt16) { const auto* params = reinterpret_cast<TfLiteLeakyReluParams*>(node->builtin_data); double alpha_multiplier = input->params.scale * params->alpha / output->params.scale; QuantizeMultiplier(alpha_multiplier, &data->output_multiplier_alpha, &data->output_shift_alpha); double identity_multiplier = input->params.scale / output->params.scale; QuantizeMultiplier(identity_multiplier, &data->output_multiplier_identity, &data->output_shift_identity); } if (input->type == kTfLiteInt16 && output->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); } return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); } template <KernelType kernel_type> TfLiteStatus TanhPrepare(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); if (kernel_type == kFixedPointOptimized) { if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) { static constexpr int kInputIntegerBits = 4; const double input_real_multiplier = input->params.scale * static_cast<double>(1 << (15 - kInputIntegerBits)); const double q = std::frexp(input_real_multiplier, &data->input_left_shift); auto q_fixed = static_cast<int32_t>(TfLiteRound(q * (1LL << 15))); data->input_multiplier = static_cast<int16_t>(q_fixed); int16_t input_range_radius = CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 15); data->input_range_radius = input_range_radius; } } if (kernel_type == kGenericOptimized || kernel_type == kReference) { if (input->type == kTfLiteUInt8) { LUTPopulate<uint8_t>( input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, [](float value) { return std::tanh(value); }, data->lut_uint8); } else if (input->type == kTfLiteInt8) { LUTPopulate<int8_t>( input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, [](float value) { return std::tanh(value); }, data->lut_int8); } } if (input->type == kTfLiteInt16) { static constexpr int kInputIntegerBits = 3; static constexpr int kOutputFractionalBits = 15; TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); int input_scale_log2_rounded; bool param_scale_pot = CheckedLog2(input->params.scale, &input_scale_log2_rounded); data->input_left_shift = (15 - kInputIntegerBits) + input_scale_log2_rounded; param_scale_pot &= (data->input_left_shift == 0 || data->input_left_shift == 1); if (!param_scale_pot) { double multiplier = input->params.scale * 4096.0 * 3.0; data->input_left_shift = 0; while (multiplier <= 32767.0 / 2.0 && data->input_left_shift <= 30) { data->input_left_shift++; multiplier = multiplier * 2.0; } data->input_multiplier = static_cast<int32_t>(multiplier); } int output_scale_log2_rounded; TF_LITE_ENSURE( context, CheckedLog2(output->params.scale, &output_scale_log2_rounded)); TF_LITE_ENSURE_EQ(context, output_scale_log2_rounded, -kOutputFractionalBits); } return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); } template <KernelType kernel_type> TfLiteStatus SigmoidPrepare(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); if (kernel_type == kFixedPointOptimized) { if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) { if (input->type == kTfLiteUInt8) { TF_LITE_ENSURE_EQ(context, output->params.zero_point, std::numeric_limits<uint8_t>::min()); } if (input->type == kTfLiteInt8) { TF_LITE_ENSURE_EQ(context, output->params.zero_point, std::numeric_limits<int8_t>::min()); } TF_LITE_ENSURE(context, output->params.scale == 1. / 256); static constexpr int kInputIntegerBits = 4; const double input_real_multiplier = input->params.scale * static_cast<double>(1 << (15 - kInputIntegerBits)); const double q = std::frexp(input_real_multiplier, &data->input_left_shift); auto q_fixed = static_cast<int32_t>(TfLiteRound(q * (1LL << 15))); data->input_multiplier = static_cast<int16_t>(q_fixed); int16_t input_range_radius = CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 15); data->input_range_radius = input_range_radius; } } if (kernel_type == kGenericOptimized || kernel_type == kReference) { if (input->type == kTfLiteUInt8) { TF_LITE_ENSURE(context, output->params.scale == 1. / 256); LUTPopulate<uint8_t>( input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, [](float value) { return 1.0f / (1.0f + std::exp(-value)); }, data->lut_uint8); } else if (input->type == kTfLiteInt8) { TF_LITE_ENSURE(context, output->params.scale == 1. / 256); LUTPopulate<int8_t>( input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, [](float value) { return 1.0f / (1.0f + std::exp(-value)); }, data->lut_int8); } else if (input->type == kTfLiteInt16) { TF_LITE_ENSURE(context, output->params.scale == 1. / 32768); TF_LITE_ENSURE(context, output->params.zero_point == 0); } } if (input->type == kTfLiteInt16) { static constexpr int kInputIntegerBits = 3; static constexpr int kOutputFractionalBits = 15; TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); int input_scale_log2_rounded; bool param_scale_pot = CheckedLog2(input->params.scale, &input_scale_log2_rounded); data->input_left_shift = (15 - kInputIntegerBits) + input_scale_log2_rounded; param_scale_pot &= (data->input_left_shift == 0); if (!param_scale_pot) { double multiplier = input->params.scale * 4096.0 * 3.0; data->input_left_shift = 0; while (multiplier <= 32767.0 / 2.0 && data->input_left_shift <= 30) { data->input_left_shift++; multiplier = multiplier * 2.0; } data->input_multiplier = static_cast<int32_t>(multiplier); } int output_scale_log2_rounded; TF_LITE_ENSURE( context, CheckedLog2(output->params.scale, &output_scale_log2_rounded)); TF_LITE_ENSURE_EQ(context, output_scale_log2_rounded, -kOutputFractionalBits); } return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); } template <KernelType kernel_type> TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteSoftmaxParams*>(node->builtin_data); SoftmaxOpData* data = reinterpret_cast<SoftmaxOpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); TF_LITE_ENSURE(context, NumDimensions(input) >= 1); if (input->type == kTfLiteInt8 && output->type == kTfLiteInt8) { TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128); TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 256, (0.001f * 1.f / 256)); } else if (input->type == kTfLiteInt16 && output->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 32768, (0.001f * 1.f / 32768)); } if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) { if (kernel_type == kReference) { const int kScaledDiffIntegerBits = 5; int input_left_shift; tflite::PreprocessSoftmaxScaling( static_cast<double>(params->beta), static_cast<double>(input->params.scale), kScaledDiffIntegerBits, &data->params.input_multiplier, &input_left_shift); data->params.input_left_shift = input_left_shift; data->params.diff_min = -1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits, input_left_shift); } else { switch (output->type) { case kTfLiteUInt8: case kTfLiteInt8: #ifdef TFLITE_SOFTMAX_USE_UINT16_LUT data->params.uint8_table1 = data->uint8_table1; data->params.uint8_table2 = data->uint8_table2; optimized_ops::PopulateSoftmaxUInt8LookupTable( &data->params, input->params.scale, params->beta); break; #endif case kTfLiteInt16: default: data->params.table = data->table; optimized_ops::PopulateSoftmaxLookupTable( &data->params, input->params.scale, params->beta); } data->params.zero_point = output->params.zero_point; data->params.scale = output->params.scale; } } else if (input->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); const int32_t range = std::numeric_limits<int16_t>::max() - std::numeric_limits<int16_t>::min(); data->params.exp_lut = data->exp_lut; LUTPopulate<int16_t>( 10.0 / range, std::numeric_limits<int16_t>::max(), 2.0 / range, 0, [](double value) { return std::exp(value); }, data->params.exp_lut); data->params.one_over_one_plus_x_lut = data->one_over_one_plus_x_lut; LUTPopulate<int16_t>( 1.0 / range, std::numeric_limits<int16_t>::min(), 2.0 / range, 0, [](double value) { return 1.0 / (1.0 + value); }, data->params.one_over_one_plus_x_lut); data->params.zero_point = output->params.zero_point; data->params.scale = output->params.scale; double input_scale_beta_rescale = input->params.scale * params->beta / (10.0 / 65535.0); QuantizeMultiplier(input_scale_beta_rescale, &data->params.input_multiplier, &data->params.input_left_shift); } return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); } template <KernelType kernel_type> TfLiteStatus LogSoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) { LogSoftmaxOpData* data = reinterpret_cast<LogSoftmaxOpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) { TF_LITE_ENSURE_EQ(context, output->params.scale, 16.0 / 256); static const double kBeta = 1.0; if (input->type == kTfLiteUInt8) { TF_LITE_ENSURE_EQ(context, output->params.zero_point, 255); } if (input->type == kTfLiteInt8) { TF_LITE_ENSURE_EQ(context, output->params.zero_point, 127); } if (kernel_type == kReference) { const int kScaledDiffIntegerBits = 5; int input_left_shift; int reverse_scaling_right_shift; tflite::PreprocessLogSoftmaxScalingExp( kBeta, static_cast<double>(input->params.scale), kScaledDiffIntegerBits, &data->params.input_multiplier, &input_left_shift, &data->params.reverse_scaling_divisor, &reverse_scaling_right_shift); reverse_scaling_right_shift *= -1; data->params.input_left_shift = input_left_shift; data->params.reverse_scaling_right_shift = reverse_scaling_right_shift; data->params.diff_min = -tflite::CalculateInputRadius( kScaledDiffIntegerBits, input_left_shift); } else { data->params.table = data->f_table; optimized_ops::PopulateSoftmaxLookupTable(&data->params, input->params.scale, kBeta); data->params.zero_point = output->params.zero_point; data->params.scale = output->params.scale; } } return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); } TfLiteStatus PreluPrepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const TfLiteTensor* alpha; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &alpha)); PreluOpData* data = reinterpret_cast<PreluOpData*>(node->user_data); TF_LITE_ENSURE_TYPES_EQ(context, input->type, alpha->type); output->type = input->type; if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { double real_multiplier_1 = input->params.scale / output->params.scale; double real_multiplier_2 = input->params.scale * alpha->params.scale / output->params.scale; QuantizeMultiplier(real_multiplier_1, &data->output_multiplier_1, &data->output_shift_1); QuantizeMultiplier(real_multiplier_2, &data->output_multiplier_2, &data->output_shift_2); } data->requires_broadcast = !HaveSameShapes(input, alpha); TfLiteIntArray* output_size = nullptr; TF_LITE_ENSURE_OK( context, CalculateShapeForBroadcast(context, input, alpha, &output_size)); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output, output_size)); TF_LITE_ENSURE(context, HaveSameShapes(input, output)); return kTfLiteOk; } TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const ReluOpData* data = reinterpret_cast<ReluOpData*>(node->user_data); switch (input->type) { case kTfLiteFloat32: { optimized_ops::Relu(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } break; case kTfLiteUInt8: { QuantizedReluX<uint8_t>(0.0f, std::numeric_limits<float>::infinity(), input, output, data); } break; case kTfLiteInt8: { QuantizedReluX<int8_t>(0.0f, std::numeric_limits<float>::infinity(), input, output, data); } break; case kTfLiteInt16: { QuantizedReluX<int16_t>(0.0f, std::numeric_limits<float>::infinity(), input, output, data); } break; default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8 and int16 are supported " "currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } return kTfLiteOk; } TfLiteStatus Relu1Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const ReluOpData* data = reinterpret_cast<ReluOpData*>(node->user_data); switch (input->type) { case kTfLiteFloat32: { optimized_ops::Relu1(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); return kTfLiteOk; } case kTfLiteUInt8: { QuantizedReluX<uint8_t>(-1.0f, 1.0f, input, output, data); return kTfLiteOk; } case kTfLiteInt8: { QuantizedReluX<int8_t>(-1, 1, input, output, data); return kTfLiteOk; } default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8 supported " "currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } template <KernelType kernel_type> TfLiteStatus HardSwishEval(TfLiteContext* context, TfLiteNode* node) { HardSwishData* data = static_cast<HardSwishData*>(node->user_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); switch (input->type) { case kTfLiteFloat32: { if (kernel_type == kReference) { reference_ops::HardSwish( GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } else { optimized_ops::HardSwish( GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } return kTfLiteOk; } break; case kTfLiteUInt8: { HardSwishParams& params = data->params; if (kernel_type == kReference) { reference_ops::HardSwish( params, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(output), GetTensorData<uint8_t>(output)); } else { optimized_ops::HardSwish( params, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(output), GetTensorData<uint8_t>(output)); } return kTfLiteOk; } break; case kTfLiteInt8: { HardSwishParams& params = data->params; if (kernel_type == kReference) { reference_ops::HardSwish( params, GetTensorShape(input), GetTensorData<int8_t>(input), GetTensorShape(output), GetTensorData<int8_t>(output)); } else { optimized_ops::HardSwish( params, GetTensorShape(input), GetTensorData<int8_t>(input), GetTensorShape(output), GetTensorData<int8_t>(output)); } return kTfLiteOk; } break; default: TF_LITE_KERNEL_LOG( context, "Only float32, uint8 and int8 are supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } TfLiteStatus Relu0to1Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const ReluOpData* data = reinterpret_cast<ReluOpData*>(node->user_data); switch (input->type) { case kTfLiteFloat32: { optimized_ops::Relu0To1( GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); return kTfLiteOk; } case kTfLiteUInt8: { QuantizedReluX<uint8_t>(0.0f, 1.0f, input, output, data); return kTfLiteOk; } case kTfLiteInt8: { QuantizedReluX<int8_t>(0, 1, input, output, data); return kTfLiteOk; } default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8 supported " "currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); ReluOpData* data = reinterpret_cast<ReluOpData*>(node->user_data); switch (input->type) { case kTfLiteFloat32: { size_t elements = input->bytes / sizeof(float); const float* in = GetTensorData<float>(input); const float* in_end = in + elements; float* out = GetTensorData<float>(output); for (; in < in_end; in++, out++) *out = std::min(std::max(0.f, *in), 6.f); return kTfLiteOk; } case kTfLiteUInt8: QuantizedReluX<uint8_t>(0.0f, 6.0f, input, output, data); return kTfLiteOk; case kTfLiteInt8: { QuantizedReluX<int8_t>(0.0f, 6.0f, input, output, data); return kTfLiteOk; } case kTfLiteInt16: { QuantizedReluX<int16_t>(0.0f, 6.0f, input, output, data); return kTfLiteOk; } default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8 and int16 are supported " "currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } template <KernelType kernel_type> TfLiteStatus TanhEval(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); switch (input->type) { case kTfLiteFloat32: { if (kernel_type == kReference) { reference_ops::Tanh(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } else { optimized_ops::Tanh(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } return kTfLiteOk; } break; case kTfLiteInt16: { TanhParams params; params.input_left_shift = data->input_left_shift; if (kernel_type == kReference || (data->input_multiplier > 0)) { reference_integer_ops::Tanh( data->input_multiplier, data->input_left_shift, GetTensorShape(input), GetTensorData<int16_t>(input), GetTensorShape(output), GetTensorData<int16_t>(output)); } else { optimized_ops::Tanh( params, GetTensorShape(input), GetTensorData<int16_t>(input), GetTensorShape(output), GetTensorData<int16_t>(output)); } return kTfLiteOk; } break; case kTfLiteUInt8: { if (kernel_type == kFixedPointOptimized) { TanhParams params; params.input_zero_point = input->params.zero_point; params.input_range_radius = data->input_range_radius; params.input_multiplier = data->input_multiplier; params.input_left_shift = data->input_left_shift; optimized_ops::Tanh16bitPrecision( params, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(output), GetTensorData<uint8_t>(output)); } else { optimized_integer_ops::LookupTable( GetTensorData<uint8_t>(input), MatchingFlatSize(GetTensorShape(input), GetTensorShape(output)), data->lut_uint8, GetTensorData<uint8_t>(output)); } return kTfLiteOk; } break; case kTfLiteInt8: { if (kernel_type == kFixedPointOptimized) { TanhParams params; params.input_zero_point = input->params.zero_point; params.input_range_radius = data->input_range_radius; params.input_multiplier = data->input_multiplier; params.input_left_shift = data->input_left_shift; optimized_ops::Tanh16bitPrecision( params, GetTensorShape(input), GetTensorData<int8_t>(input), GetTensorShape(output), GetTensorData<int8_t>(output)); } else { optimized_integer_ops::LookupTable( GetTensorData<int8_t>(input), MatchingFlatSize(GetTensorShape(input), GetTensorShape(output)), data->lut_int8, GetTensorData<int8_t>(output)); } return kTfLiteOk; } break; default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int16 and int8 are supported " "currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } template <KernelType kernel_type> TfLiteStatus SigmoidEval(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); switch (input->type) { case kTfLiteFloat32: { if (kernel_type == kReference) { reference_ops::Logistic( GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } else { optimized_ops::Logistic( GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } break; } case kTfLiteInt16: { LogisticParams params; if (kernel_type == kReference || (data->input_multiplier > 0)) { const int size = MatchingFlatSize(GetTensorShape(input), GetTensorShape(output)); reference_integer_ops::Logistic( data->input_multiplier, data->input_left_shift, size, GetTensorData<int16_t>(input), GetTensorData<int16_t>(output)); } else { optimized_ops::Logistic( params, GetTensorShape(input), GetTensorData<int16_t>(input), GetTensorShape(output), GetTensorData<int16_t>(output)); } break; } case kTfLiteUInt8: { if (kernel_type == kFixedPointOptimized) { LogisticParams params; params.input_zero_point = input->params.zero_point; params.input_range_radius = data->input_range_radius; params.input_multiplier = data->input_multiplier; params.input_left_shift = data->input_left_shift; optimized_ops::Logistic16bitPrecision( params, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(output), GetTensorData<uint8_t>(output)); } else { optimized_integer_ops::LookupTable( GetTensorData<uint8_t>(input), MatchingFlatSize(GetTensorShape(input), GetTensorShape(output)), data->lut_uint8, GetTensorData<uint8_t>(output)); } break; } case kTfLiteInt8: { if (kernel_type == kFixedPointOptimized) { LogisticParams params; params.input_zero_point = input->params.zero_point; params.input_range_radius = data->input_range_radius; params.input_multiplier = data->input_multiplier; params.input_left_shift = data->input_left_shift; optimized_ops::Logistic16bitPrecision( params, GetTensorShape(input), GetTensorData<int8_t>(input), GetTensorShape(output), GetTensorData<int8_t>(output)); } else { optimized_integer_ops::LookupTable( GetTensorData<int8_t>(input), MatchingFlatSize(GetTensorShape(input), GetTensorShape(output)), data->lut_int8, GetTensorData<int8_t>(output)); } break; } default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int16 and int8 are supported " "currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } return kTfLiteOk; } TfLiteStatus SoftmaxFloat(TfLiteContext* context, const TfLiteTensor* input, TfLiteTensor* output, TfLiteSoftmaxParams* params, KernelType kernel_type = kGenericOptimized) { SoftmaxParams op_params; op_params.beta = params->beta; if (kernel_type == kReference) { reference_ops::Softmax(op_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } else { optimized_ops::Softmax(op_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output), CpuBackendContext::GetFromContext(context)); } return kTfLiteOk; } template <typename In, typename Out> TfLiteStatus SoftmaxQuantized(TfLiteContext* context, const TfLiteTensor* input, TfLiteTensor* output, SoftmaxOpData* data, KernelType kernel_type = kGenericOptimized) { if (kernel_type == kReference) { reference_ops::Softmax(data->params, GetTensorShape(input), GetTensorData<In>(input), GetTensorShape(output), GetTensorData<Out>(output)); } else { optimized_ops::Softmax(data->params, GetTensorShape(input), GetTensorData<In>(input), GetTensorShape(output), GetTensorData<Out>(output)); } return kTfLiteOk; } template <> TfLiteStatus SoftmaxQuantized<int8_t, int8_t>(TfLiteContext* context, const TfLiteTensor* input, TfLiteTensor* output, SoftmaxOpData* data, KernelType kernel_type) { if (kernel_type == kReference) { reference_ops::Softmax(data->params, GetTensorShape(input), GetTensorData<int8_t>(input), GetTensorShape(output), GetTensorData<int8_t>(output)); } else { #ifdef TFLITE_SOFTMAX_USE_UINT16_LUT optimized_ops::SoftmaxInt8LUT( data->params, GetTensorShape(input), GetTensorData<int8_t>(input), GetTensorShape(output), GetTensorData<int8_t>(output)); #else optimized_ops::Softmax(data->params, GetTensorShape(input), GetTensorData<int8_t>(input), GetTensorShape(output), GetTensorData<int8_t>(output)); #endif } return kTfLiteOk; } template <> TfLiteStatus SoftmaxQuantized<uint8_t, uint8_t>(TfLiteContext* context, const TfLiteTensor* input, TfLiteTensor* output, SoftmaxOpData* data, KernelType kernel_type) { if (kernel_type == kReference) { reference_ops::Softmax( data->params, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(output), GetTensorData<uint8_t>(output)); } else { #ifdef TFLITE_SOFTMAX_USE_UINT16_LUT optimized_ops::SoftmaxInt8LUT( data->params, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(output), GetTensorData<uint8_t>(output)); #else optimized_ops::Softmax( data->params, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(output), GetTensorData<uint8_t>(output)); #endif } return kTfLiteOk; } template <> TfLiteStatus SoftmaxQuantized<int16, int16>(TfLiteContext* context, const TfLiteTensor* input, TfLiteTensor* output, SoftmaxOpData* data, KernelType kernel_type) { if (NumDimensions(input) >= 1 && NumDimensions(input) <= 4) { reference_ops::SoftmaxInt16( data->params, GetTensorShape(input), GetTensorData<int16_t>(input), GetTensorShape(output), GetTensorData<int16_t>(output)); return kTfLiteOk; } else { TF_LITE_KERNEL_LOG(context, "Only 1D, 2D, 3D and 4D tensors supported for int16 " "input with int16 output, got %dD.", NumDimensions(input)); return kTfLiteError; } } template <KernelType kernel_type> TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteSoftmaxParams*>(node->builtin_data); SoftmaxOpData* data = reinterpret_cast<SoftmaxOpData*>(node->user_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); switch (input->type) { case kTfLiteFloat32: { return SoftmaxFloat(context, input, output, params, kernel_type); } case kTfLiteUInt8: { switch (output->type) { case kTfLiteUInt8: return SoftmaxQuantized<uint8_t, uint8_t>(context, input, output, data, kernel_type); case kTfLiteInt16: return SoftmaxQuantized<uint8_t, int16_t>(context, input, output, data, kernel_type); default: TF_LITE_KERNEL_LOG(context, "Only uint8_t and int16_t outputs are supported " "with uint8_t inputs currently, got %s.", TfLiteTypeGetName(output->type)); return kTfLiteError; } } case kTfLiteInt8: { switch (output->type) { case kTfLiteInt8: return SoftmaxQuantized<int8_t, int8_t>(context, input, output, data, kernel_type); case kTfLiteInt16: return SoftmaxQuantized<int8_t, int16_t>(context, input, output, data, kernel_type); default: TF_LITE_KERNEL_LOG(context, "Only int8_t and int16_t outputs are supported " "with int8_t inputs currently, got %s.", TfLiteTypeGetName(output->type)); return kTfLiteError; } } case kTfLiteInt16: { return SoftmaxQuantized<int16_t, int16_t>(context, input, output, data, kernel_type); } default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8_t, Int8_t, Int16_t are supported " "currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } template <KernelType kernel_type> TfLiteStatus LogSoftmaxEval(TfLiteContext* context, TfLiteNode* node) { const LogSoftmaxOpData* data = reinterpret_cast<LogSoftmaxOpData*>(node->user_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); switch (input->type) { case kTfLiteFloat32: { SoftmaxParams op_params; if (kernel_type == kGenericOptimized) { optimized_ops::LogSoftmax( op_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } else { reference_ops::LogSoftmax( op_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); } return kTfLiteOk; } case kTfLiteUInt8: { const SoftmaxParams& op_params = data->params; if (kernel_type == kGenericOptimized) { optimized_ops::LogSoftmax( op_params, input->params.scale, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(output), GetTensorData<uint8_t>(output)); } else { reference_ops::LogSoftmax( op_params, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(output), GetTensorData<uint8_t>(output)); } return kTfLiteOk; } case kTfLiteInt8: { const SoftmaxParams& op_params = data->params; if (kernel_type == kGenericOptimized) { optimized_ops::LogSoftmax( op_params, input->params.scale, GetTensorShape(input), GetTensorData<int8_t>(input), GetTensorShape(output), GetTensorData<int8_t>(output)); } else { const auto input_shape = GetTensorShape(input); const auto output_shape = GetTensorShape(output); const int trailing_dim = input_shape.DimensionsCount() - 1; const int outer_size = MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape); const int depth = MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim); reference_integer_ops::LogSoftmax( op_params.input_multiplier, op_params.input_left_shift, op_params.reverse_scaling_divisor, op_params.reverse_scaling_right_shift, op_params.diff_min, outer_size, depth, GetTensorData<int8_t>(input), GetTensorData<int8_t>(output)); } return kTfLiteOk; } default: TF_LITE_KERNEL_LOG( context, "Only float32, uint8 and int8 are supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } template <typename T> T ApplyPrelu(T input, T alpha) { return input >= 0.0 ? input : input * alpha; } template <KernelType kernel_type> TfLiteStatus PreluEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); const TfLiteTensor* alpha; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &alpha)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const PreluOpData* data = reinterpret_cast<PreluOpData*>(node->user_data); switch (input->type) { case kTfLiteFloat32: { if (kernel_type == kGenericOptimized) { tflite::ArithmeticParams op_params; bool need_broadcast = optimized_ops::ProcessBroadcastShapes( GetTensorShape(input), GetTensorShape(alpha), &op_params); if (need_broadcast) { optimized_ops::BroadcastPReluDispatch( op_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(alpha), GetTensorData<float>(alpha), GetTensorShape(output), GetTensorData<float>(output), ApplyPrelu<float>); } else { const int flat_size = MatchingElementsSize(GetTensorShape(input), GetTensorShape(alpha), GetTensorShape(output)); optimized_ops::PReluElementWise( flat_size, op_params, GetTensorData<float>(alpha), GetTensorData<float>(input), GetTensorData<float>(output)); } } else { if (data->requires_broadcast) { reference_ops::BroadcastBinaryFunction4DSlow<float, float, float>( GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(alpha), GetTensorData<float>(alpha), GetTensorShape(output), GetTensorData<float>(output), ApplyPrelu<float>); } else { reference_ops::BinaryFunction<float, float, float>( GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(alpha), GetTensorData<float>(alpha), GetTensorShape(output), GetTensorData<float>(output), ApplyPrelu<float>); } } return kTfLiteOk; } case kTfLiteUInt8: { PreluParams op_params; op_params.input_offset = -input->params.zero_point; op_params.alpha_offset = -alpha->params.zero_point; op_params.output_offset = output->params.zero_point; op_params.output_multiplier_1 = data->output_multiplier_1; op_params.output_shift_1 = data->output_shift_1; op_params.output_multiplier_2 = data->output_multiplier_2; op_params.output_shift_2 = data->output_shift_2; if (data->requires_broadcast) { reference_ops::BroadcastPrelu4DSlow( op_params, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(alpha), GetTensorData<uint8_t>(alpha), GetTensorShape(output), GetTensorData<uint8_t>(output)); } else { reference_ops::Prelu( op_params, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(alpha), GetTensorData<uint8_t>(alpha), GetTensorShape(output), GetTensorData<uint8_t>(output)); } return kTfLiteOk; } case kTfLiteInt8: { PreluParams op_params; op_params.input_offset = -input->params.zero_point; op_params.alpha_offset = -alpha->params.zero_point; op_params.output_offset = output->params.zero_point; op_params.output_multiplier_1 = data->output_multiplier_1; op_params.output_shift_1 = data->output_shift_1; op_params.output_multiplier_2 = data->output_multiplier_2; op_params.output_shift_2 = data->output_shift_2; if (data->requires_broadcast) { reference_ops::BroadcastPrelu4DSlow( op_params, GetTensorShape(input), GetTensorData<int8_t>(input), GetTensorShape(alpha), GetTensorData<int8_t>(alpha), GetTensorShape(output), GetTensorData<int8_t>(output)); } else { reference_ops::Prelu( op_params, GetTensorShape(input), GetTensorData<int8_t>(input), GetTensorShape(alpha), GetTensorData<int8_t>(alpha), GetTensorShape(output), GetTensorData<int8_t>(output)); } return kTfLiteOk; } default: TF_LITE_KERNEL_LOG( context, "Only float32 and uint8 and int8 are supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } template <KernelType kernel_type, typename T> void QuantizeLeakyRelu(const TfLiteTensor* input, TfLiteTensor* output, const LeakyReluOpData* data) { LeakyReluParams op_params; op_params.input_offset = input->params.zero_point; op_params.output_offset = output->params.zero_point; op_params.output_multiplier_alpha = data->output_multiplier_alpha; op_params.output_shift_alpha = data->output_shift_alpha; op_params.output_multiplier_identity = data->output_multiplier_identity; op_params.output_shift_identity = data->output_shift_identity; if (kernel_type != KernelType::kReference && input->type == kTfLiteInt16) { optimized_integer_ops::QuantizeLeakyRelu( op_params, GetTensorShape(input), GetTensorData<int16>(input), GetTensorShape(output), GetTensorData<int16>(output)); } else { reference_ops::QuantizeLeakyRelu( op_params, GetTensorShape(input), GetTensorData<T>(input), GetTensorShape(output), GetTensorData<T>(output)); } } template <KernelType kernel_type> TfLiteStatus LeakyReluEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const auto* params = reinterpret_cast<TfLiteLeakyReluParams*>(node->builtin_data); const LeakyReluOpData* data = reinterpret_cast<LeakyReluOpData*>(node->user_data); LeakyReluParams op_params; switch (input->type) { case kTfLiteFloat32: { op_params.alpha = params->alpha; optimized_ops::LeakyRelu( op_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); return kTfLiteOk; } case kTfLiteUInt8: { QuantizeLeakyRelu<kernel_type, uint8_t>(input, output, data); return kTfLiteOk; } case kTfLiteInt8: { QuantizeLeakyRelu<kernel_type, int8_t>(input, output, data); return kTfLiteOk; } case kTfLiteInt16: { QuantizeLeakyRelu<kernel_type, int16_t>(input, output, data); return kTfLiteOk; } default: TF_LITE_KERNEL_LOG( context, "Only float32, int8, int16 and uint8 is supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } TfLiteStatus EluPrepare(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); OpData* data = reinterpret_cast<OpData*>(node->user_data); if (input->type == kTfLiteInt8) { LUTPopulate<int8_t>( input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, [](float value) { return value < 0.0f ? std::expm1(value) : value; }, data->lut_int8); } return GenericPrepare(context, node); } TfLiteStatus EluEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); switch (input->type) { case kTfLiteFloat32: { optimized_ops::Elu(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); return kTfLiteOk; } case kTfLiteInt8: { OpData* data = reinterpret_cast<OpData*>(node->user_data); optimized_integer_ops::LookupTable( GetTensorData<int8_t>(input), MatchingFlatSize(GetTensorShape(input), GetTensorShape(output)), data->lut_int8, GetTensorData<int8_t>(output)); return kTfLiteOk; } default: TF_LITE_KERNEL_LOG( context, "Only float32 and int8 is supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } TfLiteStatus GeluPrepare(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); OpData* data = reinterpret_cast<OpData*>(node->user_data); auto* params = reinterpret_cast<TfLiteGeluParams*>(node->builtin_data); if (input->type == kTfLiteInt8) { LUTPopulate<int8_t>(input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, params->approximate ? reference_ops::GeluTransformApproximate : reference_ops::GeluTransform, data->lut_int8); } else if (input->type == kTfLiteUInt8) { LUTPopulate<uint8_t>(input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, params->approximate ? reference_ops::GeluTransformApproximate : reference_ops::GeluTransform, data->lut_uint8); } return GenericPrepare(context, node); } TfLiteStatus GeluEval(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); auto* params = reinterpret_cast<TfLiteGeluParams*>(node->builtin_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); switch (input->type) { case kTfLiteFloat32: reference_ops::Gelu(GetTensorShape(input), GetTensorData<float>(input), params->approximate, GetTensorShape(output), GetTensorData<float>(output)); return kTfLiteOk; case kTfLiteUInt8: optimized_integer_ops::LookupTable( GetTensorData<uint8_t>(input), MatchingFlatSize(GetTensorShape(input), GetTensorShape(output)), data->lut_uint8, GetTensorData<uint8_t>(output)); return kTfLiteOk; case kTfLiteInt8: optimized_integer_ops::LookupTable( GetTensorData<int8_t>(input), MatchingFlatSize(GetTensorShape(input), GetTensorShape(output)), data->lut_int8, GetTensorData<int8_t>(output)); return kTfLiteOk; default: TF_LITE_KERNEL_LOG( context, "Only float32, int8 and uint8 supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } } TfLiteRegistration* Register_ELU() { static TfLiteRegistration r = {activations::Init, activations::Free, activations::EluPrepare, activations::EluEval}; return &r; } TfLiteRegistration* Register_RELU() { static TfLiteRegistration r = {activations::ReluInit, activations::ReluFree, activations::ReluPrepare, activations::ReluEval}; return &r; } TfLiteRegistration* Register_RELU_N1_TO_1() { static TfLiteRegistration r = {activations::ReluInit, activations::ReluFree, activations::ReluPrepare, activations::Relu1Eval}; return &r; } TfLiteRegistration* Register_RELU6() { static TfLiteRegistration r = {activations::ReluInit, activations::ReluFree, activations::ReluPrepare, activations::Relu6Eval}; return &r; } TfLiteRegistration* Register_RELU_0_TO_1() { static TfLiteRegistration r = {activations::ReluInit, activations::ReluFree, activations::ReluPrepare, activations::Relu0to1Eval}; return &r; } TfLiteRegistration* Register_TANH_REF() { static TfLiteRegistration r = { activations::Init, activations::Free, activations::TanhPrepare<activations::kReference>, activations::TanhEval<activations::kReference>}; return &r; } TfLiteRegistration* Register_TANH_GENERIC_OPT() { static TfLiteRegistration r = { activations::Init, activations::Free, activations::TanhPrepare<activations::kGenericOptimized>, activations::TanhEval<activations::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_TANH_FIXED_POINT_OPT() { static TfLiteRegistration r = { activations::Init, activations::Free, activations::TanhPrepare<activations::kFixedPointOptimized>, activations::TanhEval<activations::kFixedPointOptimized>}; return &r; } TfLiteRegistration* Register_TANH() { return Register_TANH_GENERIC_OPT(); } TfLiteRegistration* Register_LOGISTIC_REF() { static TfLiteRegistration r = { activations::Init, activations::Free, activations::SigmoidPrepare<activations::kReference>, activations::SigmoidEval<activations::kReference>}; return &r; } TfLiteRegistration* Register_LOGISTIC_GENERIC_OPT() { static TfLiteRegistration r = { activations::Init, activations::Free, activations::SigmoidPrepare<activations::kGenericOptimized>, activations::SigmoidEval<activations::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_LOGISTIC_FIXED_POINT_OPT() { static TfLiteRegistration r = { activations::Init, activations::Free, activations::SigmoidPrepare<activations::kFixedPointOptimized>, activations::SigmoidEval<activations::kFixedPointOptimized>}; return &r; } TfLiteRegistration* Register_LOGISTIC() { return Register_LOGISTIC_GENERIC_OPT(); } TfLiteRegistration* Register_SOFTMAX_REF() { static TfLiteRegistration r = { activations::SoftmaxInit, activations::SoftmaxFree, activations::SoftmaxPrepare<activations::kReference>, activations::SoftmaxEval<activations::kReference>, nullptr, 0, nullptr, 0, nullptr, nullptr, kTfLiteInplaceOpInput0Shared}; return &r; } TfLiteRegistration* Register_SOFTMAX() { static TfLiteRegistration r = { activations::SoftmaxInit, activations::SoftmaxFree, activations::SoftmaxPrepare<activations::kGenericOptimized>, activations::SoftmaxEval<activations::kGenericOptimized>, nullptr, 0, nullptr, 0, nullptr, nullptr, kTfLiteInplaceOpInput0Shared}; return &r; } TfLiteRegistration* Register_LOG_SOFTMAX_REF() { static TfLiteRegistration r = { activations::LogSoftmaxInit, activations::LogSoftmaxFree, activations::LogSoftmaxPrepare<activations::kReference>, activations::LogSoftmaxEval<activations::kReference>}; return &r; } TfLiteRegistration* Register_LOG_SOFTMAX() { static TfLiteRegistration r = { activations::LogSoftmaxInit, activations::LogSoftmaxFree, activations::LogSoftmaxPrepare<activations::kGenericOptimized>, activations::LogSoftmaxEval<activations::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_PRELU_REF() { static TfLiteRegistration r = { activations::PreluInit, activations::PreluFree, activations::PreluPrepare, activations::PreluEval<activations::kReference>}; return &r; } TfLiteRegistration* Register_PRELU() { static TfLiteRegistration r = { activations::PreluInit, activations::PreluFree, activations::PreluPrepare, activations::PreluEval<activations::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_LEAKY_RELU_REF() { static TfLiteRegistration r = { activations::LeakyReluInit, activations::LeakyReluFree, activations::LeakyReluPrepare, activations::LeakyReluEval<activations::kReference>}; return &r; } TfLiteRegistration* Register_LEAKY_RELU() { static TfLiteRegistration r = { activations::LeakyReluInit, activations::LeakyReluFree, activations::LeakyReluPrepare, activations::LeakyReluEval<activations::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_HARD_SWISH() { static TfLiteRegistration r = { activations::HardSwishInit, activations::HardSwishFree, activations::HardSwishPrepare, activations::HardSwishEval<activations::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_HARD_SWISH_REF() { static TfLiteRegistration r = { activations::HardSwishInit, activations::HardSwishFree, activations::HardSwishPrepare, activations::HardSwishEval<activations::kReference>}; return &r; } TfLiteRegistration* Register_GELU() { static TfLiteRegistration r = {activations::Init, activations::Free, activations::GeluPrepare, activations::GeluEval}; return &r; } } } }
#include <algorithm> #include <cstdarg> #include <cstdint> #include <limits> #include <random> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/hexagon/builders/tests/hexagon_delegate_op_model.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { using testing::ElementsAreArray; namespace { void GenerateUniformRandomVector(int size, float min, float max, std::minstd_rand* random_engine, std::vector<float>* result) { result->resize(size); for (int i = 0; i < size; i++) { float random_value_scaled_0_1 = (*random_engine)() * (1.0f / static_cast<float>(std::minstd_rand::modulus)); (*result)[i] = min + (max - min) * random_value_scaled_0_1; } } } class ActivationOpModel : public SingleOpModelWithHexagon { public: explicit ActivationOpModel(BuiltinOperator type, const TensorData& input, const TensorData& output) { input_ = AddInput(input); output_ = AddOutput(output); SetBuiltinOp(type, BuiltinOptions_NONE, 0); BuildInterpreter({GetShape(input_)}); } template <typename T> void SetInput(const std::vector<float>& data) { QuantizeAndPopulate<T>(input_, data); } template <typename T> std::vector<float> GetDequantizedOutput() { return Dequantize<T>(ExtractVector<T>(output_), GetScale(output_), GetZeroPoint(output_)); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: BuiltinOperator op_code_; int input_; int output_; }; template <typename integer_type, TensorType tensor_dtype> void ReluTestImpl() { const float kMin = -6; const float kMax = 6; ActivationOpModel model(BuiltinOperator_RELU, {tensor_dtype, {1, 3}, kMin, kMax}, {tensor_dtype, {1, 3}, kMin, kMax}); model.SetInput<integer_type>({1, 5, 7}); model.ApplyDelegateAndInvoke(); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 3})); EXPECT_THAT(model.GetDequantizedOutput<integer_type>(), ElementsAreArray( ArrayFloatNear({1.0, 5.0, 6.0}, 0.03))); } template <typename integer_type, TensorType tensor_dtype> void Relu6TestImpl() { const float kMin = -8; const float kMax = 8; ActivationOpModel model(BuiltinOperator_RELU6, {tensor_dtype, {1, 3}, kMin, kMax}, {tensor_dtype, {1, 3}, kMin, kMax}); model.SetInput<integer_type>({4, -1.0, 8}); model.ApplyDelegateAndInvoke(); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 3})); EXPECT_THAT(model.GetDequantizedOutput<integer_type>(), ElementsAreArray( ArrayFloatNear({4.0, 0.0, 6.0}, 0.03))); } template <typename integer_type, TensorType tensor_dtype> void TanhTestImpl() { const float kMin = -1; const float kMax = 127.f / 128.f; ActivationOpModel model(BuiltinOperator_TANH, {tensor_dtype, {1, 3}, 8 * kMin, 8 * kMax}, {tensor_dtype, {1, 3}, kMin, kMax}); model.SetInput<integer_type>({4, -1.0, 8}); model.ApplyDelegateAndInvoke(); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 3})); EXPECT_THAT(model.GetDequantizedOutput<integer_type>(), ElementsAreArray(ArrayFloatNear({1.00392, -0.752941, 1.00392}, 0.03))); } template <typename integer_type, TensorType tensor_dtype> void SigmoidTestImpl() { const float kMin = -8; const float kMax = 8; TensorData output; if (tensor_dtype == TensorType_UINT8) { output = {tensor_dtype, {}, 0, 0, 1. / 256}; } else if (tensor_dtype == TensorType_INT8) { output = {tensor_dtype, {}, 0, 0, 1. / 256, -128}; } ActivationOpModel model(BuiltinOperator_LOGISTIC, {tensor_dtype, {1, 3}, kMin, kMax}, output); model.SetInput<integer_type>({4, -1.0, 8}); model.ApplyDelegateAndInvoke(); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 3})); EXPECT_THAT(model.GetDequantizedOutput<integer_type>(), ElementsAreArray(ArrayFloatNear({0.977, 0.266, 0.996}, 0.03))); } TEST(ActivationOpModel, ReluOutput_UInt8) { ReluTestImpl<uint8_t, TensorType_UINT8>(); } TEST(ActivationOpModel, ReluOutput_Int8) { ReluTestImpl<int8_t, TensorType_INT8>(); } TEST(ActivationOpModel, Relu6Output_UInt8) { Relu6TestImpl<uint8_t, TensorType_UINT8>(); } TEST(ActivationOpModel, Relu6Output_Int8) { Relu6TestImpl<int8_t, TensorType_INT8>(); } TEST(ActivationOpModel, SigmoidOutput_UInt8) { SigmoidTestImpl<uint8_t, TensorType_UINT8>(); } TEST(ActivationOpModel, SigmoidOutput_Int8) { SigmoidTestImpl<int8_t, TensorType_INT8>(); } TEST(ActivationOpModel, TanhOutput_UInt8) { TanhTestImpl<uint8_t, TensorType_UINT8>(); } TEST(ActivationOpModel, TanhOutput_Int8) { TanhTestImpl<int8_t, TensorType_INT8>(); } void EvalTestReferenceHardSwish(int size, const std::vector<float>& input, std::vector<float>* result) { result->resize(size); for (int i = 0; i < size; i++) { const float in = input[i]; (*result)[i] = in * std::min(6.0f, std::max(0.0f, in + 3)) * (1.0f / 6.0f); } } template <TensorType Tensor_Type, typename input_type> void TestQuantizedHardSwish(int size, float input_min, float input_max, float output_min, float output_max, std::minstd_rand* random_engine) { std::vector<float> float_input_values; GenerateUniformRandomVector(size, input_min, input_max, random_engine, &float_input_values); std::vector<float> float_ref_output_values; EvalTestReferenceHardSwish(size, float_input_values, &float_ref_output_values); for (float& val : float_ref_output_values) { val = std::min(output_max, std::max(output_min, val)); } ActivationOpModel m( BuiltinOperator_HARD_SWISH, {Tensor_Type, {1, 1, 1, size}, input_min, input_max}, {Tensor_Type, {1, 1, 1, size}, output_min, output_max}); m.SetInput<input_type>(float_input_values); m.ApplyDelegateAndInvoke(); const std::vector<float> dequantized_output = m.GetDequantizedOutput<input_type>(); const float quant_recommended_tolerance = std::max(input_max - input_min, output_max - output_min) * (1.5f / 256.f); const float kTolerance = std::max(0.03f, quant_recommended_tolerance); EXPECT_THAT(dequantized_output, ElementsAreArray(ArrayFloatNear( float_ref_output_values, kTolerance))); } template <TensorType Tensor_Type, typename input_type> void HardSwishTestImpl() { std::minstd_rand random_engine; std::vector<std::pair<float, float>> minmax_pairs{{0.f, 1.f}, {-5.f, 10.f}}; for (const auto& input_minmax : minmax_pairs) { for (const auto& output_minmax : minmax_pairs) { float input_min = input_minmax.first; float input_max = input_minmax.second; float output_min = output_minmax.first; float output_max = output_minmax.second; for (int size : {1, 3, 40}) { TestQuantizedHardSwish<Tensor_Type, input_type>( size, input_min, input_max, output_min, output_max, &random_engine); } } } } TEST(ActivationOpModel, HardSwishTestUInt8) { HardSwishTestImpl<TensorType_UINT8, uint8_t>(); } TEST(ActivationOpModel, HardSwishTestInt8) { HardSwishTestImpl<TensorType_INT8, int8_t>(); } template <TensorType Tensor_Type, typename input_type> void HardSwishBiasTestImpl() { float input_min = -11.654928f; float input_max = 25.036512f; float output_min = -0.3905796f; float output_max = 24.50887f; float tolerated_bias = 0.035; const float quantized_type_range = static_cast<float>(std::numeric_limits<int8_t>::max()) - static_cast<float>(std::numeric_limits<int8_t>::min()); const float input_scale = (input_max - input_min) / quantized_type_range; const float output_scale = (output_max - output_min) / quantized_type_range; const float max_scale = std::max(output_scale, input_scale); ASSERT_LE(input_min, -3.0f); ASSERT_GE(input_max, 3.0f); const int quantized_input_negative_three = std::round(std::numeric_limits<input_type>::min() + (-3.0f - input_min) / input_scale); const int quantized_input_positive_three = std::round(std::numeric_limits<input_type>::min() + (3.0f - input_min) / input_scale); std::vector<float> float_input_values; for (int i = quantized_input_negative_three; i <= quantized_input_positive_three; i++) { float_input_values.push_back( input_min + (i - std::numeric_limits<int8_t>::min()) * input_scale); } const int size = float_input_values.size(); std::vector<float> float_ref_output_values; EvalTestReferenceHardSwish(size, float_input_values, &float_ref_output_values); for (float& val : float_ref_output_values) { val = std::min(output_max, std::max(output_min, val)); } ActivationOpModel m( BuiltinOperator_HARD_SWISH, {Tensor_Type, {1, 1, 1, size}, input_min, input_max}, {Tensor_Type, {1, 1, 1, size}, output_min, output_max}); m.SetInput<input_type>(float_input_values); m.ApplyDelegateAndInvoke(); const std::vector<float> dequantized_output = m.GetDequantizedOutput<input_type>(); float sum_diff = 0; for (int i = 0; i < size; i++) { sum_diff += dequantized_output[i] - float_ref_output_values[i]; } const float bias = sum_diff / (size * max_scale); EXPECT_LE(std::abs(bias), tolerated_bias); } TEST(ActivationOpModel, HardSwishBiasTest) { HardSwishBiasTestImpl<TensorType_UINT8, uint8_t>(); } TEST(ActivationOpModel, HardSwishBiasTestInt8) { HardSwishBiasTestImpl<TensorType_INT8, int8_t>(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/activations.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/hexagon/builders/tests/activations_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4de958a3-e1a5-4cae-a5d6-151e97e19ad6
cpp
google/tensorstore
meta
tensorstore/internal/meta.h
tensorstore/internal/meta_test.cc
#ifndef TENSORSTORE_INTERNAL_META_H_ #define TENSORSTORE_INTERNAL_META_H_ namespace tensorstore { namespace internal { template <typename T, typename... Ts> constexpr T&& GetFirstArgument(T&& t, Ts&&... ts) { return static_cast<T&&>(t); } inline int constexpr_assert_failed() noexcept { return 0; } #define TENSORSTORE_CONSTEXPR_ASSERT(...) \ (static_cast<void>( \ (__VA_ARGS__) ? 0 \ : tensorstore::internal::constexpr_assert_failed())) } } #endif
#include "tensorstore/internal/meta.h" #include <type_traits> namespace { using ::tensorstore::internal::GetFirstArgument; static_assert( std::is_same_v<int&, decltype(GetFirstArgument(std::declval<int&>(), std::declval<float&>()))>); static_assert(std::is_same_v< const int&, decltype(GetFirstArgument(std::declval<const int&>(), std::declval<float&>()))>); static_assert( std::is_same_v<int&&, decltype(GetFirstArgument(std::declval<int>(), std::declval<float&>()))>); static_assert(GetFirstArgument(3, 4) == 3); }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/meta.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/meta_test.cc
4f887a6430414cd6088e1743555015b10f116d50
8ca2d24a-803e-4bbb-8f49-b99dbb2bd95d
cpp
tensorflow/tensorflow
compilation_environments
third_party/xla/xla/service/compilation_environments.cc
third_party/xla/xla/service/compilation_environments_test.cc
#include "xla/service/compilation_environments.h" #include <cstdint> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include "google/protobuf/any.pb.h" #include "absl/algorithm/container.h" #include "absl/base/attributes.h" #include "absl/base/const_init.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/memory/memory.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "xla/xla.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace xla { namespace { ABSL_CONST_INIT absl::Mutex process_new_env_fns_mu(absl::kConstInit); absl::flat_hash_map<const tsl::protobuf::Descriptor*, CompilationEnvironments::ProcessNewEnvFn>* process_new_env_fns ABSL_GUARDED_BY(process_new_env_fns_mu) = nullptr; class GlobalCompEnvStats { public: static GlobalCompEnvStats& GetSingleton() { static GlobalCompEnvStats* singleton = new GlobalCompEnvStats(); return *singleton; } void DefaultEnvCreatedByCompilationEnvironments(std::string_view env_type) ABSL_LOCKS_EXCLUDED(mu_) { { absl::MutexLock l(&mu_); ++stats_[std::string(env_type)] .default_env_created_by_compilation_environments; } VLOG(1) << "New GlobalCompEnvStats value: " << ToString(); } void EnvAdded(std::string_view env_type) ABSL_LOCKS_EXCLUDED(mu_) { { absl::MutexLock l(&mu_); ++stats_[std::string(env_type)].env_added; } VLOG(1) << "New GlobalCompEnvStats value: " << ToString(); } std::string ToString() const ABSL_LOCKS_EXCLUDED(mu_) { absl::ReaderMutexLock l(&mu_); return absl::StrJoin( stats_, "; ", [](std::string* out, const StatMap::value_type& env_stats_pair) { absl::StrAppend(out, env_stats_pair.first, ": { ", env_stats_pair.second.ToString(), " }"); }); } private: struct PerEnvStats { std::string ToString() const { return absl::StrCat( "# default envs created by CompilationEnvironments: ", default_env_created_by_compilation_environments, " ", "# envs added to CompilationEnvironments: ", env_added); } unsigned default_env_created_by_compilation_environments = 0; unsigned env_added = 0; }; using StatMap = absl::flat_hash_map<std::string, PerEnvStats>; GlobalCompEnvStats() = default; GlobalCompEnvStats(const GlobalCompEnvStats&) = delete; GlobalCompEnvStats& operator=(const GlobalCompEnvStats&) = delete; GlobalCompEnvStats(GlobalCompEnvStats&&) = delete; GlobalCompEnvStats& operator=(GlobalCompEnvStats&&) = delete; mutable absl::Mutex mu_; StatMap stats_ ABSL_GUARDED_BY(mu_); }; } CompilationEnvironments& CompilationEnvironments::operator=( const CompilationEnvironments& rhs) { Clear(); for (const auto& descriptor_message_pair : rhs.environments_) { auto env = absl::WrapUnique(descriptor_message_pair.second->New()); env->CopyFrom(*descriptor_message_pair.second); environments_.insert({descriptor_message_pair.first, std::move(env)}); } return *this; } absl::StatusOr<std::unique_ptr<CompilationEnvironments>> CompilationEnvironments::CreateFromProto( const CompilationEnvironmentsProto& proto) { auto envs = std::make_unique<CompilationEnvironments>(); const tsl::protobuf::DescriptorPool* const pool = tsl::protobuf::DescriptorPool::generated_pool(); for (const auto& env_proto : proto.environments()) { std::string fullname; if (!google::protobuf::Any::ParseAnyTypeUrl(env_proto.type_url(), &fullname)) { return tsl::errors::DataLoss( "Invalid CompilationEnvironment message type url: %s", env_proto.type_url()); } const tsl::protobuf::Descriptor* const descriptor = pool->FindMessageTypeByName(fullname); if (descriptor == nullptr) { return tsl::errors::DataLoss( "Unknown CompilationEnvironment message type: %s", fullname); } const tsl::protobuf::Message* const prototype = tsl::protobuf::MessageFactory::generated_factory()->GetPrototype( descriptor); if (prototype == nullptr) { return tsl::errors::Internal( "Unsupported CompilationEnvironment message type: %s", fullname); } std::unique_ptr<tsl::protobuf::Message> env(prototype->New()); if (!env_proto.UnpackTo(env.get())) { return tsl::errors::DataLoss( "Unable to unpack CompilationEnvironment message of type '%s'", fullname); } TF_RETURN_IF_ERROR(envs->AddEnv(std::move(env))); } return envs; } void CompilationEnvironments::RegisterProcessNewEnvFn( const tsl::protobuf::Descriptor* descriptor, ProcessNewEnvFn process_new_env) { absl::MutexLock l(&process_new_env_fns_mu); if (process_new_env_fns == nullptr) { process_new_env_fns = new absl::flat_hash_map<const tsl::protobuf::Descriptor*, CompilationEnvironments::ProcessNewEnvFn>(); } const bool inserted = process_new_env_fns->insert({descriptor, std::move(process_new_env)}) .second; CHECK(inserted) << "ProcessNewEnvFn for XLA compilation environment '" << descriptor->full_name() << "' has already been registered"; } absl::Status CompilationEnvironments::AddEnv( std::unique_ptr<tsl::protobuf::Message> env) { if (!env) { return tsl::errors::InvalidArgument( "Can not add a null compilation environment."); } const tsl::protobuf::Descriptor& descriptor = *env->GetDescriptor(); return AddEnvImpl(descriptor, std::move(env)); } CompilationEnvironmentsProto CompilationEnvironments::ToProto() const { std::vector<const tsl::protobuf::Descriptor*> descriptors; descriptors.reserve(environments_.size()); for (const auto& [descriptor, message] : environments_) { descriptors.push_back(descriptor); } absl::c_sort(descriptors, [](const tsl::protobuf::Descriptor* lhs, const tsl::protobuf::Descriptor* rhs) { return lhs->full_name() < rhs->full_name(); }); CompilationEnvironmentsProto proto; for (const auto* const descriptor : descriptors) { proto.add_environments()->PackFrom(*environments_.at(descriptor)); } return proto; } CompilationEnvironments::ProcessNewEnvFn CompilationEnvironments::GetProcessNewEnvFn( const tsl::protobuf::Descriptor& descriptor) { absl::MutexLock l(&process_new_env_fns_mu); if (process_new_env_fns == nullptr) { return nullptr; } const auto it = process_new_env_fns->find(&descriptor); if (it == process_new_env_fns->end()) { return nullptr; } return it->second; } void CompilationEnvironments::DefaultEnvCreatedByCompilationEnvironments( std::string_view env_type) { GlobalCompEnvStats::GetSingleton().DefaultEnvCreatedByCompilationEnvironments( env_type); } void CompilationEnvironments::EnvAdded(std::string_view env_type) { GlobalCompEnvStats::GetSingleton().EnvAdded(env_type); } absl::Status CompilationEnvironments::AddEnvImpl( const tsl::protobuf::Descriptor& descriptor, std::unique_ptr<tsl::protobuf::Message> env) { if (environments_.contains(&descriptor)) { return tsl::errors::InvalidArgument( "Replacing CompilationEnvironment of type %s.", descriptor.full_name()); } ProcessNewEnvFn process_new_env = GetProcessNewEnvFn(descriptor); if (!process_new_env) { return tsl::errors::InvalidArgument( "Unknown compilation environment type: %s", descriptor.full_name()); } TF_ASSIGN_OR_RETURN(std::unique_ptr<tsl::protobuf::Message> processed_env, process_new_env(std::move(env))); const tsl::protobuf::UnknownFieldSet& unknown_fields = processed_env->GetReflection()->GetUnknownFields(*processed_env); std::vector<int> unknown_tags; unknown_tags.reserve(unknown_fields.field_count()); for (int i = 0; i < unknown_fields.field_count(); ++i) { const tsl::protobuf::UnknownField& field = unknown_fields.field(i); unknown_tags.push_back(field.number()); } if (!unknown_tags.empty()) { LOG(WARNING) << "CompilationEnvironment " << descriptor.full_name() << " contains unknown fields with tag numbers: " << absl::StrJoin(unknown_tags, ", "); } environments_.insert({&descriptor, std::move(processed_env)}); EnvAdded(descriptor.full_name()); return absl::OkStatus(); } }
#include "xla/service/compilation_environments.h" #include <memory> #include <utility> #include "absl/status/statusor.h" #include "xla/service/test_compilation_environment.pb.h" #include "xla/test.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla.pb.h" #include "tsl/platform/casts.h" #include "tsl/platform/protobuf.h" namespace xla { std::unique_ptr<tsl::protobuf::Message> ProcessNewEnv1( std::unique_ptr<tsl::protobuf::Message> msg) { std::unique_ptr<test::TestCompilationEnvironment1> env( tensorflow::down_cast<test::TestCompilationEnvironment1*>(msg.release())); if (!env) { env = std::make_unique<test::TestCompilationEnvironment1>(); } if (env->some_flag() == 0 || env->some_flag() == 1) { env->set_some_flag(100); } return env; } std::unique_ptr<tsl::protobuf::Message> ProcessNewEnv2( std::unique_ptr<tsl::protobuf::Message> msg) { std::unique_ptr<test::TestCompilationEnvironment2> env( tensorflow::down_cast<test::TestCompilationEnvironment2*>(msg.release())); if (!env) { env = std::make_unique<test::TestCompilationEnvironment2>(); } if (env->some_other_flag() == 0) { env->set_some_other_flag(200); } return env; } std::unique_ptr<tsl::protobuf::Message> ProcessNewEnv3( std::unique_ptr<tsl::protobuf::Message> msg) { std::unique_ptr<test::TestCompilationEnvironment3> env( tensorflow::down_cast<test::TestCompilationEnvironment3*>(msg.release())); if (!env) { env = std::make_unique<test::TestCompilationEnvironment3>(); } if (env->a_third_flag() == 0) { env->set_a_third_flag(300); } return env; } namespace test { namespace { class CompilationEnvironmentsTest : public ::testing::Test { protected: static void SetUpTestSuite() { CompilationEnvironments::RegisterProcessNewEnvFn( test::TestCompilationEnvironment1::descriptor(), ProcessNewEnv1); CompilationEnvironments::RegisterProcessNewEnvFn( test::TestCompilationEnvironment2::descriptor(), ProcessNewEnv2); CompilationEnvironments::RegisterProcessNewEnvFn( test::TestCompilationEnvironment3::descriptor(), ProcessNewEnv3); } }; TEST_F(CompilationEnvironmentsTest, GetDefaultEnv) { CompilationEnvironments envs; EXPECT_EQ(envs.GetEnv<TestCompilationEnvironment1>().some_flag(), 100); EXPECT_EQ(envs.GetEnv<TestCompilationEnvironment1>().some_flag(), 100); } TEST_F(CompilationEnvironmentsTest, GetDefaultMutableEnv) { CompilationEnvironments envs; EXPECT_EQ(envs.GetMutableEnv<TestCompilationEnvironment1>().some_flag(), 100); EXPECT_EQ(envs.GetMutableEnv<TestCompilationEnvironment1>().some_flag(), 100); } TEST_F(CompilationEnvironmentsTest, GetAddedEnvNotModifiedByProcessNewEnv) { CompilationEnvironments envs; auto env = std::make_unique<TestCompilationEnvironment1>(); env->set_some_flag(5); TF_ASSERT_OK(envs.AddEnv(std::move(env))); EXPECT_EQ(envs.GetEnv<TestCompilationEnvironment1>().some_flag(), 5); EXPECT_EQ(envs.GetMutableEnv<TestCompilationEnvironment1>().some_flag(), 5); } TEST_F(CompilationEnvironmentsTest, GetAddedEnvModifiedByProcessNewEnv) { CompilationEnvironments envs; auto env = std::make_unique<TestCompilationEnvironment1>(); env->set_some_flag(1); TF_ASSERT_OK(envs.AddEnv(std::move(env))); EXPECT_EQ(envs.GetEnv<TestCompilationEnvironment1>().some_flag(), 100); EXPECT_EQ(envs.GetMutableEnv<TestCompilationEnvironment1>().some_flag(), 100); } TEST_F(CompilationEnvironmentsTest, MultipleEnvs) { CompilationEnvironments envs; EXPECT_EQ(envs.GetEnv<TestCompilationEnvironment1>().some_flag(), 100); EXPECT_EQ(envs.GetEnv<TestCompilationEnvironment2>().some_other_flag(), 200); EXPECT_EQ(envs.GetEnv<TestCompilationEnvironment1>().some_flag(), 100); } TEST_F(CompilationEnvironmentsTest, MultipleMutableEnvs) { CompilationEnvironments envs; EXPECT_EQ(envs.GetMutableEnv<TestCompilationEnvironment1>().some_flag(), 100); EXPECT_EQ(envs.GetMutableEnv<TestCompilationEnvironment2>().some_other_flag(), 200); envs.GetMutableEnv<TestCompilationEnvironment1>().set_some_flag(101); envs.GetMutableEnv<TestCompilationEnvironment2>().set_some_other_flag(201); EXPECT_EQ(envs.GetMutableEnv<TestCompilationEnvironment1>().some_flag(), 101); EXPECT_EQ(envs.GetMutableEnv<TestCompilationEnvironment2>().some_other_flag(), 201); } TEST_F(CompilationEnvironmentsTest, CopyConstructor) { auto envs = std::make_unique<CompilationEnvironments>(); auto env1 = std::make_unique<TestCompilationEnvironment1>(); env1->set_some_flag(10); TF_ASSERT_OK(envs->AddEnv(std::move(env1))); auto env2 = std::make_unique<TestCompilationEnvironment2>(); TF_ASSERT_OK(envs->AddEnv(std::move(env2))); envs->GetMutableEnv<TestCompilationEnvironment2>().set_some_other_flag(20); auto envs_copy = std::make_unique<CompilationEnvironments>(*envs); envs.reset(); EXPECT_EQ(envs_copy->GetEnv<TestCompilationEnvironment1>().some_flag(), 10); EXPECT_EQ(envs_copy->GetEnv<TestCompilationEnvironment2>().some_other_flag(), 20); } TEST_F(CompilationEnvironmentsTest, CopyAssignment) { auto envs1 = std::make_unique<CompilationEnvironments>(); auto env1 = std::make_unique<TestCompilationEnvironment1>(); env1->set_some_flag(10); TF_ASSERT_OK(envs1->AddEnv(std::move(env1))); auto env2 = std::make_unique<TestCompilationEnvironment2>(); TF_ASSERT_OK(envs1->AddEnv(std::move(env2))); envs1->GetMutableEnv<TestCompilationEnvironment2>().set_some_other_flag(20); auto envs2 = std::make_unique<CompilationEnvironments>(); auto env3 = std::make_unique<TestCompilationEnvironment1>(); env3->set_some_flag(30); TF_ASSERT_OK(envs2->AddEnv(std::move(env3))); auto env4 = std::make_unique<TestCompilationEnvironment3>(); env4->set_a_third_flag(40); TF_ASSERT_OK(envs2->AddEnv(std::move(env4))); *envs2 = *envs1; envs1.reset(); EXPECT_EQ(envs2->GetEnv<TestCompilationEnvironment1>().some_flag(), 10); EXPECT_EQ(envs2->GetEnv<TestCompilationEnvironment2>().some_other_flag(), 20); EXPECT_EQ(envs2->GetEnv<TestCompilationEnvironment3>().a_third_flag(), 300); } TEST_F(CompilationEnvironmentsTest, ProtoRoundTrip) { auto envs = std::make_unique<CompilationEnvironments>(); auto env1 = std::make_unique<TestCompilationEnvironment1>(); env1->set_some_flag(10); TF_ASSERT_OK(envs->AddEnv(std::move(env1))); auto env2 = std::make_unique<TestCompilationEnvironment2>(); TF_ASSERT_OK(envs->AddEnv(std::move(env2))); envs->GetMutableEnv<TestCompilationEnvironment2>().set_some_other_flag(20); auto proto = envs->ToProto(); TF_ASSERT_OK_AND_ASSIGN(auto envs_deserialized, CompilationEnvironments::CreateFromProto(proto)); EXPECT_EQ( envs_deserialized->GetEnv<TestCompilationEnvironment1>().some_flag(), 10); EXPECT_EQ(envs_deserialized->GetEnv<TestCompilationEnvironment2>() .some_other_flag(), 20); } TEST_F(CompilationEnvironmentsTest, EnvTypePresenceCheck) { CompilationEnvironments envs; EXPECT_FALSE(envs.HasEnv<TestCompilationEnvironment1>()); envs.GetEnv<TestCompilationEnvironment1>(); EXPECT_TRUE(envs.HasEnv<TestCompilationEnvironment1>()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/compilation_environments.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/compilation_environments_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a64fe2e8-586b-45ce-a76d-0ae8985f6baf
cpp
abseil/abseil-cpp
test_instance_tracker
absl/container/internal/test_instance_tracker.cc
absl/container/internal/test_instance_tracker_test.cc
#include "absl/container/internal/test_instance_tracker.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace test_internal { int BaseCountedInstance::num_instances_ = 0; int BaseCountedInstance::num_live_instances_ = 0; int BaseCountedInstance::num_moves_ = 0; int BaseCountedInstance::num_copies_ = 0; int BaseCountedInstance::num_swaps_ = 0; int BaseCountedInstance::num_comparisons_ = 0; } ABSL_NAMESPACE_END }
#include "absl/container/internal/test_instance_tracker.h" #include "gtest/gtest.h" namespace { using absl::test_internal::CopyableMovableInstance; using absl::test_internal::CopyableOnlyInstance; using absl::test_internal::InstanceTracker; using absl::test_internal::MovableOnlyInstance; TEST(TestInstanceTracker, CopyableMovable) { InstanceTracker tracker; CopyableMovableInstance src(1); EXPECT_EQ(1, src.value()) << src; CopyableMovableInstance copy(src); CopyableMovableInstance move(std::move(src)); EXPECT_EQ(1, tracker.copies()); EXPECT_EQ(1, tracker.moves()); EXPECT_EQ(0, tracker.swaps()); EXPECT_EQ(3, tracker.instances()); EXPECT_EQ(2, tracker.live_instances()); tracker.ResetCopiesMovesSwaps(); CopyableMovableInstance copy_assign(1); copy_assign = copy; CopyableMovableInstance move_assign(1); move_assign = std::move(move); EXPECT_EQ(1, tracker.copies()); EXPECT_EQ(1, tracker.moves()); EXPECT_EQ(0, tracker.swaps()); EXPECT_EQ(5, tracker.instances()); EXPECT_EQ(3, tracker.live_instances()); tracker.ResetCopiesMovesSwaps(); { using std::swap; swap(move_assign, copy); swap(copy, move_assign); EXPECT_EQ(2, tracker.swaps()); EXPECT_EQ(0, tracker.copies()); EXPECT_EQ(0, tracker.moves()); EXPECT_EQ(5, tracker.instances()); EXPECT_EQ(3, tracker.live_instances()); } } TEST(TestInstanceTracker, CopyableOnly) { InstanceTracker tracker; CopyableOnlyInstance src(1); EXPECT_EQ(1, src.value()) << src; CopyableOnlyInstance copy(src); CopyableOnlyInstance copy2(std::move(src)); EXPECT_EQ(2, tracker.copies()); EXPECT_EQ(0, tracker.moves()); EXPECT_EQ(3, tracker.instances()); EXPECT_EQ(3, tracker.live_instances()); tracker.ResetCopiesMovesSwaps(); CopyableOnlyInstance copy_assign(1); copy_assign = copy; CopyableOnlyInstance copy_assign2(1); copy_assign2 = std::move(copy2); EXPECT_EQ(2, tracker.copies()); EXPECT_EQ(0, tracker.moves()); EXPECT_EQ(5, tracker.instances()); EXPECT_EQ(5, tracker.live_instances()); tracker.ResetCopiesMovesSwaps(); { using std::swap; swap(src, copy); swap(copy, src); EXPECT_EQ(2, tracker.swaps()); EXPECT_EQ(0, tracker.copies()); EXPECT_EQ(0, tracker.moves()); EXPECT_EQ(5, tracker.instances()); EXPECT_EQ(5, tracker.live_instances()); } } TEST(TestInstanceTracker, MovableOnly) { InstanceTracker tracker; MovableOnlyInstance src(1); EXPECT_EQ(1, src.value()) << src; MovableOnlyInstance move(std::move(src)); MovableOnlyInstance move_assign(2); move_assign = std::move(move); EXPECT_EQ(3, tracker.instances()); EXPECT_EQ(1, tracker.live_instances()); EXPECT_EQ(2, tracker.moves()); EXPECT_EQ(0, tracker.copies()); tracker.ResetCopiesMovesSwaps(); { using std::swap; MovableOnlyInstance other(2); swap(move_assign, other); swap(other, move_assign); EXPECT_EQ(2, tracker.swaps()); EXPECT_EQ(0, tracker.copies()); EXPECT_EQ(0, tracker.moves()); EXPECT_EQ(4, tracker.instances()); EXPECT_EQ(2, tracker.live_instances()); } } TEST(TestInstanceTracker, ExistingInstances) { CopyableMovableInstance uncounted_instance(1); CopyableMovableInstance uncounted_live_instance( std::move(uncounted_instance)); InstanceTracker tracker; EXPECT_EQ(0, tracker.instances()); EXPECT_EQ(0, tracker.live_instances()); EXPECT_EQ(0, tracker.copies()); { CopyableMovableInstance instance1(1); EXPECT_EQ(1, tracker.instances()); EXPECT_EQ(1, tracker.live_instances()); EXPECT_EQ(0, tracker.copies()); EXPECT_EQ(0, tracker.moves()); { InstanceTracker tracker2; CopyableMovableInstance instance2(instance1); CopyableMovableInstance instance3(std::move(instance2)); EXPECT_EQ(3, tracker.instances()); EXPECT_EQ(2, tracker.live_instances()); EXPECT_EQ(1, tracker.copies()); EXPECT_EQ(1, tracker.moves()); EXPECT_EQ(2, tracker2.instances()); EXPECT_EQ(1, tracker2.live_instances()); EXPECT_EQ(1, tracker2.copies()); EXPECT_EQ(1, tracker2.moves()); } EXPECT_EQ(1, tracker.instances()); EXPECT_EQ(1, tracker.live_instances()); EXPECT_EQ(1, tracker.copies()); EXPECT_EQ(1, tracker.moves()); } EXPECT_EQ(0, tracker.instances()); EXPECT_EQ(0, tracker.live_instances()); EXPECT_EQ(1, tracker.copies()); EXPECT_EQ(1, tracker.moves()); } TEST(TestInstanceTracker, Comparisons) { InstanceTracker tracker; MovableOnlyInstance one(1), two(2); EXPECT_EQ(0, tracker.comparisons()); EXPECT_FALSE(one == two); EXPECT_EQ(1, tracker.comparisons()); EXPECT_TRUE(one != two); EXPECT_EQ(2, tracker.comparisons()); EXPECT_TRUE(one < two); EXPECT_EQ(3, tracker.comparisons()); EXPECT_FALSE(one > two); EXPECT_EQ(4, tracker.comparisons()); EXPECT_TRUE(one <= two); EXPECT_EQ(5, tracker.comparisons()); EXPECT_FALSE(one >= two); EXPECT_EQ(6, tracker.comparisons()); EXPECT_TRUE(one.compare(two) < 0); EXPECT_EQ(7, tracker.comparisons()); tracker.ResetCopiesMovesSwaps(); EXPECT_EQ(0, tracker.comparisons()); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/internal/test_instance_tracker.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/internal/test_instance_tracker_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
20c2a41d-cae1-4ee1-b9da-0a950d5bb1dc
cpp
google/libphonenumber
geocoding_data
cpp/src/phonenumbers/geocoding/geocoding_data.h
cpp/test/phonenumbers/geocoding/geocoding_data_test.cc
#ifndef I18N_PHONENUMBERS_GEOCODING_DATA #define I18N_PHONENUMBERS_GEOCODING_DATA #include <cstdint> namespace i18n { namespace phonenumbers { struct CountryLanguages { const char** available_languages; const int available_languages_size; }; struct PrefixDescriptions { const int32_t* prefixes; const int prefixes_size; const char** descriptions; const int32_t* possible_lengths; const int possible_lengths_size; }; const int* get_country_calling_codes(); int get_country_calling_codes_size(); const CountryLanguages* get_country_languages(int index); const char** get_prefix_language_code_pairs(); int get_prefix_language_code_pairs_size(); const PrefixDescriptions* get_prefix_descriptions(int index); } } #endif
#include <cmath> #include <set> #include <string> #include <gtest/gtest.h> #include "phonenumbers/base/basictypes.h" #include "phonenumbers/geocoding/geocoding_data.h" #include "phonenumbers/geocoding/geocoding_test_data.h" #include "absl/container/btree_set.h" namespace i18n { namespace phonenumbers { using std::set; using std::string; namespace { typedef const CountryLanguages* (*country_languages_getter)(int index); typedef const PrefixDescriptions* (*prefix_descriptions_getter)(int index); void TestCountryLanguages(const CountryLanguages* languages) { EXPECT_GT(languages->available_languages_size, 0); for (int i = 0; i < languages->available_languages_size; ++i) { string language(languages->available_languages[i]); EXPECT_GT(language.size(), 0); if (i > 0) { EXPECT_LT(string(languages->available_languages[i - 1]), language); } } } void TestCountryCallingCodeLanguages( const int* country_calling_codes, int country_calling_codes_size, country_languages_getter get_country_languages) { EXPECT_GT(country_calling_codes_size, 0); for (int i = 0; i < country_calling_codes_size; ++i) { int code = country_calling_codes[i]; EXPECT_GT(code, 0); if (i > 0) { EXPECT_LT(country_calling_codes[i-1], code); } TestCountryLanguages(get_country_languages(i)); } } void TestPrefixDescriptions(const PrefixDescriptions* descriptions) { EXPECT_GT(descriptions->prefixes_size, 0); absl::btree_set<int> possible_lengths; for (int i = 0; i < descriptions->prefixes_size; ++i) { int prefix = descriptions->prefixes[i]; EXPECT_GT(prefix, 0); if (i > 0) { EXPECT_LT(descriptions->prefixes[i - 1], prefix); } possible_lengths.insert(log10(prefix) + 1); } EXPECT_GT(descriptions->possible_lengths_size, 0); for (int i = 0; i < descriptions->possible_lengths_size; ++i) { int possible_length = descriptions->possible_lengths[i]; EXPECT_GT(possible_length, 0); if (i > 0) { EXPECT_LT(descriptions->possible_lengths[i - 1], possible_length); } EXPECT_TRUE( possible_lengths.find(possible_length) != possible_lengths.end()); } } void TestAllPrefixDescriptions( const char** prefix_language_code_pairs, int prefix_language_code_pairs_size, prefix_descriptions_getter get_prefix_descriptions) { EXPECT_GT(prefix_language_code_pairs_size, 0); for (int i = 0; i < prefix_language_code_pairs_size; ++i) { string language_code_pair(prefix_language_code_pairs[i]); EXPECT_GT(language_code_pair.size(), 0); if (i > 0) { EXPECT_LT(string(prefix_language_code_pairs[i - 1]), language_code_pair); } TestPrefixDescriptions(get_prefix_descriptions(i)); } } } TEST(GeocodingDataTest, TestCountryCallingCodeLanguages) { TestCountryCallingCodeLanguages(get_country_calling_codes(), get_country_calling_codes_size(), get_country_languages); } TEST(GeocodingDataTest, TestTestCountryCallingCodeLanguages) { TestCountryCallingCodeLanguages(get_test_country_calling_codes(), get_test_country_calling_codes_size(), get_test_country_languages); } TEST(GeocodingDataTest, TestPrefixDescriptions) { TestAllPrefixDescriptions(get_prefix_language_code_pairs(), get_prefix_language_code_pairs_size(), get_prefix_descriptions); } TEST(GeocodingDataTest, TestTestPrefixDescriptions) { TestAllPrefixDescriptions(get_test_prefix_language_code_pairs(), get_test_prefix_language_code_pairs_size(), get_test_prefix_descriptions); } TEST(GeocodingDataTest, TestTestGeocodingData) { ASSERT_EQ(3, get_test_country_calling_codes_size()); const int* country_calling_codes = get_test_country_calling_codes(); const int expected_calling_codes[] = {1, 54, 82}; for (int i = 0; i < get_test_country_calling_codes_size(); ++i) { EXPECT_EQ(expected_calling_codes[i], country_calling_codes[i]); } const CountryLanguages* langs_1 = get_test_country_languages(0); ASSERT_EQ(2, langs_1->available_languages_size); const char* expected_languages[] = {"de", "en"}; for (int i = 0; i < langs_1->available_languages_size; ++i) { EXPECT_STREQ(expected_languages[i], langs_1->available_languages[i]); } ASSERT_EQ(5, get_test_prefix_language_code_pairs_size()); const char** language_code_pairs = get_test_prefix_language_code_pairs(); const char* expected_language_code_pairs[] = { "1_de", "1_en", "54_en", "82_en", "82_ko", }; for (int i = 0; i < get_test_prefix_language_code_pairs_size(); ++i) { EXPECT_STREQ(expected_language_code_pairs[i], language_code_pairs[i]); } const PrefixDescriptions* desc_1_de = get_test_prefix_descriptions(0); ASSERT_EQ(2, desc_1_de->prefixes_size); const int32 expected_prefixes[] = {1201, 1650}; const char* expected_descriptions[] = { "New Jersey", "Kalifornien", }; for (int i = 0; i < desc_1_de->prefixes_size; ++i) { EXPECT_EQ(expected_prefixes[i], desc_1_de->prefixes[i]); EXPECT_STREQ(expected_descriptions[i], desc_1_de->descriptions[i]); } ASSERT_EQ(1, desc_1_de->possible_lengths_size); const int expected_lengths[] = {4}; for (int i = 0; i < desc_1_de->possible_lengths_size; ++i) { EXPECT_EQ(expected_lengths[i], desc_1_de->possible_lengths[i]); } } } }
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/src/phonenumbers/geocoding/geocoding_data.h
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/test/phonenumbers/geocoding/geocoding_data_test.cc
9aa9aaa39ad8098aef56071d2df4f6f8d251c98b
58fa6423-d526-43fc-b63e-1b2185a19835
cpp
tensorflow/tensorflow
mfcc_mel_filterbank
tensorflow/lite/kernels/internal/mfcc_mel_filterbank.cc
tensorflow/core/kernels/mfcc_mel_filterbank_test.cc
#include "tensorflow/lite/kernels/internal/mfcc_mel_filterbank.h" #include <math.h> namespace tflite { namespace internal { MfccMelFilterbank::MfccMelFilterbank() : initialized_(false) {} bool MfccMelFilterbank::Initialize(int input_length, double input_sample_rate, int output_channel_count, double lower_frequency_limit, double upper_frequency_limit) { num_channels_ = output_channel_count; sample_rate_ = input_sample_rate; input_length_ = input_length; if (num_channels_ < 1) { return false; } if (sample_rate_ <= 0) { return false; } if (input_length < 2) { return false; } if (lower_frequency_limit < 0) { return false; } if (upper_frequency_limit <= lower_frequency_limit) { return false; } center_frequencies_.resize(num_channels_ + 1); const double mel_low = FreqToMel(lower_frequency_limit); const double mel_hi = FreqToMel(upper_frequency_limit); const double mel_span = mel_hi - mel_low; const double mel_spacing = mel_span / static_cast<double>(num_channels_ + 1); for (int i = 0; i < num_channels_ + 1; ++i) { center_frequencies_[i] = mel_low + (mel_spacing * (i + 1)); } const double hz_per_sbin = 0.5 * sample_rate_ / static_cast<double>(input_length_ - 1); start_index_ = static_cast<int>(1.5 + (lower_frequency_limit / hz_per_sbin)); end_index_ = static_cast<int>(upper_frequency_limit / hz_per_sbin); band_mapper_.resize(input_length_); int channel = 0; for (int i = 0; i < input_length_; ++i) { double melf = FreqToMel(i * hz_per_sbin); if ((i < start_index_) || (i > end_index_)) { band_mapper_[i] = -2; } else { while ((channel < num_channels_) && (center_frequencies_[channel] < melf)) { ++channel; } band_mapper_[i] = channel - 1; } } weights_.resize(input_length_); for (int i = 0; i < input_length_; ++i) { channel = band_mapper_[i]; if ((i < start_index_) || (i > end_index_)) { weights_[i] = 0.0; } else { if (channel >= 0) { weights_[i] = (center_frequencies_[channel + 1] - FreqToMel(i * hz_per_sbin)) / (center_frequencies_[channel + 1] - center_frequencies_[channel]); } else { weights_[i] = (center_frequencies_[0] - FreqToMel(i * hz_per_sbin)) / (center_frequencies_[0] - mel_low); } } } std::vector<int> bad_channels; for (int c = 0; c < num_channels_; ++c) { float band_weights_sum = 0.0; for (int i = 0; i < input_length_; ++i) { if (band_mapper_[i] == c - 1) { band_weights_sum += (1.0 - weights_[i]); } else if (band_mapper_[i] == c) { band_weights_sum += weights_[i]; } } if (band_weights_sum < 0.5) { bad_channels.push_back(c); } } if (!bad_channels.empty()) { } initialized_ = true; return true; } void MfccMelFilterbank::Compute(const std::vector<double> &input, std::vector<double> *output) const { if (!initialized_) { return; } if (input.size() <= end_index_) { return; } output->assign(num_channels_, 0.0); for (int i = start_index_; i <= end_index_; i++) { double spec_val = sqrt(input[i]); double weighted = spec_val * weights_[i]; int channel = band_mapper_[i]; if (channel >= 0) (*output)[channel] += weighted; channel++; if (channel < num_channels_) (*output)[channel] += spec_val - weighted; } } double MfccMelFilterbank::FreqToMel(double freq) const { return 1127.0 * log1p(freq / 700.0); } } }
#include "tensorflow/core/kernels/mfcc_mel_filterbank.h" #include <limits> #include <vector> #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { TEST(MfccMelFilterbankTest, AgreesWithPythonGoldenValues) { MfccMelFilterbank filterbank; std::vector<double> input; const int kSampleCount = 513; input.reserve(kSampleCount); for (int i = 0; i < kSampleCount; ++i) { input.push_back(i + 1); } const int kChannelCount = 20; filterbank.Initialize( input.size(), 22050 , kChannelCount , 20.0 , 4000.0 ); std::vector<double> output; filterbank.Compute(input, &output); std::vector<double> expected = { 7.38894574, 10.30330648, 13.72703292, 17.24158686, 21.35253118, 25.77781089, 31.30624108, 37.05877236, 43.9436536, 51.80306637, 60.79867148, 71.14363376, 82.90910141, 96.50069158, 112.08428368, 129.96721968, 150.4277597, 173.74997634, 200.86037462, 231.59802942}; ASSERT_EQ(output.size(), kChannelCount); for (int i = 0; i < kChannelCount; ++i) { EXPECT_NEAR(output[i], expected[i], 1e-04); } } TEST(MfccMelFilterbankTest, IgnoresExistingContentOfOutputVector) { MfccMelFilterbank filterbank; const int kSampleCount = 513; std::vector<double> input; std::vector<double> output; filterbank.Initialize(kSampleCount, 22050 , 20 , 20.0 , 4000.0 ); input.assign(kSampleCount, 1.0); filterbank.Compute(input, &output); for (const double value : output) { EXPECT_LE(0.0, value); } input.assign(kSampleCount, 0.0); filterbank.Compute(input, &output); for (const double value : output) { EXPECT_EQ(0.0, value); } } TEST(MfccMelFilterbankTest, FailsWhenChannelsGreaterThanMaxIntValue) { MfccMelFilterbank filterbank; const int kSampleCount = 513; std::size_t num_channels = std::numeric_limits<int>::max(); bool initialized = filterbank.Initialize( kSampleCount, 2 , num_channels , 1.0 , 5.0 ); EXPECT_FALSE(initialized); } TEST(MfccMelFilterbankTest, FailsWhenChannelsGreaterThanMaxSize) { MfccMelFilterbank filterbank; const int kSampleCount = 513; std::size_t num_channels = std::vector<double>().max_size() + 1; bool initialized = filterbank.Initialize( kSampleCount, 2 , num_channels , 1.0 , 5.0 ); EXPECT_FALSE(initialized); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/internal/mfcc_mel_filterbank.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/mfcc_mel_filterbank_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
eb0c36ad-0dad-4007-b2bb-20fde4559604
cpp
tensorflow/tensorflow
tuple_util
third_party/xla/xla/service/tuple_util.cc
third_party/xla/xla/service/tuple_util_test.cc
#include "xla/service/tuple_util.h" #include <cstdint> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_value.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" namespace xla { HloInstruction* TupleUtil::ExtractPrefix(HloInstruction* input_tuple, int64_t elements, absl::string_view name) { CHECK(input_tuple->shape().IsTuple()); HloComputation* computation = input_tuple->parent(); const Shape& input_shape = input_tuple->shape(); std::vector<HloInstruction*> tuple_elements; tuple_elements.reserve(elements); for (int i = 0; i < elements; i++) { std::string element_name; if (!name.empty()) { element_name = absl::StrCat(name, ".element.", i); } tuple_elements.push_back(computation->AddInstruction( HloInstruction::CreateGetTupleElement(input_shape.tuple_shapes(i), input_tuple, i), element_name)); } return computation->AddInstruction( HloInstruction::CreateTuple(tuple_elements), name); } HloInstruction* TupleUtil::AppendSuffix( HloInstruction* input_tuple, absl::Span<HloInstruction* const> trailing_values) { CHECK(input_tuple->shape().IsTuple()); HloComputation* computation = input_tuple->parent(); const Shape& input_shape = input_tuple->shape(); std::vector<HloInstruction*> tuple_elements; tuple_elements.reserve(input_shape.tuple_shapes_size()); for (int i = 0; i < input_shape.tuple_shapes_size(); i++) { tuple_elements.push_back( computation->AddInstruction(HloInstruction::CreateGetTupleElement( input_shape.tuple_shapes(i), input_tuple, i))); } tuple_elements.insert(tuple_elements.end(), trailing_values.begin(), trailing_values.end()); return computation->AddInstruction( HloInstruction::CreateTuple(tuple_elements)); } absl::StatusOr<HloInstruction*> TupleUtil::ReplaceTupleWith( HloInstruction* new_instruction, HloInstruction* tuple, ShapeIndex shape_index, bool insert_bitcast_if_different_shape) { const Shape& tuple_shape = tuple->shape(); CHECK(tuple->shape().IsTuple()) << "ReplaceTupleWith was called for a non-tuple. Tuple = " << tuple->ToString() << ", new_instruction = " << new_instruction->ToString() << ", shape_index = " << shape_index.ToString(); const HloInstruction* instruction = new_instruction; bool equivalent = true; for (int i = shape_index.size() - 1; i >= 0; --i) { int index = shape_index[i]; if (instruction->opcode() != HloOpcode::kGetTupleElement || instruction->tuple_index() != index) { equivalent = false; break; } instruction = instruction->operand(0); } if (equivalent && instruction == tuple) { VLOG(4) << "Instruction " << new_instruction->ToShortString() << " already exists at index " << shape_index.ToString() << " of " << tuple->ToShortString(); return tuple; } HloComputation* computation = new_instruction->parent(); std::vector<HloInstruction*> tuple_args(tuple_shape.tuple_shapes_size()); CHECK_GE(tuple_shape.tuple_shapes_size(), shape_index[0]); for (int i = 0; i < tuple_shape.tuple_shapes_size(); ++i) { const Shape& subshape = tuple_shape.tuple_shapes(i); auto get_operand = [&]() { if (tuple->opcode() == HloOpcode::kTuple) { return tuple->mutable_operand(i); } else { return computation->AddInstruction( HloInstruction::CreateGetTupleElement(subshape, tuple, i)); } }; if (i == shape_index[0]) { if (subshape.IsTuple()) { TF_ASSIGN_OR_RETURN(tuple_args[i], ReplaceTupleWith(new_instruction, get_operand(), ShapeIndex(shape_index.begin() + 1, shape_index.end()))); } else { if (subshape != new_instruction->shape() && insert_bitcast_if_different_shape) { VLOG(4) << "Old shape = " << subshape.ToString() << ", new shape = " << new_instruction->shape().ToString() << "; inserting a bitcast."; new_instruction = computation->AddInstruction( HloInstruction::CreateBitcast(subshape, new_instruction)); } else if (tuple->opcode() == HloOpcode::kTuple && tuple->operand(i) == new_instruction) { VLOG(4) << "Tuple already contains the new instruction = " << new_instruction->ToShortString() << " tuple = " << tuple->ToShortString(); return tuple; } tuple_args[i] = new_instruction; } } else { tuple_args[i] = get_operand(); } } if (shape_index[0] == tuple_shape.tuple_shapes_size()) { tuple_args.push_back(new_instruction); } return computation->AddInstruction(HloInstruction::CreateTuple(tuple_args)); } HloInstruction* TupleUtil::AddGetTupleElements( const HloPosition& position) { HloInstruction* instruction = position.instruction; HloComputation* computation = instruction->parent(); for (int64_t index : position.index) { auto gte_it = absl::c_find_if( instruction->users(), [index](const HloInstruction* use) { return use != use->parent()->root_instruction() && use->opcode() == HloOpcode::kGetTupleElement && use->tuple_index() == index; }); if (gte_it != instruction->users().end()) { instruction = *gte_it; } else { instruction = computation->AddInstruction(HloInstruction::CreateGetTupleElement( instruction->shape().tuple_shapes(index), instruction, index)); } } return instruction; } ShapeTree<HloInstruction*> TupleUtil::DisassembleTupleInstruction( HloInstruction* tuple) { const Shape& shape = tuple->shape(); ShapeTree<HloInstruction*> result(shape); result.ForEachMutableElement([&](ShapeIndexView index, HloInstruction** element) { if (index.empty()) { *element = tuple; } else { ShapeIndexView parent_index = index.subspan(0, index.size() - 1); HloInstruction* parent = result.element(parent_index); std::string name = absl::StrCat(tuple->name(), ".disassembled.", absl::StrJoin(index, ".")); *element = tuple->parent()->AddInstruction( HloInstruction::CreateGetTupleElement(parent, index.back()), name); } }); return result; } HloInstruction* TupleUtil::AssembleTupleInstruction( HloComputation* computation, ShapeTree<HloInstruction*> elements, absl::string_view name) { elements.ForEachMutableElementPostOrder( [&](const ShapeIndex& index, HloInstruction** element) { const Shape& subshape = ShapeUtil::GetSubshape(elements.shape(), index); if (subshape.IsTuple()) { absl::InlinedVector<HloInstruction*, 2> children; ShapeIndex child_index = index; for (int i = 0; i < subshape.tuple_shapes_size(); ++i) { child_index.push_back(i); children.push_back(elements.element(child_index)); child_index.pop_back(); } std::string new_name; if (!name.empty()) { if (index.empty()) { new_name = std::string(name); } else { new_name = absl::StrCat(name, ".assembled.", absl::StrJoin(index, ".")); } } *element = computation->AddInstruction( HloInstruction::CreateTuple(children), new_name); } }); return elements.element({}); } }
#include "xla/service/tuple_util.h" #include <memory> #include <string> #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" namespace xla { namespace { namespace op = ::xla::testing::opcode_matchers; using TupleUtilTest = HloTestBase; TEST_F(TupleUtilTest, ExtractPrefix) { const std::string hlo_string = R"( HloModule Module ENTRY entry { p0 = (f32[32,32]{1,0},f32[32,32]{1,0},f32[32,32]{1,0}) parameter(0) ROOT p1 = f32[32,32]{1,0} parameter(1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* param0 = module->entry_computation()->parameter_instruction(0); HloInstruction* prefix = TupleUtil::ExtractPrefix(param0, 2); EXPECT_THAT(prefix, op::Tuple(op::GetTupleElement(op::Parameter(0), 0), op::GetTupleElement(op::Parameter(0), 1))); } TEST_F(TupleUtilTest, AppendSuffix) { const std::string hlo_string = R"( HloModule Module ENTRY entry { p0 = (f32[32,32]{1,0},f32[32,32]{1,0},f32[32,32]{1,0}) parameter(0) ROOT p1 = f32[32,32]{1,0} parameter(1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* param0 = module->entry_computation()->parameter_instruction(0); HloInstruction* param1 = module->entry_computation()->parameter_instruction(1); HloInstruction* with_suffix = TupleUtil::AppendSuffix(param0, {param1, param1}); EXPECT_THAT(with_suffix, op::Tuple(op::GetTupleElement(op::Parameter(0), 0), op::GetTupleElement(op::Parameter(0), 1), op::GetTupleElement(op::Parameter(0), 2), op::Parameter(1), op::Parameter(1))); } TEST_F(TupleUtilTest, ReplaceTupleWithTupleInst) { const std::string hlo_string = R"( HloModule Module ENTRY entry { p0 = f32[32,32]{1,0} parameter(0) p1 = f32[32,32]{1,0} parameter(1) ROOT tuple = (f32[32,32]{1,0}, f32[32,32]{1,0}) tuple(p0, p1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* p0 = FindInstruction(module.get(), "p0"); HloInstruction* tuple = FindInstruction(module.get(), "tuple"); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * new_tuple, TupleUtil::ReplaceTupleWith(p0, tuple, {1})); EXPECT_THAT(new_tuple, op::Tuple(op::Parameter(0), op::Parameter(0))); } TEST_F(TupleUtilTest, ReplaceTupleWithNonTupleInst) { const std::string hlo_string = R"( HloModule Module ENTRY entry { ROOT p0 = (f32[32,32]{1,0}, f32[32,32]{1,0}) parameter(0) p1 = f32[32,32]{1,0} parameter(1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* p0 = FindInstruction(module.get(), "p0"); HloInstruction* p1 = FindInstruction(module.get(), "p1"); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * new_tuple, TupleUtil::ReplaceTupleWith(p1, p0, {0})); EXPECT_THAT(new_tuple, op::Tuple(op::Parameter(1), op::GetTupleElement(op::Parameter(0), 1))); } TEST_F(TupleUtilTest, ReplaceTupleWithNonTupleInstNested) { const std::string hlo_string = R"( HloModule Module ENTRY entry { ROOT p0 = (f32[32,32]{1,0}, (f32[32,32]{1,0}, f32[32,32]{1,0})) parameter(0) p1 = f32[32,32]{1,0} parameter(1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* p0 = FindInstruction(module.get(), "p0"); HloInstruction* p1 = FindInstruction(module.get(), "p1"); TF_ASSERT_OK_AND_ASSIGN(HloInstruction * new_tuple, TupleUtil::ReplaceTupleWith(p1, p0, {1, 0})); EXPECT_THAT( new_tuple, op::Tuple(op::GetTupleElement(op::Parameter(0), 0), op::Tuple(op::Parameter(1), op::GetTupleElement( op::GetTupleElement(op::Parameter(0), 1), 1)))); } TEST_F(TupleUtilTest, AddGetTupleElements) { const std::string hlo_string = R"( HloModule Module ENTRY entry { p0 = (f32[32,32]{1,0}, (f32[32,32]{1,0}, f32[32,32]{1,0})) parameter(0) gte = (f32[32,32]{1,0}, f32[32,32]{1,0}) get-tuple-element(p0), index=1 ROOT root = f32[32,32]{1,0} get-tuple-element(gte), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* p0 = FindInstruction(module.get(), "p0"); HloInstruction* existing_gte = FindInstruction(module.get(), "gte"); HloInstruction* new_gte = TupleUtil::AddGetTupleElements({p0, {1, 0}}); EXPECT_THAT(new_gte, op::GetTupleElement(existing_gte, 0)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/tuple_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/tuple_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0b2254c0-2234-4559-85fd-63d91a12a555
cpp
tensorflow/tensorflow
credentials_factory
tensorflow/core/data/service/credentials_factory.cc
tensorflow/core/data/service/credentials_factory_test.cc
#include "tensorflow/core/data/service/credentials_factory.h" #include <memory> #include <string> #include <unordered_map> #include <vector> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/mutex.h" namespace tensorflow { namespace data { namespace { mutex* get_lock() { static mutex lock(LINKER_INITIALIZED); return &lock; } using CredentialsFactories = std::unordered_map<std::string, CredentialsFactory*>; CredentialsFactories& credentials_factories() { static auto& factories = *new CredentialsFactories(); return factories; } } void CredentialsFactory::Register(CredentialsFactory* factory) { mutex_lock l(*get_lock()); if (!credentials_factories().insert({factory->Protocol(), factory}).second) { LOG(ERROR) << "Two credentials factories are being registered with protocol " << factory->Protocol() << ". Which one gets used is undefined."; } } Status CredentialsFactory::Get(absl::string_view protocol, CredentialsFactory** out) { mutex_lock l(*get_lock()); auto it = credentials_factories().find(std::string(protocol)); if (it != credentials_factories().end()) { *out = it->second; return absl::OkStatus(); } std::vector<string> available_types; for (const auto& factory : credentials_factories()) { available_types.push_back(factory.first); } return errors::NotFound("No credentials factory has been registered for ", "protocol ", protocol, ". The available types are: [ ", absl::StrJoin(available_types, ", "), " ]"); } Status CredentialsFactory::CreateServerCredentials( absl::string_view protocol, std::shared_ptr<::grpc::ServerCredentials>* out) { CredentialsFactory* factory; TF_RETURN_IF_ERROR(CredentialsFactory::Get(protocol, &factory)); TF_RETURN_IF_ERROR(factory->CreateServerCredentials(out)); return absl::OkStatus(); } Status CredentialsFactory::CreateClientCredentials( absl::string_view protocol, std::shared_ptr<::grpc::ChannelCredentials>* out) { CredentialsFactory* factory; TF_RETURN_IF_ERROR(CredentialsFactory::Get(protocol, &factory)); TF_RETURN_IF_ERROR(factory->CreateClientCredentials(out)); return absl::OkStatus(); } bool CredentialsFactory::Exists(absl::string_view protocol) { mutex_lock l(*get_lock()); return credentials_factories().find(std::string(protocol)) != credentials_factories().end(); } class InsecureCredentialsFactory : public CredentialsFactory { public: std::string Protocol() override { return "grpc"; } Status CreateServerCredentials( std::shared_ptr<::grpc::ServerCredentials>* out) override { *out = ::grpc::InsecureServerCredentials(); return absl::OkStatus(); } Status CreateClientCredentials( std::shared_ptr<::grpc::ChannelCredentials>* out) override { *out = ::grpc::InsecureChannelCredentials(); return absl::OkStatus(); } }; class InsecureCredentialsRegistrar { public: InsecureCredentialsRegistrar() { auto factory = new InsecureCredentialsFactory(); CredentialsFactory::Register(factory); } }; static InsecureCredentialsRegistrar registrar; } }
#include "tensorflow/core/data/service/credentials_factory.h" #include <memory> #include <string> #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { constexpr char kFailedToCreateServerCredentials[] = "Failed to create server credentials."; constexpr char kFailedToCreateClientCredentials[] = "Failed to create client credentials."; class TestCredentialsFactory : public CredentialsFactory { public: std::string Protocol() override { return "test"; } Status CreateServerCredentials( std::shared_ptr<grpc::ServerCredentials>* out) override { return errors::Internal(kFailedToCreateServerCredentials); } Status CreateClientCredentials( std::shared_ptr<grpc::ChannelCredentials>* out) override { return errors::Internal(kFailedToCreateClientCredentials); } }; } TEST(CredentialsFactory, Register) { TestCredentialsFactory test_factory; CredentialsFactory::Register(&test_factory); std::shared_ptr<grpc::ServerCredentials> server_credentials; ASSERT_EQ(errors::Internal(kFailedToCreateServerCredentials), CredentialsFactory::CreateServerCredentials(test_factory.Protocol(), &server_credentials)); std::shared_ptr<grpc::ChannelCredentials> client_credentials; ASSERT_EQ(errors::Internal(kFailedToCreateClientCredentials), CredentialsFactory::CreateClientCredentials(test_factory.Protocol(), &client_credentials)); } TEST(CredentialsFactory, DefaultGrpcProtocol) { std::shared_ptr<grpc::ServerCredentials> server_credentials; TF_ASSERT_OK( CredentialsFactory::CreateServerCredentials("grpc", &server_credentials)); std::shared_ptr<grpc::ChannelCredentials> client_credentials; TF_ASSERT_OK( CredentialsFactory::CreateClientCredentials("grpc", &client_credentials)); } TEST(CredentialsFactory, MissingServerProtocol) { std::shared_ptr<grpc::ServerCredentials> server_credentials; Status s = CredentialsFactory::CreateServerCredentials("unknown_protocol", &server_credentials); ASSERT_EQ(error::Code::NOT_FOUND, s.code()); ASSERT_TRUE( absl::StrContains(s.ToString(), "No credentials factory has been registered for " "protocol unknown_protocol")); } TEST(CredentialsFactory, MissingClientProtocol) { std::shared_ptr<grpc::ChannelCredentials> client_credentials; Status s = CredentialsFactory::CreateClientCredentials("unknown_protocol", &client_credentials); ASSERT_EQ(error::Code::NOT_FOUND, s.code()); ASSERT_TRUE( absl::StrContains(s.ToString(), "No credentials factory has been registered for " "protocol unknown_protocol")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/credentials_factory.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/credentials_factory_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
654bad89-09d6-46bb-b7c5-37040b507d71
cpp
google/arolla
demangle
arolla/util/demangle.cc
arolla/util/demangle_test.cc
#include "arolla/util/demangle.h" #include <cstdlib> #include <string> #include <typeinfo> #include "arolla/util/bytes.h" #if defined(__GXX_RTTI) #define AROLLA_HAS_CXA_DEMANGLE #endif #ifdef AROLLA_HAS_CXA_DEMANGLE #include <cxxabi.h> #endif namespace arolla { std::string TypeName(const std::type_info& ti) { if (ti == typeid(arolla::Bytes)) { return "arolla::Bytes"; } int status = 0; char* demangled = nullptr; #ifdef AROLLA_HAS_CXA_DEMANGLE demangled = abi::__cxa_demangle(ti.name(), nullptr, nullptr, &status); #endif if (status == 0 && demangled != nullptr) { std::string out = demangled; free(demangled); return out; } else { return ti.name(); } } }
#include "arolla/util/demangle.h" #include <cstdint> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" namespace arolla { namespace { using ::testing::Eq; using ::testing::MatchesRegex; TEST(DemangleTest, TypeName) { EXPECT_THAT(TypeName<int>(), Eq("int")); EXPECT_THAT(TypeName<int32_t>(), Eq("int")); EXPECT_THAT(TypeName<std::vector<int>>(), MatchesRegex("std::.*vector.*")); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/demangle.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/demangle_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
4152b9d6-a170-4c43-a583-3cc6b5fc12ef
cpp
tensorflow/tensorflow
flip_left_right
tensorflow/lite/experimental/ml_adjacent/algo/flip_left_right.cc
tensorflow/lite/experimental/ml_adjacent/algo/flip_left_right_test.cc
#include <cstring> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace flip_left_right { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; using ::ml_adj::data::TypeWidth; void FlipLeftRight(dim_t batches, dim_t input_height, dim_t input_width, const char* input_data, char* output_data, dim_t chunk_size) { const dim_t row_stride = input_width * chunk_size; const dim_t batch_stride = row_stride * input_height; for (int b = 0; b < batches; ++b) { const char* src_data_prt = input_data + b * batch_stride; char* dst_data_prt = output_data + b * batch_stride; for (int y = 0; y < input_height; ++y) { const char* src_ptr_row = src_data_prt + y * row_stride + (input_width - 1) * chunk_size; char* dst_ptr_row = dst_data_prt + y * row_stride; for (int x = 0; x < input_width; ++x) { std::memcpy(dst_ptr_row, src_ptr_row, chunk_size); src_ptr_row -= chunk_size; dst_ptr_row += chunk_size; } } } } void ComputeFlipLeftRight(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 1); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const char* img_data = reinterpret_cast<const char*>(img->Data()); const dim_t num_batches = img->Dims()[0]; const dim_t height = img->Dims()[1]; const dim_t width = img->Dims()[2]; const dim_t num_channels = img->Dims()[3]; const dim_t chunk_size = TypeWidth(img->Type()) * num_channels; MutableDataRef* output = outputs[0]; output->Resize({num_batches, height, width, num_channels}); char* output_data = reinterpret_cast<char*>(output->Data()); FlipLeftRight(num_batches, height, width, img_data, output_data, chunk_size); } } const Algo* Impl_FlipLeftRight() { static const Algo flip_left_right = {&ComputeFlipLeftRight, nullptr}; return &flip_left_right; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/flip_left_right.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace flip_left_right { namespace { struct FlipLeftRightTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const std::vector<float> expected_data; const std::vector<dim_t> expected_shape; }; class FlipLeftRightTest : public ::testing::TestWithParam<FlipLeftRightTestParams> {}; TEST_P(FlipLeftRightTest, FloatPixelType) { constexpr float kAbsError = 0.01f; const FlipLeftRightTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* flip_left_right = Impl_FlipLeftRight(); flip_left_right->process({&img}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); const float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( FlipLeftRightTests, FlipLeftRightTest, testing::ValuesIn({ FlipLeftRightTestParams{{1, 3, 3, 1}, {11, 12, 13, 21, 22, 23, 31, 32, 33}, {13, 12, 11, 23, 22, 21, 33, 32, 31}, {1, 3, 3, 1}}, FlipLeftRightTestParams{{1, 3, 3, 2}, {11, 2, 12, 3, 13, 4, 21, 3, 22, 4, 23, 5, 31, 4, 32, 5, 33, 6}, {13, 4, 12, 3, 11, 2, 23, 5, 22, 4, 21, 3, 33, 6, 32, 5, 31, 4}, {1, 3, 3, 2}}, FlipLeftRightTestParams{{2, 3, 3, 2}, {11, 2, 12, 3, 13, 4, 21, 3, 22, 4, 23, 5, 31, 4, 32, 5, 33, 6, 13, 4, 12, 3, 11, 2, 23, 5, 22, 4, 21, 3, 33, 6, 32, 5, 31, 4}, {13, 4, 12, 3, 11, 2, 23, 5, 22, 4, 21, 3, 33, 6, 32, 5, 31, 4, 11, 2, 12, 3, 13, 4, 21, 3, 22, 4, 23, 5, 31, 4, 32, 5, 33, 6}, {2, 3, 3, 2}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/flip_left_right.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/flip_left_right_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
33f82346-9f4f-407e-9852-6d1bd1bf3883
cpp
tensorflow/tensorflow
url
tensorflow/core/data/service/url.cc
tensorflow/core/data/service/url_test.cc
#include "tensorflow/core/data/service/url.h" #include <string> #include "absl/strings/string_view.h" #include "tensorflow/core/platform/regexp.h" namespace tensorflow { namespace data { URL::URL(absl::string_view url) { Parse(url); } void URL::Parse(absl::string_view url) { absl::string_view regexp = "(.*):([a-zA-Z0-9_]+|%port(_[a-zA-Z0-9_]+)?%)"; if (!RE2::FullMatch(url, regexp, &host_, &port_)) { host_ = std::string(url); port_ = ""; } } } }
#include "tensorflow/core/data/service/url.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { TEST(URLTest, ParseUrl) { URL url("localhost"); EXPECT_EQ(url.host(), "localhost"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseUrlWithProtocol) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseUrlWithPort) { URL url("localhost:1234"); EXPECT_EQ(url.host(), "localhost"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "1234"); } TEST(URLTest, ParseUrlWithProtocolAndPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "1234"); } TEST(URLTest, ParseUrlWithProtocolAndDynamicPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "%port%"); } TEST(URLTest, ParseBorgAddress) { URL url("/worker/task/0"); EXPECT_EQ(url.host(), "/worker/task/0"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseBorgAddressWithCustomProtocol) { URL url("worker:/worker/task/0"); EXPECT_EQ(url.host(), "worker:/worker/task/0"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseBorgAddressWithNamedPort) { URL url("/worker/task/0:worker"); EXPECT_EQ(url.host(), "/worker/task/0"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "worker"); } TEST(URLTest, ParseBorgAddressWithDynamicPort) { URL url("/worker/task/0:%port%"); EXPECT_EQ(url.host(), "/worker/task/0"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "%port%"); } TEST(URLTest, ParseBorgAddressWithDynamicNamedPort) { URL url("/worker/task/0:%port_worker%"); EXPECT_EQ(url.host(), "/worker/task/0"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "%port_worker%"); } TEST(URLTest, ParseIPv4Address) { URL url("127.0.0.1"); EXPECT_EQ(url.host(), "127.0.0.1"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseIPv4AddressWithPort) { URL url("127.0.0.1:8000"); EXPECT_EQ(url.host(), "127.0.0.1"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "8000"); } TEST(URLTest, ParseIPv6Address) { URL url("[::1]"); EXPECT_EQ(url.host(), "[::1]"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseIPv6AddressWithProtocol) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseIPv6AddressWithPort) { URL url("[::1]:23456"); EXPECT_EQ(url.host(), "[::1]"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "23456"); } TEST(URLTest, ParseIPv6AddressWithProtocolAndPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "23456"); } TEST(URLTest, ParseIPv6AddressWithProtocolAndDynamicPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "%port_name%"); } TEST(URLTest, ParseNonLocalIPv6Address) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseNonLocalIPv6AddressWithNamedPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "worker"); } TEST(URLTest, ParseEmptyIPv6Address) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseEmptyAddress) { URL url(""); EXPECT_EQ(url.host(), ""); EXPECT_FALSE(url.has_port()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/url.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/url_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8323463a-09b1-420b-baaf-d77521ca8e27
cpp
tensorflow/tensorflow
preemption_sync_manager
third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_sync_manager.cc
third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_sync_manager_test.cc
#include "xla/tsl/distributed_runtime/preemption/preemption_sync_manager.h" #include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include "xla/tsl/lib/monitoring/gauge.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" namespace tsl { namespace { using tensorflow::CoordinatedTask; using tensorflow::KeyValueEntry; constexpr int64_t kPreemptionSyncUnsetCounter = -1; constexpr char kPreemptionNoticeKey[] = "RECEIVED_PREEMPTION_NOTICE"; constexpr char kPreemptionCounterDirKey[] = "PREEMPTION_CURRENT_COUNTER/"; constexpr char kPreemptionBarrier[] = "PREEMPTION_SYNC_BARRIER"; constexpr absl::Duration kPreemptionBarrierTimeout = absl::Minutes(3); auto* sync_usage_metric = monitoring::Gauge<bool, 0>::New( "/coordination_service/preempt_manager/reached_sync_point_usage", "Records if preempt sync manager's ReachSyncPoint() was called at least " "once."); auto* notified_metric = monitoring::Gauge<bool, 0>::New( "/coordination_service/preempt_manager/notified", "Records receipt of preemption notification."); auto* set_sync_point_metric = monitoring::Gauge<bool, 0>::New( "/coordination_service/preempt_manager/set_sync_point", "Records that sync point is set."); auto* reached_sync_point_metric = monitoring::Gauge<bool, 0>::New( "/coordination_service/preempt_manager/reached_sync_point", "Records that sync point is reached."); constexpr absl::Duration kProtocolDuration = absl::Minutes(15); class PreemptionSyncManagerImpl : public PreemptionSyncManager { public: PreemptionSyncManagerImpl() = default; ~PreemptionSyncManagerImpl() override { shutdown_.Notify(); } absl::Status Initialize(CoordinationServiceAgent* agent) override; absl::Status Initialize(CoordinationServiceAgent* agent, const std::string& preemption_notifier_type) override; absl::Status Initialize( CoordinationServiceAgent* agent, std::unique_ptr<PreemptionNotifier> notifier) override; bool ReachedSyncPoint(int step_counter) override; private: void ComputeSyncCallCounter(absl::Time death_time); void CancelPreemptionBarrier(); absl::Mutex mu_; int64_t call_counter_ ABSL_GUARDED_BY(mu_) = 0; int64_t preemption_sync_counter_ ABSL_GUARDED_BY(mu_) = kPreemptionSyncUnsetCounter; std::string current_call_counter_key_; Env* env_; CoordinationServiceAgent* agent_; absl::Notification shutdown_; std::unique_ptr<Thread> sync_protocol_thread_; std::unique_ptr<PreemptionNotifier> preemption_notifier_; std::shared_ptr<CallOptions> call_opts_; }; absl::Status PreemptionSyncManagerImpl::Initialize( CoordinationServiceAgent* agent) { return Initialize(agent, "sigterm"); } absl::Status PreemptionSyncManagerImpl::Initialize( CoordinationServiceAgent* agent, const std::string& preemption_notifier_type) { TF_ASSIGN_OR_RETURN(Env * env, agent->GetEnv()); return Initialize(agent, PreemptionNotifier::CreatePreemptionNotifier( preemption_notifier_type, env)); } absl::Status PreemptionSyncManagerImpl::Initialize( CoordinationServiceAgent* agent, std::unique_ptr<PreemptionNotifier> notifier) { TF_ASSIGN_OR_RETURN(Env * env, agent->GetEnv()); env_ = env; agent_ = agent; preemption_notifier_ = std::move(notifier); TF_ASSIGN_OR_RETURN(CoordinatedTask own_task, agent->GetOwnTask()); const std::string task_name = absl::StrCat("/job:", own_task.job_name(), "/task:", own_task.task_id()); current_call_counter_key_ = absl::StrCat(kPreemptionCounterDirKey, task_name); preemption_notifier_->WillBePreemptedAtAsync( [agent = agent_, task_name](absl::StatusOr<absl::Time> death_time) { if (!death_time.ok()) { if (absl::IsCancelled(death_time.status())) { LOG(INFO) << "Preemption sync protocol cancelled by notifier: " << death_time.status() << ". This is expected during program shutdown."; } else { LOG(ERROR) << "Error from preemption notifier: " << death_time.status(); } return; } notified_metric->GetCell()->Set(true); const absl::Status s = agent->InsertKeyValue( kPreemptionNoticeKey, absl::FormatTime(*death_time)); LOG(INFO) << "Notified coordination service that this task will " "be preempted at " << *death_time << ". absl::Status: " << s; }); call_opts_ = agent_->GetKeyValueAsync( kPreemptionNoticeKey, [this, agent = agent_](absl::StatusOr<std::string> status_or_death_time) { if (absl::IsCancelled(status_or_death_time.status())) { LOG(INFO) << "Cancelled call to retrieve preemption notice. This is " "expected upon program shutdown."; return; } else if (!status_or_death_time.ok()) { LOG(WARNING) << "Failed to retrieve preemption notice from " "coordination service: " << status_or_death_time.status() << ". This is only expected if one of the tasks is unhealthy." " Check the logs for the actual root cause."; agent->CancelBarrierAsync( kPreemptionBarrier, [](const absl::Status& status) { if (!status.ok()) { LOG(ERROR) << "Failed to cancel preemption barrier: " << status; } }); return; } std::string err; absl::Time death_time; if (absl::ParseTime(absl::RFC3339_full, *status_or_death_time, &death_time, &err)) { LOG(INFO) << "Received preemption notice with death_time " << death_time; } else { LOG(ERROR) << "Unable to parse preemption notice's death time: " << err; CancelPreemptionBarrier(); return; } sync_protocol_thread_ = absl::WrapUnique(env_->StartThread( {}, "PreemptionSyncManager_SyncProtocol", std::bind(&PreemptionSyncManagerImpl::ComputeSyncCallCounter, this, death_time))); }); return absl::OkStatus(); } void PreemptionSyncManagerImpl::ComputeSyncCallCounter(absl::Time death_time) { const absl::Duration remaining_time = death_time - absl::Now(); if (remaining_time > kProtocolDuration) { LOG(INFO) << "Will begin preemption sync protocol in " << remaining_time; const absl::Duration sleep_time = remaining_time - kProtocolDuration; if (shutdown_.WaitForNotificationWithTimeout(sleep_time)) { LOG(WARNING) << "Shutdown is triggered before preemption sync protocol has begun."; CancelPreemptionBarrier(); return; } } absl::MutexLock l(&mu_); const absl::Status notified_status = agent_->InsertKeyValue( current_call_counter_key_, std::to_string(call_counter_)); if (!notified_status.ok()) { LOG(ERROR) << "Preemption sync failed - could not inform service of " "current call counter: " << notified_status; CancelPreemptionBarrier(); return; } const absl::Status barrier_status = agent_->WaitAtBarrier(kPreemptionBarrier, kPreemptionBarrierTimeout, {}); if (!barrier_status.ok()) { LOG(ERROR) << "Preemption sync barrier failed: " << barrier_status; return; } absl::StatusOr<std::vector<KeyValueEntry>> all_counters = agent_->GetKeyValueDir(kPreemptionCounterDirKey); if (!all_counters.ok()) { LOG(ERROR) << "Preemption sync failed - unable to retrieve call counters: " << all_counters.status(); return; } int64_t max_counter = kPreemptionSyncUnsetCounter; for (const auto& kv : *all_counters) { int64_t call_counter; if (!absl::SimpleAtoi(kv.value(), &call_counter)) { LOG(ERROR) << "Preemption sync failed - failed to parse preemption call " "counter: " << kv.DebugString(); return; } max_counter = std::max(max_counter, call_counter); } if (max_counter == kPreemptionSyncUnsetCounter) { LOG(ERROR) << "Preemption sync failed - no call counters found."; return; } preemption_sync_counter_ = max_counter + 1; LOG(INFO) << "Preemption sync counter is set: " << preemption_sync_counter_; set_sync_point_metric->GetCell()->Set(true); } void PreemptionSyncManagerImpl::CancelPreemptionBarrier() { agent_->CancelBarrierAsync( kPreemptionBarrier, [](const absl::Status& status) { if (!status.ok()) { LOG(ERROR) << "Failed to cancel preemption barrier: " << status; } }); } bool PreemptionSyncManagerImpl::ReachedSyncPoint(int step_counter) { sync_usage_metric->GetCell()->Set(true); absl::MutexLock l(&mu_); call_counter_ = step_counter; VLOG(3) << "Current call counter: " << call_counter_ << ", Preemption sync point: " << preemption_sync_counter_; const bool reached_sync_point = preemption_sync_counter_ == call_counter_; if (reached_sync_point) { reached_sync_point_metric->GetCell()->Set(true); } return reached_sync_point; } } std::unique_ptr<PreemptionSyncManager> CreatePreemptionSyncManager() { return std::make_unique<PreemptionSyncManagerImpl>(); } }
#include "xla/tsl/distributed_runtime/preemption/preemption_sync_manager.h" #include <memory> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "grpcpp/server.h" #include "grpcpp/server_builder.h" #include "grpcpp/support/channel_arguments.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/distributed_runtime/preemption/preemption_notifier.h" #include "xla/tsl/distributed_runtime/rpc/async_service_interface.h" #include "xla/tsl/distributed_runtime/rpc/coordination/grpc_coordination_client.h" #include "xla/tsl/distributed_runtime/rpc/coordination/grpc_coordination_service_impl.h" #include "xla/tsl/protobuf/coordination_config.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace tsl { namespace { using tensorflow::CoordinatedJob; using tensorflow::CoordinatedTask; using tensorflow::CoordinationServiceConfig; constexpr char kJobName[] = "test_worker"; class FakePreemptionNotifier : public PreemptionNotifier { public: FakePreemptionNotifier() : PreemptionNotifier(nullptr) {} ~FakePreemptionNotifier() override { NotifyRegisteredListeners( absl::CancelledError("~FakePreemptionNotifier() was called.")); } void AnnounceDeath(absl::Time death_time) { LOG(WARNING) << "Received preemption notice with death time: " << death_time; NotifyRegisteredListeners(death_time); } }; class PreemptionSyncManagerTest : public ::testing::Test { protected: PreemptionSyncManagerTest() { StartCoordinationService(); InitializeAndConnectCoordinationAgents(); auto preempt_notifier = std::make_unique<FakePreemptionNotifier>(); preempt_notifier_ = preempt_notifier.get(); CHECK_OK(preempt_sync_mgr_->Initialize(coord_agent_.get(), std::move(preempt_notifier))); auto preempt_notifier2 = std::make_unique<FakePreemptionNotifier>(); preempt_notifier2_ = preempt_notifier2.get(); CHECK_OK(preempt_sync_mgr2_->Initialize(coord_agent2_.get(), std::move(preempt_notifier2))); } ~PreemptionSyncManagerTest() override { preempt_sync_mgr_ = nullptr; preempt_sync_mgr2_ = nullptr; coord_agent_ = nullptr; coord_agent2_ = nullptr; coord_service_ = nullptr; static_cast<tsl::GrpcCoordinationServiceImpl*>(coord_rpc_service_.get()) ->SetCoordinationServiceInstance(nullptr); grpc_server_->Shutdown(); coord_rpc_service_->Shutdown(); } void SendPreemptionNotice(absl::Time death_time = absl::Now(), bool to_task1 = true) { if (to_task1) { preempt_notifier_->AnnounceDeath(death_time); } else { preempt_notifier2_->AnnounceDeath(death_time); } Env::Default()->SleepForMicroseconds( absl::ToInt64Microseconds(absl::Seconds(1))); } void SimulateUnhealthyTaskTwo() { CoordinatedTask task2; task2.set_job_name(kJobName); task2.set_task_id(1); CHECK_OK(coord_service_->ReportTaskError( task2, absl::InternalError("test_error"))); } std::unique_ptr<PreemptionSyncManager> preempt_sync_mgr_ = CreatePreemptionSyncManager(); std::unique_ptr<PreemptionSyncManager> preempt_sync_mgr2_ = CreatePreemptionSyncManager(); protected: void StartCoordinationService() { ::grpc::ServerBuilder builder; coord_service_ = EnableCoordinationService(); coord_compute_pool_ = std::make_unique<thread::ThreadPool>( Env::Default(), "CoordinationServiceRpcHandler", 1); coord_rpc_service_ = std::make_unique<GrpcCoordinationServiceImpl>( coord_compute_pool_.get(), &builder); auto* grpc_coord_service = static_cast<GrpcCoordinationServiceImpl*>(coord_rpc_service_.get()); grpc_coord_service->SetCoordinationServiceInstance(coord_service_.get()); grpc_server_ = builder.BuildAndStart(); coord_rpc_thread_ = absl::WrapUnique(Env::Default()->StartThread( {}, "CoordinationServiceHandleRPCsLoop", [service = coord_rpc_service_.get()]() { service->HandleRPCsLoop(); })); } std::unique_ptr<CoordinationServiceInterface> EnableCoordinationService() { CoordinationServiceConfig config; config.set_service_type("standalone"); CoordinatedJob* job = config.mutable_coordinated_job_list()->Add(); job->set_name(kJobName); job->set_num_tasks(2); return CoordinationServiceInterface::EnableCoordinationService( Env::Default(), config, nullptr); } void InitializeAndConnectCoordinationAgents() { std::unique_ptr<CoordinationClient> coord_client = absl::WrapUnique(NewGrpcCoordinationClient( grpc_server_->InProcessChannel(::grpc::ChannelArguments()))); std::unique_ptr<CoordinationClient> coord_client2 = absl::WrapUnique(NewGrpcCoordinationClient( grpc_server_->InProcessChannel(::grpc::ChannelArguments()))); auto error_fn = [](const absl::Status& status) { LOG(ERROR) << "Coordination service agent in error status: " << status; }; CoordinationServiceConfig coord_config; coord_config.set_service_leader("test_leader"); CHECK_OK(coord_agent_->Initialize(Env::Default(), kJobName, 0, coord_config, std::move(coord_client), error_fn)); CHECK_OK(coord_agent2_->Initialize(Env::Default(), kJobName, 1, coord_config, std::move(coord_client2), error_fn)); CHECK_OK(coord_agent_->Connect()); CHECK_OK(coord_agent2_->Connect()); } std::unique_ptr<CoordinationServiceInterface> coord_service_; std::unique_ptr<::grpc::Server> grpc_server_; std::unique_ptr<thread::ThreadPool> coord_compute_pool_; std::unique_ptr<AsyncServiceInterface> coord_rpc_service_; std::unique_ptr<Thread> coord_rpc_thread_; std::unique_ptr<CoordinationServiceAgent> coord_agent_ = CreateCoordinationServiceAgent(); FakePreemptionNotifier* preempt_notifier_; std::unique_ptr<CoordinationServiceAgent> coord_agent2_ = CreateCoordinationServiceAgent(); FakePreemptionNotifier* preempt_notifier2_; }; TEST_F(PreemptionSyncManagerTest, NoPreemption_NoSyncPoint) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, Preemption_SingleSyncPoint) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); SendPreemptionNotice(); EXPECT_TRUE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, DelayedPreemption_NoSyncPointYet) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); SendPreemptionNotice(absl::Now() + absl::Hours(1)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, UnhealthyTask_NoSyncPoint) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); SimulateUnhealthyTaskTwo(); SendPreemptionNotice(); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, ShutdownTasksWithoutPreemption) { int step_counter = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); CHECK_OK(coord_agent_->Shutdown()); CHECK_OK(coord_agent2_->Shutdown()); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter++)); } TEST_F(PreemptionSyncManagerTest, PreemptSlowTask) { int step_counter0 = 0; int step_counter2 = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); SendPreemptionNotice(); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_TRUE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_TRUE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); } TEST_F(PreemptionSyncManagerTest, PreemptFastTask) { int step_counter0 = 0; int step_counter2 = 0; EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); EXPECT_FALSE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); SendPreemptionNotice(absl::Now(), false); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_FALSE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_TRUE(preempt_sync_mgr_->ReachedSyncPoint(step_counter0++)); EXPECT_TRUE(preempt_sync_mgr2_->ReachedSyncPoint(step_counter2++)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_sync_manager.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/preemption/preemption_sync_manager_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5652e31a-425e-4615-b061-8fea0c9b6ba5
cpp
tensorflow/tensorflow
legalization_op_config
tensorflow/compiler/mlir/tf2xla/transforms/legalization_op_config.cc
tensorflow/compiler/mlir/tf2xla/transforms/legalization_op_config_test.cc
#include "tensorflow/compiler/mlir/tf2xla/transforms/legalization_op_config.h" #include "llvm/ADT/DenseSet.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tpu_embedding_ops_registry.h" namespace mlir { namespace mhlo { namespace { const llvm::DenseSet<mlir::TypeID>& MlirAlwaysOps() { static const llvm::DenseSet<mlir::TypeID>* ops = new llvm::DenseSet< mlir::TypeID>{ TypeID::get<TF::FusedBatchNormV3Op>(), TypeID::get<TF::FusedBatchNormGradV3Op>(), TypeID::get<TF::XlaReduceScatterOp>(), TypeID::get<TF::ModOp>(), TypeID::get<TF::MatrixDiagPartV3Op>(), TypeID::get<TF::AbsOp>(), TypeID::get<TF::AtanOp>(), TypeID::get<TF::AvgPool3DOp>(), TypeID::get<TF::BiasAddGradOp>(), TypeID::get<TF::CeilOp>(), TypeID::get<TF::CheckNumericsOp>(), TypeID::get<TF::CosOp>(), TypeID::get<TF::TanOp>(), TypeID::get<TF::DiagPartOp>(), TypeID::get<TF::EinsumOp>(), TypeID::get<TF::ExpOp>(), TypeID::get<TF::Expm1Op>(), TypeID::get<TF::FakeQuantWithMinMaxArgsOp>(), TypeID::get<TF::FloorOp>(), TypeID::get<TF::IFFTOp>(), TypeID::get<TF::ImagOp>(), TypeID::get<TF::IsFiniteOp>(), TypeID::get<TF::IsInfOp>(), TypeID::get<TF::IsNanOp>(), TypeID::get<TF::LgammaOp>(), TypeID::get<TF::Log1pOp>(), TypeID::get<TF::LogSoftmaxOp>(), TypeID::get<TF::MatrixBandPartOp>(), TypeID::get<TF::MaxPool3DGradOp>(), TypeID::get<TF::PreventGradientOp>(), TypeID::get<TF::RandomShuffleOp>(), TypeID::get<TF::RealOp>(), TypeID::get<TF::ReciprocalOp>(), TypeID::get<TF::ReluOp>(), TypeID::get<TF::Relu6Op>(), TypeID::get<TF::ReluGradOp>(), TypeID::get<TF::RsqrtOp>(), TypeID::get<TF::SelectOp>(), TypeID::get<TF::SigmoidOp>(), TypeID::get<TF::SignOp>(), TypeID::get<TF::SoftmaxOp>(), TypeID::get<TF::SqrtOp>(), TypeID::get<TF::TanhOp>(), TypeID::get<TF::XlaConvV2Op>(), TypeID::get<TF::XlaDotOp>(), TypeID::get<TF::XlaDotV2Op>(), TypeID::get<TF::XlaDynamicSliceOp>(), TypeID::get<TF::XlaEinsumOp>(), TypeID::get<TF::XlaReduceWindowOp>(), TypeID::get<TF::XlaReplicaIdOp>(), TypeID::get<TF::XlaRngBitGeneratorOp>(), TypeID::get<TF::XlaSelectAndScatterOp>(), TypeID::get<TF::XlaSortOp>(), TypeID::get<TF::XlaVariadicReduceV2Op>(), TypeID::get<TF::XlaVariadicSortOp>(), TypeID::get<TF::RiscAddOp>(), TypeID::get<TF::RiscDotOp>(), TypeID::get<TF::ConstOp>(), TypeID::get<TF::AssertOp>(), TypeID::get<TF::CrossReplicaSumOp>(), TypeID::get<TF::InfeedDequeueTupleOp>(), TypeID::get<TF::OutfeedEnqueueTupleOp>(), TypeID::get<TF::XlaShardingOp>(), TypeID::get<TF::IfRegionOp>(), TypeID::get<TF::WhileRegionOp>(), TypeID::get<TF::CaseRegionOp>(), TypeID::get<TF::YieldOp>(), }; return *ops; } bool IsOpTypeAllowedTf2XlaFallback(const TypeID& type_id) { static auto* ops = [] { llvm::SmallDenseSet<mlir::TypeID, 512>* ops_set = new llvm::SmallDenseSet< mlir::TypeID, 512>{ TypeID::get<TF::AcoshOp>(), TypeID::get<TF::AcosOp>(), TypeID::get<TF::AddNOp>(), TypeID::get<TF::AddV2Op>(), TypeID::get<TF::AngleOp>(), TypeID::get<TF::AdjustContrastv2Op>(), TypeID::get<TF::AdjustHueOp>(), TypeID::get<TF::AdjustSaturationOp>(), TypeID::get<TF::ApproximateEqualOp>(), TypeID::get<TF::ApproxTopKOp>(), TypeID::get<TF::ArgMaxOp>(), TypeID::get<TF::ArgMinOp>(), TypeID::get<TF::AsinhOp>(), TypeID::get<TF::AsinOp>(), TypeID::get<TF::Atan2Op>(), TypeID::get<TF::AtanhOp>(), TypeID::get<TF::BatchMatMulV2Op>(), TypeID::get<TF::BatchMatMulV3Op>(), TypeID::get<TF::BatchToSpaceOp>(), TypeID::get<TF::BesselI0eOp>(), TypeID::get<TF::BesselI1eOp>(), TypeID::get<TF::BetaincOp>(), TypeID::get<TF::BiasAddOp>(), TypeID::get<TF::BitwiseAndOp>(), TypeID::get<TF::BitwiseOrOp>(), TypeID::get<TF::BitwiseXorOp>(), TypeID::get<TF::BucketizeOp>(), TypeID::get<TF::CaseOp>(), TypeID::get<TF::CastOp>(), TypeID::get<TF::ClipByValueOp>(), TypeID::get<TF::CholeskyOp>(), TypeID::get<TF::CollectiveReduceV2Op>(), TypeID::get<TF::ComplexAbsOp>(), TypeID::get<TF::ConjugateTransposeOp>(), TypeID::get<TF::ConcatV2Op>(), TypeID::get<TF::ConvOp>(), TypeID::get<TF::CoshOp>(), TypeID::get<TF::CrossOp>(), TypeID::get<TF::CumulativeLogsumexpOp>(), TypeID::get<TF::DataFormatDimMapOp>(), TypeID::get<TF::DataFormatVecPermuteOp>(), TypeID::get<TF::DepthToSpaceOp>(), TypeID::get<TF::DepthwiseConv2dNativeBackpropFilterOp>(), TypeID::get<TF::DepthwiseConv2dNativeBackpropInputOp>(), TypeID::get<TF::DiagOp>(), TypeID::get<TF::DigammaOp>(), TypeID::get<TF::DivNoNanOp>(), TypeID::get<TF::DynamicPartitionOp>(), TypeID::get<TF::EluGradOp>(), TypeID::get<TF::EluOp>(), TypeID::get<TF::EnsureShapeOp>(), TypeID::get<TF::EqualOp>(), TypeID::get<TF::ErfcOp>(), TypeID::get<TF::ErfinvOp>(), TypeID::get<TF::ErfOp>(), TypeID::get<TF::ExtractImagePatchesOp>(), TypeID::get<TF::FFT2DOp>(), TypeID::get<TF::FFT3DOp>(), TypeID::get<TF::FFTOp>(), TypeID::get<TF::FakeParamOp>(), TypeID::get<TF::FakeQuantWithMinMaxArgsGradientOp>(), TypeID::get<TF::FakeQuantWithMinMaxVarsGradientOp>(), TypeID::get<TF::FakeQuantWithMinMaxVarsPerChannelOp>(), TypeID::get<TF::FakeQuantWithMinMaxVarsPerChannelGradientOp>(), TypeID::get<TF::FloorDivOp>(), TypeID::get<TF::FloorModOp>(), TypeID::get<TF::GetMinibatchesInCsrWithPhysicalReplicaOp>(), TypeID::get<TF::GetMinibatchSplitsWithPhysicalReplicaOp>(), TypeID::get<TF::GreaterOp>(), TypeID::get<TF::HSVToRGBOp>(), TypeID::get<TF::IFFT2DOp>(), TypeID::get<TF::IFFT3DOp>(), TypeID::get<TF::IRFFT2DOp>(), TypeID::get<TF::IRFFT3DOp>(), TypeID::get<TF::IgammaOp>(), TypeID::get<TF::IgammacOp>(), TypeID::get<TF::IgammaGradAOp>(), TypeID::get<TF::InplaceAddOp>(), TypeID::get<TF::InTopKV2Op>(), TypeID::get<TF::InvertOp>(), TypeID::get<TF::InvOp>(), TypeID::get<TF::KthOrderStatisticOp>(), TypeID::get<TF::LRNOp>(), TypeID::get<TF::LRNGradOp>(), TypeID::get<TF::LeakyReluGradOp>(), TypeID::get<TF::LeakyReluOp>(), TypeID::get<TF::LeftShiftOp>(), TypeID::get<TF::LessOp>(), TypeID::get<TF::ListDiffOp>(), TypeID::get<TF::LogicalAndOp>(), TypeID::get<TF::LogicalNotOp>(), TypeID::get<TF::LogOp>(), TypeID::get<TF::LowerBoundOp>(), TypeID::get<TF::MakeUniqueOp>(), TypeID::get<TF::MatMulOp>(), TypeID::get<TF::MatrixDiagV3Op>(), TypeID::get<TF::MatrixInverseOp>(), TypeID::get<TF::MatrixSetDiagV3Op>(), TypeID::get<TF::MatrixSolveOp>(), TypeID::get<TF::MatrixTriangularSolveOp>(), TypeID::get<TF::MaxPool3DGradGradOp>(), TypeID::get<TF::MaxPoolGradOp>(), TypeID::get<TF::MaxPoolGradGradOp>(), TypeID::get<TF::MirrorPadOp>(), TypeID::get<TF::MirrorPadGradOp>(), TypeID::get<TF::MulOp>(), TypeID::get<TF::MultinomialOp>(), TypeID::get<TF::NdtriOp>(), TypeID::get<TF::NegOp>(), TypeID::get<TF::NextAfterOp>(), TypeID::get<TF::NonMaxSuppressionV4Op>(), TypeID::get<TF::NotEqualOp>(), TypeID::get<TF::PadOp>(), TypeID::get<TF::ParameterizedTruncatedNormalOp>(), TypeID::get<TF::PlaceholderWithDefaultOp>(), TypeID::get<TF::PolygammaOp>(), TypeID::get<TF::PopulationCountOp>(), TypeID::get<TF::PowOp>(), TypeID::get<TF::QrOp>(), TypeID::get<TF::QuantizeAndDequantizeOp>(), TypeID::get<TF::QuantizeAndDequantizeV2Op>(), TypeID::get<TF::QuantizeAndDequantizeV3Op>(), TypeID::get<TF::QuantizeAndDequantizeV4Op>(), TypeID::get<TF::RFFT2DOp>(), TypeID::get<TF::RFFT3DOp>(), TypeID::get<TF::RGBToHSVOp>(), TypeID::get<TF::RandomUniformIntOp>(), TypeID::get<TF::RandomUniformOp>(), TypeID::get<TF::RealDivOp>(), TypeID::get<TF::ReciprocalGradOp>(), TypeID::get<TF::Relu6GradOp>(), TypeID::get<TF::ResizeBilinearOp>(), TypeID::get<TF::ResizeBilinearGradOp>(), TypeID::get<TF::ResizeNearestNeighborOp>(), TypeID::get<TF::ResizeNearestNeighborGradOp>(), TypeID::get<TF::ReverseSequenceOp>(), TypeID::get<TF::RightShiftOp>(), TypeID::get<TF::RintOp>(), TypeID::get<TF::RollOp>(), TypeID::get<TF::RoundOp>(), TypeID::get<TF::SegmentSumV2Op>(), TypeID::get<TF::SegmentProdV2Op>(), TypeID::get<TF::SegmentMinV2Op>(), TypeID::get<TF::SegmentMaxV2Op>(), TypeID::get<TF::SelectV2Op>(), TypeID::get<TF::SelfAdjointEigV2Op>(), TypeID::get<TF::SeluGradOp>(), TypeID::get<TF::SeluOp>(), TypeID::get<TF::SigmoidGradOp>(), TypeID::get<TF::SinOp>(), TypeID::get<TF::SliceOp>(), TypeID::get<TF::SoftplusGradOp>(), TypeID::get<TF::SoftsignGradOp>(), TypeID::get<TF::SoftsignOp>(), TypeID::get<TF::SpaceToBatchNDOp>(), TypeID::get<TF::SpaceToBatchOp>(), TypeID::get<TF::SpaceToDepthOp>(), TypeID::get<TF::SparseToDenseOp>(), TypeID::get<TF::SquareOp>(), TypeID::get<TF::StatelessMultinomialOp>(), TypeID::get<TF::StatelessParameterizedTruncatedNormalOp>(), TypeID::get<TF::StatelessRandomGetAlgOp>(), TypeID::get<TF::StatelessRandomGetKeyCounterOp>(), TypeID::get<TF::StatelessRandomGetKeyCounterAlgOp>(), TypeID::get<TF::StatelessRandomNormalOp>(), TypeID::get<TF::StatelessRandomNormalV2Op>(), TypeID::get<TF::StatelessRandomUniformOp>(), TypeID::get<TF::StatelessRandomUniformFullIntOp>(), TypeID::get<TF::StatelessRandomUniformFullIntV2Op>(), TypeID::get<TF::StatelessRandomUniformV2Op>(), TypeID::get<TF::StatelessRandomUniformIntOp>(), TypeID::get<TF::StatelessRandomUniformIntV2Op>(), TypeID::get<TF::StatelessTruncatedNormalOp>(), TypeID::get<TF::StatelessTruncatedNormalV2Op>(), TypeID::get<TF::StoreMinibatchStatisticsInFdoOp>(), TypeID::get<TF::StridedSliceOp>(), TypeID::get<TF::SubOp>(), TypeID::get<TF::SvdOp>(), TypeID::get<TF::TanOp>(), TypeID::get<TF::TensorScatterAddOp>(), TypeID::get<TF::TensorScatterSubOp>(), TypeID::get<TF::TPUEmbeddingActivationsOp>(), TypeID::get<TF::TopKUniqueOp>(), TypeID::get<TF::TopKWithUniqueOp>(), TypeID::get<TF::TransposeOp>(), TypeID::get<TF::TridiagonalSolveOp>(), TypeID::get<TF::TridiagonalMatMulOp>(), TypeID::get<TF::TruncateDivOp>(), TypeID::get<TF::TruncatedNormalOp>(), TypeID::get<TF::TruncateModOp>(), TypeID::get<TF::UniqueOp>(), TypeID::get<TF::UnpackOp>(), TypeID::get<TF::UpperBoundOp>(), TypeID::get<TF::WhereOp>(), TypeID::get<TF::XlaSendTPUEmbeddingGradientsOp>(), TypeID::get<TF::XlaBroadcastHelperOp>(), TypeID::get<TF::XlaCallModuleOp>(), TypeID::get<TF::XlaCustomCallV2Op>(), TypeID::get<TF::XlaDynamicUpdateSliceOp>(), TypeID::get<TF::XlaKeyValueSortOp>(), TypeID::get<TF::XlaPadOp>(), TypeID::get<TF::XlaSetBoundOp>(), TypeID::get<TF::XlaSetDynamicDimensionSizeOp>(), TypeID::get<TF::XlaSparseCoreAdagradMomentumOp>(), TypeID::get<TF::XlaSparseCoreAdagradOp>(), TypeID::get<TF::XlaSparseCoreAdamOp>(), TypeID::get<TF::XlaSparseCoreFtrlOp>(), TypeID::get<TF::XlaSparseCoreSgdOp>(), TypeID::get<TF::XlaSparseDenseMatmulGradWithAdagradAndCsrInputOp>(), TypeID::get< TF::XlaSparseDenseMatmulGradWithAdagradMomentumAndCsrInputOp>(), TypeID::get<TF::XlaSparseDenseMatmulGradWithAdamAndCsrInputOp>(), TypeID::get<TF::XlaSparseDenseMatmulGradWithFtrlAndCsrInputOp>(), TypeID::get<TF::XlaSparseDenseMatmulGradWithSgdAndCsrInputOp>(), TypeID::get<TF::XlaSparseDenseMatmulWithCsrInputOp>(), TypeID::get<TF::XlaSparseDenseMatmulWithStaticBufferSizeOp>(), TypeID::get< TF::XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSizeOp>(), TypeID::get< TF::XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSizeOp>(), TypeID::get< TF::XlaSparseDenseMatmulGradWithAdamAndStaticBufferSizeOp>(), TypeID::get< TF::XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSizeOp>(), TypeID::get< TF::XlaSparseDenseMatmulGradWithSgdAndStaticBufferSizeOp>(), TypeID::get<TF::XlaSparseDenseMatmulGradWithCsrInputOp>(), TypeID::get<TF::XlaSpmdFullToShardShapeOp>(), TypeID::get<TF::XlaSpmdShardToFullShapeOp>(), TypeID::get<TF::XlaSvdOp>(), }; for (auto op_type_id : TF::TPUEmbeddingOpsRegistry::Global().GetOpsTypeIds()) { ops_set->insert(op_type_id); } return ops_set; }(); return ops->count(type_id); } bool IsOpTypeAllowedTf2XlaPreferred(const TypeID& type_id) { static auto* ops = new llvm::SmallDenseSet<mlir::TypeID, 512>{ TypeID::get<TF::AllOp>(), TypeID::get<TF::AllToAllOp>(), TypeID::get<TF::AnyOp>(), TypeID::get<TF::AvgPoolOp>(), TypeID::get<TF::AvgPool3DGradOp>(), TypeID::get<TF::AvgPoolGradOp>(), TypeID::get<TF::BatchToSpaceNDOp>(), TypeID::get<TF::BitcastOp>(), TypeID::get<TF::BroadcastToOp>(), TypeID::get<TF::CollectivePermuteOp>(), TypeID::get<TF::ComplexOp>(), TypeID::get<TF::ConcatV2Op>(), TypeID::get<TF::ConjOp>(), TypeID::get<TF::Conv2DOp>(), TypeID::get<TF::Conv2DBackpropFilterOp>(), TypeID::get<TF::Conv2DBackpropInputOp>(), TypeID::get<TF::Conv3DOp>(), TypeID::get<TF::Conv3DBackpropFilterV2Op>(), TypeID::get<TF::Conv3DBackpropInputV2Op>(), TypeID::get<TF::CumprodOp>(), TypeID::get<TF::CumsumOp>(), TypeID::get<TF::DepthwiseConv2dNativeOp>(), TypeID::get<TF::DivOp>(), TypeID::get<TF::DynamicStitchOp>(), TypeID::get<TF::_EagerConstOp>(), TypeID::get<TF::EmptyOp>(), TypeID::get<TF::ExpandDimsOp>(), TypeID::get<TF::FakeQuantWithMinMaxVarsOp>(), TypeID::get<TF::FillOp>(), TypeID::get<TF::FusedBatchNormOp>(), TypeID::get<TF::FusedBatchNormGradOp>(), TypeID::get<TF::FusedBatchNormGradV2Op>(), TypeID::get<TF::FusedBatchNormV2Op>(), TypeID::get<TF::_FusedConv2DOp>(), TypeID::get<TF::GatherNdOp>(), TypeID::get<TF::GatherV2Op>(), TypeID::get<TF::GreaterEqualOp>(), TypeID::get<TF::IdentityOp>(), TypeID::get<TF::IdentityNOp>(), TypeID::get<TF::InplaceUpdateOp>(), TypeID::get<TF::InvertPermutationOp>(), TypeID::get<TF::IRFFTOp>(), TypeID::get<TF::L2LossOp>(), TypeID::get<TF::LegacyCallOp>(), TypeID::get<TF::LessEqualOp>(), TypeID::get<TF::LinSpaceOp>(), TypeID::get<TF::LogicalOrOp>(), TypeID::get<TF::MaxOp>(), TypeID::get<TF::MaximumOp>(), TypeID::get<TF::MaxPoolOp>(), TypeID::get<TF::MaxPool3DOp>(), TypeID::get<TF::MeanOp>(), TypeID::get<TF::MinOp>(), TypeID::get<TF::MinimumOp>(), TypeID::get<TF::MulNoNanOp>(), TypeID::get<TF::OneHotOp>(), TypeID::get<TF::OnesLikeOp>(), TypeID::get<TF::PackOp>(), TypeID::get<TF::PadV2Op>(), TypeID::get<TF::ParallelDynamicStitchOp>(), TypeID::get<TF::PartitionedCallOp>(), TypeID::get<TF::ProdOp>(), TypeID::get<TF::QrOp>(), TypeID::get<TF::RandomStandardNormalOp>(), TypeID::get<TF::RandomUniformOp>(), TypeID::get<TF::RangeOp>(), TypeID::get<TF::ReshapeOp>(), TypeID::get<TF::ReverseV2Op>(), TypeID::get<TF::RFFTOp>(), TypeID::get<TF::RsqrtGradOp>(), TypeID::get<TF::ScatterNdOp>(), TypeID::get<TF::ShapeOp>(), TypeID::get<TF::SinhOp>(), TypeID::get<TF::SizeOp>(), TypeID::get<TF::SliceOp>(), TypeID::get<TF::SoftmaxCrossEntropyWithLogitsOp>(), TypeID::get<TF::SoftplusOp>(), TypeID::get<TF::SparseMatMulOp>(), TypeID::get<TF::SparseSoftmaxCrossEntropyWithLogitsOp>(), TypeID::get<TF::SplitOp>(), TypeID::get<TF::SplitVOp>(), TypeID::get<TF::SqrtGradOp>(), TypeID::get<TF::SquaredDifferenceOp>(), TypeID::get<TF::SqueezeOp>(), TypeID::get<TF::StatelessParameterizedTruncatedNormalOp>(), TypeID::get<TF::StatefulPartitionedCallOp>(), TypeID::get<TF::StopGradientOp>(), TypeID::get<TF::StridedSliceOp>(), TypeID::get<TF::StridedSliceGradOp>(), TypeID::get<TF::SumOp>(), TypeID::get<TF::TanhGradOp>(), TypeID::get<TF::TensorScatterUpdateOp>(), TypeID::get<TF::TileOp>(), TypeID::get<TF::TopKV2Op>(), TypeID::get<TF::_UnaryOpsCompositionOp>(), TypeID::get<TF::UnsortedSegmentMaxOp>(), TypeID::get<TF::UnsortedSegmentMinOp>(), TypeID::get<TF::UnsortedSegmentProdOp>(), TypeID::get<TF::UnsortedSegmentSumOp>(), TypeID::get<TF::XdivyOp>(), TypeID::get<TF::XlaSendTPUEmbeddingGradientsOp>(), TypeID::get<TF::XlaAllReduceOp>(), TypeID::get<TF::XlaGatherOp>(), TypeID::get<TF::Xlog1pyOp>(), TypeID::get<TF::XlogyOp>(), TypeID::get<TF::ZerosLikeOp>(), TypeID::get<TF::ZetaOp>(), }; return ops->contains(type_id); } const llvm::DenseSet<mlir::TypeID>& DynamicTensorflowOps() { static const llvm::DenseSet<mlir::TypeID>* ops = new llvm::DenseSet<mlir::TypeID>{ TypeID::get<mlir::TF::DynamicPartitionOp>(), TypeID::get<mlir::TF::UniqueOp>(), TypeID::get<mlir::TF::WhereOp>(), TypeID::get<mlir::TF::XlaSetDynamicDimensionSizeOp>(), }; return *ops; } } bool HasTf2XlaFallback(const TypeID& type_id) { return IsOpTypeAllowedTf2XlaFallback(type_id) || IsOpTypeAllowedTf2XlaPreferred(type_id); } bool IsOpLegalizedWithMlir(Operation& op) { auto abstractOp = op.getRegisteredInfo(); if (!abstractOp) return false; return IsTypeLegalizedWithMlir(abstractOp->getTypeID()); } bool IsTypeLegalizedWithMlir(const TypeID& type_id) { return MlirAlwaysOps().contains(type_id); } bool IsOpAllowedTf2xlaFallback(const TypeID& type_id) { return IsOpTypeAllowedTf2XlaFallback(type_id); } bool IsOpAllowedTf2xlaPreferred(const TypeID& type_id) { return IsOpTypeAllowedTf2XlaPreferred(type_id); } bool IsDynamicPadderOp(const TypeID& type_id) { return DynamicTensorflowOps().contains(type_id); } } }
#include "tensorflow/compiler/mlir/tf2xla/transforms/legalization_op_config.h" #include <optional> #include <set> #include <string> #include <vector> #include <gtest/gtest.h> #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Support/TypeID.h" #include "tensorflow/compiler/mlir/register_common_dialects.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_dialect.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/passes.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/test_utils.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace mlir { namespace mhlo { using func::FuncOp; using mlir::ModuleOp; static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 1442 : i32}} { func.func @main(%arg0: tensor<3xi64> {tf._user_specified_name = "resource", tf.aliasing_output = 3 : i64}) -> () attributes {tf.entry_function = {control_outputs = "stateful_normal/RngReadAndSkip,stateful_uniform/RngReadAndSkip,stateful_uniform_full_int/RngReadAndSkip", inputs = "stateful_normal_rngreadandskip_resource", outputs = "identity_RetVal,identity_1_RetVal,identity_2_RetVal"}} { %0:3 = "tf.Unpack"(%arg0) {axis = 0 : i64} : (tensor<3xi64>) -> (tensor<i64>, tensor<i64>, tensor<i64>) return } })"; class LegalizationOpConfigTest : public ::testing::Test { public: absl::Status CreateMlirModule(std::string module_string = kMlirModuleStr) { TF_ASSIGN_OR_RETURN( module_, test::GetMlirModuleFromString(module_string, &context_)); context_.loadAllAvailableDialects(); return absl::OkStatus(); } absl::StatusOr<FuncOp> GetMain() { func::FuncOp main = module_->lookupSymbol<mlir::func::FuncOp>("main"); if (!main) { return absl::NotFoundError("Could not find main function"); } return main; } protected: MLIRContext context_; OwningOpRef<ModuleOp> module_; }; TEST_F(LegalizationOpConfigTest, FailsWithExpectsLegalizationWithMlir) { TF_EXPECT_OK(CreateMlirModule()); EXPECT_FALSE(IsOpLegalizedWithMlir(*module_->getOperation())); } TEST_F(LegalizationOpConfigTest, ExpectsFalseForNonMlirOps) { TF_EXPECT_OK(CreateMlirModule()); TF_ASSERT_OK_AND_ASSIGN(FuncOp main, GetMain()); main.walk([&](Operation* op) { EXPECT_FALSE(IsOpLegalizedWithMlir(*op)); }); } TEST_F(LegalizationOpConfigTest, ExpectsTrueForMlirTypeID) { EXPECT_TRUE(IsTypeLegalizedWithMlir(TypeID::get<TF::ModOp>())); EXPECT_FALSE(HasTf2XlaFallback(TypeID::get<TF::ModOp>())); EXPECT_FALSE(IsOpAllowedTf2xlaFallback(TypeID::get<TF::ModOp>())); EXPECT_FALSE(IsOpAllowedTf2xlaPreferred(TypeID::get<TF::ModOp>())); } TEST_F(LegalizationOpConfigTest, ExpectsTrueForTF2XLATypeID) { EXPECT_TRUE(HasTf2XlaFallback(TypeID::get<TF::AllOp>())); EXPECT_TRUE(IsOpAllowedTf2xlaPreferred(TypeID::get<TF::AllOp>())); EXPECT_FALSE(IsTypeLegalizedWithMlir(TypeID::get<TF::AllOp>())); } TEST_F(LegalizationOpConfigTest, ChecksDynamicPadderOps) { EXPECT_TRUE( IsDynamicPadderOp(TypeID::get<TF::XlaSetDynamicDimensionSizeOp>())); EXPECT_FALSE(IsDynamicPadderOp(TypeID::get<TF::ConstOp>())); } TEST_F(LegalizationOpConfigTest, CountLoweringsSet) { int mlir_lowering_count = 0; int tf2xla_fallback_count = 0; int non_categorized_count = 0; DialectRegistry dialect_registry; dialect_registry.insert<mlir::TF::TensorFlowDialect>(); MLIRContext context(dialect_registry); context.loadAllAvailableDialects(); for (auto operation : context.getRegisteredOperations()) { if (IsTypeLegalizedWithMlir(operation.getTypeID())) { mlir_lowering_count++; } else if (HasTf2XlaFallback(operation.getTypeID())) { tf2xla_fallback_count++; } else { non_categorized_count++; } } EXPECT_EQ(mlir_lowering_count, 67); EXPECT_EQ(tf2xla_fallback_count, 323); EXPECT_EQ(non_categorized_count, 430); } TEST_F(LegalizationOpConfigTest, CountTypesWhichHaveBothMlirAndTf2xlaFallback) { int double_lowering_count = 0; DialectRegistry dialect_registry; dialect_registry.insert<mlir::TF::TensorFlowDialect>(); MLIRContext context(dialect_registry); context.loadAllAvailableDialects(); for (auto operation : context.getRegisteredOperations()) { if (IsTypeLegalizedWithMlir(operation.getTypeID()) && HasTf2XlaFallback(operation.getTypeID())) { double_lowering_count++; } } EXPECT_EQ(double_lowering_count, 1); } TEST_F(LegalizationOpConfigTest, CountAllMlirLoweringPatterns) { DialectRegistry dialect_registry; mlir::RegisterCommonToolingDialects(dialect_registry); MLIRContext context(dialect_registry); context.loadAllAvailableDialects(); RewritePatternSet mlir_legalize_lower_patterns(&context); PopulateLegalizeTfPatterns(&context, &mlir_legalize_lower_patterns); int mlir_only_patterns = 0; for (auto& pattern : mlir_legalize_lower_patterns.getNativePatterns()) { std::optional<OperationName> pat_op_name = pattern->getRootKind(); if (!pat_op_name) { continue; } if (!HasTf2XlaFallback(pat_op_name->getRegisteredInfo()->getTypeID())) { mlir_only_patterns++; } } EXPECT_EQ(mlir_only_patterns, 63); } TEST_F(LegalizationOpConfigTest, MlirLoweringWithoutXlaKernel) { tensorflow::XlaOpRegistry::RegisterCompilationKernels(); std::vector<const tensorflow::KernelDef*> kernel_defs = tensorflow::XlaOpRegistry::DeviceKernels( tensorflow::DEVICE_CPU_XLA_JIT, true); std::set<std::string> xla_op_kernels; for (auto kernel_def : kernel_defs) { std::string tf_name = "tf." + kernel_def->op(); xla_op_kernels.insert(tf_name); } DialectRegistry dialect_registry; mlir::RegisterCommonToolingDialects(dialect_registry); MLIRContext context(dialect_registry); context.loadAllAvailableDialects(); RewritePatternSet mlir_legalize_lower_patterns(&context); PopulateLegalizeTfPatterns(&context, &mlir_legalize_lower_patterns); int mlir_without_xla_count = 0; for (auto& pattern : mlir_legalize_lower_patterns.getNativePatterns()) { std::optional<OperationName> pat_op_name = pattern->getRootKind(); if (!pat_op_name) { continue; } if (xla_op_kernels.find(pat_op_name->getStringRef().str()) == xla_op_kernels.end()) { mlir_without_xla_count++; } } EXPECT_EQ(mlir_without_xla_count, 13); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/transforms/legalization_op_config.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/transforms/legalization_op_config_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d854d58e-93ef-48d2-b091-d6dc7fbb5240
cpp
google/arolla
math
arolla/qexpr/operators/math/math.h
arolla/qexpr/operators/math/math_test.cc
#ifndef AROLLA_OPERATORS_MATH_MATH_H_ #define AROLLA_OPERATORS_MATH_MATH_H_ #include <cmath> namespace arolla { struct LogOp { float operator()(float x) const { return std::log(x); } double operator()(double x) const { return std::log(x); } }; struct Log2Op { template <typename T> T operator()(T x) const { return std::log2(x); } }; struct Log10Op { template <typename T> T operator()(T x) const { return std::log10(x); } }; struct Log1pOp { template <typename T> T operator()(T x) const { return std::log1p(x); } }; struct Symlog1pOp { template <typename T> T operator()(T x) const { return x >= 0 ? std::log1p(x) : -std::log1p(-x); } }; struct ExpOp { float operator()(float x) const { return std::exp(x); } double operator()(double x) const { return std::exp(x); } }; struct Expm1Op { template <typename T> T operator()(T x) const { return std::expm1(x); } }; struct PowOp { template <typename T> T operator()(T a, T b) const { return std::pow(a, b); } double operator()(double a, double b) const { return std::pow(a, b); } }; struct SigmoidOp { template <typename T> T operator()(T value, T half, T slope) const { return 1.0f / (1.0f + ExpOp()(slope * (half - value))); } }; struct LogitOp { template <typename T> T operator()(T p) const { return LogOp()(p) - std::log1p(-p); } }; struct LogSigmoidOp { template <typename T> T operator()(T x) const { if (x >= 0) { return -std::log1p(std::exp(-x)); } return x - std::log1p(std::exp(x)); } }; struct SinOp { template <typename T> T operator()(T x) const { return std::sin(x); } }; struct CosOp { template <typename T> T operator()(T x) const { return std::cos(x); } }; struct SinhOp { template <typename T> T operator()(T x) const { return std::sinh(x); } }; struct AtanOp { template <typename T> T operator()(T x) const { return std::atan(x); } }; } #endif
#include <cmath> #include <limits> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status_matchers.h" #include "arolla/qexpr/operators.h" #include "arolla/qtype/base_types.h" namespace arolla { namespace { using ::absl_testing::IsOkAndHolds; using ::testing::AllOf; using ::testing::DoubleEq; using ::testing::DoubleNear; using ::testing::Eq; using ::testing::FloatEq; using ::testing::FloatNear; using ::testing::Ge; using ::testing::Gt; using ::testing::IsNan; using ::testing::Le; using ::testing::Lt; const float kPi = 3.1415927f; TEST(ArithmeticOperatorsTest, Log) { EXPECT_THAT(InvokeOperator<float>("math.log", 1.f), IsOkAndHolds(0.f)); EXPECT_THAT(InvokeOperator<float>("math.log", 2.f), IsOkAndHolds(FloatEq(std::log(2.f)))); EXPECT_THAT(InvokeOperator<float>("math.log", 0.f), IsOkAndHolds(-std::numeric_limits<float>::infinity())); EXPECT_THAT(InvokeOperator<float>("math.log", -5.f), IsOkAndHolds(IsNan())); EXPECT_THAT(InvokeOperator<double>("math.log", 2.), IsOkAndHolds(DoubleEq(std::log(2.)))); EXPECT_THAT(InvokeOperator<double>("math.log", 1.), IsOkAndHolds(0.)); EXPECT_THAT(InvokeOperator<double>("math.log", 0.), IsOkAndHolds(-std::numeric_limits<double>::infinity())); EXPECT_THAT(InvokeOperator<double>("math.log", -4.), IsOkAndHolds(IsNan())); } TEST(ArithmeticOperatorsTest, Log2) { EXPECT_THAT(InvokeOperator<float>("math.log2", 1.f), IsOkAndHolds(0.f)); EXPECT_THAT(InvokeOperator<float>("math.log2", 2.f), IsOkAndHolds(FloatEq(std::log2(2.f)))); EXPECT_THAT(InvokeOperator<float>("math.log2", 0.f), IsOkAndHolds(-std::numeric_limits<float>::infinity())); EXPECT_THAT(InvokeOperator<float>("math.log2", -5.f), IsOkAndHolds(IsNan())); EXPECT_THAT(InvokeOperator<double>("math.log2", 1.), IsOkAndHolds(0.)); EXPECT_THAT(InvokeOperator<double>("math.log2", 2.), IsOkAndHolds(DoubleEq(std::log2(2.)))); EXPECT_THAT(InvokeOperator<double>("math.log2", 0.), IsOkAndHolds(-std::numeric_limits<double>::infinity())); EXPECT_THAT(InvokeOperator<double>("math.log2", -4.), IsOkAndHolds(IsNan())); } TEST(ArithmeticOperatorsTest, Log10) { EXPECT_THAT(InvokeOperator<float>("math.log10", 1.f), IsOkAndHolds(0.f)); EXPECT_THAT(InvokeOperator<float>("math.log10", 2.f), IsOkAndHolds(FloatEq(std::log10(2.f)))); EXPECT_THAT(InvokeOperator<float>("math.log10", 0.f), IsOkAndHolds(-std::numeric_limits<float>::infinity())); EXPECT_THAT(InvokeOperator<float>("math.log10", -5.f), IsOkAndHolds(IsNan())); EXPECT_THAT(InvokeOperator<double>("math.log10", 1.), IsOkAndHolds(0.)); EXPECT_THAT(InvokeOperator<double>("math.log10", 2.), IsOkAndHolds(DoubleEq(std::log10(2.)))); EXPECT_THAT(InvokeOperator<double>("math.log10", 0.), IsOkAndHolds(-std::numeric_limits<double>::infinity())); EXPECT_THAT(InvokeOperator<double>("math.log10", -4.), IsOkAndHolds(IsNan())); } TEST(ArithmeticOperatorsTest, Log1p) { EXPECT_THAT(InvokeOperator<float>("math.log1p", 0.f), IsOkAndHolds(0.f)); EXPECT_THAT(InvokeOperator<float>("math.log1p", 2.f), IsOkAndHolds(FloatEq(std::log1p(2.f)))); EXPECT_THAT(InvokeOperator<float>("math.log1p", -1.f), IsOkAndHolds(-std::numeric_limits<float>::infinity())); EXPECT_THAT(InvokeOperator<float>("math.log1p", -5.f), IsOkAndHolds(IsNan())); EXPECT_THAT(InvokeOperator<double>("math.log1p", 0.), IsOkAndHolds(0.)); EXPECT_THAT(InvokeOperator<double>("math.log1p", 2.), IsOkAndHolds(DoubleEq(std::log1p(2.)))); EXPECT_THAT(InvokeOperator<double>("math.log1p", -1.), IsOkAndHolds(-std::numeric_limits<double>::infinity())); EXPECT_THAT(InvokeOperator<double>("math.log1p", -4.), IsOkAndHolds(IsNan())); } TEST(ArithmeticOperatorsTest, Symlog1p) { EXPECT_THAT(InvokeOperator<float>("math.symlog1p", 0.f), IsOkAndHolds(0.)); EXPECT_THAT(InvokeOperator<float>("math.symlog1p", 2.f), IsOkAndHolds(FloatEq(std::log1p(2.)))); EXPECT_THAT(InvokeOperator<float>("math.symlog1p", -2.f), IsOkAndHolds(FloatEq(-std::log1p(2.)))); EXPECT_THAT(InvokeOperator<double>("math.symlog1p", 0.), IsOkAndHolds(0.)); EXPECT_THAT(InvokeOperator<double>("math.symlog1p", 2.), IsOkAndHolds(DoubleEq(std::log1p(2.)))); EXPECT_THAT(InvokeOperator<double>("math.symlog1p", -2.), IsOkAndHolds(DoubleEq(-std::log1p(2.)))); } TEST(MathOperatorsTest, Exp) { EXPECT_THAT(InvokeOperator<float>("math.exp", 0.f), IsOkAndHolds(1.f)); EXPECT_THAT(InvokeOperator<float>("math.exp", 2.f), IsOkAndHolds(FloatEq(std::exp(2.f)))); EXPECT_THAT(InvokeOperator<double>("math.exp", 0.), IsOkAndHolds(Eq(1.))); EXPECT_THAT(InvokeOperator<double>("math.exp", 2.), IsOkAndHolds(DoubleEq(std::exp(2.)))); } TEST(MathOperatorsTest, Expm1) { EXPECT_THAT(InvokeOperator<float>("math.expm1", 0.f), IsOkAndHolds(0.f)); EXPECT_THAT(InvokeOperator<float>("math.expm1", 2.f), IsOkAndHolds(FloatEq(std::expm1(2.f)))); EXPECT_THAT(InvokeOperator<double>("math.expm1", 0.), IsOkAndHolds(Eq(0.))); EXPECT_THAT(InvokeOperator<double>("math.expm1", 2.), IsOkAndHolds(DoubleEq(std::expm1(2.)))); } TEST(MathOperatorsTest, Sigmoid) { for (float slope = 1; slope < 5; slope++) { EXPECT_THAT(InvokeOperator<float>("math.sigmoid", 10.f, 10.f, slope), IsOkAndHolds(0.5f)) << slope; EXPECT_THAT(InvokeOperator<double>("math.sigmoid", 10., 10., double{slope}), IsOkAndHolds(0.5)) << slope; float epsilon = 0.001; EXPECT_THAT(InvokeOperator<float>("math.sigmoid", -10.f, 10.f, slope), IsOkAndHolds(AllOf(Lt(epsilon), Ge(0)))) << slope; EXPECT_THAT(InvokeOperator<float>("math.sigmoid", 20.f, 10.f, slope), IsOkAndHolds(AllOf(Gt(1. - epsilon), Le(1.)))) << slope; } EXPECT_THAT(InvokeOperator<float>("math.sigmoid", 2.f, 4.f, 5.f), IsOkAndHolds(FloatEq(1.f / (1.f + std::exp(5.f * (2.f)))))); EXPECT_THAT(InvokeOperator<double>("math.sigmoid", 2., 4., 5.), IsOkAndHolds(DoubleEq(1. / (1. + std::exp(5. * (2.)))))); } TEST(MathOperatorsTest, LogSigmoid) { EXPECT_THAT( InvokeOperator<float>("math.log_sigmoid", 5.f), IsOkAndHolds(FloatNear(std::log(1 / (1 + std::exp(-5.f))), 1e-5))); EXPECT_THAT( InvokeOperator<float>("math.log_sigmoid", 0.f), IsOkAndHolds(FloatNear(std::log(1 / (1 + std::exp(-0.f))), 1e-5))); EXPECT_THAT(InvokeOperator<float>("math.log_sigmoid", -5.f), IsOkAndHolds(FloatNear(std::log(1 / (1 + std::exp(5.f))), 1e-5))); EXPECT_THAT( InvokeOperator<double>("math.log_sigmoid", 5.), IsOkAndHolds(DoubleNear(std::log(1 / (1 + std::exp(-5.))), 1e-5))); EXPECT_THAT( InvokeOperator<double>("math.log_sigmoid", 0.), IsOkAndHolds(DoubleNear(std::log(1 / (1 + std::exp(-0.))), 1e-5))); EXPECT_THAT(InvokeOperator<double>("math.log_sigmoid", -5.), IsOkAndHolds(DoubleNear(std::log(1 / (1 + std::exp(5.))), 1e-5))); EXPECT_THAT(InvokeOperator<float>("math.log_sigmoid", -1000.f), IsOkAndHolds(FloatNear(-1000.f, 1e-05))); EXPECT_THAT(InvokeOperator<double>("math.log_sigmoid", -1000.), IsOkAndHolds(DoubleNear(-1000., 1e-05))); EXPECT_THAT(InvokeOperator<float>("math.log_sigmoid", 100.f), IsOkAndHolds(FloatNear(-std::exp(-100.f), 1e-50))); EXPECT_THAT(InvokeOperator<double>("math.log_sigmoid", 100.), IsOkAndHolds(DoubleNear(-std::exp(-100.), 1e-50))); } TEST(MathOperatorsTest, Logit) { EXPECT_THAT(InvokeOperator<float>("math.logit", 0.f), IsOkAndHolds(-std::numeric_limits<float>::infinity())); EXPECT_THAT(InvokeOperator<float>("math.logit", 1.f), IsOkAndHolds(std::numeric_limits<float>::infinity())); EXPECT_THAT(InvokeOperator<float>("math.logit", 0.5f), IsOkAndHolds(FloatNear(0.f, 1e-05))); EXPECT_THAT(InvokeOperator<float>("math.logit", -1.f), IsOkAndHolds(IsNan())); EXPECT_THAT(InvokeOperator<float>("math.logit", 2.f), IsOkAndHolds(IsNan())); EXPECT_THAT(InvokeOperator<double>("math.logit", 0.), IsOkAndHolds(-std::numeric_limits<float>::infinity())); EXPECT_THAT(InvokeOperator<double>("math.logit", 1.), IsOkAndHolds(std::numeric_limits<float>::infinity())); EXPECT_THAT(InvokeOperator<double>("math.logit", 0.5), IsOkAndHolds(DoubleNear(0., 1e-05))); EXPECT_THAT(InvokeOperator<double>("math.logit", -1.), IsOkAndHolds(IsNan())); EXPECT_THAT(InvokeOperator<double>("math.logit", 2.), IsOkAndHolds(IsNan())); } TEST(MathOperatorsTest, Sin) { EXPECT_THAT(InvokeOperator<float>("math.trig.sin", kPi), IsOkAndHolds(FloatNear(0.f, 1e-05))); EXPECT_THAT(InvokeOperator<float>("math.trig.sin", 1.f), IsOkAndHolds(FloatEq(std::sin(1.f)))); EXPECT_THAT(InvokeOperator<double>("math.trig.sin", double{kPi}), IsOkAndHolds(DoubleNear(0.f, 1e-05))); EXPECT_THAT(InvokeOperator<double>("math.trig.sin", 1.), IsOkAndHolds(DoubleEq(std::sin(1.)))); } TEST(MathOperatorsTest, Cos) { EXPECT_THAT(InvokeOperator<float>("math.trig.cos", kPi), IsOkAndHolds(FloatNear(-1.f, 1e-05))); EXPECT_THAT(InvokeOperator<float>("math.trig.cos", 1.f), IsOkAndHolds(FloatEq(std::cos(1.f)))); EXPECT_THAT(InvokeOperator<double>("math.trig.cos", double{kPi}), IsOkAndHolds(DoubleNear(-1.f, 1e-05))); EXPECT_THAT(InvokeOperator<double>("math.trig.cos", 1.), IsOkAndHolds(DoubleEq(std::cos(1.)))); } TEST(MathOperatorsTest, Sinh) { EXPECT_THAT(InvokeOperator<float>("math.trig.sinh", 0.f), IsOkAndHolds(FloatNear(0.f, 1e-05))); EXPECT_THAT(InvokeOperator<float>("math.trig.sinh", 1.f), IsOkAndHolds(FloatEq(std::sinh(1.f)))); EXPECT_THAT(InvokeOperator<double>("math.trig.sinh", 0.), IsOkAndHolds(DoubleNear(0.f, 1e-05))); EXPECT_THAT(InvokeOperator<double>("math.trig.sinh", 1.), IsOkAndHolds(DoubleEq(std::sinh(1.)))); } TEST(MathOperatorsTest, atan) { EXPECT_THAT(InvokeOperator<float>("math.trig.atan", 0.f), IsOkAndHolds(FloatNear(0.f, 1e-05))); EXPECT_THAT(InvokeOperator<float>("math.trig.atan", 1.f), IsOkAndHolds(FloatEq(std::atan(1.f)))); EXPECT_THAT(InvokeOperator<double>("math.trig.atan", 0.), IsOkAndHolds(DoubleNear(0.f, 1e-05))); EXPECT_THAT(InvokeOperator<double>("math.trig.atan", 1.), IsOkAndHolds(DoubleEq(std::atan(1.)))); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/math/math.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/math/math_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
77850688-3555-4dde-8343-88ffd0e70fbc
cpp
google/tensorstore
std_tuple
tensorstore/internal/json_binding/std_tuple.h
tensorstore/internal/json_binding/std_tuple_test.cc
#ifndef TENSORSTORE_INTERNAL_JSON_BINDING_STD_TUPLE_H_ #define TENSORSTORE_INTERNAL_JSON_BINDING_STD_TUPLE_H_ #include <stddef.h> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/meta/type_traits.h" #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json/value_as.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_json_binding { inline absl::Status MaybeAnnotateTupleElementError(absl::Status status, size_t i, bool is_loading) { return status.ok() ? status : MaybeAnnotateStatus( status, tensorstore::StrCat( "Error ", is_loading ? "parsing" : "converting", " value at position ", i)); } template <bool IsLoading> Result<::nlohmann::json::array_t*> EnsureJsonTupleRepresentationImpl( std::integral_constant<bool, IsLoading> is_loading, ::nlohmann::json* j, size_t n) { if constexpr (is_loading) { auto* array_ptr = j->get_ptr<::nlohmann::json::array_t*>(); if (!array_ptr) return internal_json::ExpectedError(*j, "array"); TENSORSTORE_RETURN_IF_ERROR( internal_json::JsonValidateArrayLength(array_ptr->size(), n)); return array_ptr; } else { *j = ::nlohmann::json::array_t(n); return j->get_ptr<::nlohmann::json::array_t*>(); } } template <size_t... Is, typename... ElementBinder> constexpr auto TupleJsonBinderImpl(std::index_sequence<Is...>, ElementBinder... element_binder) { return [=](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { TENSORSTORE_ASSIGN_OR_RETURN( ::nlohmann::json::array_t * array_ptr, EnsureJsonTupleRepresentationImpl(is_loading, j, sizeof...(Is))); if (absl::Status status; (((status = element_binder(is_loading, options, &std::get<Is>(*obj), &(*array_ptr)[Is])) .ok() || ((status = MaybeAnnotateTupleElementError(status, Is, is_loading)), false)) && ...)) { return status; } return absl::OkStatus(); }; } template <size_t... Is> constexpr auto TupleDefaultJsonBinderImpl(std::index_sequence<Is...>) { return [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { TENSORSTORE_ASSIGN_OR_RETURN( ::nlohmann::json::array_t * array_ptr, EnsureJsonTupleRepresentationImpl(is_loading, j, sizeof...(Is))); using std::get; if (absl::Status status; (((status = DefaultBinder<>(is_loading, options, &get<Is>(*obj), &(*array_ptr)[Is])) .ok() || ((status = MaybeAnnotateTupleElementError(status, Is, is_loading)), false)) && ...)) { return status; } return absl::OkStatus(); }; } template <size_t... Is, typename... ElementBinder> constexpr auto HeterogeneousArrayJsonBinderImpl( std::index_sequence<Is...>, ElementBinder... element_binder) { return [=](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { TENSORSTORE_ASSIGN_OR_RETURN( ::nlohmann::json::array_t * array_ptr, EnsureJsonTupleRepresentationImpl(is_loading, j, sizeof...(Is))); if (absl::Status status; (((status = element_binder(is_loading, options, obj, &(*array_ptr)[Is])) .ok() || ((status = MaybeAnnotateTupleElementError(status, Is, is_loading)), false)) && ...)) { return status; } return absl::OkStatus(); }; } template <typename... ElementBinder> constexpr auto Tuple(ElementBinder... element_binder) { return TupleJsonBinderImpl(std::index_sequence_for<ElementBinder...>{}, std::move(element_binder)...); } constexpr auto Tuple() { return [](auto is_loading, const auto& options, auto* obj, auto* j) { constexpr size_t N = std::tuple_size_v<absl::remove_cvref_t<decltype(*obj)>>; return TupleDefaultJsonBinderImpl(std::make_index_sequence<N>{})( is_loading, options, obj, j); }; } template <typename... ElementBinder> constexpr auto HeterogeneousArray(ElementBinder... element_binder) { return [=](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) { TENSORSTORE_ASSIGN_OR_RETURN(::nlohmann::json::array_t * array_ptr, EnsureJsonTupleRepresentationImpl( is_loading, j, sizeof...(ElementBinder))); absl::Status status; size_t i = 0; [[maybe_unused]] bool ok = (((status = element_binder(is_loading, options, obj, &(*array_ptr)[i++])) .ok() || ((status = MaybeAnnotateTupleElementError(status, i - 1, is_loading)), false)) && ...); return status; }; } template <typename... T> constexpr inline auto DefaultBinder<std::tuple<T...>> = Tuple(); template <typename T, typename U> constexpr inline auto DefaultBinder<std::pair<T, U>> = Tuple(); } } #endif
#include "tensorstore/internal/json_binding/std_tuple.h" #include <string> #include <tuple> #include <utility> #include <gtest/gtest.h> #include <nlohmann/json_fwd.hpp> #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/util/status_testutil.h" namespace jb = tensorstore::internal_json_binding; namespace { TEST(TupleDefaultJsonBinderTest, RoundTrip) { tensorstore::TestJsonBinderRoundTrip<std::pair<int, int>>({ {{5, 5}, {5, 5}}, {{5, 3}, {5, 3}}, }); tensorstore::TestJsonBinderRoundTrip<std::tuple<int, int, std::string>>({ {{5, 5, "a"}, {5, 5, "a"}}, {{5, 3, "b"}, {5, 3, "b"}}, }); } TEST(TupleJsonBinderTest, RoundTrip) { const auto binder = jb::Tuple(jb::Integer<int>(0, 9), jb::Integer<int>(10, 19)); tensorstore::TestJsonBinderRoundTrip<std::pair<int, int>>( { {{5, 15}, {5, 15}}, {{5, 13}, {5, 13}}, }, binder); } TEST(HeterogeneousArrayJsonBinderTest, RoundTrip) { struct X { int a; std::string b; }; tensorstore::TestJsonBinderRoundTripJsonOnly<X>( { {5, "a"}, {5, "b"}, }, jb::HeterogeneousArray(jb::Projection<&X::a>(), jb::Projection<&X::b>())); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/std_tuple.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/std_tuple_test.cc
4f887a6430414cd6088e1743555015b10f116d50
7a1745d7-8808-458a-b1a5-20bfab632659
cpp
tensorflow/tensorflow
ragged_to_dense_util
tensorflow/core/util/ragged_to_dense_util.cc
tensorflow/core/util/ragged_to_dense_util_test.cc
#include "tensorflow/core/util/ragged_to_dense_util.h" #include <algorithm> #include <vector> #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" namespace tensorflow { using errors::InvalidArgument; tensorflow::Status GetRowPartitionTypesHelper( const std::vector<string>& row_partition_type_strings, std::vector<RowPartitionType>* row_partition_types) { *row_partition_types = GetRowPartitionTypesHelper(row_partition_type_strings); if (row_partition_types->size() != row_partition_type_strings.size()) { return InvalidArgument( "Unknown string for partition info type: ", row_partition_type_strings.at(row_partition_types->size())); } return absl::OkStatus(); } tensorflow::Status CombineRaggedTensorToTensorShapes( int ragged_rank, const TensorShapeProto& shape, const TensorShapeProto& value_shape, TensorShapeProto* output_shape) { if (value_shape.unknown_rank() && shape.unknown_rank()) { output_shape->Clear(); output_shape->set_unknown_rank(true); return absl::OkStatus(); } if (shape.unknown_rank()) { while (output_shape->dim_size() < ragged_rank + value_shape.dim_size()) { output_shape->add_dim()->set_size(-1); } } else { *output_shape = shape; } if (value_shape.unknown_rank()) { return absl::OkStatus(); } if (ragged_rank + value_shape.dim_size() != output_shape->dim_size()) { return InvalidArgument( "rt_input.shape and shape=", TensorShape::DebugString(shape), " are incompatible: rt_input.rank = ", ragged_rank + value_shape.dim_size(), " but shape.rank = ", output_shape->dim_size()); } for (int i = 1; i < value_shape.dim_size(); ++i) { const TensorShapeProto::Dim& value_dim = value_shape.dim(i); TensorShapeProto::Dim* output_shape_dim = output_shape->mutable_dim( output_shape->dim_size() - value_shape.dim_size() + i); if (value_dim.size() >= 0) { if (output_shape_dim->size() >= 0) { if (output_shape_dim->size() != value_dim.size()) { return InvalidArgument( "rt_input.shape and shape=", TensorShape::DebugString(shape), " are incompatible: rt_input.shape[", i + ragged_rank, "] = ", value_dim.size(), " but shape[", i + ragged_rank, "] = ", output_shape_dim->size()); } } else { output_shape_dim->set_size(value_dim.size()); } } } return absl::OkStatus(); } tensorflow::Status ValidateDefaultValueShape( const TensorShapeProto& default_value_shape, const TensorShapeProto& value_shape) { if (default_value_shape.unknown_rank() || value_shape.unknown_rank()) { return absl::OkStatus(); } int default_ndims = default_value_shape.dim_size(); int values_ndims = value_shape.dim_size(); if (default_ndims >= values_ndims) { return InvalidArgument( "default_value.shape=", TensorShape::DebugString(default_value_shape), " and rt_input.flat_values.shape=", TensorShape::DebugString(value_shape), " are incompatible: default_value.rank = ", default_ndims, " must be less than rt_input.flat_values.rank = ", values_ndims); } for (int i = 0; i < std::min(default_ndims, values_ndims - 1); ++i) { int default_dim = default_value_shape.dim(i).size(); int value_dim = value_shape.dim(i + 1).size(); if (default_dim >= 0 && value_dim >= 0 && default_dim != 1 && default_dim != value_dim) { return InvalidArgument( "default_value.shape=", TensorShape::DebugString(default_value_shape), " and rt_input.flat_values.shape=", TensorShape::DebugString(value_shape), " are incompatible: default_value.shape[", i - default_value_shape.dim_size(), "] = ", default_dim, " but rt_input.flat_values.shape[", i - default_value_shape.dim_size(), "] = ", value_dim); } } return absl::OkStatus(); } }
#include "tensorflow/core/util/ragged_to_dense_util.h" #include <vector> #include <gmock/gmock.h> #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(CombineRaggedTensorToTensorShapes, UnknownShapeUnknownValue) { TensorShapeProto shape_proto; shape_proto.set_unknown_rank(true); TensorShapeProto value_shape_proto; value_shape_proto.set_unknown_rank(true); int ragged_rank = 1; TensorShapeProto actual_output_shape_proto; TF_ASSERT_OK(CombineRaggedTensorToTensorShapes( ragged_rank, shape_proto, value_shape_proto, &actual_output_shape_proto)); EXPECT_EQ(true, actual_output_shape_proto.unknown_rank()); } TEST(CombineRaggedTensorToTensorShapes, UnknownShape) { TensorShapeProto shape_proto; shape_proto.set_unknown_rank(true); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(6); int ragged_rank = 1; TensorShapeProto actual_output_shape_proto; TF_ASSERT_OK(CombineRaggedTensorToTensorShapes( ragged_rank, shape_proto, value_shape_proto, &actual_output_shape_proto)); ASSERT_EQ(actual_output_shape_proto.dim_size(), 2); EXPECT_EQ(actual_output_shape_proto.dim(0).size(), -1); EXPECT_EQ(actual_output_shape_proto.dim(1).size(), -1); } TEST(CombineRaggedTensorToTensorShapes, UnknownShapeDenseValue) { TensorShapeProto shape_proto; shape_proto.set_unknown_rank(true); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(6); value_shape_proto.add_dim()->set_size(3); int ragged_rank = 1; TensorShapeProto actual_output_shape_proto; TF_ASSERT_OK(CombineRaggedTensorToTensorShapes( ragged_rank, shape_proto, value_shape_proto, &actual_output_shape_proto)); ASSERT_EQ(actual_output_shape_proto.dim_size(), 3); EXPECT_EQ(actual_output_shape_proto.dim(0).size(), -1); EXPECT_EQ(actual_output_shape_proto.dim(1).size(), -1); EXPECT_EQ(actual_output_shape_proto.dim(2).size(), 3); } TEST(GetRowPartitionTypesHelper, BasicTest) { const std::vector<string> row_partition_type_strings = { "FIRST_DIM_SIZE", "VALUE_ROWIDS", "ROW_SPLITS"}; std::vector<RowPartitionType> row_partition_types; TF_ASSERT_OK(GetRowPartitionTypesHelper(row_partition_type_strings, &row_partition_types)); EXPECT_THAT(row_partition_types, ::testing::ElementsAre(RowPartitionType::FIRST_DIM_SIZE, RowPartitionType::VALUE_ROWIDS, RowPartitionType::ROW_SPLITS)); } TEST(RowPartitionTypeToString, BasicTest) { EXPECT_EQ("FIRST_DIM_SIZE", RowPartitionTypeToString(RowPartitionType::FIRST_DIM_SIZE)); EXPECT_EQ("VALUE_ROWIDS", RowPartitionTypeToString(RowPartitionType::VALUE_ROWIDS)); EXPECT_EQ("ROW_SPLITS", RowPartitionTypeToString(RowPartitionType::ROW_SPLITS)); } TEST(ValidateDefaultValueShape, UnknownDefaultValueShape) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.set_unknown_rank(true); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(6); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, UnknownValueShape) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(5); TensorShapeProto value_shape_proto; value_shape_proto.set_unknown_rank(true); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, ScalarShape) { TensorShapeProto default_value_shape_proto; TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, TensorShapeEqual) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(2); default_value_shape_proto.add_dim()->set_size(3); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); value_shape_proto.add_dim()->set_size(2); value_shape_proto.add_dim()->set_size(3); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, TensorDimensionUnknown) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(-1); default_value_shape_proto.add_dim()->set_size(3); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); value_shape_proto.add_dim()->set_size(2); value_shape_proto.add_dim()->set_size(3); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, TensorDimensionUnknownForValue) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(2); default_value_shape_proto.add_dim()->set_size(3); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); value_shape_proto.add_dim()->set_size(-1); value_shape_proto.add_dim()->set_size(3); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, TensorDimensionFewDims) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(3); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); value_shape_proto.add_dim()->set_size(-1); value_shape_proto.add_dim()->set_size(3); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, WrongNumberOfDimensions) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(-1); default_value_shape_proto.add_dim()->set_size(-1); default_value_shape_proto.add_dim()->set_size(-1); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(-1); value_shape_proto.add_dim()->set_size(-1); EXPECT_FALSE( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto) .ok()); } TEST(ValidateDefaultValueShape, WrongDimensionSize) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(3); default_value_shape_proto.add_dim()->set_size(-1); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); value_shape_proto.add_dim()->set_size(6); value_shape_proto.add_dim()->set_size(-1); EXPECT_FALSE( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto) .ok()); } TEST(ValidateDefaultValueShape, WrongDimensionSizeBut1) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(3); default_value_shape_proto.add_dim()->set_size(1); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); value_shape_proto.add_dim()->set_size(3); value_shape_proto.add_dim()->set_size(7); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/ragged_to_dense_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/ragged_to_dense_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
887f9b4a-0eba-4a16-8403-657c911b9331
cpp
google/tensorstore
cache_pool_resource
tensorstore/internal/cache/cache_pool_resource.cc
tensorstore/internal/cache/cache_pool_resource_test.cc
#include "tensorstore/internal/cache/cache_pool_resource.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/context_resource_provider.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal { namespace { struct CachePoolResourceTraits : public ContextResourceTraits<CachePoolResource> { using Spec = CachePool::Limits; using Resource = typename CachePoolResource::Resource; static constexpr Spec Default() { return {}; } static constexpr auto JsonBinder() { namespace jb = tensorstore::internal_json_binding; return jb::Object( jb::Member("total_bytes_limit", jb::Projection(&Spec::total_bytes_limit, jb::DefaultValue([](auto* v) { *v = 0; })))); } static Result<Resource> Create(const Spec& limits, ContextResourceCreationContext context) { return CachePool::WeakPtr(CachePool::Make(limits)); } static Spec GetSpec(const Resource& pool, const ContextSpecBuilder& builder) { return pool->limits(); } static void AcquireContextReference(const Resource& p) { internal_cache::StrongPtrTraitsCachePool::increment(p.get()); } static void ReleaseContextReference(const Resource& p) { internal_cache::StrongPtrTraitsCachePool::decrement(p.get()); } }; const ContextResourceRegistration<CachePoolResourceTraits> registration; } } }
#include "tensorstore/internal/cache/cache_pool_resource.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Context; using ::tensorstore::MatchesStatus; using ::tensorstore::internal::CachePoolResource; TEST(CachePoolResourceTest, Default) { auto resource_spec = Context::Resource<CachePoolResource>::DefaultSpec(); auto cache = Context::Default().GetResource(resource_spec).value(); EXPECT_EQ(0u, (*cache)->limits().total_bytes_limit); } TEST(CachePoolResourceTest, EmptyObject) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<CachePoolResource>::FromJson( ::nlohmann::json::object_t{})); auto cache = Context::Default().GetResource(resource_spec).value(); EXPECT_EQ(0u, (*cache)->limits().total_bytes_limit); } TEST(CachePoolResourceTest, TotalBytesLimitOnly) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<CachePoolResource>::FromJson( {{"total_bytes_limit", 100}})); auto cache = Context::Default().GetResource(resource_spec).value(); EXPECT_EQ(100u, (*cache)->limits().total_bytes_limit); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/cache/cache_pool_resource.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/cache/cache_pool_resource_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f32ef733-e25f-4261-9b9a-e3a16b86671f
cpp
tensorflow/tensorflow
resize_bilinear
tensorflow/lite/kernels/resize_bilinear.cc
tensorflow/lite/delegates/xnnpack/resize_bilinear_test.cc
#include <stdint.h> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/optimized/neon_check.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/optimized/resize_bilinear.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace resize_bilinear { enum KernelType { kReference, kOptimized, }; constexpr int kInputTensor = 0; constexpr int kSizeTensor = 1; constexpr int kOutputTensor = 0; TfLiteStatus ResizeOutputTensor(TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* size, TfLiteTensor* output) { const int32* size_data = GetTensorData<int32>(size); TF_LITE_ENSURE(context, size_data[0] > 0); TF_LITE_ENSURE(context, size_data[1] > 0); TfLiteIntArray* output_size = TfLiteIntArrayCreate(4); output_size->data[0] = input->dims->data[0]; output_size->data[1] = size_data[0]; output_size->data[2] = size_data[1]; output_size->data[3] = input->dims->data[3]; return context->ResizeTensor(context, output, output_size); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* size; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kSizeTensor, &size)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); TF_LITE_ENSURE_EQ(context, NumDimensions(size), 1); TF_LITE_ENSURE_EQ(context, size->type, kTfLiteInt32); output->type = input->type; if (!IsConstantOrPersistentTensor(size)) { SetTensorToDynamic(output); return kTfLiteOk; } auto* params = reinterpret_cast<TfLiteResizeBilinearParams*>(node->builtin_data); if (params->half_pixel_centers && params->align_corners) { TF_LITE_KERNEL_LOG( context, "If half_pixel_centers is True, align_corners must be False."); return kTfLiteError; } return ResizeOutputTensor(context, input, size, output); } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteResizeBilinearParams*>(node->builtin_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); const TfLiteTensor* size; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kSizeTensor, &size)); if (IsDynamicTensor(output)) { TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, input, size, output)); } if (output->type == kTfLiteFloat32) { #define TF_LITE_RESIZE_BILINEAR(type, opname, datatype) \ tflite::ResizeBilinearParams op_params; \ op_params.align_corners = params->align_corners; \ op_params.half_pixel_centers = params->half_pixel_centers; \ type::opname(op_params, GetTensorShape(input), \ GetTensorData<datatype>(input), GetTensorShape(size), \ GetTensorData<int32>(size), GetTensorShape(output), \ GetTensorData<datatype>(output)) if (kernel_type == kReference) { TF_LITE_RESIZE_BILINEAR(reference_ops, ResizeBilinear, float); } else if (kernel_type == kOptimized) { TF_LITE_RESIZE_BILINEAR(optimized_ops, ResizeBilinear, float); } } else if (output->type == kTfLiteUInt8) { if (kernel_type == kReference) { TF_LITE_RESIZE_BILINEAR(reference_ops, ResizeBilinear, uint8_t); } else if (kernel_type == kOptimized) { TF_LITE_RESIZE_BILINEAR(optimized_ops, ResizeBilinear, uint8_t); } } else if (output->type == kTfLiteInt8) { if (kernel_type == kReference) { TF_LITE_RESIZE_BILINEAR(reference_ops, ResizeBilinearInteger, int8_t); } else if (kernel_type == kOptimized) { TF_LITE_RESIZE_BILINEAR(optimized_ops, ResizeBilinear, int8_t); } } else if (output->type == kTfLiteInt16) { TF_LITE_RESIZE_BILINEAR(reference_ops, ResizeBilinearInteger, int16_t); #undef TF_LITE_RESIZE_BILINEAR } else { TF_LITE_KERNEL_LOG(context, "Output type is %d, requires float.", output->type); return kTfLiteError; } return kTfLiteOk; } } TfLiteRegistration* Register_RESIZE_BILINEAR_REF() { static TfLiteRegistration r = { nullptr, nullptr, resize_bilinear::Prepare, resize_bilinear::Eval<resize_bilinear::kReference>}; return &r; } TfLiteRegistration* Register_RESIZE_BILINEAR() { static TfLiteRegistration r = { nullptr, nullptr, resize_bilinear::Prepare, resize_bilinear::Eval<resize_bilinear::kOptimized>}; return &r; } } } }
#include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/resize_bilinear_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(ResizeBilinear, AlignCenters) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); ResizeBilinearTester() .HalfPixelCenters(true) .InputHeight(size_rng()) .InputWidth(size_rng()) .OutputHeight(size_rng()) .OutputWidth(size_rng()) .Channels(channel_rng()) .Test(xnnpack_delegate.get()); } TEST(ResizeBilinear, AlignCentersTF1X) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); ResizeBilinearTester() .InputHeight(size_rng()) .InputWidth(size_rng()) .OutputHeight(size_rng()) .OutputWidth(size_rng()) .Channels(channel_rng()) .Test(xnnpack_delegate.get()); } TEST(ResizeBilinear, AlignCorners) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); ResizeBilinearTester() .AlignCorners(true) .InputHeight(size_rng()) .InputWidth(size_rng()) .OutputHeight(size_rng()) .OutputWidth(size_rng()) .Channels(channel_rng()) .Test(xnnpack_delegate.get()); } TEST(ResizeBilinear, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); ResizeBilinearTester() .InputHeight(size_rng()) .InputWidth(size_rng()) .OutputHeight(size_rng()) .OutputWidth(size_rng()) .Channels(channel_rng()) .Test(xnnpack_delegate.get()); } TEST(ResizeBilinear, TransientIndirectionBuffer) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; delegate_options.flags |= TFLITE_XNNPACK_DELEGATE_FLAG_TRANSIENT_INDIRECTION_BUFFER; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); ResizeBilinearTester() .InputHeight(size_rng()) .InputWidth(size_rng()) .OutputHeight(size_rng()) .OutputWidth(size_rng()) .Channels(channel_rng()) .Test(xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/resize_bilinear.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/resize_bilinear_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
94b41683-66eb-49e3-8f28-76f38f147e83
cpp
tensorflow/tensorflow
presized_cuckoo_map
tensorflow/core/util/presized_cuckoo_map.h
tensorflow/core/util/presized_cuckoo_map_test.cc
#ifndef TENSORFLOW_CORE_UTIL_PRESIZED_CUCKOO_MAP_H_ #define TENSORFLOW_CORE_UTIL_PRESIZED_CUCKOO_MAP_H_ #include <algorithm> #include <vector> #include "absl/base/prefetch.h" #include "absl/numeric/int128.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/macros.h" namespace tensorflow { template <class value> class PresizedCuckooMap { public: typedef uint64 key_type; explicit PresizedCuckooMap(uint64 num_entries) { Clear(num_entries); } void Clear(uint64 num_entries) { cpq_.reset(new CuckooPathQueue()); double n(num_entries); n /= kLoadFactor; num_buckets_ = (static_cast<uint64>(n) / kSlotsPerBucket); num_buckets_ += 32; Bucket empty_bucket; for (int i = 0; i < kSlotsPerBucket; i++) { empty_bucket.keys[i] = kUnusedSlot; } buckets_.clear(); buckets_.resize(num_buckets_, empty_bucket); } bool InsertUnique(const key_type k, const value& v) { uint64 tk = key_transform(k); uint64 b1 = fast_map_to_buckets(tk); uint64 b2 = fast_map_to_buckets(h2(tk)); uint64 target_bucket = 0; int target_slot = kNoSpace; for (auto bucket : {b1, b2}) { Bucket* bptr = &buckets_[bucket]; for (int slot = 0; slot < kSlotsPerBucket; slot++) { if (bptr->keys[slot] == k) { return false; } else if (target_slot == kNoSpace && bptr->keys[slot] == kUnusedSlot) { target_bucket = bucket; target_slot = slot; } } } if (target_slot != kNoSpace) { InsertInternal(tk, v, target_bucket, target_slot); return true; } return CuckooInsert(tk, v, b1, b2); } bool Find(const key_type k, value* out) const { uint64 tk = key_transform(k); return FindInBucket(k, fast_map_to_buckets(tk), out) || FindInBucket(k, fast_map_to_buckets(h2(tk)), out); } void PrefetchKey(const key_type k) const { const uint64 tk = key_transform(k); absl::PrefetchToLocalCache(&buckets_[fast_map_to_buckets(tk)].keys); absl::PrefetchToLocalCache(&buckets_[fast_map_to_buckets(h2(tk))].keys); } int64_t MemoryUsed() const { return sizeof(PresizedCuckooMap<value>) + sizeof(CuckooPathQueue); } private: static constexpr int kSlotsPerBucket = 4; static constexpr double kLoadFactor = 0.85; static constexpr uint8 kMaxBFSPathLen = 5; static constexpr int kMaxQueueSize = 682; static constexpr int kVisitedListSize = 170; static constexpr int kNoSpace = -1; static constexpr uint64 kUnusedSlot = ~(0ULL); struct Bucket { key_type keys[kSlotsPerBucket]; value values[kSlotsPerBucket]; }; struct CuckooPathEntry { uint64 bucket; int depth; int parent; int parent_slot; }; class CuckooPathQueue { public: CuckooPathQueue() : head_(0), tail_(0) {} void push_back(CuckooPathEntry e) { queue_[tail_] = e; tail_ = (tail_ + 1) % kMaxQueueSize; } CuckooPathEntry pop_front() { CuckooPathEntry& e = queue_[head_]; head_ = (head_ + 1) % kMaxQueueSize; return e; } bool empty() const { return head_ == tail_; } bool full() const { return ((tail_ + 1) % kMaxQueueSize) == head_; } void reset() { head_ = tail_ = 0; } private: CuckooPathEntry queue_[kMaxQueueSize]; int head_; int tail_; }; typedef std::array<CuckooPathEntry, kMaxBFSPathLen> CuckooPath; inline uint64 key_transform(const key_type k) const { return k + (k == kUnusedSlot); } inline uint64 h2(uint64 h) const { const uint64 m = 0xc6a4a7935bd1e995; return m * ((h >> 32) | (h << 32)); } inline uint64 alt_bucket(key_type k, uint64 b) const { if (fast_map_to_buckets(k) != b) { return fast_map_to_buckets(k); } return fast_map_to_buckets(h2(k)); } inline void InsertInternal(key_type k, const value& v, uint64 b, int slot) { Bucket* bptr = &buckets_[b]; bptr->keys[slot] = k; bptr->values[slot] = v; } bool FindInBucket(key_type k, uint64 b, value* out) const { const Bucket& bref = buckets_[b]; for (int i = 0; i < kSlotsPerBucket; i++) { if (bref.keys[i] == k) { *out = bref.values[i]; return true; } } return false; } inline int SpaceAvailable(uint64 bucket) const { const Bucket& bref = buckets_[bucket]; for (int i = 0; i < kSlotsPerBucket; i++) { if (bref.keys[i] == kUnusedSlot) { return i; } } return kNoSpace; } inline void CopyItem(uint64 src_bucket, int src_slot, uint64 dst_bucket, int dst_slot) { Bucket& src_ref = buckets_[src_bucket]; Bucket& dst_ref = buckets_[dst_bucket]; dst_ref.keys[dst_slot] = src_ref.keys[src_slot]; dst_ref.values[dst_slot] = src_ref.values[src_slot]; } bool CuckooInsert(key_type k, const value& v, uint64 b1, uint64 b2) { int visited_end = 0; cpq_->reset(); cpq_->push_back({b1, 1, 0, 0}); cpq_->push_back({b2, 1, 0, 0}); while (!cpq_->empty()) { CuckooPathEntry e = cpq_->pop_front(); int free_slot; free_slot = SpaceAvailable(e.bucket); if (free_slot != kNoSpace) { while (e.depth > 1) { CuckooPathEntry parent = visited_[e.parent]; CopyItem(parent.bucket, e.parent_slot, e.bucket, free_slot); free_slot = e.parent_slot; e = parent; } InsertInternal(k, v, e.bucket, free_slot); return true; } else { if (e.depth < (kMaxBFSPathLen)) { auto parent_index = visited_end; visited_[visited_end] = e; visited_end++; int start_slot = (k + e.bucket) % kSlotsPerBucket; const Bucket& bref = buckets_[e.bucket]; for (int i = 0; i < kSlotsPerBucket; i++) { int slot = (start_slot + i) % kSlotsPerBucket; uint64 next_bucket = alt_bucket(bref.keys[slot], e.bucket); uint64 e_parent_bucket = visited_[e.parent].bucket; if (next_bucket != e_parent_bucket) { cpq_->push_back({next_bucket, e.depth + 1, parent_index, slot}); } } } } } LOG(WARNING) << "Cuckoo path finding failed: Table too small?"; return false; } inline uint64 fast_map_to_buckets(uint64 x) const { return absl::Uint128High64(absl::uint128(x) * absl::uint128(num_buckets_)); } uint64 num_buckets_; std::vector<Bucket> buckets_; std::unique_ptr<CuckooPathQueue> cpq_; CuckooPathEntry visited_[kVisitedListSize]; PresizedCuckooMap(const PresizedCuckooMap&) = delete; void operator=(const PresizedCuckooMap&) = delete; }; } #endif
#include "tensorflow/core/util/presized_cuckoo_map.h" #include <array> #include <vector> #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/fingerprint.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { TEST(PresizedCuckooMapTest, Basic) { PresizedCuckooMap<int> pscm(1000); EXPECT_TRUE(pscm.InsertUnique(1, 2)); int out; EXPECT_TRUE(pscm.Find(1, &out)); EXPECT_EQ(out, 2); } TEST(PresizedCuckooMapTest, Prefetch) { PresizedCuckooMap<int64_t> pscm(2); EXPECT_TRUE(pscm.InsertUnique(1, 2)); pscm.PrefetchKey(1); pscm.PrefetchKey(2); } TEST(PresizedCuckooMapTest, TooManyItems) { static constexpr int kTableSize = 1000; PresizedCuckooMap<int> pscm(kTableSize); for (uint64 i = 0; i < kTableSize; i++) { uint64 key = Fingerprint64(string(reinterpret_cast<char *>(&i), sizeof(int64_t))); ASSERT_TRUE(pscm.InsertUnique(key, i)); } uint64 failed_at = 0; for (uint64 i = kTableSize; i < (2 * kTableSize); i++) { uint64 key = Fingerprint64(string(reinterpret_cast<char *>(&i), sizeof(int64_t))); if (!pscm.InsertUnique(key, i)) { failed_at = i; break; } } EXPECT_NE(failed_at, 0); for (uint64 i = 0; i < failed_at; i++) { int out; uint64 key = Fingerprint64(string(reinterpret_cast<char *>(&i), sizeof(int64_t))); EXPECT_TRUE(pscm.Find(key, &out)); EXPECT_EQ(out, i); } } TEST(PresizedCuckooMapTest, ZeroSizeMap) { PresizedCuckooMap<int> pscm(0); int out; for (uint64 i = 0; i < 100; i++) { EXPECT_FALSE(pscm.Find(i, &out)); } } TEST(PresizedCuckooMapTest, RepeatedClear) { PresizedCuckooMap<int> pscm(2); int out; for (int i = 0; i < 100; ++i) { pscm.InsertUnique(0, 0); pscm.InsertUnique(1, 1); EXPECT_TRUE(pscm.Find(0, &out)); EXPECT_EQ(0, out); EXPECT_TRUE(pscm.Find(1, &out)); EXPECT_EQ(1, out); pscm.Clear(2); EXPECT_FALSE(pscm.Find(0, &out)); EXPECT_FALSE(pscm.Find(1, &out)); } } void RunFill(int64_t table_size) { PresizedCuckooMap<int> pscm(table_size); for (int64_t i = 0; i < table_size; i++) { uint64 key = Fingerprint64(string(reinterpret_cast<char *>(&i), sizeof(int64_t))); EXPECT_TRUE(pscm.InsertUnique(key, i)); } for (int64_t i = 0; i < table_size; i++) { uint64 key = Fingerprint64(string(reinterpret_cast<char *>(&i), sizeof(int64_t))); int out; EXPECT_TRUE(pscm.Find(key, &out)); EXPECT_EQ(out, i); } } TEST(PresizedCuckooMapTest, Fill) { for (int64_t table_size = 10; table_size <= 5000000; table_size *= 71) { RunFill(table_size); } } TEST(PresizedCuckooMapTest, Duplicates) { static constexpr int kSmallTableSize = 1000; PresizedCuckooMap<int> pscm(kSmallTableSize); for (uint64 i = 0; i < kSmallTableSize; i++) { uint64 key = Fingerprint64(string(reinterpret_cast<char *>(&i), sizeof(uint64))); EXPECT_TRUE(pscm.InsertUnique(key, i)); } for (uint64 i = 0; i < kSmallTableSize; i++) { uint64 key = Fingerprint64(string(reinterpret_cast<char *>(&i), sizeof(uint64))); EXPECT_FALSE(pscm.InsertUnique(key, i)); } } static void CalculateKeys(uint64 num, std::vector<uint64> *dst) { dst->resize(num); for (uint64 i = 0; i < num; i++) { uint64 key = Fingerprint64(string(reinterpret_cast<char *>(&i), sizeof(uint64))); dst->at(i) = key; } } void BM_CuckooFill(::testing::benchmark::State &state) { const int arg = state.range(0); uint64 table_size = arg; std::vector<uint64> calculated_keys; CalculateKeys(table_size, &calculated_keys); for (auto s : state) { PresizedCuckooMap<int> pscm(table_size); for (uint64 i = 0; i < table_size; i++) { pscm.InsertUnique(calculated_keys[i], i); } } } BENCHMARK(BM_CuckooFill)->Arg(1000)->Arg(10000000); void BM_CuckooRead(::testing::benchmark::State &state) { const int arg = state.range(0); uint64 table_size = arg; std::vector<uint64> calculated_keys; CalculateKeys(table_size, &calculated_keys); PresizedCuckooMap<int> pscm(table_size); for (uint64 i = 0; i < table_size; i++) { pscm.InsertUnique(calculated_keys[i], i); } int i = 0; for (auto s : state) { uint64 key_index = i; ++i; if (i == table_size) i = 0; int out = 0; pscm.Find(calculated_keys[key_index], &out); tensorflow::testing::DoNotOptimize(out); } } BENCHMARK(BM_CuckooRead)->Arg(1000)->Arg(10000000); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/presized_cuckoo_map.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/presized_cuckoo_map_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a79985e8-6645-4d2c-b1cb-b94726ee944a
cpp
google/arolla
model_executor
arolla/expr/eval/model_executor.cc
arolla/expr/eval/model_executor_test.cc
#include "arolla/expr/eval/model_executor.h" #include <algorithm> #include <map> #include <memory> #include <optional> #include <set> #include <string> #include <utility> #include <vector> #include "absl/base/nullability.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "arolla/expr/eval/eval.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/operators/bootstrap_operators.h" #include "arolla/io/slot_listener.h" #include "arolla/memory/frame.h" #include "arolla/qexpr/eval_context.h" #include "arolla/qexpr/evaluation_engine.h" #include "arolla/qexpr/simple_executable.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/string.h" #include "arolla/util/unit.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr::model_executor_impl { namespace { struct CompiledOutputCastings { std::unique_ptr<BoundExpr> casting_executable_expr; absl::flat_hash_map<std::string, TypedSlot> named_output_slots; }; absl::StatusOr<CompiledOutputCastings> CompiledOutputCastsIfNeeded( const ModelExecutorOptions& options, TypedSlot given_output_slot, const absl::flat_hash_map<std::string, TypedSlot>& given_named_output_slots, TypedSlot desired_output_slot, const absl::flat_hash_map<std::string, QTypePtr>& desired_named_output_types, FrameLayout::Builder& layout_builder) { constexpr absl::string_view kMainOutputLeafName = "main_output"; constexpr absl::string_view kSideOutputPrefix = "_"; absl::flat_hash_map<std::string, TypedSlot> casting_input_slots; ExprNodePtr main_casting_expr; TypedSlot casting_expr_output_slot = TypedSlot::UnsafeFromOffset( GetQType<Unit>(), 0); absl::flat_hash_map<std::string, ExprNodePtr> named_output_casting_exprs; absl::flat_hash_map<std::string, TypedSlot> named_output_slots; for (const auto& [name, slot] : given_named_output_slots) { if (auto type_it = desired_named_output_types.find(name); type_it != desired_named_output_types.end()) { QTypePtr desired_qtype = type_it->second; if (desired_qtype != slot.GetType()) { std::string input_name = absl::StrCat(kSideOutputPrefix, name); ASSIGN_OR_RETURN( auto casted_named_output, expr_operators::CoreCast(Leaf(input_name), Literal(desired_qtype))); casting_input_slots.emplace(input_name, slot); named_output_casting_exprs.emplace(name, casted_named_output); } else { named_output_slots.emplace(name, slot); } } } if (!named_output_casting_exprs.empty() && !options.allow_side_outputs_casting) { std::vector<std::string> names; names.reserve(named_output_casting_exprs.size()); for (const auto& [name, _] : named_output_casting_exprs) { names.push_back(name); } std::sort(names.begin(), names.end()); return absl::InvalidArgumentError(absl::StrCat( "side outputs casting is not allowed: ", absl::StrJoin(names, ", "), "; to fix add explicit `AllowSideOutputsCasting()` in model compiler")); } if (given_output_slot != desired_output_slot) { bool allow_casting = options.allow_output_casting; if (given_output_slot.GetType() == desired_output_slot.GetType()) { allow_casting = true; } if (!allow_casting) { return absl::InvalidArgumentError(absl::StrCat( "output casting is not allowed: ", given_output_slot.GetType()->name(), " -> ", desired_output_slot.GetType()->name(), "; to fix add explicit `AllowOutputCasting()` in model compiler")); } ASSIGN_OR_RETURN( main_casting_expr, expr_operators::CoreCast(Leaf(kMainOutputLeafName), Literal(desired_output_slot.GetType()))); casting_input_slots.emplace(std::string(kMainOutputLeafName), given_output_slot); casting_expr_output_slot = desired_output_slot; } else { if (casting_input_slots.empty()) { return CompiledOutputCastings{nullptr, given_named_output_slots}; } main_casting_expr = Literal(kUnit); casting_expr_output_slot = AddSlot(GetQType<Unit>(), &layout_builder); } ASSIGN_OR_RETURN(auto casting_executable_expr, CompileAndBindForDynamicEvaluation( options.eval_options, &layout_builder, main_casting_expr, casting_input_slots, casting_expr_output_slot, named_output_casting_exprs)); named_output_slots.insert( casting_executable_expr->named_output_slots().begin(), casting_executable_expr->named_output_slots().end()); return CompiledOutputCastings{std::move(casting_executable_expr), named_output_slots}; } class DecayOptionalBoundExpr : public BoundExpr { public: static std::unique_ptr<BoundExpr> Create(std::unique_ptr<BoundExpr> expr) { QTypePtr out_type = expr->output_slot().GetType(); if (IsOptionalQType(out_type) && out_type->type_fields().size() == 2 && out_type->type_fields()[0].GetType() == GetQType<bool>()) { return std::unique_ptr<BoundExpr>( new DecayOptionalBoundExpr(std::move(expr))); } else { return expr; } } void InitializeLiterals(EvaluationContext* ctx, FramePtr frame) const override { expr_->InitializeLiterals(ctx, frame); } void Execute(EvaluationContext* ctx, FramePtr frame) const override { expr_->Execute(ctx, frame); if (!frame.Get(presence_) && ctx->status().ok()) { ctx->set_status(absl::FailedPreconditionError( "expects a present value, got missing")); } } private: explicit DecayOptionalBoundExpr(std::unique_ptr<BoundExpr> expr) : BoundExpr(expr->input_slots(), expr->output_slot().SubSlot(1), expr->named_output_slots()), expr_(std::move(expr)), presence_(expr_->output_slot().SubSlot(0).UnsafeToSlot<bool>()) {} std::unique_ptr<BoundExpr> expr_; FrameLayout::Slot<bool> presence_; }; class CastingCompiledExpr : public CompiledExpr { public: CastingCompiledExpr( const CompiledExpr& compiled_expr, QTypePtr output_type, absl::flat_hash_map<std::string, QTypePtr> side_output_types, const ModelExecutorOptions& options) : CompiledExpr(compiled_expr.input_types(), output_type, side_output_types), compiled_expr_(compiled_expr), options_(options) {} absl::StatusOr<std::unique_ptr<BoundExpr>> Bind( FrameLayout::Builder* layout_builder, const absl::flat_hash_map<std::string, TypedSlot>& input_slots, std::optional<TypedSlot> output_slot) const final { TypedSlot inner_output_slot = TypedSlot::UnsafeFromOffset(output_type(), 0); if (output_slot.has_value() && output_slot->GetType() == compiled_expr_.output_type()) { inner_output_slot = *output_slot; } else { inner_output_slot = AddSlot(compiled_expr_.output_type(), layout_builder); if (!output_slot.has_value()) { if (output_type() == inner_output_slot.GetType()) { output_slot = inner_output_slot; } else if (options_.force_non_optional_output && output_type() == DecayOptionalQType(inner_output_slot.GetType()) && inner_output_slot.SubSlotCount() == 2) { output_slot = inner_output_slot.SubSlot(1); } else { output_slot = AddSlot(output_type(), layout_builder); } } } ASSIGN_OR_RETURN( std::unique_ptr<BoundExpr> main_executable_expr, compiled_expr_.Bind(layout_builder, input_slots, inner_output_slot)); if (IsOptionalQType(compiled_expr_.output_type()) && IsScalarQType(output_slot->GetType())) { if (options_.force_non_optional_output) { main_executable_expr = DecayOptionalBoundExpr::Create(std::move(main_executable_expr)); inner_output_slot = main_executable_expr->output_slot(); } else { return absl::InvalidArgumentError( "model output is deduced to optional, while non-optional is " "requested; to fix either wrap the desired output type with " "std::optional<...>/arolla::OptionalValue<...>, or pass " "ForceNonOptionalOutput() to model compiler, or make the model " "full"); } } ASSIGN_OR_RETURN( (auto [casting_executable_expr, named_output_slots]), CompiledOutputCastsIfNeeded(options_, inner_output_slot, main_executable_expr->named_output_slots(), *output_slot, named_output_types(), *layout_builder), _ << "while casting model outputs due to `AllowOutputCasting()` or " "`AllowSideOutputsCasting()` options"); if (casting_executable_expr == nullptr) { return main_executable_expr; } else { std::vector<std::unique_ptr<BoundExpr>> subexprs; subexprs.push_back(std::move(main_executable_expr)); subexprs.push_back(std::move(casting_executable_expr)); return std::make_unique<CombinedBoundExpr>(input_slots, *output_slot, std::move(named_output_slots), std::move(subexprs)); } } private: const CompiledExpr& compiled_expr_; ModelExecutorOptions options_; }; struct FirstFormatter { template <typename Pair> void operator()(std::string* out, const Pair& p) const { out->append(p.first); } }; } std::unique_ptr<CompiledExpr> CastOutputsIfNeeded( const CompiledExpr& expr, QTypePtr desired_output_type, absl::Nullable<const SlotListenerBase*> slot_listener, const ModelExecutorOptions& options) { absl::flat_hash_map<std::string, QTypePtr> side_output_types; side_output_types.reserve(expr.named_output_types().size()); if (slot_listener != nullptr) { for (const auto& [name, desired_qtype] : expr.named_output_types()) { const QType* available_qtype = slot_listener->GetQTypeOf(name, desired_qtype); if (available_qtype != nullptr) { side_output_types.emplace(name, available_qtype); } } } return std::make_unique<CastingCompiledExpr>(expr, desired_output_type, side_output_types, options); } absl::Status VerifyAllNamedOutputsAreListened( const absl::flat_hash_map<std::string, QTypePtr>& available_named_output_types, const SlotListenerBase& slot_listener) { std::set<std::string> not_listened_named_outputs; for (const auto& [name, desired_qtype] : available_named_output_types) { if (slot_listener.GetQTypeOf(name, desired_qtype) == nullptr) { not_listened_named_outputs.emplace(name); } } if (!not_listened_named_outputs.empty()) { return absl::FailedPreconditionError(absl::StrFormat( "slot listener does not listen for named outputs {%s} (it listens to " "{%s}); check that output/export names of your nodes match the slot " "listener names (pay attention to slashes) or set " "IgnoreNotListenedNamedOutputs() to disable this check if you have " "a good reason", Truncate(absl::StrJoin(not_listened_named_outputs, ", "), 100), Truncate(absl::StrJoin(slot_listener.SuggestAvailableNames(), ", "), 100))); } return absl::OkStatus(); } }
#include "arolla/expr/eval/model_executor.h" #include <sys/types.h> #include <algorithm> #include <cstdint> #include <optional> #include <string> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/nullability.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/expr/eval/eval.h" #include "arolla/expr/eval/side_output.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/operators/type_meta_eval_strategies.h" #include "arolla/expr/testing/testing.h" #include "arolla/io/accessors_input_loader.h" #include "arolla/io/input_loader.h" #include "arolla/io/slot_listener.h" #include "arolla/memory/frame.h" #include "arolla/memory/optional_value.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/qexpr/eval_context.h" #include "arolla/qexpr/operator_factory.h" #include "arolla/qexpr/operators.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/testing/qtype.h" #include "arolla/qtype/typed_value.h" #include "arolla/qtype/unspecified_qtype.h" #include "arolla/util/bytes.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { namespace { using ::absl_testing::IsOk; using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::testing::TypedValueWith; using ::arolla::testing::WithExportAnnotation; using ::testing::_; using ::testing::AllOf; using ::testing::AnyNumber; using ::testing::AtLeast; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::IsFalse; using ::testing::IsTrue; struct TestInputs { int64_t x; int64_t y; std::optional<int64_t> optional_z; }; absl::StatusOr<std::unique_ptr<InputLoader<TestInputs>>> CreateTestInputLoader() { return CreateAccessorsInputLoader<TestInputs>( "x", [](const TestInputs& in) { return in.x; }, "y", [](const TestInputs& in) { return in.y; }); } absl::StatusOr<std::unique_ptr<InputLoader<TestInputs>>> CreateTestInt32InputLoader() { return CreateAccessorsInputLoader<TestInputs>( "x", [](const TestInputs& in) -> int32_t { return in.x; }, "y", [](const TestInputs& in) -> int32_t { return in.y; }); } TEST(ModelExecutorTest, Move) { ASSERT_OK_AND_ASSIGN(auto x_plus_y, CallOp("math.add", {Leaf("x"), Leaf("y")})); ASSERT_OK_AND_ASSIGN(auto input_loader, CreateTestInputLoader()); ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, int64_t>::Compile(x_plus_y, *input_loader))); ASSERT_THAT(executor.IsValid(), IsTrue()); EXPECT_THAT(executor.Execute(TestInputs{50, 7}), IsOkAndHolds(57)); ModelExecutor<TestInputs, int64_t> other_executor{std::move(executor)}; ASSERT_THAT(other_executor.IsValid(), IsTrue()); EXPECT_THAT(other_executor.Execute(TestInputs{50, 7}), IsOkAndHolds(57)); ASSERT_THAT(executor.IsValid(), IsFalse()); executor = std::move(other_executor); ASSERT_THAT(executor.IsValid(), IsTrue()); EXPECT_THAT(executor.Execute(TestInputs{50, 7}), IsOkAndHolds(57)); ASSERT_THAT(other_executor.IsValid(), IsFalse()); } TEST(ModelExecutorTest, MissingInputs) { ASSERT_OK_AND_ASSIGN(auto x_plus_y, CallOp("math.add", {Leaf("unknown_x"), Leaf("unknown_y")})); ASSERT_OK_AND_ASSIGN(auto input_loader, CreateTestInputLoader()); EXPECT_THAT( (ModelExecutor<TestInputs, int64_t>::Compile(x_plus_y, *input_loader)), StatusIs(absl::StatusCode::kInvalidArgument, "unknown inputs: unknown_x, unknown_y (available: x, y)")); } TEST(ModelExecutorTest, SimpleExpr) { ASSERT_OK_AND_ASSIGN(auto x_plus_y, CallOp("math.add", {Leaf("x"), Leaf("y")})); ASSERT_OK_AND_ASSIGN(auto input_loader, CreateTestInputLoader()); ModelExecutorOptions options; options.allow_output_casting = true; EXPECT_THAT( (ModelExecutor<TestInputs, Bytes>::Compile(x_plus_y, *input_loader, nullptr, options)), StatusIs( absl::StatusCode::kInvalidArgument, AllOf(HasSubstr("casting from INT64 to BYTES is not allowed"), HasSubstr( "while casting model outputs due to `AllowOutputCasting()` " "or `AllowSideOutputsCasting()` options")))); { ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, int64_t>::Compile(x_plus_y, *input_loader))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(12)); } { ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, int64_t>::Compile(x_plus_y, *input_loader))); EXPECT_THAT(executor.ExecuteOnHeap({}, TestInputs{5, 7}), IsOkAndHolds(12)); } { ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, int64_t>::Compile(x_plus_y, *input_loader))); EXPECT_FALSE(executor.CanExecuteOnStack(8)); EXPECT_TRUE(executor.CanExecuteOnStack(24)); EXPECT_THAT(executor.ExecuteOnStack<24>({}, TestInputs{5, 7}), IsOkAndHolds(12)); } { ASSERT_OK_AND_ASSIGN(auto executor, (CompileModelExecutor<int64_t>( x_plus_y, *input_loader))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(12)); } { ASSERT_OK_AND_ASSIGN(auto executor, (ModelExecutor<TestInputs, TypedValue>::Compile( x_plus_y, *input_loader))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(TypedValueWith<int64_t>(12))); } { ModelExecutorOptions options; options.allow_output_casting = true; ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, OptionalValue<int64_t>>::Compile( x_plus_y, *input_loader, nullptr, options))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(OptionalValue<int64_t>(12))); } { ModelExecutorOptions options; EXPECT_THAT( (ModelExecutor<TestInputs, OptionalValue<int64_t>>::Compile( x_plus_y, *input_loader, nullptr, options)), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("output casting is not allowed: INT64 -> OPTIONAL_INT64; " "to fix add explicit `AllowOutputCasting()` in model " "compiler"))); } } TEST(ModelExecutorTest, ReturnsStdOptional) { ASSERT_OK_AND_ASSIGN(auto input_loader, CreateTestInputLoader()); { ASSERT_OK_AND_ASSIGN(auto optional_x, CallOp("core.to_optional", {Leaf("x")})); ASSERT_OK_AND_ASSIGN( (ModelExecutor<TestInputs, std::optional<int64_t>> executor), CompileModelExecutor<std::optional<int64_t>>(optional_x, *input_loader)); EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(Eq(5))); } { ASSERT_OK_AND_ASSIGN(auto empty_like_x, CallOp("core.empty_like", {Leaf("x")})); ASSERT_OK_AND_ASSIGN( (ModelExecutor<TestInputs, std::optional<int64_t>> executor), CompileModelExecutor<std::optional<int64_t>>(empty_like_x, *input_loader)); EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(Eq(std::nullopt))); } } TEST(ModelExecutorTest, ReturnsStdVectorOfOptional) { ASSERT_OK_AND_ASSIGN( auto input_loader, CreateAccessorsInputLoader<TestInputs>( "x", [](const TestInputs& in) { return CreateDenseArray<int64_t>({0, in.x, std::nullopt}); }, "y", [](const TestInputs& in) { return CreateDenseArray<int64_t>({0, in.y, std::nullopt}); })); ASSERT_OK_AND_ASSIGN(auto x_mul_y, CallOp("math.multiply", {Leaf("x"), Leaf("y")})); ASSERT_OK_AND_ASSIGN( (ModelExecutor<TestInputs, std::vector<std::optional<int64_t>>> executor), CompileModelExecutor<std::vector<std::optional<int64_t>>>(x_mul_y, *input_loader)); EXPECT_THAT(executor.Execute(TestInputs{3, 19}), IsOkAndHolds(ElementsAre(0, 57, std::nullopt))); } TEST(ModelExecutorTest, ReturnsStdVector) { ASSERT_OK_AND_ASSIGN( auto input_loader, CreateAccessorsInputLoader<TestInputs>("x", [](const TestInputs& in) { return CreateDenseArray<int64_t>({in.x, in.y, in.optional_z}); })); ASSERT_OK_AND_ASSIGN(auto x_mul_x, CallOp("math.multiply", {Leaf("x"), Leaf("x")})); EXPECT_THAT( (CompileModelExecutor<std::vector<int64_t>>(x_mul_x, *input_loader)), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("non-optional std::vector model output is supported " "only with ForceNonOptionalOutput() setting"))); ModelExecutorOptions options; options.force_non_optional_output = true; ASSERT_OK_AND_ASSIGN( (ModelExecutor<TestInputs, std::vector<int64_t>> executor), CompileModelExecutor<std::vector<int64_t>>(x_mul_x, *input_loader, options)); EXPECT_THAT(executor.Execute(TestInputs{1, 0, std::nullopt}), StatusIs(absl::StatusCode::kFailedPrecondition, "non-full model output (element 2 is missing) while " "full std::vector output is requested")); EXPECT_THAT(executor.Execute(TestInputs{1, 0, 16}), IsOkAndHolds(ElementsAre(1, 0, 256))); } class MockOperatorDirectory : public OperatorDirectory { public: MockOperatorDirectory() { ON_CALL(*this, DoLookupOperator) .WillByDefault([](absl::string_view name, absl::Span<const QTypePtr> input_types, QTypePtr output_type) { return OperatorRegistry::GetInstance()->LookupOperator( name, input_types, output_type); }); } MOCK_METHOD(absl::StatusOr<OperatorPtr>, DoLookupOperator, (absl::string_view name, absl::Span<const QTypePtr> input_types, QTypePtr output_type), (const, override)); }; TEST(ModelExecutorTest, OptionsPropagatedToCasting) { ASSERT_OK_AND_ASSIGN(auto x_plus_y, CallOp("math.add", {Leaf("x"), Leaf("y")})); ASSERT_OK_AND_ASSIGN(auto input_loader, CreateTestInputLoader()); MockOperatorDirectory operator_directory; ModelExecutorOptions options; options.allow_output_casting = true; options.eval_options.operator_directory = &operator_directory; EXPECT_CALL(operator_directory, DoLookupOperator(_, _, _)).Times(AnyNumber()); EXPECT_CALL(operator_directory, DoLookupOperator("core.to_optional._scalar", _, _)) .Times(AtLeast(1)); ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, OptionalValue<int64_t>>::Compile( x_plus_y, *input_loader, nullptr, options))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(OptionalValue<int64_t>(12))); } TEST(ModelExecutorTest, ExternalBufferFactory) { ASSERT_OK_AND_ASSIGN( auto expr, CallOp("array.as_dense_array", {CallOp("core.make_tuple", {Leaf("x"), Leaf("y")})})); ASSERT_OK_AND_ASSIGN(auto input_loader, CreateTestInputLoader()); ASSERT_OK_AND_ASSIGN(auto executor, (ModelExecutor<TestInputs, DenseArray<int64_t>>::Compile( expr, *input_loader))); UnsafeArenaBufferFactory arena(64 << 10); auto [buf1, data1] = arena.CreateRawBuffer(8); auto [buf2, data2] = arena.CreateRawBuffer(8); ASSERT_OK_AND_ASSIGN( DenseArray<int64_t> res, executor.Execute({.buffer_factory = &arena}, TestInputs{5, 7})); auto [buf3, data3] = arena.CreateRawBuffer(8); EXPECT_NE(reinterpret_cast<char*>(data2) - reinterpret_cast<char*>(data1), reinterpret_cast<char*>(data3) - reinterpret_cast<char*>(data2)); EXPECT_TRUE(res.is_owned()); } TEST(ModelExecutorTest, ReturnsNonOptional) { ASSERT_OK_AND_ASSIGN( auto input_loader, CreateAccessorsInputLoader<TestInputs>( "y", [](const TestInputs& in) { return OptionalValue<int64_t>(in.y); }, "z", [](const TestInputs& in) { return OptionalValue<int64_t>(in.optional_z); })); ASSERT_OK_AND_ASSIGN(auto y_mul_z, CallOp("math.multiply", {Leaf("y"), Leaf("z")})); EXPECT_THAT((CompileModelExecutor<int64_t>(y_mul_z, *input_loader)), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("model output is deduced to optional, while " "non-optional is requested"))); ModelExecutorOptions options; options.force_non_optional_output = true; ASSERT_OK_AND_ASSIGN( (ModelExecutor<TestInputs, int64_t> executor), CompileModelExecutor<int64_t>(y_mul_z, *input_loader, options)); EXPECT_THAT(executor.Execute(TestInputs{1, 0, std::nullopt}), StatusIs(absl::StatusCode::kFailedPrecondition, "expects a present value, got missing")); EXPECT_THAT(executor.Execute(TestInputs{1, 2, 3}), IsOkAndHolds(6)); EXPECT_THAT( (CompileModelExecutor<TypedValue>(y_mul_z, *input_loader, options)), StatusIs(absl::StatusCode::kUnimplemented, HasSubstr("ForceNonOptionalOutput() is not supported for " "TypedValue outputs"))); } TEST(ModelExecutorTest, ReturnsStdVectorBytes) { ASSERT_OK_AND_ASSIGN( auto input_loader, CreateAccessorsInputLoader<TestInputs>( "x", [](const TestInputs& in) { return CreateDenseArray<Bytes>( {Bytes{"foo"}, Bytes{absl::StrCat(in.x)}, std::nullopt}); }, "y", [](const TestInputs& in) { return CreateDenseArray<Bytes>( {Bytes{"bar"}, Bytes{absl::StrCat(in.y)}, std::nullopt}); })); ASSERT_OK_AND_ASSIGN(auto x_plus_y, CallOp("strings.join", {Leaf("x"), Leaf("y")})); ASSERT_OK_AND_ASSIGN( (ModelExecutor<TestInputs, std::vector<std::optional<Bytes>>> executor), CompileModelExecutor<std::vector<std::optional<Bytes>>>(x_plus_y, *input_loader)); EXPECT_THAT( executor.Execute(TestInputs{5, 7}), IsOkAndHolds(ElementsAre(Bytes{"foobar"}, Bytes{"57"}, std::nullopt))); EXPECT_THAT( executor.ExecuteOnHeap({}, TestInputs{5, 7}), IsOkAndHolds(ElementsAre(Bytes{"foobar"}, Bytes{"57"}, std::nullopt))); EXPECT_TRUE(executor.CanExecuteOnStack(1024)); EXPECT_THAT( executor.ExecuteOnStack<1024>({}, TestInputs{5, 7}), IsOkAndHolds(ElementsAre(Bytes{"foobar"}, Bytes{"57"}, std::nullopt))); } TEST(ModelExecutorTest, SimpleExprBind) { ASSERT_OK_AND_ASSIGN(auto x_plus_y, CallOp("math.add", {Leaf("x"), Leaf("y")})); ASSERT_OK_AND_ASSIGN(auto input_loader, CreateTestInputLoader()); ASSERT_OK_AND_ASSIGN( auto output_types, GetInputLoaderQTypes(*input_loader, GetLeafKeys(x_plus_y))); ASSERT_OK_AND_ASSIGN(auto compiled_expr, CompileForDynamicEvaluation( DynamicEvaluationEngineOptions(), x_plus_y, output_types)); { ASSERT_OK_AND_ASSIGN(auto executor, (ModelExecutor<TestInputs, int64_t>::Bind( *compiled_expr, *input_loader))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(12)); } { ASSERT_OK_AND_ASSIGN(auto executor, BindModelExecutor<int64_t>( *compiled_expr, *input_loader)); EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(12)); } { ASSERT_OK_AND_ASSIGN(auto executor, BindModelExecutor<int64_t>( *compiled_expr, *input_loader)); EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(12)); } { ModelExecutorOptions options; options.allow_output_casting = true; ASSERT_OK_AND_ASSIGN(auto executor, BindModelExecutor<OptionalValue<int64_t>>( *compiled_expr, *input_loader, options)); EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(12)); } } struct SideOutput { OptionalValue<int64_t> out_x; OptionalValue<int64_t> out_xpy; }; template <class OutXT, class OutYT> struct TestSlotListener : public SlotListener<SideOutput> { TestSlotListener() = default; explicit TestSlotListener( absl::flat_hash_map<std::string, QTypePtr> input_types) : input_types(std::move(input_types)) {} absl::Nullable<const QType*> GetQTypeOf( absl::string_view name, const QType* desired_qtype) const final { auto it = input_types.find(name); if (it == input_types.end()) { return nullptr; } return it->second == GetUnspecifiedQType() ? desired_qtype : it->second; } std::vector<std::string> SuggestAvailableNames() const final { std::vector<std::string> names; names.reserve(input_types.size()); for (const auto& [name, _] : input_types) { names.emplace_back(name); } std::sort(names.begin(), names.end()); return names; } absl::StatusOr<BoundSlotListener<SideOutput>> BindImpl( const absl::flat_hash_map<std::string, TypedSlot>& input_slots) const final { return [input_slots](::arolla::ConstFramePtr frame, SideOutput* output) -> absl::Status { if (input_slots.contains("out_x")) { ASSIGN_OR_RETURN(auto slot, input_slots.at("out_x").ToSlot<OutXT>()); output->out_x = frame.Get(slot); } if (input_slots.contains("out_xpy")) { ASSIGN_OR_RETURN(auto slot, input_slots.at("out_xpy").ToSlot<OutYT>()); output->out_xpy = frame.Get(slot); } return absl::OkStatus(); }; } absl::flat_hash_map<std::string, QTypePtr> input_types = { {"out_x", GetQType<OutXT>()}, {"out_xpy", GetQType<OutYT>()}}; }; TEST(ModelExecutorTest, SimpleExprWithSlotListener) { ASSERT_OK_AND_ASSIGN(auto x, WithExportAnnotation(Leaf("x"), "out_x")); auto y = Leaf("y"); ASSERT_OK_AND_ASSIGN( auto x_plus_y, WithExportAnnotation(CallOp("math.add", {x, y}), "out_xpy")); ASSERT_OK_AND_ASSIGN(auto expr, CallOp("math.add", {x_plus_y, y})); ASSERT_OK_AND_ASSIGN(auto input_loader, CreateTestInputLoader()); TestSlotListener<int64_t, int64_t> slot_listener; { SideOutput side_output; ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, int64_t, SideOutput>::Compile( expr, *input_loader))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("slot listener was not provided"))); } { TestSlotListener<int64_t, int64_t> wrong_slot_listener{ {{"out_x", GetQType<int64_t>()}, {"out_xpy", GetQType<::arolla::Bytes>()}}}; EXPECT_THAT( CompileModelExecutor<int64_t>(expr, *input_loader, wrong_slot_listener), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("casting from INT64 to BYTES is not allowed"))); } { SideOutput side_output; ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, int64_t, SideOutput>::Compile( expr, *input_loader, &slot_listener))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x.value, 5); EXPECT_EQ(side_output.out_xpy.value, 12); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, nullptr), IsOkAndHolds(19)); } { SideOutput side_output; ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, int64_t, SideOutput>::Compile( expr, *input_loader, &slot_listener))); EXPECT_THAT(executor.ExecuteOnHeap({}, TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x.value, 5); EXPECT_EQ(side_output.out_xpy.value, 12); EXPECT_THAT(executor.ExecuteOnHeap({}, TestInputs{5, 7}, nullptr), IsOkAndHolds(19)); } { SideOutput side_output; ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, int64_t, SideOutput>::Compile( expr, *input_loader, &slot_listener))); EXPECT_FALSE(executor.CanExecuteOnStack(8)); EXPECT_TRUE(executor.CanExecuteOnStack(64)); EXPECT_THAT(executor.ExecuteOnStack<64>({}, TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x.value, 5); EXPECT_EQ(side_output.out_xpy.value, 12); EXPECT_THAT(executor.ExecuteOnStack<64>({}, TestInputs{5, 7}, nullptr), IsOkAndHolds(19)); } { SideOutput side_output; ASSERT_OK_AND_ASSIGN( auto executor, (CompileModelExecutor<int64_t>(expr, *input_loader, slot_listener))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x.value, 5); EXPECT_EQ(side_output.out_xpy.value, 12); } { TestSlotListener<OptionalValue<int64_t>, OptionalValue<int64_t>> optional_slot_listener; SideOutput side_output; ASSERT_OK_AND_ASSIGN( auto executor, (CompileModelExecutor<int64_t>(expr, *input_loader, optional_slot_listener))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x.value, 5); EXPECT_EQ(side_output.out_xpy.value, 12); } { TestSlotListener<int64_t, int64_t> slot_listener{ {{"out_x", GetQType<int64_t>()}, {"out_xpy", GetUnspecifiedQType()}}}; SideOutput side_output; ASSERT_OK_AND_ASSIGN( auto executor, (CompileModelExecutor<int64_t>(expr, *input_loader, slot_listener))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x.value, 5); EXPECT_EQ(side_output.out_xpy.value, 12); } { TestSlotListener<OptionalValue<int64_t>, OptionalValue<int64_t>> optional_slot_listener; ASSERT_OK_AND_ASSIGN(auto int32_loader, CreateTestInt32InputLoader()); SideOutput side_output; ASSERT_OK_AND_ASSIGN(auto executor, (CompileModelExecutor<int>(expr, *int32_loader, optional_slot_listener))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x.value, 5); EXPECT_EQ(side_output.out_xpy.value, 12); } { TestSlotListener<int64_t, int64_t> limited_slot_listener{ {{"out_xpy", GetQType<int64_t>()}}}; SideOutput side_output; ModelExecutorOptions options; options.ignore_not_listened_named_outputs = true; ASSERT_OK_AND_ASSIGN(auto executor, (CompileModelExecutor<int64_t>( expr, *input_loader, limited_slot_listener, options))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x, std::nullopt); EXPECT_EQ(side_output.out_xpy.value, 12); } } TEST(ModelExecutorTest, SimpleExprBindWithSlotListener) { ASSERT_OK_AND_ASSIGN(auto x, WithExportAnnotation(Leaf("x"), "out_x")); auto y = Leaf("y"); ASSERT_OK_AND_ASSIGN( auto x_plus_y, WithExportAnnotation(CallOp("math.add", {x, y}), "out_xpy")); ASSERT_OK_AND_ASSIGN(auto expr, CallOp("math.add", {x_plus_y, y})); ASSERT_OK_AND_ASSIGN(auto input_loader, CreateTestInputLoader()); TestSlotListener<int64_t, int64_t> slot_listener; ASSERT_OK_AND_ASSIGN((auto [stripped_expr, side_outputs]), ExtractSideOutputs(expr)); ASSERT_OK_AND_ASSIGN( auto output_types, GetInputLoaderQTypes(*input_loader, GetLeafKeys(x_plus_y))); ASSERT_OK_AND_ASSIGN(auto compiled_expr, CompileForDynamicEvaluation( DynamicEvaluationEngineOptions(), stripped_expr, output_types, {})); ASSERT_OK_AND_ASSIGN( auto compiled_expr_with_side_output, CompileForDynamicEvaluation(DynamicEvaluationEngineOptions(), stripped_expr, output_types, side_outputs)); { SideOutput side_output; ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, int64_t, SideOutput>::Bind( *compiled_expr, *input_loader, nullptr, &slot_listener))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_FALSE(side_output.out_x.present); EXPECT_FALSE(side_output.out_xpy.present); } { SideOutput side_output; ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, int64_t, SideOutput>::Bind( *compiled_expr_with_side_output, *input_loader, nullptr, &slot_listener))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x.value, 5); EXPECT_EQ(side_output.out_xpy.value, 12); } { SideOutput side_output; ASSERT_OK_AND_ASSIGN( auto executor, (ModelExecutor<TestInputs, int64_t, SideOutput>::Bind( *compiled_expr, *input_loader, compiled_expr_with_side_output.get(), &slot_listener))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x.value, 5); EXPECT_EQ(side_output.out_xpy.value, 12); } { SideOutput side_output; ASSERT_OK_AND_ASSIGN(auto executor, BindModelExecutor<int64_t>( *compiled_expr_with_side_output, *input_loader, slot_listener)); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x, int64_t{5}); EXPECT_EQ(side_output.out_xpy, int64_t{12}); } { TestSlotListener<OptionalValue<int64_t>, OptionalValue<int64_t>> optional_slot_listener; SideOutput side_output; ModelExecutorOptions options; options.allow_side_outputs_casting = true; ASSERT_OK_AND_ASSIGN(auto executor, (BindModelExecutor<int64_t>( *compiled_expr_with_side_output, *input_loader, optional_slot_listener, options))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x, int64_t{5}); EXPECT_EQ(side_output.out_xpy, int64_t{12}); } { TestSlotListener<OptionalValue<int64_t>, OptionalValue<int64_t>> irrelevant_slot_listener( {{"foo", GetOptionalQType<int64_t>()}, {"bar", GetOptionalQType<int64_t>()}}); ModelExecutorOptions options; options.ignore_not_listened_named_outputs = false; EXPECT_THAT( (ModelExecutor<TestInputs, int64_t, SideOutput>::Bind( *compiled_expr_with_side_output, *input_loader, nullptr, &irrelevant_slot_listener, options)), StatusIs( absl::StatusCode::kFailedPrecondition, HasSubstr("slot listener does not listen for named outputs {out_x, " "out_xpy} (it listens to {bar, foo});"))); EXPECT_THAT( (ModelExecutor<TestInputs, int64_t, SideOutput>::Bind( *compiled_expr, *input_loader, compiled_expr_with_side_output.get(), &irrelevant_slot_listener, options)), StatusIs( absl::StatusCode::kFailedPrecondition, HasSubstr("slot listener does not listen for named outputs {out_x, " "out_xpy} (it listens to {bar, foo});"))); options.ignore_not_listened_named_outputs = true; EXPECT_THAT( (ModelExecutor<TestInputs, int64_t, SideOutput>::Bind( *compiled_expr_with_side_output, *input_loader, nullptr, &irrelevant_slot_listener, options)), IsOk()); EXPECT_THAT((ModelExecutor<TestInputs, int64_t, SideOutput>::Bind( *compiled_expr, *input_loader, compiled_expr_with_side_output.get(), &irrelevant_slot_listener, options)), IsOk()); } { TestSlotListener<OptionalValue<int64_t>, OptionalValue<int64_t>> optional_slot_listener; EXPECT_THAT( (BindModelExecutor<int64_t>(*compiled_expr_with_side_output, *input_loader, optional_slot_listener)), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr( "side outputs casting is not allowed: out_x, out_xpy; to fix " "add explicit `AllowSideOutputsCasting()` in model compiler"))); } { TestSlotListener<OptionalValue<int64_t>, OptionalValue<int64_t>> optional_slot_listener; SideOutput side_output; ModelExecutorOptions options; options.allow_output_casting = true; options.allow_side_outputs_casting = true; ASSERT_OK_AND_ASSIGN(auto executor, (BindModelExecutor<OptionalValue<int64_t>>( *compiled_expr_with_side_output, *input_loader, optional_slot_listener, options))); EXPECT_THAT(executor.Execute(TestInputs{5, 7}, &side_output), IsOkAndHolds(19)); EXPECT_EQ(side_output.out_x, int64_t{5}); EXPECT_EQ(side_output.out_xpy, int64_t{12}); } } struct CreateTestDenseArrayOp { DenseArray<int> operator()(EvaluationContext* ctx, int64_t) const { CHECK(dynamic_cast<UnsafeArenaBufferFactory*>(&ctx->buffer_factory())); auto res = CreateConstDenseArray<int>(3, 1, &ctx->buffer_factory()); CHECK(!res.is_owned()); return res; } }; TEST(ModelExecutorTest, ArenaMakeOwned) { constexpr absl::string_view op_name = "test.create_test_dense_array"; ASSERT_OK_AND_ASSIGN( auto op_factory, (QExprOperatorFromFunctor<CreateTestDenseArrayOp, int64_t>())); ASSERT_OK(::arolla::OperatorRegistry::GetInstance()->RegisterOperator( op_name, op_factory)); auto ReturnsDenseArray = [](absl::Span<const QTypePtr>) -> absl::StatusOr<expr_operators::type_meta::QTypes> { return expr_operators::type_meta::QTypes{GetDenseArrayQType<int>()}; }; ASSERT_OK(expr_operators::RegisterBackendOperator( op_name, ExprOperatorSignature::MakeArgsN(1), ReturnsDenseArray)); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op_name, {Leaf("x")})); ASSERT_OK_AND_ASSIGN(auto input_loader, CreateTestInputLoader()); ModelExecutorOptions options; options.arena_page_size = 64 << 10; ASSERT_OK_AND_ASSIGN(auto executor, (CompileModelExecutor<DenseArray<int>>( expr, *input_loader, options))); ASSERT_OK_AND_ASSIGN(DenseArray<int> res, executor.Execute(TestInputs{5, 7})); EXPECT_EQ(res.size(), 3); EXPECT_TRUE(res.is_owned()); } static RawBufferFactory* kLastOpUsedFactory = nullptr; static void* kLastOpAllocatedBuffer = nullptr; struct FactorySideEffectOp { template <class T> T operator()(EvaluationContext* ctx, T a) const { kLastOpUsedFactory = &ctx->buffer_factory(); kLastOpAllocatedBuffer = std::get<1>(ctx->buffer_factory().CreateRawBuffer(1024)); return a; } }; static RawBufferFactory* kLastLoaderUsedFactory = nullptr; static void* kLastLoaderAllocatedBuffer = nullptr; absl::StatusOr<std::unique_ptr<InputLoader<TestInputs>>> CreateArenaSideEffectTestInputLoader() { return CreateAccessorsInputLoader<TestInputs>( "x", [](const TestInputs& in, RawBufferFactory* factory) { kLastLoaderUsedFactory = factory; kLastLoaderAllocatedBuffer = std::get<1>(factory->CreateRawBuffer(128)); return in.x; }); } TEST(ModelExecutorTest, ArenaPropagated) { using ::arolla::expr_operators::type_meta::Nth; constexpr absl::string_view op_name = "test.factory_side_effect"; ASSERT_OK_AND_ASSIGN( auto factory_side_effect, (QExprOperatorFromFunctor<FactorySideEffectOp, int64_t>())); ASSERT_OK(::arolla::OperatorRegistry::GetInstance()->RegisterOperator( op_name, factory_side_effect)); ASSERT_OK_AND_ASSIGN(auto x_sig, ExprOperatorSignature::Make("x")); ASSERT_OK(expr_operators::RegisterBackendOperator(op_name, x_sig, Nth(0))); ASSERT_OK_AND_ASSIGN(auto expr, CallOp(op_name, {Leaf("x")})); ASSERT_OK_AND_ASSIGN(auto input_loader, CreateArenaSideEffectTestInputLoader()); ModelExecutorOptions options; options.arena_page_size = 64 << 10; ASSERT_OK_AND_ASSIGN(auto executor, CompileModelExecutor<int64_t>( expr, *input_loader, options)); EXPECT_EQ(kLastOpUsedFactory, nullptr); EXPECT_EQ(kLastOpAllocatedBuffer, nullptr); EXPECT_EQ(kLastLoaderUsedFactory, nullptr); EXPECT_EQ(kLastLoaderAllocatedBuffer, nullptr); EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(5)); EXPECT_NE(kLastOpUsedFactory, nullptr); EXPECT_NE(kLastOpAllocatedBuffer, nullptr); EXPECT_NE(kLastLoaderUsedFactory, nullptr); EXPECT_NE(kLastLoaderAllocatedBuffer, nullptr); EXPECT_NE(kLastOpUsedFactory, GetHeapBufferFactory()); EXPECT_NE(kLastLoaderUsedFactory, GetHeapBufferFactory()); EXPECT_EQ(std::string(typeid(*kLastLoaderUsedFactory).name()), std::string(typeid(UnsafeArenaBufferFactory).name())); EXPECT_EQ(std::string(typeid(*kLastOpUsedFactory).name()), std::string(typeid(UnsafeArenaBufferFactory).name())); RawBufferFactory* prev_used_op_factory = kLastOpUsedFactory; void* prev_allocated_op_buffer = kLastOpAllocatedBuffer; RawBufferFactory* prev_used_loader_factory = kLastLoaderUsedFactory; void* prev_allocated_loader_buffer = kLastLoaderAllocatedBuffer; { EXPECT_THAT(executor.Execute(TestInputs{5, 7}), IsOkAndHolds(5)); EXPECT_EQ(kLastOpUsedFactory, prev_used_op_factory); EXPECT_EQ(kLastOpAllocatedBuffer, prev_allocated_op_buffer); EXPECT_EQ(kLastLoaderUsedFactory, prev_used_loader_factory); EXPECT_EQ(kLastLoaderAllocatedBuffer, prev_allocated_loader_buffer); } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/model_executor.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/model_executor_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
3e1b80d3-4273-4518-9418-e44c3c9984a2
cpp
google/cel-cpp
optional_types
runtime/optional_types.cc
runtime/optional_types_test.cc
#include "runtime/optional_types.h" #include <cstddef> #include <cstdint> #include <limits> #include <memory> #include <string> #include <tuple> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "base/function_adapter.h" #include "common/casting.h" #include "common/type.h" #include "common/type_reflector.h" #include "common/value.h" #include "common/value_manager.h" #include "internal/casts.h" #include "internal/number.h" #include "internal/status_macros.h" #include "runtime/function_registry.h" #include "runtime/internal/errors.h" #include "runtime/internal/runtime_friend_access.h" #include "runtime/internal/runtime_impl.h" #include "runtime/runtime_builder.h" #include "runtime/runtime_options.h" namespace cel::extensions { namespace { Value OptionalOf(ValueManager& value_manager, const Value& value) { return OptionalValue::Of(value_manager.GetMemoryManager(), value); } Value OptionalNone(ValueManager&) { return OptionalValue::None(); } Value OptionalOfNonZeroValue(ValueManager& value_manager, const Value& value) { if (value.IsZeroValue()) { return OptionalNone(value_manager); } return OptionalOf(value_manager, value); } absl::StatusOr<Value> OptionalGetValue(ValueManager& value_manager, const OpaqueValue& opaque_value) { if (auto optional_value = As<OptionalValue>(opaque_value); optional_value) { return optional_value->Value(); } return ErrorValue{runtime_internal::CreateNoMatchingOverloadError("value")}; } absl::StatusOr<Value> OptionalHasValue(ValueManager& value_manager, const OpaqueValue& opaque_value) { if (auto optional_value = As<OptionalValue>(opaque_value); optional_value) { return BoolValue{optional_value->HasValue()}; } return ErrorValue{ runtime_internal::CreateNoMatchingOverloadError("hasValue")}; } absl::StatusOr<Value> SelectOptionalFieldStruct(ValueManager& value_manager, const StructValue& struct_value, const StringValue& key) { std::string field_name; auto field_name_view = key.NativeString(field_name); CEL_ASSIGN_OR_RETURN(auto has_field, struct_value.HasFieldByName(field_name_view)); if (!has_field) { return OptionalValue::None(); } CEL_ASSIGN_OR_RETURN( auto field, struct_value.GetFieldByName(value_manager, field_name_view)); return OptionalValue::Of(value_manager.GetMemoryManager(), std::move(field)); } absl::StatusOr<Value> SelectOptionalFieldMap(ValueManager& value_manager, const MapValue& map, const StringValue& key) { Value value; bool ok; CEL_ASSIGN_OR_RETURN(std::tie(value, ok), map.Find(value_manager, key)); if (ok) { return OptionalValue::Of(value_manager.GetMemoryManager(), std::move(value)); } return OptionalValue::None(); } absl::StatusOr<Value> SelectOptionalField(ValueManager& value_manager, const OpaqueValue& opaque_value, const StringValue& key) { if (auto optional_value = As<OptionalValue>(opaque_value); optional_value) { if (!optional_value->HasValue()) { return OptionalValue::None(); } auto container = optional_value->Value(); if (auto map_value = As<MapValue>(container); map_value) { return SelectOptionalFieldMap(value_manager, *map_value, key); } if (auto struct_value = As<StructValue>(container); struct_value) { return SelectOptionalFieldStruct(value_manager, *struct_value, key); } } return ErrorValue{runtime_internal::CreateNoMatchingOverloadError("_[?_]")}; } absl::StatusOr<Value> MapOptIndexOptionalValue(ValueManager& value_manager, const MapValue& map, const Value& key) { Value value; bool ok; if (auto double_key = cel::As<DoubleValue>(key); double_key) { auto number = internal::Number::FromDouble(double_key->NativeValue()); if (number.LosslessConvertibleToInt()) { CEL_ASSIGN_OR_RETURN(std::tie(value, ok), map.Find(value_manager, IntValue{number.AsInt()})); if (ok) { return OptionalValue::Of(value_manager.GetMemoryManager(), std::move(value)); } } if (number.LosslessConvertibleToUint()) { CEL_ASSIGN_OR_RETURN(std::tie(value, ok), map.Find(value_manager, UintValue{number.AsUint()})); if (ok) { return OptionalValue::Of(value_manager.GetMemoryManager(), std::move(value)); } } } else { CEL_ASSIGN_OR_RETURN(std::tie(value, ok), map.Find(value_manager, key)); if (ok) { return OptionalValue::Of(value_manager.GetMemoryManager(), std::move(value)); } if (auto int_key = cel::As<IntValue>(key); int_key && int_key->NativeValue() >= 0) { CEL_ASSIGN_OR_RETURN( std::tie(value, ok), map.Find(value_manager, UintValue{static_cast<uint64_t>(int_key->NativeValue())})); if (ok) { return OptionalValue::Of(value_manager.GetMemoryManager(), std::move(value)); } } else if (auto uint_key = cel::As<UintValue>(key); uint_key && uint_key->NativeValue() <= static_cast<uint64_t>(std::numeric_limits<int64_t>::max())) { CEL_ASSIGN_OR_RETURN( std::tie(value, ok), map.Find(value_manager, IntValue{static_cast<int64_t>(uint_key->NativeValue())})); if (ok) { return OptionalValue::Of(value_manager.GetMemoryManager(), std::move(value)); } } } return OptionalValue::None(); } absl::StatusOr<Value> ListOptIndexOptionalInt(ValueManager& value_manager, const ListValue& list, int64_t key) { CEL_ASSIGN_OR_RETURN(auto list_size, list.Size()); if (key < 0 || static_cast<size_t>(key) >= list_size) { return OptionalValue::None(); } CEL_ASSIGN_OR_RETURN(auto element, list.Get(value_manager, static_cast<size_t>(key))); return OptionalValue::Of(value_manager.GetMemoryManager(), std::move(element)); } absl::StatusOr<Value> OptionalOptIndexOptionalValue( ValueManager& value_manager, const OpaqueValue& opaque_value, const Value& key) { if (auto optional_value = As<OptionalValue>(opaque_value); optional_value) { if (!optional_value->HasValue()) { return OptionalValue::None(); } auto container = optional_value->Value(); if (auto map_value = cel::As<MapValue>(container); map_value) { return MapOptIndexOptionalValue(value_manager, *map_value, key); } if (auto list_value = cel::As<ListValue>(container); list_value) { if (auto int_value = cel::As<IntValue>(key); int_value) { return ListOptIndexOptionalInt(value_manager, *list_value, int_value->NativeValue()); } } } return ErrorValue{runtime_internal::CreateNoMatchingOverloadError("_[?_]")}; } absl::Status RegisterOptionalTypeFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { if (!options.enable_qualified_type_identifiers) { return absl::FailedPreconditionError( "optional_type requires " "RuntimeOptions.enable_qualified_type_identifiers"); } if (!options.enable_heterogeneous_equality) { return absl::FailedPreconditionError( "optional_type requires RuntimeOptions.enable_heterogeneous_equality"); } CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<Value, Value>::CreateDescriptor("optional.of", false), UnaryFunctionAdapter<Value, Value>::WrapFunction(&OptionalOf))); CEL_RETURN_IF_ERROR( registry.Register(UnaryFunctionAdapter<Value, Value>::CreateDescriptor( "optional.ofNonZeroValue", false), UnaryFunctionAdapter<Value, Value>::WrapFunction( &OptionalOfNonZeroValue))); CEL_RETURN_IF_ERROR(registry.Register( VariadicFunctionAdapter<Value>::CreateDescriptor("optional.none", false), VariadicFunctionAdapter<Value>::WrapFunction(&OptionalNone))); CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<absl::StatusOr<Value>, OpaqueValue>::CreateDescriptor("value", true), UnaryFunctionAdapter<absl::StatusOr<Value>, OpaqueValue>::WrapFunction( &OptionalGetValue))); CEL_RETURN_IF_ERROR(registry.Register( UnaryFunctionAdapter<absl::StatusOr<Value>, OpaqueValue>::CreateDescriptor("hasValue", true), UnaryFunctionAdapter<absl::StatusOr<Value>, OpaqueValue>::WrapFunction( &OptionalHasValue))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<absl::StatusOr<Value>, StructValue, StringValue>::CreateDescriptor("_?._", false), BinaryFunctionAdapter<absl::StatusOr<Value>, StructValue, StringValue>:: WrapFunction(&SelectOptionalFieldStruct))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<absl::StatusOr<Value>, MapValue, StringValue>::CreateDescriptor("_?._", false), BinaryFunctionAdapter<absl::StatusOr<Value>, MapValue, StringValue>:: WrapFunction(&SelectOptionalFieldMap))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<absl::StatusOr<Value>, OpaqueValue, StringValue>::CreateDescriptor("_?._", false), BinaryFunctionAdapter<absl::StatusOr<Value>, OpaqueValue, StringValue>::WrapFunction(&SelectOptionalField))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<absl::StatusOr<Value>, MapValue, Value>::CreateDescriptor("_[?_]", false), BinaryFunctionAdapter<absl::StatusOr<Value>, MapValue, Value>::WrapFunction(&MapOptIndexOptionalValue))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<absl::StatusOr<Value>, ListValue, int64_t>::CreateDescriptor("_[?_]", false), BinaryFunctionAdapter<absl::StatusOr<Value>, ListValue, int64_t>::WrapFunction(&ListOptIndexOptionalInt))); CEL_RETURN_IF_ERROR(registry.Register( BinaryFunctionAdapter<absl::StatusOr<Value>, OpaqueValue, Value>::CreateDescriptor("_[?_]", false), BinaryFunctionAdapter<absl::StatusOr<Value>, OpaqueValue, Value>:: WrapFunction(&OptionalOptIndexOptionalValue))); return absl::OkStatus(); } class OptionalTypeProvider final : public TypeReflector { protected: absl::StatusOr<absl::optional<Type>> FindTypeImpl( TypeFactory&, absl::string_view name) const override { if (name != "optional_type") { return absl::nullopt; } return OptionalType{}; } }; } absl::Status EnableOptionalTypes(RuntimeBuilder& builder) { auto& runtime = cel::internal::down_cast<runtime_internal::RuntimeImpl&>( runtime_internal::RuntimeFriendAccess::GetMutableRuntime(builder)); CEL_RETURN_IF_ERROR(RegisterOptionalTypeFunctions( builder.function_registry(), runtime.expr_builder().options())); builder.type_registry().AddTypeProvider( std::make_unique<OptionalTypeProvider>()); runtime.expr_builder().enable_optional_types(); return absl::OkStatus(); } }
#include "runtime/optional_types.h" #include <cstdint> #include <memory> #include <ostream> #include <string> #include <utility> #include <vector> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "base/function.h" #include "base/function_descriptor.h" #include "common/kind.h" #include "common/memory.h" #include "common/value.h" #include "common/value_testing.h" #include "common/values/legacy_value_manager.h" #include "extensions/protobuf/memory_manager.h" #include "extensions/protobuf/runtime_adapter.h" #include "internal/testing.h" #include "parser/options.h" #include "parser/parser.h" #include "runtime/activation.h" #include "runtime/internal/runtime_impl.h" #include "runtime/reference_resolver.h" #include "runtime/runtime.h" #include "runtime/runtime_builder.h" #include "runtime/runtime_options.h" #include "runtime/standard_runtime_builder_factory.h" #include "google/protobuf/arena.h" namespace cel::extensions { namespace { using ::absl_testing::IsOk; using ::absl_testing::StatusIs; using ::cel::extensions::ProtobufRuntimeAdapter; using ::cel::extensions::ProtoMemoryManagerRef; using ::cel::test::BoolValueIs; using ::cel::test::IntValueIs; using ::cel::test::OptionalValueIs; using ::cel::test::OptionalValueIsEmpty; using ::google::api::expr::v1alpha1::ParsedExpr; using ::google::api::expr::parser::Parse; using ::google::api::expr::parser::ParserOptions; using ::testing::ElementsAre; using ::testing::HasSubstr; MATCHER_P(MatchesOptionalReceiver1, name, "") { const FunctionDescriptor& descriptor = arg.descriptor; std::vector<Kind> types{Kind::kOpaque}; return descriptor.name() == name && descriptor.receiver_style() == true && descriptor.types() == types; } MATCHER_P2(MatchesOptionalReceiver2, name, kind, "") { const FunctionDescriptor& descriptor = arg.descriptor; std::vector<Kind> types{Kind::kOpaque, kind}; return descriptor.name() == name && descriptor.receiver_style() == true && descriptor.types() == types; } MATCHER_P2(MatchesOptionalSelect, kind1, kind2, "") { const FunctionDescriptor& descriptor = arg.descriptor; std::vector<Kind> types{kind1, kind2}; return descriptor.name() == "_?._" && descriptor.receiver_style() == false && descriptor.types() == types; } MATCHER_P2(MatchesOptionalIndex, kind1, kind2, "") { const FunctionDescriptor& descriptor = arg.descriptor; std::vector<Kind> types{kind1, kind2}; return descriptor.name() == "_[?_]" && descriptor.receiver_style() == false && descriptor.types() == types; } TEST(EnableOptionalTypes, HeterogeneousEqualityRequired) { ASSERT_OK_AND_ASSIGN(auto builder, CreateStandardRuntimeBuilder(RuntimeOptions{ .enable_qualified_type_identifiers = true, .enable_heterogeneous_equality = false})); EXPECT_THAT(EnableOptionalTypes(builder), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(EnableOptionalTypes, QualifiedTypeIdentifiersRequired) { ASSERT_OK_AND_ASSIGN(auto builder, CreateStandardRuntimeBuilder(RuntimeOptions{ .enable_qualified_type_identifiers = false, .enable_heterogeneous_equality = true})); EXPECT_THAT(EnableOptionalTypes(builder), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(EnableOptionalTypes, PreconditionsSatisfied) { ASSERT_OK_AND_ASSIGN(auto builder, CreateStandardRuntimeBuilder(RuntimeOptions{ .enable_qualified_type_identifiers = true, .enable_heterogeneous_equality = true})); EXPECT_THAT(EnableOptionalTypes(builder), IsOk()); } TEST(EnableOptionalTypes, Functions) { ASSERT_OK_AND_ASSIGN(auto builder, CreateStandardRuntimeBuilder(RuntimeOptions{ .enable_qualified_type_identifiers = true, .enable_heterogeneous_equality = true})); ASSERT_THAT(EnableOptionalTypes(builder), IsOk()); EXPECT_THAT(builder.function_registry().FindStaticOverloads("hasValue", true, {Kind::kOpaque}), ElementsAre(MatchesOptionalReceiver1("hasValue"))); EXPECT_THAT(builder.function_registry().FindStaticOverloads("value", true, {Kind::kOpaque}), ElementsAre(MatchesOptionalReceiver1("value"))); EXPECT_THAT(builder.function_registry().FindStaticOverloads( "_?._", false, {Kind::kStruct, Kind::kString}), ElementsAre(MatchesOptionalSelect(Kind::kStruct, Kind::kString))); EXPECT_THAT(builder.function_registry().FindStaticOverloads( "_?._", false, {Kind::kMap, Kind::kString}), ElementsAre(MatchesOptionalSelect(Kind::kMap, Kind::kString))); EXPECT_THAT(builder.function_registry().FindStaticOverloads( "_?._", false, {Kind::kOpaque, Kind::kString}), ElementsAre(MatchesOptionalSelect(Kind::kOpaque, Kind::kString))); EXPECT_THAT(builder.function_registry().FindStaticOverloads( "_[?_]", false, {Kind::kMap, Kind::kAny}), ElementsAre(MatchesOptionalIndex(Kind::kMap, Kind::kAny))); EXPECT_THAT(builder.function_registry().FindStaticOverloads( "_[?_]", false, {Kind::kList, Kind::kInt}), ElementsAre(MatchesOptionalIndex(Kind::kList, Kind::kInt))); EXPECT_THAT(builder.function_registry().FindStaticOverloads( "_[?_]", false, {Kind::kOpaque, Kind::kAny}), ElementsAre(MatchesOptionalIndex(Kind::kOpaque, Kind::kAny))); } struct EvaluateResultTestCase { std::string name; std::string expression; test::ValueMatcher value_matcher; }; class OptionalTypesTest : public common_internal::ThreadCompatibleValueTest<EvaluateResultTestCase, bool> { public: const EvaluateResultTestCase& GetTestCase() { return std::get<1>(GetParam()); } bool EnableShortCircuiting() { return std::get<2>(GetParam()); } }; std::ostream& operator<<(std::ostream& os, const EvaluateResultTestCase& test_case) { return os << test_case.name; } TEST_P(OptionalTypesTest, RecursivePlan) { RuntimeOptions opts; opts.use_legacy_container_builders = false; opts.enable_qualified_type_identifiers = true; opts.max_recursion_depth = -1; opts.short_circuiting = EnableShortCircuiting(); const EvaluateResultTestCase& test_case = GetTestCase(); ASSERT_OK_AND_ASSIGN(auto builder, CreateStandardRuntimeBuilder(opts)); ASSERT_OK(EnableOptionalTypes(builder)); ASSERT_OK( EnableReferenceResolver(builder, ReferenceResolverEnabled::kAlways)); ASSERT_OK_AND_ASSIGN(auto runtime, std::move(builder).Build()); ASSERT_OK_AND_ASSIGN(ParsedExpr expr, Parse(test_case.expression, "<input>", ParserOptions{.enable_optional_syntax = true})); ASSERT_OK_AND_ASSIGN(std::unique_ptr<Program> program, ProtobufRuntimeAdapter::CreateProgram(*runtime, expr)); EXPECT_TRUE(runtime_internal::TestOnly_IsRecursiveImpl(program.get())); cel::common_internal::LegacyValueManager value_factory( memory_manager(), runtime->GetTypeProvider()); Activation activation; ASSERT_OK_AND_ASSIGN(Value result, program->Evaluate(activation, value_factory)); EXPECT_THAT(result, test_case.value_matcher) << test_case.expression; } TEST_P(OptionalTypesTest, Defaults) { RuntimeOptions opts; opts.use_legacy_container_builders = false; opts.enable_qualified_type_identifiers = true; opts.short_circuiting = EnableShortCircuiting(); const EvaluateResultTestCase& test_case = GetTestCase(); ASSERT_OK_AND_ASSIGN(auto builder, CreateStandardRuntimeBuilder(opts)); ASSERT_OK(EnableOptionalTypes(builder)); ASSERT_OK( EnableReferenceResolver(builder, ReferenceResolverEnabled::kAlways)); ASSERT_OK_AND_ASSIGN(auto runtime, std::move(builder).Build()); ASSERT_OK_AND_ASSIGN(ParsedExpr expr, Parse(test_case.expression, "<input>", ParserOptions{.enable_optional_syntax = true})); ASSERT_OK_AND_ASSIGN(std::unique_ptr<Program> program, ProtobufRuntimeAdapter::CreateProgram(*runtime, expr)); common_internal::LegacyValueManager value_factory(this->memory_manager(), runtime->GetTypeProvider()); Activation activation; ASSERT_OK_AND_ASSIGN(Value result, program->Evaluate(activation, value_factory)); EXPECT_THAT(result, test_case.value_matcher) << test_case.expression; } INSTANTIATE_TEST_SUITE_P( Basic, OptionalTypesTest, testing::Combine( testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), testing::ValuesIn(std::vector<EvaluateResultTestCase>{ {"optional_none_hasValue", "optional.none().hasValue()", BoolValueIs(false)}, {"optional_of_hasValue", "optional.of(0).hasValue()", BoolValueIs(true)}, {"optional_ofNonZeroValue_hasValue", "optional.ofNonZeroValue(0).hasValue()", BoolValueIs(false)}, {"optional_or_absent", "optional.ofNonZeroValue(0).or(optional.ofNonZeroValue(0))", OptionalValueIsEmpty()}, {"optional_or_present", "optional.of(1).or(optional.none())", OptionalValueIs(IntValueIs(1))}, {"optional_orValue_absent", "optional.ofNonZeroValue(0).orValue(1)", IntValueIs(1)}, {"optional_orValue_present", "optional.of(1).orValue(2)", IntValueIs(1)}, {"list_of_optional", "[optional.of(1)][0].orValue(1)", IntValueIs(1)}}), testing::Bool()), OptionalTypesTest::ToString); class UnreachableFunction final : public cel::Function { public: explicit UnreachableFunction(int64_t* count) : count_(count) {} absl::StatusOr<Value> Invoke(const InvokeContext& context, absl::Span<const Value> args) const override { ++(*count_); return ErrorValue{absl::CancelledError()}; } private: int64_t* const count_; }; TEST(OptionalTypesTest, ErrorShortCircuiting) { RuntimeOptions opts{.enable_qualified_type_identifiers = true}; google::protobuf::Arena arena; auto memory_manager = ProtoMemoryManagerRef(&arena); ASSERT_OK_AND_ASSIGN(auto builder, CreateStandardRuntimeBuilder(opts)); int64_t unreachable_count = 0; ASSERT_OK(EnableOptionalTypes(builder)); ASSERT_OK( EnableReferenceResolver(builder, ReferenceResolverEnabled::kAlways)); ASSERT_OK(builder.function_registry().Register( cel::FunctionDescriptor("unreachable", false, {}), std::make_unique<UnreachableFunction>(&unreachable_count))); ASSERT_OK_AND_ASSIGN(auto runtime, std::move(builder).Build()); ASSERT_OK_AND_ASSIGN( ParsedExpr expr, Parse("optional.of(1 / 0).orValue(unreachable())", "<input>", ParserOptions{.enable_optional_syntax = true})); ASSERT_OK_AND_ASSIGN(std::unique_ptr<Program> program, ProtobufRuntimeAdapter::CreateProgram(*runtime, expr)); common_internal::LegacyValueManager value_factory(memory_manager, runtime->GetTypeProvider()); Activation activation; ASSERT_OK_AND_ASSIGN(Value result, program->Evaluate(activation, value_factory)); EXPECT_EQ(unreachable_count, 0); ASSERT_TRUE(result->Is<ErrorValue>()) << result->DebugString(); EXPECT_THAT(result.GetError().NativeValue(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("divide by zero"))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/optional_types.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/optional_types_test.cc
4552db5798fb0853b131b783d8875794334fae7f
e5459b5a-8eaa-4c4a-b2c6-5a56b32239f4
cpp
tensorflow/tensorflow
matrix
third_party/xla/xla/hlo/builder/lib/matrix.cc
third_party/xla/xla/hlo/builder/lib/matrix_test.cc
#include "xla/hlo/builder/lib/matrix.h" #include <algorithm> #include <array> #include <cstdint> #include <map> #include <numeric> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/builder/lib/arithmetic.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/slicing.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/literal.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { XlaOp IdentityMatrix(XlaBuilder* builder, PrimitiveType type, int64_t m, int64_t n) { auto a = Iota(builder, U32, m); auto b = Iota(builder, U32, n); auto indicator = Eq(a, Broadcast(b, {m}), {0}); return ConvertElementType(indicator, type); } XlaOp GetDiagonalMask(XlaOp x, int diagonal) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); auto n_dims = static_cast<int32_t>(shape.rank()); TF_RET_CHECK(n_dims >= 2); auto m = shape.dimensions(n_dims - 2); auto n = shape.dimensions(n_dims - 1); absl::Span<const int64_t> major_dims = shape.dimensions().subspan(0, n_dims - 2); auto a = Iota(builder, S32, n); auto b = Iota(builder, S32, m) + ConstantR0WithType(builder, S32, diagonal); auto indicator = Eq(b, Broadcast(a, {m}), {0}); auto mask = Broadcast(indicator, major_dims); return mask; }); } XlaOp GetMatrixDiagonal(XlaOp x, int k) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); auto n_dims = static_cast<int32_t>(shape.rank()); TF_RET_CHECK(n_dims >= 2); const int64_t m = shape.dimensions(n_dims - 2); const int64_t n = shape.dimensions(n_dims - 1); if (k <= -m || k >= n) { auto zero_size_shape = shape; zero_size_shape.DeleteDimension(n_dims - 1); zero_size_shape.set_dimensions(n_dims - 2, 0); return ConstantLiteral(builder, Literal{zero_size_shape}); } auto mask = GetDiagonalMask(x, k); int64_t reduce_dim = n_dims - 1; if ((k == 0 && m >= n) || k < 0) { reduce_dim = n_dims - 2; } auto result = Reduce( Select(mask, x, Zeros(builder, shape)), ScalarLike(x, 0), CreateScalarIdentityWithZeroComputation(shape.element_type(), builder), {reduce_dim}); if (k == 0) { return result; } return SliceInMinorDims(result, {0}, {k > 0 ? std::min(m, n - k) : std::min(n, m + k)}); }); } XlaOp GetMatrixDiagonalViaGather(XlaOp x, int k) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); auto n_dims = static_cast<int32_t>(shape.rank()); TF_RET_CHECK(n_dims >= 2); const int64_t m = shape.dimensions(n_dims - 2); const int64_t n = shape.dimensions(n_dims - 1); const int64_t num_index_dims = 2; const int64_t axis = n_dims - num_index_dims; const int64_t diag_len = std::max(std::min(m + std::min(k, 0), n - std::max(k, 0)), int64_t{0}); XlaOp diag_base_indices = BroadcastInDim(Iota(builder, S32, diag_len), {diag_len, num_index_dims}, {0}); XlaOp diag_offset = Broadcast(ConstantR1<int>(builder, {std::max(-k, 0), std::max(k, 0)}), {diag_len}); XlaOp start_indices = Add(diag_base_indices, diag_offset); xla::GatherDimensionNumbers dim_numbers; std::vector<int64_t> slice_sizes; slice_sizes.reserve(n_dims); for (int64_t i = 0; i < n_dims; i++) { int64_t window_bound; if (axis <= i) { dim_numbers.add_collapsed_slice_dims(i); dim_numbers.add_start_index_map(i); window_bound = (shape.dimensions(i) != 0) ? 1 : 0; } else { dim_numbers.add_offset_dims(i); window_bound = shape.dimensions(i); } slice_sizes.push_back(window_bound); } dim_numbers.set_index_vector_dim(1); return Gather(x, start_indices, dim_numbers, slice_sizes, true); }); } XlaOp SetMatrixDiagonal(XlaOp matrix, XlaOp diag, int k) { XlaBuilder* builder = matrix.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(matrix)); TF_ASSIGN_OR_RETURN(Shape diag_shape, builder->GetShape(diag)); auto n_dims = static_cast<int32_t>(shape.rank()); TF_RET_CHECK(n_dims >= 2); const int64_t m = shape.dimensions(n_dims - 2); const int64_t n = shape.dimensions(n_dims - 1); const int64_t d = diag_shape.dimensions(n_dims - 2); std::vector<int64_t> broadcast_dims(n_dims - 1); absl::c_iota(broadcast_dims, 0); int64_t pad_high = m - d; if (k < 0) { ++(broadcast_dims.back()); pad_high = n - d; } if (pad_high != 0) { PaddingConfig padding_config; for (int64_t i = 0; i < diag_shape.rank() - 1; ++i) { auto* dims = padding_config.add_dimensions(); dims->set_edge_padding_low(0); dims->set_interior_padding(0); dims->set_edge_padding_high(0); } auto* dims = padding_config.add_dimensions(); dims->set_edge_padding_low(0); dims->set_interior_padding(0); dims->set_edge_padding_high(pad_high); diag = Pad(diag, ScalarLike(diag, 0), padding_config); } return Select(GetDiagonalMask(matrix, k), BroadcastInDim(diag, shape.dimensions(), broadcast_dims), matrix); }); } XlaOp TriangleMask(XlaOp x, int diagonal) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); TF_RET_CHECK(n_dims >= 2); const int64_t m = shape.dimensions(n_dims - 2); const int64_t n = shape.dimensions(n_dims - 1); absl::Span<const int64_t> major_dims = shape.dimensions().subspan(0, n_dims - 2); auto a = Iota(builder, S32, n); auto b = Iota(builder, S32, m) + ConstantR0<int32_t>(builder, diagonal); XlaOp indicator; indicator = Ge(b, Broadcast(a, {m}), {0}); return Broadcast(indicator, major_dims); }); } XlaOp Triangle(XlaOp x, bool lower) { return lower ? Select(TriangleMask(x, 0), x, ZerosLike(x)) : Select(TriangleMask(x, -1), ZerosLike(x), x); } XlaOp UpperTriangle(XlaOp x) { return Triangle(x, false); } XlaOp LowerTriangle(XlaOp x) { return Triangle(x, true); } XlaOp Symmetrize(XlaOp x, bool lower) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); if (shape.rank() < 2) { return InvalidArgument( "Argument to symmetrize must have >= 2 dimensions, got %s", shape.ToString()); } const int64_t m = ShapeUtil::GetDimension(shape, -2); const int64_t n = ShapeUtil::GetDimension(shape, -1); if (m != n) { return InvalidArgument( "The two most minor dimensions of the argument to symmetrize must be " "equal size, got %s", shape.ToString()); } auto mask = lower ? TriangleMask(x, 0) : Not(TriangleMask(x, -1)); if (primitive_util::IsComplexType(shape.element_type())) { auto re = Select(mask, Real(x), TransposeInMinorDims(Real(x))); auto im_mask = lower ? TriangleMask(x, -1) : Not(TriangleMask(x, 0)); auto im = Select(im_mask, Imag(x), ZerosLike(Imag(x))); im = Select(mask, im, -TransposeInMinorDims(im)); return Complex(re, im); } else { return Select(mask, x, TransposeInMinorDims(x)); } }); } namespace { std::optional<std::array<std::vector<int64_t>, 3>> EinsumDiagonalLabels( absl::Span<const int64_t> config) { std::vector<int64_t> unique_labels; std::vector<int64_t> reduce_dims; std::vector<int64_t> broadcast_dims; for (auto label = config.begin(); label != config.end(); ++label) { auto first_label = absl::c_find(config, *label); auto dim = label - config.begin(); if (first_label == label) { unique_labels.push_back(*label); broadcast_dims.push_back(dim); } else { reduce_dims.push_back(dim); } } if (unique_labels.size() == config.size()) { return std::nullopt; } return {{unique_labels, reduce_dims, broadcast_dims}}; } xla::XlaOp EinsumDiagonalMask(XlaOp x, absl::Span<const int64_t> config) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); Shape iota_shape = ShapeUtil::MakeShape(S32, x_shape.dimensions()); XlaOp mask = ConstantR0(builder, true); for (auto label = config.begin(); label != config.end(); ++label) { const int64_t dim = label - config.begin(); auto first_label = absl::c_find(config, *label); if (first_label != label) { const int64_t first_dim = first_label - config.begin(); mask = And(mask, Eq(Iota(builder, iota_shape, first_dim), Iota(builder, iota_shape, dim))); } } return Select(mask, x, ZerosLike(x)); }); } xla::XlaOp EinsumDiagonal(XlaOp x, absl::Span<const int64_t> config) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { auto labels = EinsumDiagonalLabels(config); if (!labels) { return x; } auto zero = ScalarLike(x, 0); TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); return Reduce(EinsumDiagonalMask(x, config), zero, CreateScalarIdentityWithZeroComputation( x_shape.element_type(), builder), labels->at(1)); }); } xla::XlaOp EinsumInverseDiagonal(XlaOp x, absl::Span<const int64_t> config) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { auto labels = EinsumDiagonalLabels(config); if (!labels) { return x; } TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); std::vector<int64_t> broadcast_sizes; int64_t x_dim = 0; for (auto label = config.begin(); label != config.end(); ++label) { auto first_label = absl::c_find(config, *label); if (first_label == label) { broadcast_sizes.push_back(x_shape.dimensions(x_dim)); ++x_dim; } else { broadcast_sizes.push_back( broadcast_sizes[first_label - config.begin()]); } } x = BroadcastInDim(x, broadcast_sizes, labels->at(2)); return EinsumDiagonalMask(x, config); }); } } namespace { template <typename C> void DeleteDimsFromContainer(absl::Span<const int64_t> to_delete, Shape* shape, C* batch_dims, C* contracting_dims) { if (to_delete.empty()) { return; } for (int64_t i = to_delete.size() - 1; i >= 0; --i) { int64_t dim = to_delete[i]; shape->DeleteDimension(dim); for (auto& b : *batch_dims) { if (b > dim) { --b; } } for (auto& c : *contracting_dims) { if (c > dim) { --c; } } } } } xla::XlaOp Einsum(xla::XlaOp x, absl::Span<const int64_t> x_config, xla::XlaOp y, absl::Span<const int64_t> y_config, absl::Span<const int64_t> output_config, xla::PrecisionConfig::Precision precision, std::optional<PrimitiveType> preferred_element_type, bool grad_x, bool grad_y) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { auto x_diagonal_labels = EinsumDiagonalLabels(x_config); if (x_diagonal_labels) { return Einsum(EinsumDiagonal(x, x_config), x_diagonal_labels->at(0), y, y_config, output_config, precision, preferred_element_type, grad_x, grad_y); } auto y_diagonal_labels = EinsumDiagonalLabels(y_config); if (y_diagonal_labels) { return Einsum(x, x_config, EinsumDiagonal(y, y_config), y_diagonal_labels->at(0), output_config, precision, preferred_element_type, grad_x, grad_y); } auto output_diagonal_labels = EinsumDiagonalLabels(output_config); if (output_diagonal_labels) { return EinsumInverseDiagonal( Einsum(x, x_config, y, y_config, output_diagonal_labels->at(0), precision, preferred_element_type, grad_x, grad_y), output_config); } TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); TF_ASSIGN_OR_RETURN(Shape y_shape, builder->GetShape(y)); const int64_t x_rank = x_config.size(); const int64_t y_rank = y_config.size(); const int64_t output_rank = output_config.size(); absl::flat_hash_set<int64_t> x_map; absl::flat_hash_set<int64_t> y_map; absl::flat_hash_set<int64_t> output_map; for (auto d : x_config) { x_map.insert(d); } for (auto d : y_config) { y_map.insert(d); } for (auto d : output_config) { output_map.insert(d); } DotDimensionNumbers dnums; auto is_batch_dim = [&](int64_t d) { return x_map.contains(d) && y_map.contains(d) && output_map.contains(d); }; auto is_contracting = [&](int64_t d) { return x_map.contains(d) && y_map.contains(d); }; auto rhs_dimension_number = [&](int64_t d) { return absl::c_find(y_config, d) - y_config.begin(); }; absl::InlinedVector<int64_t, 8> rhs_outer_dims; absl::InlinedVector<int64_t, 8> lhs_outer_dims; absl::InlinedVector<int64_t, 8> rhs_delete_dims; absl::InlinedVector<int64_t, 8> lhs_delete_dims; for (int64_t i = 0; i < x_rank; ++i) { auto dim_name = x_config[i]; const int64_t rhs_dim = rhs_dimension_number(dim_name); if (is_batch_dim(dim_name)) { if (x_shape.dimensions(i) == y_shape.dimensions(rhs_dim)) { dnums.add_lhs_batch_dimensions(i); dnums.add_rhs_batch_dimensions(rhs_dim); } else if (x_shape.dimensions(i) == 1) { rhs_outer_dims.push_back(rhs_dim); lhs_delete_dims.push_back(i); } else { lhs_outer_dims.push_back(i); rhs_delete_dims.push_back(rhs_dim); } } else if (is_contracting(dim_name)) { if (x_shape.dimensions(i) == y_shape.dimensions(rhs_dim)) { dnums.add_lhs_contracting_dimensions(i); dnums.add_rhs_contracting_dimensions(rhs_dim); } else if (x_shape.dimensions(i) == 1) { rhs_outer_dims.push_back(rhs_dim); lhs_delete_dims.push_back(i); } else { lhs_outer_dims.push_back(i); rhs_delete_dims.push_back(rhs_dim); } } else { lhs_outer_dims.push_back(i); } } for (int64_t i = 0; i < y_rank; ++i) { auto dim_name = y_config[i]; if (!is_batch_dim(dim_name) && !is_contracting(dim_name)) { rhs_outer_dims.push_back(i); } } absl::c_sort(rhs_outer_dims); absl::InlinedVector<int64_t, 8> output_transpose_dims; auto output_dimension_number = [&](int64_t d) -> std::optional<int64_t> { auto pos = absl::c_find(output_config, d); if (pos == output_config.end()) { return std::nullopt; } return pos - output_config.begin(); }; for (auto d : dnums.lhs_batch_dimensions()) { output_transpose_dims.push_back(*output_dimension_number(x_config[d])); } for (auto d : lhs_outer_dims) { if (auto output_dim = output_dimension_number(x_config[d])) { output_transpose_dims.push_back(*output_dim); continue; } lhs_delete_dims.push_back(d); } for (auto d : rhs_outer_dims) { if (auto output_dim = output_dimension_number(y_config[d])) { output_transpose_dims.push_back(*output_dim); continue; } rhs_delete_dims.push_back(d); } const int64_t transpose_rank = output_transpose_dims.size(); std::vector<int64_t> transpose_dims(output_rank); for (int64_t i = 0; i < transpose_rank; ++i) { transpose_dims[output_transpose_dims[i]] = i; } absl::c_sort(lhs_delete_dims); DeleteDimsFromContainer(lhs_delete_dims, &x_shape, dnums.mutable_lhs_batch_dimensions(), dnums.mutable_lhs_contracting_dimensions()); absl::c_sort(rhs_delete_dims); DeleteDimsFromContainer(rhs_delete_dims, &y_shape, dnums.mutable_rhs_batch_dimensions(), dnums.mutable_rhs_contracting_dimensions()); if (!lhs_delete_dims.empty()) { x = Reduce(x, ScalarLike(x, 0), CreateScalarAddComputation(x_shape.element_type(), builder), lhs_delete_dims); } if (!rhs_delete_dims.empty()) { y = Reduce(y, ScalarLike(y, 0), CreateScalarAddComputation(y_shape.element_type(), builder), rhs_delete_dims); } PrecisionConfig precision_proto; precision_proto.add_operand_precision(precision); precision_proto.add_operand_precision(precision); auto dot = DotGeneral(x, y, dnums, &precision_proto, preferred_element_type); TF_RETURN_IF_ERROR(builder->SetInstructionFrontendAttribute( dot, "grad_x", (grad_x ? "true" : "false"))); TF_RETURN_IF_ERROR(builder->SetInstructionFrontendAttribute( dot, "grad_y", (grad_y ? "true" : "false"))); dot = Transpose(dot, transpose_dims); if (transpose_rank == output_rank) { return dot; } auto is_output_only = [&](int64_t d) { return output_map.contains(d) && !x_map.contains(d) && !y_map.contains(d); }; int64_t dot_dim = 0; std::vector<int64_t> new_dims; new_dims.reserve(output_rank); TF_ASSIGN_OR_RETURN(Shape dot_shape, builder->GetShape(dot)); for (auto d : output_config) { if (is_output_only(d)) { new_dims.push_back(1); } else { new_dims.push_back(dot_shape.dimensions(dot_dim)); } } return Reshape(dot, new_dims); }); } XlaOp BatchDot(XlaOp x, XlaOp y, PrecisionConfig::Precision precision, std::optional<PrimitiveType> preferred_element_type) { return BatchDot(x, false, y, false, precision, preferred_element_type); } XlaOp BatchDot(XlaOp x, bool transpose_x, XlaOp y, bool transpose_y, PrecisionConfig::Precision precision, std::optional<PrimitiveType> preferred_element_type, bool grad_x, bool grad_y) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { std::string string("...mk,...kn->...mn"); if (transpose_x) { std::swap(string[3], string[4]); } if (transpose_y) { std::swap(string[6 + 3], string[6 + 4]); } return Einsum(x, y, string, precision, preferred_element_type, grad_x, grad_y); }); } absl::StatusOr<std::array<std::vector<int64_t>, 3>> ParseEinsumString( absl::string_view einsum_config, int64_t x_rank, int64_t y_rank) { std::array<std::vector<int64_t>, 3> einsum_config_numeric; std::vector<absl::string_view> main_split = absl::StrSplit(einsum_config, ','); if (main_split.size() != 2) { return InvalidArgument("Expected one \",\" in einsum_config."); } auto maybe_invalid_character = [](char d) -> absl::Status { if (absl::ascii_isalpha(d)) { return absl::OkStatus(); } if (d == '.') { return InvalidArgument("Unsupported \".\" in einsum config."); } return InvalidArgument("Unexpected character in einsum config."); }; auto string_config_to_numeric = [&](absl::string_view config, bool is_input_config, int64_t input_rank, int64_t ellipsis_rank, std::vector<int64_t>* numeric_config) -> absl::StatusOr<int64_t> { std::vector<absl::string_view> splits = absl::StrSplit(config, "..."); if (splits.empty()) { return ellipsis_rank; } if (splits.size() > 2) { return InvalidArgument("Too many ellipses (\"...\") in einsum config."); } const bool has_ellipsis = splits.size() > 1; if (is_input_config && has_ellipsis) { ellipsis_rank = input_rank - static_cast<int64_t>(splits[0].size() + splits[1].size()); if (ellipsis_rank < 0) { return InvalidArgument( "Too few dimensions in the input for the given einsum config."); } } for (char d : splits[0]) { TF_RETURN_IF_ERROR(maybe_invalid_character(d)); numeric_config->push_back(static_cast<int64_t>(d)); } if (has_ellipsis) { for (int64_t i = ellipsis_rank; i > 0; --i) { numeric_config->push_back(-i); } for (char d : splits[1]) { TF_RETURN_IF_ERROR(maybe_invalid_character(d)); numeric_config->push_back(static_cast<int64_t>(d)); } } return ellipsis_rank; }; TF_ASSIGN_OR_RETURN( const int64_t x_ellipsis_rank, string_config_to_numeric(main_split[0], true, x_rank, 0, &einsum_config_numeric[0])); std::vector<absl::string_view> y_output_split = absl::StrSplit(main_split[1], "->"); if (y_output_split.size() != 2) { return InvalidArgument("Expected one \"->\" in einsum_config."); } TF_ASSIGN_OR_RETURN( const int64_t y_ellipsis_rank, string_config_to_numeric(y_output_split[0], true, y_rank, 0, &einsum_config_numeric[1])); TF_ASSIGN_OR_RETURN( std::ignore, string_config_to_numeric( y_output_split[1], false, 0, std::max(x_ellipsis_rank, y_ellipsis_rank), &einsum_config_numeric[2])); return einsum_config_numeric; } std::string NormalizeEinsumString(absl::string_view einsum_config) { if (einsum_config.find("->") != einsum_config.npos) { return ""; } bool has_ellipsis = einsum_config.find("...") != einsum_config.npos; std::map<char, int64_t> chars; for (char c : einsum_config) { if (absl::ascii_isalpha(c)) { ++chars[c]; } } std::string new_config(einsum_config.begin(), einsum_config.end()); new_config.append("->"); if (has_ellipsis) { new_config.append("..."); } for (auto p : chars) { if (p.second == 1) { new_config.push_back(p.first); } } return new_config; } XlaOp Einsum(XlaOp x, XlaOp y, absl::string_view einsum_config, PrecisionConfig::Precision precision, std::optional<PrimitiveType> preferred_element_type, bool grad_x, bool grad_y) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { auto new_config = NormalizeEinsumString(einsum_config); if (!new_config.empty()) { return Einsum(x, y, new_config, precision, preferred_element_type, grad_x, grad_y); } TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); TF_ASSIGN_OR_RETURN(Shape y_shape, builder->GetShape(y)); TF_ASSIGN_OR_RETURN( auto einsum_config_numeric, ParseEinsumString(einsum_config, x_shape.rank(), y_shape.rank())); return Einsum(x, einsum_config_numeric[0], y, einsum_config_numeric[1], einsum_config_numeric[2], precision, preferred_element_type, grad_x, grad_y); }); } XlaOp Einsum(XlaOp x, absl::string_view einsum_config, PrecisionConfig::Precision precision) { return Einsum(ScalarLike(x, 1), x, absl::StrCat(",", einsum_config), precision); } XlaOp TransposeInMinorDims(XlaOp x) { XlaBuilder* builder = x.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(x)); const int64_t n_dims = shape.rank(); TF_RET_CHECK(n_dims >= 2); std::vector<int64_t> permutation(n_dims); std::iota(permutation.begin(), permutation.end(), 0); std::swap(permutation[n_dims - 1], permutation[n_dims - 2]); return Transpose(x, permutation); }); } XlaOp MaybeTransposeInMinorDims(XlaOp x, bool transpose) { return transpose ? TransposeInMinorDims(x) : x; } }
#include "xla/hlo/builder/lib/matrix.h" #include <limits> #include <map> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/array.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/slicing.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" namespace xla { namespace { class MatrixTest : public ClientLibraryTestBase { protected: template <typename T> void TestMatrixDiagonal(); template <typename T> void TestMatrixDiagonal4D(); template <typename T> void TestSetMatrixDiagonal(); template <typename T> std::map<int, Array2D<T>> k_and_expected() const { return std::map<int, Array2D<T>>{ {0, {{0, 5, 10}, {12, 17, 22}}}, {1, {{1, 6, 11}, {13, 18, 23}}}, {2, {{2, 7}, {14, 19}}}, {3, {{3}, {15}}}, {4, {{}, {}}}, {-1, {{4, 9}, {16, 21}}}, {-2, {{8}, {20}}}, {-3, {{}, {}}}, {-4, {{}, {}}}, }; } }; XLA_TEST_F(MatrixTest, Triangle) { XlaBuilder builder(TestName()); Array3D<int32_t> input(2, 3, 4); input.FillIota(0); XlaOp a; auto a_data = CreateR3Parameter<int32_t>(input, 0, "a", &builder, &a); LowerTriangle(a); Array3D<int32_t> expected({{{0, 0, 0, 0}, {4, 5, 0, 0}, {8, 9, 10, 0}}, {{12, 0, 0, 0}, {16, 17, 0, 0}, {20, 21, 22, 0}}}); ComputeAndCompareR3<int32_t>(&builder, expected, {a_data.get()}); } XLA_TEST_F(MatrixTest, Symmetrize) { for (bool lower : {false, true}) { XlaBuilder builder(TestName()); float nan = std::numeric_limits<float>::quiet_NaN(); Array<float> input = { {1, nan, nan}, {2, 3, nan}, {4, 5, 6}, }; XlaOp a; auto a_data = CreateParameter<float>(input, 0, "a", &builder, &a); Symmetrize(lower ? a : TransposeInMinorDims(a), lower); Array<float> expected = { {1, 2, 4}, {2, 3, 5}, {4, 5, 6}, }; ComputeAndCompare<float>(&builder, expected, {a_data.get()}); } } XLA_TEST_F(MatrixTest, SymmetrizeComplex) { for (bool lower : {false, true}) { XlaBuilder builder(TestName()); float nan = std::numeric_limits<float>::quiet_NaN(); Array<complex64> input = { {complex64{1, nan}, nan, nan}, {complex64{2, 7}, complex64{3, nan}, nan}, {complex64{4, 8}, complex64{5, 9}, complex64{6, nan}}, }; XlaOp a; auto a_data = CreateParameter<complex64>(input, 0, "a", &builder, &a); Symmetrize(lower ? a : Conj(TransposeInMinorDims(a)), lower); Array<complex64> expected = { {1, complex64{2, -7}, complex64{4, -8}}, {complex64{2, 7}, 3, complex64{5, -9}}, {complex64{4, 8}, complex64{5, 9}, 6}, }; ComputeAndCompare<complex64>(&builder, expected, {a_data.get()}); } } template <typename T> void MatrixTest::TestMatrixDiagonal() { XlaBuilder builder("SetMatrixDiagonal"); Array3D<T> input(2, 3, 4); input.FillIota(0); for (const auto& kv : k_and_expected<T>()) { XlaOp a; auto a_data = CreateR3Parameter<T>(input, 0, "a", &builder, &a); GetMatrixDiagonal(a, kv.first); ComputeAndCompareR2<T>(&builder, kv.second, {a_data.get()}); } } template <typename T> void MatrixTest::TestSetMatrixDiagonal() { XlaBuilder builder("GetMatrixDiagonal"); Array3D<T> input(2, 3, 4); input.FillIota(0); for (const auto& kv : k_and_expected<T>()) { XlaOp a; XlaOp b; auto a_data = CreateR3Parameter<T>(input, 0, "a", &builder, &a); auto new_diag = CreateR2Parameter<T>(Array2D<T>{kv.second}, 1, "d", &builder, &b); GetMatrixDiagonal(SetMatrixDiagonal(a, b + ScalarLike(b, 1), kv.first), kv.first) - ScalarLike(b, 1); ComputeAndCompareR2<T>(&builder, kv.second, {a_data.get(), new_diag.get()}); } } XLA_TEST_F(MatrixTest, SetMatrixDiagonal_S32) { TestSetMatrixDiagonal<int32_t>(); } XLA_TEST_F(MatrixTest, SetMatrixDiagonal_S64) { TestSetMatrixDiagonal<int64_t>(); } XLA_TEST_F(MatrixTest, SetMatrixDiagonal_F32) { TestSetMatrixDiagonal<float>(); } XLA_TEST_F(MatrixTest, GetMatrixDiagonal_S32) { TestMatrixDiagonal<int32_t>(); } XLA_TEST_F(MatrixTest, GetMatrixDiagonal_S64) { TestMatrixDiagonal<int64_t>(); } XLA_TEST_F(MatrixTest, GetMatrixDiagonal_F32) { TestMatrixDiagonal<float>(); } template <typename T> void MatrixTest::TestMatrixDiagonal4D() { XlaBuilder builder("GetMatrixDiagonal"); Array4D<T> input(2, 2, 4, 3); input.FillIota(0); std::map<int, Array3D<T>> k_and_expected = { {0, {{{0, 4, 8}, {12, 16, 20}}, {{24, 28, 32}, {36, 40, 44}}}}, {1, {{{1, 5}, {13, 17}}, {{25, 29}, {37, 41}}}}, {2, {{{2}, {14}}, {{26}, {38}}}}, {3, {{{}, {}}, {{}, {}}}}, {4, {{{}, {}}, {{}, {}}}}, {-1, {{{3, 7, 11}, {15, 19, 23}}, {{27, 31, 35}, {39, 43, 47}}}}, {-2, {{{6, 10}, {18, 22}}, {{30, 34}, {42, 46}}}}, {-3, {{{9}, {21}}, {{33}, {45}}}}, {-4, {{{}, {}}, {{}, {}}}}, }; for (const auto& kv : k_and_expected) { XlaOp a; auto a_data = CreateR4Parameter<T>(input, 0, "a", &builder, &a); GetMatrixDiagonal(a, kv.first); ComputeAndCompareR3<T>(&builder, kv.second, {a_data.get()}); } } XLA_TEST_F(MatrixTest, GetMatrixDiagonal4D_S32) { TestMatrixDiagonal4D<int32_t>(); } XLA_TEST_F(MatrixTest, GetMatrixDiagonal4D_S64) { TestMatrixDiagonal4D<int64_t>(); } XLA_TEST_F(MatrixTest, GetMatrixDiagonal4D_F32) { TestMatrixDiagonal4D<float>(); } Array3D<float> BatchedAValsFull() { return {{ {2, 0, 1, 2}, {3, 6, 0, 1}, {4, 7, 9, 0}, {5, 8, 10, 11}, }, { {16, 24, 8, 12}, {24, 61, 82, 48}, {8, 82, 456, 106}, {12, 48, 106, 62}, }}; } XLA_TEST_F(MatrixTest, RowBatchDot) { XlaBuilder builder(TestName()); int n = 4; XlaOp a, row, index; auto a_data = CreateR3Parameter<float>(BatchedAValsFull(), 0, "a", &builder, &a); auto row_data = CreateR3Parameter<float>({{{9, 1, 0, 0}}, {{2, 4, 0, 0}}}, 1, "row", &builder, &row); auto index_data = CreateR0Parameter<int>(1, 2, "index", &builder, &index); auto l_index = DynamicSliceInMinorDims( a, {index, ConstantR0<int32_t>(&builder, 0)}, {1, n}); BatchDot(l_index, TransposeInMinorDims(row)); ComputeAndCompareR3<float>(&builder, {{{33}}, {{292}}}, {a_data.get(), row_data.get(), index_data.get()}); } XLA_TEST_F(MatrixTest, Einsum) { XlaBuilder builder(TestName()); int n = 4; XlaOp a, row, index; auto a_data = CreateR3Parameter<float>(BatchedAValsFull(), 0, "a", &builder, &a); auto row_data = CreateR3Parameter<float>({{{9, 1, 0, 0}}, {{2, 4, 0, 0}}}, 1, "row", &builder, &row); auto index_data = CreateR0Parameter<int>(1, 2, "index", &builder, &index); auto l_index = DynamicSliceInMinorDims( a, {index, ConstantR0<int32_t>(&builder, 0)}, {1, n}); Einsum(l_index, row, "abc,adc->abd"); ComputeAndCompareR3<float>(&builder, {{{33}}, {{292}}}, {a_data.get(), row_data.get(), index_data.get()}); } XLA_TEST_F(MatrixTest, ParseEinsumString) { auto to_vec = [](absl::string_view s) { std::vector<int64_t> v; v.reserve(s.size()); int e = -3; for (auto c : s) { v.push_back(c == '.' ? e++ : int64_t{c}); } return v; }; auto to_string = [&](absl::string_view x, absl::string_view y, absl::string_view o) { return absl::StrCat(x, ",", y, "->", o); }; std::vector<std::vector<std::string>> good_test_cases = { {"ab", "bc", "ac"}, {"Bab", "Bbc", "Bac"}, {"ab", "cd", "dcba"}, {"abc", "abd", "cbd"}, {"...ab", "...bc", "...ac"}, {"a...bc", "...abd", "cbd..."}, {"...ab", "...bc", "ac"}, {"...b", "...bc", "...c"}, {"...abz", "...bc", "...ac"}, {"...ab", "...bcz", "...ac"}, {"abz", "bc", "ac"}, {"ab", "bcz", "ac"}, {"a", "b", "c"}, {"...a", "...b", "...c"}, {"abb", "bcc", "ac"}, {"ab", "bc", "ad"}, }; for (auto test_case : good_test_cases) { auto parse_result_or_status = ParseEinsumString(to_string(test_case[0], test_case[1], test_case[2]), test_case[0].size(), test_case[1].size()); EXPECT_TRUE(parse_result_or_status.status().ok()); auto parse_result = parse_result_or_status.value(); for (int i = 0; i < 3; ++i) { EXPECT_EQ(parse_result[i], to_vec(test_case[i])); } } std::vector<std::string> einsum_strings_that_fail_parsing = { "", "a", "ab->ba", "ab,bc,cd->ad", "a...b...,bc->a...c", }; for (auto test_case : einsum_strings_that_fail_parsing) { auto parse_result_or_status = ParseEinsumString(test_case, 3, 3); EXPECT_FALSE(parse_result_or_status.status().ok()); } } XLA_TEST_F(MatrixTest, NormalizeEinsumString) { EXPECT_EQ(NormalizeEinsumString("a,b->ab"), ""); EXPECT_EQ(NormalizeEinsumString("ba"), "ba->ab"); EXPECT_EQ(NormalizeEinsumString("ab,dc"), "ab,dc->abcd"); EXPECT_EQ(NormalizeEinsumString("a,b"), "a,b->ab"); EXPECT_EQ(NormalizeEinsumString("...ba,ca..."), "...ba,ca...->...bc"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/matrix.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/matrix_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
63535286-e4a6-4b54-9d25-9e013a5d5c38
cpp
google/quiche
quic_packet_creator
quiche/quic/core/quic_packet_creator.cc
quiche/quic/core/quic_packet_creator_test.cc
#include "quiche/quic/core/quic_packet_creator.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <limits> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/base/macros.h" #include "absl/base/optimization.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/frames/quic_frame.h" #include "quiche/quic/core/frames/quic_padding_frame.h" #include "quiche/quic/core/frames/quic_path_challenge_frame.h" #include "quiche/quic/core/frames/quic_stream_frame.h" #include "quiche/quic/core/quic_chaos_protector.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_exported_stats.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_server_stats.h" #include "quiche/common/print_elements.h" namespace quic { namespace { QuicLongHeaderType EncryptionlevelToLongHeaderType(EncryptionLevel level) { switch (level) { case ENCRYPTION_INITIAL: return INITIAL; case ENCRYPTION_HANDSHAKE: return HANDSHAKE; case ENCRYPTION_ZERO_RTT: return ZERO_RTT_PROTECTED; case ENCRYPTION_FORWARD_SECURE: QUIC_BUG(quic_bug_12398_1) << "Try to derive long header type for packet with encryption level: " << level; return INVALID_PACKET_TYPE; default: QUIC_BUG(quic_bug_10752_1) << level; return INVALID_PACKET_TYPE; } } void LogCoalesceStreamFrameStatus(bool success) { QUIC_HISTOGRAM_BOOL("QuicSession.CoalesceStreamFrameStatus", success, "Success rate of coalesing stream frames attempt."); } class ScopedPacketContextSwitcher { public: ScopedPacketContextSwitcher(QuicPacketNumber packet_number, QuicPacketNumberLength packet_number_length, EncryptionLevel encryption_level, SerializedPacket* packet) : saved_packet_number_(packet->packet_number), saved_packet_number_length_(packet->packet_number_length), saved_encryption_level_(packet->encryption_level), packet_(packet) { packet_->packet_number = packet_number, packet_->packet_number_length = packet_number_length; packet_->encryption_level = encryption_level; } ~ScopedPacketContextSwitcher() { packet_->packet_number = saved_packet_number_; packet_->packet_number_length = saved_packet_number_length_; packet_->encryption_level = saved_encryption_level_; } private: const QuicPacketNumber saved_packet_number_; const QuicPacketNumberLength saved_packet_number_length_; const EncryptionLevel saved_encryption_level_; SerializedPacket* packet_; }; } #define ENDPOINT \ (framer_->perspective() == Perspective::IS_SERVER ? "Server: " : "Client: ") QuicPacketCreator::QuicPacketCreator(QuicConnectionId server_connection_id, QuicFramer* framer, DelegateInterface* delegate) : QuicPacketCreator(server_connection_id, framer, QuicRandom::GetInstance(), delegate) {} QuicPacketCreator::QuicPacketCreator(QuicConnectionId server_connection_id, QuicFramer* framer, QuicRandom* random, DelegateInterface* delegate) : delegate_(delegate), debug_delegate_(nullptr), framer_(framer), random_(random), have_diversification_nonce_(false), max_packet_length_(0), next_max_packet_length_(0), server_connection_id_included_(CONNECTION_ID_PRESENT), packet_size_(0), server_connection_id_(server_connection_id), client_connection_id_(EmptyQuicConnectionId()), packet_(QuicPacketNumber(), PACKET_1BYTE_PACKET_NUMBER, nullptr, 0, false, false), pending_padding_bytes_(0), needs_full_padding_(false), next_transmission_type_(NOT_RETRANSMISSION), flusher_attached_(false), fully_pad_crypto_handshake_packets_(true), latched_hard_max_packet_length_(0), max_datagram_frame_size_(0) { SetMaxPacketLength(kDefaultMaxPacketSize); if (!framer_->version().UsesTls()) { SetMaxDatagramFrameSize(kMaxAcceptedDatagramFrameSize); } } QuicPacketCreator::~QuicPacketCreator() { DeleteFrames(&packet_.retransmittable_frames); } void QuicPacketCreator::SetEncrypter(EncryptionLevel level, std::unique_ptr<QuicEncrypter> encrypter) { framer_->SetEncrypter(level, std::move(encrypter)); max_plaintext_size_ = framer_->GetMaxPlaintextSize(max_packet_length_); } bool QuicPacketCreator::CanSetMaxPacketLength() const { return queued_frames_.empty(); } void QuicPacketCreator::SetMaxPacketLength(QuicByteCount length) { if (!CanSetMaxPacketLength()) { next_max_packet_length_ = length; return; } if (length == max_packet_length_) { return; } QUIC_DVLOG(1) << ENDPOINT << "Updating packet creator max packet length from " << max_packet_length_ << " to " << length; max_packet_length_ = length; max_plaintext_size_ = framer_->GetMaxPlaintextSize(max_packet_length_); QUIC_BUG_IF( quic_bug_12398_2, max_plaintext_size_ - PacketHeaderSize() < MinPlaintextPacketSize(framer_->version(), GetPacketNumberLength())) << ENDPOINT << "Attempted to set max packet length too small"; } void QuicPacketCreator::SetMaxDatagramFrameSize( QuicByteCount max_datagram_frame_size) { constexpr QuicByteCount upper_bound = std::min<QuicByteCount>(std::numeric_limits<QuicPacketLength>::max(), std::numeric_limits<size_t>::max()); if (max_datagram_frame_size > upper_bound) { max_datagram_frame_size = upper_bound; } max_datagram_frame_size_ = max_datagram_frame_size; } void QuicPacketCreator::SetSoftMaxPacketLength(QuicByteCount length) { QUICHE_DCHECK(CanSetMaxPacketLength()) << ENDPOINT; if (length > max_packet_length_) { QUIC_BUG(quic_bug_10752_2) << ENDPOINT << "Try to increase max_packet_length_ in " "SetSoftMaxPacketLength, use SetMaxPacketLength instead."; return; } if (framer_->GetMaxPlaintextSize(length) < PacketHeaderSize() + MinPlaintextPacketSize(framer_->version(), GetPacketNumberLength())) { QUIC_DLOG(INFO) << ENDPOINT << length << " is too small to fit packet header"; RemoveSoftMaxPacketLength(); return; } QUIC_DVLOG(1) << ENDPOINT << "Setting soft max packet length to: " << length; latched_hard_max_packet_length_ = max_packet_length_; max_packet_length_ = length; max_plaintext_size_ = framer_->GetMaxPlaintextSize(length); } void QuicPacketCreator::SetDiversificationNonce( const DiversificationNonce& nonce) { QUICHE_DCHECK(!have_diversification_nonce_) << ENDPOINT; have_diversification_nonce_ = true; diversification_nonce_ = nonce; } void QuicPacketCreator::UpdatePacketNumberLength( QuicPacketNumber least_packet_awaited_by_peer, QuicPacketCount max_packets_in_flight) { if (!queued_frames_.empty()) { QUIC_BUG(quic_bug_10752_3) << ENDPOINT << "Called UpdatePacketNumberLength with " << queued_frames_.size() << " queued_frames. First frame type:" << queued_frames_.front().type << " last frame type:" << queued_frames_.back().type; return; } const QuicPacketNumber next_packet_number = NextSendingPacketNumber(); QUICHE_DCHECK_LE(least_packet_awaited_by_peer, next_packet_number) << ENDPOINT; const uint64_t current_delta = next_packet_number - least_packet_awaited_by_peer; const uint64_t delta = std::max(current_delta, max_packets_in_flight); const QuicPacketNumberLength packet_number_length = QuicFramer::GetMinPacketNumberLength(QuicPacketNumber(delta * 4)); if (packet_.packet_number_length == packet_number_length) { return; } QUIC_DVLOG(1) << ENDPOINT << "Updating packet number length from " << static_cast<int>(packet_.packet_number_length) << " to " << static_cast<int>(packet_number_length) << ", least_packet_awaited_by_peer: " << least_packet_awaited_by_peer << " max_packets_in_flight: " << max_packets_in_flight << " next_packet_number: " << next_packet_number; packet_.packet_number_length = packet_number_length; } void QuicPacketCreator::SkipNPacketNumbers( QuicPacketCount count, QuicPacketNumber least_packet_awaited_by_peer, QuicPacketCount max_packets_in_flight) { if (!queued_frames_.empty()) { QUIC_BUG(quic_bug_10752_4) << ENDPOINT << "Called SkipNPacketNumbers with " << queued_frames_.size() << " queued_frames. First frame type:" << queued_frames_.front().type << " last frame type:" << queued_frames_.back().type; return; } if (packet_.packet_number > packet_.packet_number + count) { QUIC_LOG(WARNING) << ENDPOINT << "Skipping " << count << " packet numbers causes packet number wrapping " "around, least_packet_awaited_by_peer: " << least_packet_awaited_by_peer << " packet_number:" << packet_.packet_number; return; } packet_.packet_number += count; UpdatePacketNumberLength(least_packet_awaited_by_peer, max_packets_in_flight); } bool QuicPacketCreator::ConsumeCryptoDataToFillCurrentPacket( EncryptionLevel level, size_t write_length, QuicStreamOffset offset, bool needs_full_padding, TransmissionType transmission_type, QuicFrame* frame) { QUIC_DVLOG(2) << ENDPOINT << "ConsumeCryptoDataToFillCurrentPacket " << level << " write_length " << write_length << " offset " << offset << (needs_full_padding ? " needs_full_padding" : "") << " " << transmission_type; if (!CreateCryptoFrame(level, write_length, offset, frame)) { return false; } if (needs_full_padding) { needs_full_padding_ = true; } return AddFrame(*frame, transmission_type); } bool QuicPacketCreator::ConsumeDataToFillCurrentPacket( QuicStreamId id, size_t data_size, QuicStreamOffset offset, bool fin, bool needs_full_padding, TransmissionType transmission_type, QuicFrame* frame) { if (!HasRoomForStreamFrame(id, offset, data_size)) { return false; } CreateStreamFrame(id, data_size, offset, fin, frame); if (GetQuicFlag(quic_enforce_single_packet_chlo) && StreamFrameIsClientHello(frame->stream_frame) && frame->stream_frame.data_length < data_size) { const std::string error_details = "Client hello won't fit in a single packet."; QUIC_BUG(quic_bug_10752_5) << ENDPOINT << error_details << " Constructed stream frame length: " << frame->stream_frame.data_length << " CHLO length: " << data_size; delegate_->OnUnrecoverableError(QUIC_CRYPTO_CHLO_TOO_LARGE, error_details); return false; } if (!AddFrame(*frame, transmission_type)) { return false; } if (needs_full_padding) { needs_full_padding_ = true; } return true; } bool QuicPacketCreator::HasRoomForStreamFrame(QuicStreamId id, QuicStreamOffset offset, size_t data_size) { const size_t min_stream_frame_size = QuicFramer::GetMinStreamFrameSize( framer_->transport_version(), id, offset, true, data_size); if (BytesFree() > min_stream_frame_size) { return true; } if (!RemoveSoftMaxPacketLength()) { return false; } return BytesFree() > min_stream_frame_size; } bool QuicPacketCreator::HasRoomForMessageFrame(QuicByteCount length) { const size_t message_frame_size = QuicFramer::GetMessageFrameSize(true, length); if (static_cast<QuicByteCount>(message_frame_size) > max_datagram_frame_size_) { return false; } if (BytesFree() >= message_frame_size) { return true; } if (!RemoveSoftMaxPacketLength()) { return false; } return BytesFree() >= message_frame_size; } size_t QuicPacketCreator::StreamFramePacketOverhead( QuicTransportVersion version, uint8_t destination_connection_id_length, uint8_t source_connection_id_length, bool include_version, bool include_diversification_nonce, QuicPacketNumberLength packet_number_length, quiche::QuicheVariableLengthIntegerLength retry_token_length_length, quiche::QuicheVariableLengthIntegerLength length_length, QuicStreamOffset offset) { return GetPacketHeaderSize(version, destination_connection_id_length, source_connection_id_length, include_version, include_diversification_nonce, packet_number_length, retry_token_length_length, 0, length_length) + QuicFramer::GetMinStreamFrameSize(version, 1u, offset, true, kMaxOutgoingPacketSize ); } void QuicPacketCreator::CreateStreamFrame(QuicStreamId id, size_t data_size, QuicStreamOffset offset, bool fin, QuicFrame* frame) { QUICHE_DCHECK( max_packet_length_ > StreamFramePacketOverhead( framer_->transport_version(), GetDestinationConnectionIdLength(), GetSourceConnectionIdLength(), kIncludeVersion, IncludeNonceInPublicHeader(), PACKET_6BYTE_PACKET_NUMBER, GetRetryTokenLengthLength(), GetLengthLength(), offset) || latched_hard_max_packet_length_ > 0) << ENDPOINT; QUIC_BUG_IF(quic_bug_12398_3, !HasRoomForStreamFrame(id, offset, data_size)) << ENDPOINT << "No room for Stream frame, BytesFree: " << BytesFree() << " MinStreamFrameSize: " << QuicFramer::GetMinStreamFrameSize(framer_->transport_version(), id, offset, true, data_size); QUIC_BUG_IF(quic_bug_12398_4, data_size == 0 && !fin) << ENDPOINT << "Creating a stream frame for stream ID:" << id << " with no data or fin."; size_t min_frame_size = QuicFramer::GetMinStreamFrameSize( framer_->transport_version(), id, offset, true, data_size); size_t bytes_consumed = std::min<size_t>(BytesFree() - min_frame_size, data_size); bool set_fin = fin && bytes_consumed == data_size; *frame = QuicFrame(QuicStreamFrame(id, set_fin, offset, bytes_consumed)); } bool QuicPacketCreator::CreateCryptoFrame(EncryptionLevel level, size_t write_length, QuicStreamOffset offset, QuicFrame* frame) { const size_t min_frame_size = QuicFramer::GetMinCryptoFrameSize(offset, write_length); if (BytesFree() <= min_frame_size && (!RemoveSoftMaxPacketLength() || BytesFree() <= min_frame_size)) { return false; } size_t max_write_length = BytesFree() - min_frame_size; size_t bytes_consumed = std::min<size_t>(max_write_length, write_length); *frame = QuicFrame(new QuicCryptoFrame(level, offset, bytes_consumed)); return true; } void QuicPacketCreator::FlushCurrentPacket() { if (!HasPendingFrames() && pending_padding_bytes_ == 0) { return; } ABSL_CACHELINE_ALIGNED char stack_buffer[kMaxOutgoingPacketSize]; QuicOwnedPacketBuffer external_buffer(delegate_->GetPacketBuffer()); if (external_buffer.buffer == nullptr) { external_buffer.buffer = stack_buffer; external_buffer.release_buffer = nullptr; } QUICHE_DCHECK_EQ(nullptr, packet_.encrypted_buffer) << ENDPOINT; if (!SerializePacket(std::move(external_buffer), kMaxOutgoingPacketSize, true)) { return; } OnSerializedPacket(); } void QuicPacketCreator::OnSerializedPacket() { QUIC_BUG_IF(quic_bug_12398_5, packet_.encrypted_buffer == nullptr) << ENDPOINT; if (packet_.transmission_type == NOT_RETRANSMISSION) { packet_.bytes_not_retransmitted.reset(); } SerializedPacket packet(std::move(packet_)); ClearPacket(); RemoveSoftMaxPacketLength(); delegate_->OnSerializedPacket(std::move(packet)); if (next_max_packet_length_ != 0) { QUICHE_DCHECK(CanSetMaxPacketLength()) << ENDPOINT; SetMaxPacketLength(next_max_packet_length_); next_max_packet_length_ = 0; } } void QuicPacketCreator::ClearPacket() { packet_.has_ack = false; packet_.has_stop_waiting = false; packet_.has_ack_ecn = false; packet_.has_crypto_handshake = NOT_HANDSHAKE; packet_.transmission_type = NOT_RETRANSMISSION; packet_.encrypted_buffer = nullptr; packet_.encrypted_length = 0; packet_.has_ack_frequency = false; packet_.has_message = false; packet_.fate = SEND_TO_WRITER; QUIC_BUG_IF(quic_bug_12398_6, packet_.release_encrypted_buffer != nullptr) << ENDPOINT << "packet_.release_encrypted_buffer should be empty"; packet_.release_encrypted_buffer = nullptr; QUICHE_DCHECK(packet_.retransmittable_frames.empty()) << ENDPOINT; QUICHE_DCHECK(packet_.nonretransmittable_frames.empty()) << ENDPOINT; packet_.largest_acked.Clear(); needs_full_padding_ = false; packet_.bytes_not_retransmitted.reset(); packet_.initial_header.reset(); } size_t QuicPacketCreator::ReserializeInitialPacketInCoalescedPacket( const SerializedPacket& packet, size_t padding_size, char* buffer, size_t buffer_len) { QUIC_BUG_IF(quic_bug_12398_7, packet.encryption_level != ENCRYPTION_INITIAL); QUIC_BUG_IF(quic_bug_12398_8, packet.nonretransmittable_frames.empty() && packet.retransmittable_frames.empty()) << ENDPOINT << "Attempt to serialize empty ENCRYPTION_INITIAL packet in coalesced " "packet"; if (HasPendingFrames()) { QUIC_BUG(quic_packet_creator_unexpected_queued_frames) << "Unexpected queued frames: " << GetPendingFramesInfo(); return 0; } ScopedPacketContextSwitcher switcher( packet.packet_number - 1, packet.packet_number_length, packet.encryption_level, &packet_); for (const QuicFrame& frame : packet.nonretransmittable_frames) { if (!AddFrame(frame, packet.transmission_type)) { QUIC_BUG(quic_bug_10752_6) << ENDPOINT << "Failed to serialize frame: " << frame; return 0; } } for (const QuicFrame& frame : packet.retransmittable_frames) { if (!AddFrame(frame, packet.transmission_type)) { QUIC_BUG(quic_bug_10752_7) << ENDPOINT << "Failed to serialize frame: " << frame; return 0; } } if (padding_size > 0) { QUIC_DVLOG(2) << ENDPOINT << "Add padding of size: " << padding_size; if (!AddFrame(QuicFrame(QuicPaddingFrame(padding_size)), packet.transmission_type)) { QUIC_BUG(quic_bug_10752_8) << ENDPOINT << "Failed to add padding of size " << padding_size << " when serializing ENCRYPTION_INITIAL " "packet in coalesced packet"; return 0; } } if (!SerializePacket(QuicOwnedPacketBuffer(buffer, nullptr), buffer_len, false)) { return 0; } if (!packet.initial_header.has_value() || !packet_.initial_header.has_value()) { QUIC_BUG(missing initial packet header) << "initial serialized packet does not have header populated"; } else if (*packet.initial_header != *packet_.initial_header) { QUIC_BUG(initial packet header changed before reserialization) << ENDPOINT << "original header: " << *packet.initial_header << ", new header: " << *packet_.initial_header; } const size_t encrypted_length = packet_.encrypted_length; packet_.retransmittable_frames.clear(); packet_.nonretransmittable_frames.clear(); ClearPacket(); return encrypted_length; } void QuicPacketCreator::CreateAndSerializeStreamFrame( QuicStreamId id, size_t write_length, QuicStreamOffset iov_offset, QuicStreamOffset stream_offset, bool fin, TransmissionType transmission_type, size_t* num_bytes_consumed) { QUICHE_DCHECK(queued_frames_.empty()) << ENDPOINT; QUICHE_DCHECK(!QuicUtils::IsCryptoStreamId(transport_version(), id)) << ENDPOINT; QuicPacketHeader header; FillPacketHeader(&header); packet_.fate = delegate_->GetSerializedPacketFate( false, packet_.encryption_level); QUIC_DVLOG(1) << ENDPOINT << "fate of packet " << packet_.packet_number << ": " << SerializedPacketFateToString(packet_.fate) << " of " << EncryptionLevelToString(packet_.encryption_level); ABSL_CACHELINE_ALIGNED char stack_buffer[kMaxOutgoingPacketSize]; QuicOwnedPacketBuffer packet_buffer(delegate_->GetPacketBuffer()); if (packet_buffer.buffer == nullptr) { packet_buffer.buffer = stack_buffer; packet_buffer.release_buffer = nullptr; } char* encrypted_buffer = packet_buffer.buffer; QuicDataWriter writer(kMaxOutgoingPacketSize, encrypted_buffer); size_t length_field_offset = 0; if (!framer_->AppendIetfPacketHeader(header, &writer, &length_field_offset)) { QUIC_BUG(quic_bug_10752_9) << ENDPOINT << "AppendPacketHeader failed"; return; } QUIC_BUG_IF(quic_bug_12398_9, iov_offset == write_length && !fin) << ENDPOINT << "Creating a stream frame with no data or fin."; const size_t remaining_data_size = write_length - iov_offset; size_t min_frame_size = QuicFramer::GetMinStreamFrameSize( framer_->transport_version(), id, stream_offset, true, remaining_data_size); size_t available_size = max_plaintext_size_ - writer.length() - min_frame_size; size_t bytes_consumed = std::min<size_t>(available_size, remaining_data_size); size_t plaintext_bytes_written = min_frame_size + bytes_consumed; bool needs_padding = false; const size_t min_plaintext_size = MinPlaintextPacketSize(framer_->version(), GetPacketNumberLength()); if (plaintext_bytes_written < min_plaintext_size) { needs_padding = true; } const bool set_fin = fin && (bytes_consumed == remaining_data_size); QuicStreamFrame frame(id, set_fin, stream_offset, bytes_consumed); if (debug_delegate_ != nullptr) { debug_delegate_->OnFrameAddedToPacket(QuicFrame(frame)); } QUIC_DVLOG(1) << ENDPOINT << "Adding frame: " << frame; QUIC_DVLOG(2) << ENDPOINT << "Serializing stream packet " << header << frame; if (needs_padding) { if (!writer.WritePaddingBytes(min_plaintext_size - plaintext_bytes_written)) { QUIC_BUG(quic_bug_10752_12) << ENDPOINT << "Unable to add padding bytes"; return; } needs_padding = false; } bool omit_frame_length = !needs_padding; if (!framer_->AppendTypeByte(QuicFrame(frame), omit_frame_length, &writer)) { QUIC_BUG(quic_bug_10752_10) << ENDPOINT << "AppendTypeByte failed"; return; } if (!framer_->AppendStreamFrame(frame, omit_frame_length, &writer)) { QUIC_BUG(quic_bug_10752_11) << ENDPOINT << "AppendStreamFrame failed"; return; } if (needs_padding && plaintext_bytes_written < min_plaintext_size && !writer.WritePaddingBytes(min_plaintext_size - plaintext_bytes_written)) { QUIC_BUG(quic_bug_10752_12) << ENDPOINT << "Unable to add padding bytes"; return; } if (!framer_->WriteIetfLongHeaderLength(header, &writer, length_field_offset, packet_.encryption_level)) { return; } packet_.transmission_type = transmission_type; QUICHE_DCHECK(packet_.encryption_level == ENCRYPTION_FORWARD_SECURE || packet_.encryption_level == ENCRYPTION_ZERO_RTT) << ENDPOINT << packet_.encryption_level; size_t encrypted_length = framer_->EncryptInPlace( packet_.encryption_level, packet_.packet_number, GetStartOfEncryptedData(framer_->transport_version(), header), writer.length(), kMaxOutgoingPacketSize, encrypted_buffer); if (encrypted_length == 0) { QUIC_BUG(quic_bug_10752_13) << ENDPOINT << "Failed to encrypt packet number " << header.packet_number; return; } *num_bytes_consumed = bytes_consumed; packet_size_ = 0; packet_.encrypted_buffer = encrypted_buffer; packet_.encrypted_length = encrypted_length; packet_buffer.buffer = nullptr; packet_.release_encrypted_buffer = std::move(packet_buffer).release_buffer; packet_.retransmittable_frames.push_back(QuicFrame(frame)); OnSerializedPacket(); } bool QuicPacketCreator::HasPendingFrames() const { return !queued_frames_.empty(); } std::string QuicPacketCreator::GetPendingFramesInfo() const { return QuicFramesToString(queued_frames_); } bool QuicPacketCreator::HasPendingRetransmittableFrames() const { return !packet_.retransmittable_frames.empty(); } bool QuicPacketCreator::HasPendingStreamFramesOfStream(QuicStreamId id) const { for (const auto& frame : packet_.retransmittable_frames) { if (frame.type == STREAM_FRAME && frame.stream_frame.stream_id == id) { return true; } } return false; } size_t QuicPacketCreator::ExpansionOnNewFrame() const { if (queued_frames_.empty()) { return 0; } return ExpansionOnNewFrameWithLastFrame(queued_frames_.back(), framer_->transport_version()); } size_t QuicPacketCreator::ExpansionOnNewFrameWithLastFrame( const QuicFrame& last_frame, QuicTransportVersion version) { if (last_frame.type == MESSAGE_FRAME) { return QuicDataWriter::GetVarInt62Len( last_frame.message_frame->message_length); } if (last_frame.type != STREAM_FRAME) { return 0; } if (VersionHasIetfQuicFrames(version)) { return QuicDataWriter::GetVarInt62Len(last_frame.stream_frame.data_length); } return kQuicStreamPayloadLengthSize; } size_t QuicPacketCreator::BytesFree() const { return max_plaintext_size_ - std::min(max_plaintext_size_, PacketSize() + ExpansionOnNewFrame()); } size_t QuicPacketCreator::BytesFreeForPadding() const { size_t consumed = PacketSize(); return max_plaintext_size_ - std::min(max_plaintext_size_, consumed); } size_t QuicPacketCreator::PacketSize() const { return queued_frames_.empty() ? PacketHeaderSize() : packet_size_; } bool QuicPacketCreator::AddPaddedSavedFrame( const QuicFrame& frame, TransmissionType transmission_type) { if (AddFrame(frame, transmission_type)) { needs_full_padding_ = true; return true; } return false; } std::optional<size_t> QuicPacketCreator::MaybeBuildDataPacketWithChaosProtection( const QuicPacketHeader& header, char* buffer) { if (!GetQuicFlag(quic_enable_chaos_protection) || framer_->perspective() != Perspective::IS_CLIENT || packet_.encryption_level != ENCRYPTION_INITIAL || !framer_->version().UsesCryptoFrames() || queued_frames_.size() != 2u || queued_frames_[0].type != CRYPTO_FRAME || queued_frames_[1].type != PADDING_FRAME || queued_frames_[1].padding_frame.num_padding_bytes <= 0 || framer_->data_producer() == nullptr) { return std::nullopt; } const QuicCryptoFrame& crypto_frame = *queued_frames_[0].crypto_frame; if (packet_.encryption_level != crypto_frame.level) { QUIC_BUG(chaos frame level) << ENDPOINT << packet_.encryption_level << " != " << crypto_frame.level; return std::nullopt; } QuicChaosProtector chaos_protector( crypto_frame, queued_frames_[1].padding_frame.num_padding_bytes, packet_size_, framer_, random_); return chaos_protector.BuildDataPacket(header, buffer); } bool QuicPacketCreator::SerializePacket(QuicOwnedPacketBuffer encrypted_buffer, size_t encrypted_buffer_len, bool allow_padding) { if (packet_.encrypted_buffer != nullptr) { const std::string error_details = "Packet's encrypted buffer is not empty before serialization"; QUIC_BUG(quic_bug_10752_14) << ENDPOINT << error_details; delegate_->OnUnrecoverableError(QUIC_FAILED_TO_SERIALIZE_PACKET, error_details); return false; } ScopedSerializationFailureHandler handler(this); QUICHE_DCHECK_LT(0u, encrypted_buffer_len) << ENDPOINT; QUIC_BUG_IF(quic_bug_12398_10, queued_frames_.empty() && pending_padding_bytes_ == 0) << ENDPOINT << "Attempt to serialize empty packet"; QuicPacketHeader header; FillPacketHeader(&header); if (packet_.encryption_level == ENCRYPTION_INITIAL) { packet_.initial_header = header; } if (delegate_ != nullptr) { packet_.fate = delegate_->GetSerializedPacketFate( QuicUtils::ContainsFrameType(queued_frames_, MTU_DISCOVERY_FRAME), packet_.encryption_level); QUIC_DVLOG(1) << ENDPOINT << "fate of packet " << packet_.packet_number << ": " << SerializedPacketFateToString(packet_.fate) << " of " << EncryptionLevelToString(packet_.encryption_level); } if (allow_padding) { MaybeAddPadding(); } QUIC_DVLOG(2) << ENDPOINT << "Serializing packet " << header << QuicFramesToString(queued_frames_) << " at encryption_level " << packet_.encryption_level << ", allow_padding:" << allow_padding; if (!framer_->HasEncrypterOfEncryptionLevel(packet_.encryption_level)) { QUIC_BUG(quic_bug_10752_15) << ENDPOINT << "Attempting to serialize " << header << QuicFramesToString(queued_frames_) << " at missing encryption_level " << packet_.encryption_level << " using " << framer_->version(); return false; } QUICHE_DCHECK_GE(max_plaintext_size_, packet_size_) << ENDPOINT; size_t length; std::optional<size_t> length_with_chaos_protection = MaybeBuildDataPacketWithChaosProtection(header, encrypted_buffer.buffer); if (length_with_chaos_protection.has_value()) { length = *length_with_chaos_protection; } else { length = framer_->BuildDataPacket(header, queued_frames_, encrypted_buffer.buffer, packet_size_, packet_.encryption_level); } if (length == 0) { QUIC_BUG(quic_bug_10752_16) << ENDPOINT << "Failed to serialize " << QuicFramesToString(queued_frames_) << " at encryption_level: " << packet_.encryption_level << ", needs_full_padding_: " << needs_full_padding_ << ", pending_padding_bytes_: " << pending_padding_bytes_ << ", latched_hard_max_packet_length_: " << latched_hard_max_packet_length_ << ", max_packet_length_: " << max_packet_length_ << ", header: " << header; return false; } bool possibly_truncated_by_length = packet_size_ == max_plaintext_size_ && queued_frames_.size() == 1 && queued_frames_.back().type == ACK_FRAME; if (!possibly_truncated_by_length) { QUICHE_DCHECK_EQ(packet_size_, length) << ENDPOINT; } const size_t encrypted_length = framer_->EncryptInPlace( packet_.encryption_level, packet_.packet_number, GetStartOfEncryptedData(framer_->transport_version(), header), length, encrypted_buffer_len, encrypted_buffer.buffer); if (encrypted_length == 0) { QUIC_BUG(quic_bug_10752_17) << ENDPOINT << "Failed to encrypt packet number " << packet_.packet_number; return false; } packet_size_ = 0; packet_.encrypted_buffer = encrypted_buffer.buffer; packet_.encrypted_length = encrypted_length; encrypted_buffer.buffer = nullptr; packet_.release_encrypted_buffer = std::move(encrypted_buffer).release_buffer; return true; } std::unique_ptr<SerializedPacket> QuicPacketCreator::SerializeConnectivityProbingPacket() { QUIC_BUG_IF(quic_bug_12398_11, VersionHasIetfQuicFrames(framer_->transport_version())) << ENDPOINT << "Must not be version 99 to serialize padded ping connectivity probe"; RemoveSoftMaxPacketLength(); QuicPacketHeader header; FillPacketHeader(&header); QUIC_DVLOG(2) << ENDPOINT << "Serializing connectivity probing packet " << header; std::unique_ptr<char[]> buffer(new char[kMaxOutgoingPacketSize]); size_t length = BuildConnectivityProbingPacket( header, buffer.get(), max_plaintext_size_, packet_.encryption_level); QUICHE_DCHECK(length) << ENDPOINT; QUICHE_DCHECK_EQ(packet_.encryption_level, ENCRYPTION_FORWARD_SECURE) << ENDPOINT; const size_t encrypted_length = framer_->EncryptInPlace( packet_.encryption_level, packet_.packet_number, GetStartOfEncryptedData(framer_->transport_version(), header), length, kMaxOutgoingPacketSize, buffer.get()); QUICHE_DCHECK(encrypted_length) << ENDPOINT; std::unique_ptr<SerializedPacket> serialize_packet(new SerializedPacket( header.packet_number, header.packet_number_length, buffer.release(), encrypted_length, false, false)); serialize_packet->release_encrypted_buffer = [](const char* p) { delete[] p; }; serialize_packet->encryption_level = packet_.encryption_level; serialize_packet->transmission_type = NOT_RETRANSMISSION; return serialize_packet; } std::unique_ptr<SerializedPacket> QuicPacketCreator::SerializePathChallengeConnectivityProbingPacket( const QuicPathFrameBuffer& payload) { QUIC_BUG_IF(quic_bug_12398_12, !VersionHasIetfQuicFrames(framer_->transport_version())) << ENDPOINT << "Must be version 99 to serialize path challenge connectivity probe, " "is version " << framer_->transport_version(); RemoveSoftMaxPacketLength(); QuicPacketHeader header; FillPacketHeader(&header); QUIC_DVLOG(2) << ENDPOINT << "Serializing path challenge packet " << header; std::unique_ptr<char[]> buffer(new char[kMaxOutgoingPacketSize]); size_t length = BuildPaddedPathChallengePacket(header, buffer.get(), max_plaintext_size_, payload, packet_.encryption_level); QUICHE_DCHECK(length) << ENDPOINT; QUICHE_DCHECK_EQ(packet_.encryption_level, ENCRYPTION_FORWARD_SECURE) << ENDPOINT; const size_t encrypted_length = framer_->EncryptInPlace( packet_.encryption_level, packet_.packet_number, GetStartOfEncryptedData(framer_->transport_version(), header), length, kMaxOutgoingPacketSize, buffer.get()); QUICHE_DCHECK(encrypted_length) << ENDPOINT; std::unique_ptr<SerializedPacket> serialize_packet( new SerializedPacket(header.packet_number, header.packet_number_length, buffer.release(), encrypted_length, false, false)); serialize_packet->release_encrypted_buffer = [](const char* p) { delete[] p; }; serialize_packet->encryption_level = packet_.encryption_level; serialize_packet->transmission_type = NOT_RETRANSMISSION; return serialize_packet; } std::unique_ptr<SerializedPacket> QuicPacketCreator::SerializePathResponseConnectivityProbingPacket( const quiche::QuicheCircularDeque<QuicPathFrameBuffer>& payloads, const bool is_padded) { QUIC_BUG_IF(quic_bug_12398_13, !VersionHasIetfQuicFrames(framer_->transport_version())) << ENDPOINT << "Must be version 99 to serialize path response connectivity probe, is " "version " << framer_->transport_version(); RemoveSoftMaxPacketLength(); QuicPacketHeader header; FillPacketHeader(&header); QUIC_DVLOG(2) << ENDPOINT << "Serializing path response packet " << header; std::unique_ptr<char[]> buffer(new char[kMaxOutgoingPacketSize]); size_t length = BuildPathResponsePacket(header, buffer.get(), max_plaintext_size_, payloads, is_padded, packet_.encryption_level); QUICHE_DCHECK(length) << ENDPOINT; QUICHE_DCHECK_EQ(packet_.encryption_level, ENCRYPTION_FORWARD_SECURE) << ENDPOINT; const size_t encrypted_length = framer_->EncryptInPlace( packet_.encryption_level, packet_.packet_number, GetStartOfEncryptedData(framer_->transport_version(), header), length, kMaxOutgoingPacketSize, buffer.get()); QUICHE_DCHECK(encrypted_length) << ENDPOINT; std::unique_ptr<SerializedPacket> serialize_packet( new SerializedPacket(header.packet_number, header.packet_number_length, buffer.release(), encrypted_length, false, false)); serialize_packet->release_encrypted_buffer = [](const char* p) { delete[] p; }; serialize_packet->encryption_level = packet_.encryption_level; serialize_packet->transmission_type = NOT_RETRANSMISSION; return serialize_packet; } std::unique_ptr<SerializedPacket> QuicPacketCreator::SerializeLargePacketNumberConnectionClosePacket( QuicPacketNumber largest_acked_packet, QuicErrorCode error, const std::string& error_details) { QUICHE_DCHECK_EQ(packet_.encryption_level, ENCRYPTION_FORWARD_SECURE) << ENDPOINT; const QuicPacketNumber largest_packet_number( (largest_acked_packet.IsInitialized() ? largest_acked_packet : framer_->first_sending_packet_number()) + (1L << 31)); ScopedPacketContextSwitcher switcher(largest_packet_number, PACKET_4BYTE_PACKET_NUMBER, ENCRYPTION_FORWARD_SECURE, &packet_); QuicPacketHeader header; FillPacketHeader(&header); QUIC_DVLOG(2) << ENDPOINT << "Serializing connection close packet " << header; QuicFrames frames; QuicConnectionCloseFrame close_frame(transport_version(), error, NO_IETF_QUIC_ERROR, error_details, 0); frames.push_back(QuicFrame(&close_frame)); std::unique_ptr<char[]> buffer(new char[kMaxOutgoingPacketSize]); const size_t length = framer_->BuildDataPacket(header, frames, buffer.get(), max_plaintext_size_, packet_.encryption_level); QUICHE_DCHECK(length) << ENDPOINT; const size_t encrypted_length = framer_->EncryptInPlace( packet_.encryption_level, packet_.packet_number, GetStartOfEncryptedData(framer_->transport_version(), header), length, kMaxOutgoingPacketSize, buffer.get()); QUICHE_DCHECK(encrypted_length) << ENDPOINT; std::unique_ptr<SerializedPacket> serialize_packet( new SerializedPacket(header.packet_number, header.packet_number_length, buffer.release(), encrypted_length, false, false)); serialize_packet->release_encrypted_buffer = [](const char* p) { delete[] p; }; serialize_packet->encryption_level = packet_.encryption_level; serialize_packet->transmission_type = NOT_RETRANSMISSION; return serialize_packet; } size_t QuicPacketCreator::BuildPaddedPathChallengePacket( const QuicPacketHeader& header, char* buffer, size_t packet_length, const QuicPathFrameBuffer& payload, EncryptionLevel level) { QUICHE_DCHECK(VersionHasIetfQuicFrames(framer_->transport_version())) << ENDPOINT; QuicFrames frames; frames.push_back(QuicFrame(QuicPathChallengeFrame(0, payload))); if (debug_delegate_ != nullptr) { debug_delegate_->OnFrameAddedToPacket(frames.back()); } QuicPaddingFrame padding_frame; frames.push_back(QuicFrame(padding_frame)); return framer_->BuildDataPacket(header, frames, buffer, packet_length, level); } size_t QuicPacketCreator::BuildPathResponsePacket( const QuicPacketHeader& header, char* buffer, size_t packet_length, const quiche::QuicheCircularDeque<QuicPathFrameBuffer>& payloads, const bool is_padded, EncryptionLevel level) { if (payloads.empty()) { QUIC_BUG(quic_bug_12398_14) << ENDPOINT << "Attempt to generate connectivity response with no request payloads"; return 0; } QUICHE_DCHECK(VersionHasIetfQuicFrames(framer_->transport_version())) << ENDPOINT; QuicFrames frames; for (const QuicPathFrameBuffer& payload : payloads) { frames.push_back(QuicFrame(QuicPathResponseFrame(0, payload))); if (debug_delegate_ != nullptr) { debug_delegate_->OnFrameAddedToPacket(frames.back()); } } if (is_padded) { QuicPaddingFrame padding_frame; frames.push_back(QuicFrame(padding_frame)); } return framer_->BuildDataPacket(header, frames, buffer, packet_length, level); } size_t QuicPacketCreator::BuildConnectivityProbingPacket( const QuicPacketHeader& header, char* buffer, size_t packet_length, EncryptionLevel level) { QuicFrames frames; QuicPingFrame ping_frame; frames.push_back(QuicFrame(ping_frame)); QuicPaddingFrame padding_frame; frames.push_back(QuicFrame(padding_frame)); return framer_->BuildDataPacket(header, frames, buffer, packet_length, level); } size_t QuicPacketCreator::SerializeCoalescedPacket( const QuicCoalescedPacket& coalesced, char* buffer, size_t buffer_len) { if (HasPendingFrames()) { QUIC_BUG(quic_bug_10752_18) << ENDPOINT << "Try to serialize coalesced packet with pending frames"; return 0; } RemoveSoftMaxPacketLength(); QUIC_BUG_IF(quic_bug_12398_15, coalesced.length() == 0) << ENDPOINT << "Attempt to serialize empty coalesced packet"; size_t packet_length = 0; size_t initial_length = 0; size_t padding_size = 0; if (coalesced.initial_packet() != nullptr) { padding_size = coalesced.max_packet_length() - coalesced.length(); if (framer_->perspective() == Perspective::IS_SERVER && QuicUtils::ContainsFrameType( coalesced.initial_packet()->retransmittable_frames, CONNECTION_CLOSE_FRAME)) { padding_size = 0; } initial_length = ReserializeInitialPacketInCoalescedPacket( *coalesced.initial_packet(), padding_size, buffer, buffer_len); if (initial_length == 0) { QUIC_BUG(quic_bug_10752_19) << ENDPOINT << "Failed to reserialize ENCRYPTION_INITIAL packet in " "coalesced packet"; return 0; } QUIC_BUG_IF(quic_reserialize_initial_packet_unexpected_size, coalesced.initial_packet()->encrypted_length + padding_size != initial_length) << "Reserialize initial packet in coalescer has unexpected size, " "original_length: " << coalesced.initial_packet()->encrypted_length << ", coalesced.max_packet_length: " << coalesced.max_packet_length() << ", coalesced.length: " << coalesced.length() << ", padding_size: " << padding_size << ", serialized_length: " << initial_length << ", retransmittable frames: " << QuicFramesToString( coalesced.initial_packet()->retransmittable_frames) << ", nonretransmittable frames: " << QuicFramesToString( coalesced.initial_packet()->nonretransmittable_frames); buffer += initial_length; buffer_len -= initial_length; packet_length += initial_length; } size_t length_copied = 0; if (!coalesced.CopyEncryptedBuffers(buffer, buffer_len, &length_copied)) { QUIC_BUG(quic_serialize_coalesced_packet_copy_failure) << "SerializeCoalescedPacket failed. buffer_len:" << buffer_len << ", initial_length:" << initial_length << ", padding_size: " << padding_size << ", length_copied:" << length_copied << ", coalesced.length:" << coalesced.length() << ", coalesced.max_packet_length:" << coalesced.max_packet_length() << ", coalesced.packet_lengths:" << absl::StrJoin(coalesced.packet_lengths(), ":"); return 0; } packet_length += length_copied; QUIC_DVLOG(1) << ENDPOINT << "Successfully serialized coalesced packet of length: " << packet_length; return packet_length; } SerializedPacket QuicPacketCreator::NoPacket() { return SerializedPacket(QuicPacketNumber(), PACKET_1BYTE_PACKET_NUMBER, nullptr, 0, false, false); } QuicConnectionId QuicPacketCreator::GetDestinationConnectionId() const { if (framer_->perspective() == Perspective::IS_SERVER) { return client_connection_id_; } return server_connection_id_; } QuicConnectionId QuicPacketCreator::GetSourceConnectionId() const { if (framer_->perspective() == Perspective::IS_CLIENT) { return client_connection_id_; } return server_connection_id_; } QuicConnectionIdIncluded QuicPacketCreator::GetDestinationConnectionIdIncluded() const { return (framer_->perspective() == Perspective::IS_CLIENT || framer_->version().SupportsClientConnectionIds()) ? CONNECTION_ID_PRESENT : CONNECTION_ID_ABSENT; } QuicConnectionIdIncluded QuicPacketCreator::GetSourceConnectionIdIncluded() const { if (HasIetfLongHeader() && (framer_->perspective() == Perspective::IS_SERVER || framer_->version().SupportsClientConnectionIds())) { return CONNECTION_ID_PRESENT; } if (framer_->perspective() == Perspective::IS_SERVER) { return server_connection_id_included_; } return CONNECTION_ID_ABSENT; } uint8_t QuicPacketCreator::GetDestinationConnectionIdLength() const { QUICHE_DCHECK(QuicUtils::IsConnectionIdValidForVersion(server_connection_id_, transport_version())) << ENDPOINT; return GetDestinationConnectionIdIncluded() == CONNECTION_ID_PRESENT ? GetDestinationConnectionId().length() : 0; } uint8_t QuicPacketCreator::GetSourceConnectionIdLength() const { QUICHE_DCHECK(QuicUtils::IsConnectionIdValidForVersion(server_connection_id_, transport_version())) << ENDPOINT; return GetSourceConnectionIdIncluded() == CONNECTION_ID_PRESENT ? GetSourceConnectionId().length() : 0; } QuicPacketNumberLength QuicPacketCreator::GetPacketNumberLength() const { if (HasIetfLongHeader() && !framer_->version().SendsVariableLengthPacketNumberInLongHeader()) { return PACKET_4BYTE_PACKET_NUMBER; } return packet_.packet_number_length; } size_t QuicPacketCreator::PacketHeaderSize() const { return GetPacketHeaderSize( framer_->transport_version(), GetDestinationConnectionIdLength(), GetSourceConnectionIdLength(), IncludeVersionInHeader(), IncludeNonceInPublicHeader(), GetPacketNumberLength(), GetRetryTokenLengthLength(), GetRetryToken().length(), GetLengthLength()); } quiche::QuicheVariableLengthIntegerLength QuicPacketCreator::GetRetryTokenLengthLength() const { if (QuicVersionHasLongHeaderLengths(framer_->transport_version()) && HasIetfLongHeader() && EncryptionlevelToLongHeaderType(packet_.encryption_level) == INITIAL) { return QuicDataWriter::GetVarInt62Len(GetRetryToken().length()); } return quiche::VARIABLE_LENGTH_INTEGER_LENGTH_0; } absl::string_view QuicPacketCreator::GetRetryToken() const { if (QuicVersionHasLongHeaderLengths(framer_->transport_version()) && HasIetfLongHeader() && EncryptionlevelToLongHeaderType(packet_.encryption_level) == INITIAL) { return retry_token_; } return absl::string_view(); } void QuicPacketCreator::SetRetryToken(absl::string_view retry_token) { retry_token_ = std::string(retry_token); } bool QuicPacketCreator::ConsumeRetransmittableControlFrame( const QuicFrame& frame) { QUIC_BUG_IF(quic_bug_12398_16, IsControlFrame(frame.type) && !GetControlFrameId(frame) && frame.type != PING_FRAME) << ENDPOINT << "Adding a control frame with no control frame id: " << frame; QUICHE_DCHECK(QuicUtils::IsRetransmittableFrame(frame.type)) << ENDPOINT << frame; MaybeBundleOpportunistically(); if (HasPendingFrames()) { if (AddFrame(frame, next_transmission_type_)) { return true; } } QUICHE_DCHECK(!HasPendingFrames()) << ENDPOINT; if (frame.type != PING_FRAME && frame.type != CONNECTION_CLOSE_FRAME && !delegate_->ShouldGeneratePacket(HAS_RETRANSMITTABLE_DATA, NOT_HANDSHAKE)) { return false; } const bool success = AddFrame(frame, next_transmission_type_); QUIC_BUG_IF(quic_bug_10752_20, !success) << ENDPOINT << "Failed to add frame:" << frame << " transmission_type:" << next_transmission_type_; return success; } void QuicPacketCreator::MaybeBundleOpportunistically() { const TransmissionType next_transmission_type = next_transmission_type_; delegate_->MaybeBundleOpportunistically(next_transmission_type_); next_transmission_type_ = next_transmission_type; } QuicConsumedData QuicPacketCreator::ConsumeData(QuicStreamId id, size_t write_length, QuicStreamOffset offset, StreamSendingState state) { QUIC_BUG_IF(quic_bug_10752_21, !flusher_attached_) << ENDPOINT << "Packet flusher is not attached when " "generator tries to write stream data."; bool has_handshake = QuicUtils::IsCryptoStreamId(transport_version(), id); const TransmissionType next_transmission_type = next_transmission_type_; MaybeBundleOpportunistically(); const size_t original_write_length = write_length; if (next_transmission_type_ == NOT_RETRANSMISSION) { if (QuicByteCount send_window = delegate_->GetFlowControlSendWindowSize(id); write_length > send_window) { QUIC_DLOG(INFO) << ENDPOINT << "After bundled data, reducing (old) write_length:" << write_length << "to (new) send_window:" << send_window; write_length = send_window; state = NO_FIN; } } bool fin = state != NO_FIN; QUIC_BUG_IF(quic_bug_12398_17, has_handshake && fin) << ENDPOINT << "Handshake packets should never send a fin"; if (has_handshake && HasPendingRetransmittableFrames()) { FlushCurrentPacket(); } size_t total_bytes_consumed = 0; bool fin_consumed = false; if (!HasRoomForStreamFrame(id, offset, write_length)) { FlushCurrentPacket(); } if (!fin && (write_length == 0)) { QUIC_BUG_IF(quic_bug_10752_22, original_write_length == 0) << ENDPOINT << "Attempt to consume empty data without FIN. old transmission type:" << next_transmission_type << ", new transmission type:" << next_transmission_type_; return QuicConsumedData(0, false); } bool run_fast_path = !has_handshake && state != FIN_AND_PADDING && !HasPendingFrames() && write_length - total_bytes_consumed > kMaxOutgoingPacketSize && latched_hard_max_packet_length_ == 0; while (!run_fast_path && (has_handshake || delegate_->ShouldGeneratePacket( HAS_RETRANSMITTABLE_DATA, NOT_HANDSHAKE))) { QuicFrame frame; bool needs_full_padding = has_handshake && fully_pad_crypto_handshake_packets_; if (!ConsumeDataToFillCurrentPacket(id, write_length - total_bytes_consumed, offset + total_bytes_consumed, fin, needs_full_padding, next_transmission_type_, &frame)) { QUIC_BUG(quic_bug_10752_23) << ENDPOINT << "Failed to ConsumeData, stream:" << id; return QuicConsumedData(0, false); } size_t bytes_consumed = frame.stream_frame.data_length; total_bytes_consumed += bytes_consumed; fin_consumed = fin && total_bytes_consumed == write_length; if (fin_consumed && state == FIN_AND_PADDING) { AddRandomPadding(); } QUICHE_DCHECK(total_bytes_consumed == write_length || (bytes_consumed > 0 && HasPendingFrames())) << ENDPOINT; if (total_bytes_consumed == write_length) { break; } FlushCurrentPacket(); run_fast_path = !has_handshake && state != FIN_AND_PADDING && !HasPendingFrames() && write_length - total_bytes_consumed > kMaxOutgoingPacketSize && latched_hard_max_packet_length_ == 0; } if (run_fast_path) { return ConsumeDataFastPath(id, write_length, offset, state != NO_FIN, total_bytes_consumed); } if (has_handshake) { FlushCurrentPacket(); } return QuicConsumedData(total_bytes_consumed, fin_consumed); } QuicConsumedData QuicPacketCreator::ConsumeDataFastPath( QuicStreamId id, size_t write_length, QuicStreamOffset offset, bool fin, size_t total_bytes_consumed) { QUICHE_DCHECK(!QuicUtils::IsCryptoStreamId(transport_version(), id)) << ENDPOINT; if (AttemptingToSendUnencryptedStreamData()) { return QuicConsumedData(total_bytes_consumed, fin && (total_bytes_consumed == write_length)); } while (total_bytes_consumed < write_length && delegate_->ShouldGeneratePacket(HAS_RETRANSMITTABLE_DATA, NOT_HANDSHAKE)) { size_t bytes_consumed = 0; CreateAndSerializeStreamFrame(id, write_length, total_bytes_consumed, offset + total_bytes_consumed, fin, next_transmission_type_, &bytes_consumed); if (bytes_consumed == 0) { const std::string error_details = "Failed in CreateAndSerializeStreamFrame."; QUIC_BUG(quic_bug_10752_24) << ENDPOINT << error_details; delegate_->OnUnrecoverableError(QUIC_FAILED_TO_SERIALIZE_PACKET, error_details); break; } total_bytes_consumed += bytes_consumed; } return QuicConsumedData(total_bytes_consumed, fin && (total_bytes_consumed == write_length)); } size_t QuicPacketCreator::ConsumeCryptoData(EncryptionLevel level, size_t write_length, QuicStreamOffset offset) { QUIC_DVLOG(2) << ENDPOINT << "ConsumeCryptoData " << level << " write_length " << write_length << " offset " << offset; QUIC_BUG_IF(quic_bug_10752_25, !flusher_attached_) << ENDPOINT << "Packet flusher is not attached when " "generator tries to write crypto data."; MaybeBundleOpportunistically(); if (HasPendingRetransmittableFrames()) { FlushCurrentPacket(); } size_t total_bytes_consumed = 0; while ( total_bytes_consumed < write_length && delegate_->ShouldGeneratePacket(HAS_RETRANSMITTABLE_DATA, IS_HANDSHAKE)) { QuicFrame frame; if (!ConsumeCryptoDataToFillCurrentPacket( level, write_length - total_bytes_consumed, offset + total_bytes_consumed, fully_pad_crypto_handshake_packets_, next_transmission_type_, &frame)) { QUIC_BUG_IF(quic_bug_10752_26, !HasSoftMaxPacketLength()) << absl::StrCat( ENDPOINT, "Failed to ConsumeCryptoData at level ", level, ", pending_frames: ", GetPendingFramesInfo(), ", has_soft_max_packet_length: ", HasSoftMaxPacketLength(), ", max_packet_length: ", max_packet_length_, ", transmission_type: ", TransmissionTypeToString(next_transmission_type_), ", packet_number: ", packet_number().ToString()); return 0; } total_bytes_consumed += frame.crypto_frame->data_length; FlushCurrentPacket(); } FlushCurrentPacket(); return total_bytes_consumed; } void QuicPacketCreator::GenerateMtuDiscoveryPacket(QuicByteCount target_mtu) { if (!CanSetMaxPacketLength()) { QUIC_BUG(quic_bug_10752_27) << ENDPOINT << "MTU discovery packets should only be sent when no other " << "frames needs to be sent."; return; } const QuicByteCount current_mtu = max_packet_length(); QuicMtuDiscoveryFrame mtu_discovery_frame; QuicFrame frame(mtu_discovery_frame); SetMaxPacketLength(target_mtu); const bool success = AddPaddedSavedFrame(frame, next_transmission_type_); FlushCurrentPacket(); QUIC_BUG_IF(quic_bug_10752_28, !success) << ENDPOINT << "Failed to send path MTU target_mtu:" << target_mtu << " transmission_type:" << next_transmission_type_; SetMaxPacketLength(current_mtu); } bool QuicPacketCreator::FlushAckFrame(const QuicFrames& frames) { QUIC_BUG_IF(quic_bug_10752_30, !flusher_attached_) << ENDPOINT << "Packet flusher is not attached when " "generator tries to send ACK frame."; QUIC_BUG_IF(quic_bug_12398_18, !frames.empty() && has_ack()) << ENDPOINT << "Trying to flush " << quiche::PrintElements(frames) << " when there is ACK queued"; for (const auto& frame : frames) { QUICHE_DCHECK(frame.type == ACK_FRAME || frame.type == STOP_WAITING_FRAME) << ENDPOINT; if (HasPendingFrames()) { if (AddFrame(frame, next_transmission_type_)) { continue; } } QUICHE_DCHECK(!HasPendingFrames()) << ENDPOINT; if (!delegate_->ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, NOT_HANDSHAKE)) { return false; } const bool success = AddFrame(frame, next_transmission_type_); QUIC_BUG_IF(quic_bug_10752_31, !success) << ENDPOINT << "Failed to flush " << frame; } return true; } void QuicPacketCreator::AddRandomPadding() { AddPendingPadding(random_->RandUint64() % kMaxNumRandomPaddingBytes + 1); } void QuicPacketCreator::AttachPacketFlusher() { flusher_attached_ = true; if (!write_start_packet_number_.IsInitialized()) { write_start_packet_number_ = NextSendingPacketNumber(); } } void QuicPacketCreator::Flush() { FlushCurrentPacket(); SendRemainingPendingPadding(); flusher_attached_ = false; if (GetQuicFlag(quic_export_write_path_stats_at_server)) { if (!write_start_packet_number_.IsInitialized()) { QUIC_BUG(quic_bug_10752_32) << ENDPOINT << "write_start_packet_number is not initialized"; return; } QUIC_SERVER_HISTOGRAM_COUNTS( "quic_server_num_written_packets_per_write", NextSendingPacketNumber() - write_start_packet_number_, 1, 200, 50, "Number of QUIC packets written per write operation"); } write_start_packet_number_.Clear(); } void QuicPacketCreator::SendRemainingPendingPadding() { while ( pending_padding_bytes() > 0 && !HasPendingFrames() && delegate_->ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, NOT_HANDSHAKE)) { FlushCurrentPacket(); } } void QuicPacketCreator::SetServerConnectionIdLength(uint32_t length) { if (length == 0) { SetServerConnectionIdIncluded(CONNECTION_ID_ABSENT); } else { SetServerConnectionIdIncluded(CONNECTION_ID_PRESENT); } } void QuicPacketCreator::SetTransmissionType(TransmissionType type) { next_transmission_type_ = type; } MessageStatus QuicPacketCreator::AddMessageFrame( QuicMessageId message_id, absl::Span<quiche::QuicheMemSlice> message) { QUIC_BUG_IF(quic_bug_10752_33, !flusher_attached_) << ENDPOINT << "Packet flusher is not attached when " "generator tries to add message frame."; MaybeBundleOpportunistically(); const QuicByteCount message_length = MemSliceSpanTotalSize(message); if (message_length > GetCurrentLargestMessagePayload()) { return MESSAGE_STATUS_TOO_LARGE; } if (!HasRoomForMessageFrame(message_length)) { FlushCurrentPacket(); } QuicMessageFrame* frame = new QuicMessageFrame(message_id, message); const bool success = AddFrame(QuicFrame(frame), next_transmission_type_); if (!success) { QUIC_BUG(quic_bug_10752_34) << ENDPOINT << "Failed to send message " << message_id; delete frame; return MESSAGE_STATUS_INTERNAL_ERROR; } QUICHE_DCHECK_EQ(MemSliceSpanTotalSize(message), 0u); return MESSAGE_STATUS_SUCCESS; } quiche::QuicheVariableLengthIntegerLength QuicPacketCreator::GetLengthLength() const { if (QuicVersionHasLongHeaderLengths(framer_->transport_version()) && HasIetfLongHeader()) { QuicLongHeaderType long_header_type = EncryptionlevelToLongHeaderType(packet_.encryption_level); if (long_header_type == INITIAL || long_header_type == ZERO_RTT_PROTECTED || long_header_type == HANDSHAKE) { return quiche::VARIABLE_LENGTH_INTEGER_LENGTH_2; } } return quiche::VARIABLE_LENGTH_INTEGER_LENGTH_0; } void QuicPacketCreator::FillPacketHeader(QuicPacketHeader* header) { header->destination_connection_id = GetDestinationConnectionId(); header->destination_connection_id_included = GetDestinationConnectionIdIncluded(); header->source_connection_id = GetSourceConnectionId(); header->source_connection_id_included = GetSourceConnectionIdIncluded(); header->reset_flag = false; header->version_flag = IncludeVersionInHeader(); if (IncludeNonceInPublicHeader()) { QUICHE_DCHECK_EQ(Perspective::IS_SERVER, framer_->perspective()) << ENDPOINT; header->nonce = &diversification_nonce_; } else { header->nonce = nullptr; } packet_.packet_number = NextSendingPacketNumber(); header->packet_number = packet_.packet_number; header->packet_number_length = GetPacketNumberLength(); header->retry_token_length_length = GetRetryTokenLengthLength(); header->retry_token = GetRetryToken(); header->length_length = GetLengthLength(); header->remaining_packet_length = 0; if (!HasIetfLongHeader()) { return; } header->long_packet_type = EncryptionlevelToLongHeaderType(packet_.encryption_level); } size_t QuicPacketCreator::GetSerializedFrameLength(const QuicFrame& frame) { size_t serialized_frame_length = framer_->GetSerializedFrameLength( frame, BytesFree(), queued_frames_.empty(), true, GetPacketNumberLength()); if (!framer_->version().HasHeaderProtection() || serialized_frame_length == 0) { return serialized_frame_length; } const size_t frame_bytes = PacketSize() - PacketHeaderSize() + ExpansionOnNewFrame() + serialized_frame_length; if (frame_bytes >= MinPlaintextPacketSize(framer_->version(), GetPacketNumberLength())) { return serialized_frame_length; } if (BytesFree() < serialized_frame_length) { QUIC_BUG(quic_bug_10752_35) << ENDPOINT << "Frame does not fit: " << frame; return 0; } size_t bytes_free = BytesFree() - serialized_frame_length; const size_t extra_bytes_needed = std::max( 1 + ExpansionOnNewFrameWithLastFrame(frame, framer_->transport_version()), MinPlaintextPacketSize(framer_->version(), GetPacketNumberLength()) - frame_bytes); if (bytes_free < extra_bytes_needed) { return 0; } return serialized_frame_length; } bool QuicPacketCreator::AddFrame(const QuicFrame& frame, TransmissionType transmission_type) { QUIC_DVLOG(1) << ENDPOINT << "Adding frame with transmission type " << transmission_type << ": " << frame; if (frame.type == STREAM_FRAME && !QuicUtils::IsCryptoStreamId(framer_->transport_version(), frame.stream_frame.stream_id) && AttemptingToSendUnencryptedStreamData()) { return false; } QUICHE_DCHECK( packet_.encryption_level == ENCRYPTION_ZERO_RTT || packet_.encryption_level == ENCRYPTION_FORWARD_SECURE || (frame.type != GOAWAY_FRAME && frame.type != WINDOW_UPDATE_FRAME && frame.type != HANDSHAKE_DONE_FRAME && frame.type != NEW_CONNECTION_ID_FRAME && frame.type != MAX_STREAMS_FRAME && frame.type != STREAMS_BLOCKED_FRAME && frame.type != PATH_RESPONSE_FRAME && frame.type != PATH_CHALLENGE_FRAME && frame.type != STOP_SENDING_FRAME && frame.type != MESSAGE_FRAME && frame.type != NEW_TOKEN_FRAME && frame.type != RETIRE_CONNECTION_ID_FRAME && frame.type != ACK_FREQUENCY_FRAME)) << ENDPOINT << frame.type << " not allowed at " << packet_.encryption_level; if (frame.type == STREAM_FRAME) { if (MaybeCoalesceStreamFrame(frame.stream_frame)) { LogCoalesceStreamFrameStatus(true); return true; } else { LogCoalesceStreamFrameStatus(false); } } QUICHE_DCHECK(frame.type != ACK_FRAME || (!frame.ack_frame->packets.Empty() && frame.ack_frame->packets.Max() == frame.ack_frame->largest_acked)) << ENDPOINT << "Invalid ACK frame: " << frame; size_t frame_len = GetSerializedFrameLength(frame); if (frame_len == 0 && RemoveSoftMaxPacketLength()) { frame_len = GetSerializedFrameLength(frame); } if (frame_len == 0) { QUIC_DVLOG(1) << ENDPOINT << "Flushing because current open packet is full when adding " << frame; FlushCurrentPacket(); return false; } if (queued_frames_.empty()) { packet_size_ = PacketHeaderSize(); } QUICHE_DCHECK_LT(0u, packet_size_) << ENDPOINT; packet_size_ += ExpansionOnNewFrame() + frame_len; if (QuicUtils::IsRetransmittableFrame(frame.type)) { packet_.retransmittable_frames.push_back(frame); queued_frames_.push_back(frame); if (QuicUtils::IsHandshakeFrame(frame, framer_->transport_version())) { packet_.has_crypto_handshake = IS_HANDSHAKE; } } else { if (frame.type == PADDING_FRAME && frame.padding_frame.num_padding_bytes == -1) { packet_.nonretransmittable_frames.push_back( QuicFrame(QuicPaddingFrame(frame_len))); } else { packet_.nonretransmittable_frames.push_back(frame); } queued_frames_.push_back(frame); } if (frame.type == ACK_FRAME) { packet_.has_ack = true; packet_.largest_acked = LargestAcked(*frame.ack_frame); if (frame.ack_frame->ecn_counters.has_value()) { packet_.has_ack_ecn = true; } } else if (frame.type == STOP_WAITING_FRAME) { packet_.has_stop_waiting = true; } else if (frame.type == ACK_FREQUENCY_FRAME) { packet_.has_ack_frequency = true; } else if (frame.type == MESSAGE_FRAME) { packet_.has_message = true; } if (debug_delegate_ != nullptr) { debug_delegate_->OnFrameAddedToPacket(frame); } if (transmission_type == NOT_RETRANSMISSION) { packet_.bytes_not_retransmitted.emplace( packet_.bytes_not_retransmitted.value_or(0) + frame_len); } else if (QuicUtils::IsRetransmittableFrame(frame.type)) { packet_.transmission_type = transmission_type; } return true; } void QuicPacketCreator::MaybeAddExtraPaddingForHeaderProtection() { if (!framer_->version().HasHeaderProtection() || needs_full_padding_) { return; } const size_t frame_bytes = PacketSize() - PacketHeaderSize(); if (frame_bytes >= MinPlaintextPacketSize(framer_->version(), GetPacketNumberLength())) { return; } QuicByteCount min_header_protection_padding = MinPlaintextPacketSize(framer_->version(), GetPacketNumberLength()) - frame_bytes; pending_padding_bytes_ = std::max(pending_padding_bytes_, min_header_protection_padding); } bool QuicPacketCreator::MaybeCoalesceStreamFrame(const QuicStreamFrame& frame) { if (queued_frames_.empty() || queued_frames_.back().type != STREAM_FRAME) { return false; } QuicStreamFrame* candidate = &queued_frames_.back().stream_frame; if (candidate->stream_id != frame.stream_id || candidate->offset + candidate->data_length != frame.offset || frame.data_length > BytesFree()) { return false; } candidate->data_length += frame.data_length; candidate->fin = frame.fin; QUICHE_DCHECK_EQ(packet_.retransmittable_frames.back().type, STREAM_FRAME) << ENDPOINT; QuicStreamFrame* retransmittable = &packet_.retransmittable_frames.back().stream_frame; QUICHE_DCHECK_EQ(retransmittable->stream_id, frame.stream_id) << ENDPOINT; QUICHE_DCHECK_EQ(retransmittable->offset + retransmittable->data_length, frame.offset) << ENDPOINT; retransmittable->data_length = candidate->data_length; retransmittable->fin = candidate->fin; packet_size_ += frame.data_length; if (debug_delegate_ != nullptr) { debug_delegate_->OnStreamFrameCoalesced(*candidate); } return true; } bool QuicPacketCreator::RemoveSoftMaxPacketLength() { if (latched_hard_max_packet_length_ == 0) { return false; } if (!CanSetMaxPacketLength()) { return false; } QUIC_DVLOG(1) << ENDPOINT << "Restoring max packet length to: " << latched_hard_max_packet_length_; SetMaxPacketLength(latched_hard_max_packet_length_); latched_hard_max_packet_length_ = 0; return true; } void QuicPacketCreator::MaybeAddPadding() { if (BytesFreeForPadding() == 0) { return; } if (packet_.fate == COALESCE) { needs_full_padding_ = false; } MaybeAddExtraPaddingForHeaderProtection(); QUIC_DVLOG(3) << "MaybeAddPadding for " << packet_.packet_number << ": transmission_type:" << packet_.transmission_type << ", fate:" << packet_.fate << ", needs_full_padding_:" << needs_full_padding_ << ", pending_padding_bytes_:" << pending_padding_bytes_ << ", BytesFree:" << BytesFree(); if (!needs_full_padding_ && pending_padding_bytes_ == 0) { return; } int padding_bytes = -1; if (!needs_full_padding_) { padding_bytes = std::min<int16_t>(pending_padding_bytes_, BytesFreeForPadding()); pending_padding_bytes_ -= padding_bytes; } if (!queued_frames_.empty()) { if (needs_full_padding_) { padding_bytes = BytesFreeForPadding(); } QuicFrame frame{QuicPaddingFrame(padding_bytes)}; queued_frames_.insert(queued_frames_.begin(), frame); packet_size_ += padding_bytes; packet_.nonretransmittable_frames.push_back(frame); if (packet_.transmission_type == NOT_RETRANSMISSION) { packet_.bytes_not_retransmitted.emplace( packet_.bytes_not_retransmitted.value_or(0) + padding_bytes); } } else { bool success = AddFrame(QuicFrame(QuicPaddingFrame(padding_bytes)), packet_.transmission_type); QUIC_BUG_IF(quic_bug_10752_36, !success) << ENDPOINT << "Failed to add padding_bytes: " << padding_bytes << " transmission_type: " << packet_.transmission_type; } } bool QuicPacketCreator::IncludeNonceInPublicHeader() const { return have_diversification_nonce_ && packet_.encryption_level == ENCRYPTION_ZERO_RTT; } bool QuicPacketCreator::IncludeVersionInHeader() const { return packet_.encryption_level < ENCRYPTION_FORWARD_SECURE; } void QuicPacketCreator::AddPendingPadding(QuicByteCount size) { pending_padding_bytes_ += size; QUIC_DVLOG(3) << "After AddPendingPadding(" << size << "), pending_padding_bytes_:" << pending_padding_bytes_; } bool QuicPacketCreator::StreamFrameIsClientHello( const QuicStreamFrame& frame) const { if (framer_->perspective() == Perspective::IS_SERVER || !QuicUtils::IsCryptoStreamId(framer_->transport_version(), frame.stream_id)) { return false; } return packet_.encryption_level == ENCRYPTION_INITIAL; } void QuicPacketCreator::SetServerConnectionIdIncluded( QuicConnectionIdIncluded server_connection_id_included) { QUICHE_DCHECK(server_connection_id_included == CONNECTION_ID_PRESENT || server_connection_id_included == CONNECTION_ID_ABSENT) << ENDPOINT; QUICHE_DCHECK(framer_->perspective() == Perspective::IS_SERVER || server_connection_id_included != CONNECTION_ID_ABSENT) << ENDPOINT; server_connection_id_included_ = server_connection_id_included; } void QuicPacketCreator::SetServerConnectionId( QuicConnectionId server_connection_id) { server_connection_id_ = server_connection_id; } void QuicPacketCreator::SetClientConnectionId( QuicConnectionId client_connection_id) { QUICHE_DCHECK(client_connection_id.IsEmpty() || framer_->version().SupportsClientConnectionIds()) << ENDPOINT; client_connection_id_ = client_connection_id; } QuicPacketLength QuicPacketCreator::GetCurrentLargestMessagePayload() const { const size_t packet_header_size = GetPacketHeaderSize( framer_->transport_version(), GetDestinationConnectionIdLength(), GetSourceConnectionIdLength(), IncludeVersionInHeader(), IncludeNonceInPublicHeader(), GetPacketNumberLength(), quiche::VARIABLE_LENGTH_INTEGER_LENGTH_0, 0, GetLengthLength()); size_t max_plaintext_size = latched_hard_max_packet_length_ == 0 ? max_plaintext_size_ : framer_->GetMaxPlaintextSize(latched_hard_max_packet_length_); size_t largest_frame = max_plaintext_size - std::min(max_plaintext_size, packet_header_size); if (static_cast<QuicByteCount>(largest_frame) > max_datagram_frame_size_) { largest_frame = static_cast<size_t>(max_datagram_frame_size_); } return largest_frame - std::min(largest_frame, kQuicFrameTypeSize); } QuicPacketLength QuicPacketCreator::GetGuaranteedLargestMessagePayload() const { const bool may_include_nonce = framer_->version().handshake_protocol == PROTOCOL_QUIC_CRYPTO && framer_->perspective() == Perspective::IS_SERVER; quiche::QuicheVariableLengthIntegerLength length_length = quiche::VARIABLE_LENGTH_INTEGER_LENGTH_0; if (framer_->perspective() == Perspective::IS_CLIENT) { length_length = quiche::VARIABLE_LENGTH_INTEGER_LENGTH_2; } if (!QuicVersionHasLongHeaderLengths(framer_->transport_version())) { length_length = quiche::VARIABLE_LENGTH_INTEGER_LENGTH_0; } const size_t packet_header_size = GetPacketHeaderSize( framer_->transport_version(), GetDestinationConnectionIdLength(), GetSourceConnectionIdLength(), kIncludeVersion, may_include_nonce, PACKET_4BYTE_PACKET_NUMBER, quiche::VARIABLE_LENGTH_INTEGER_LENGTH_0, 0, length_length); size_t max_plaintext_size = latched_hard_max_packet_length_ == 0 ? max_plaintext_size_ : framer_->GetMaxPlaintextSize(latched_hard_max_packet_length_); size_t largest_frame = max_plaintext_size - std::min(max_plaintext_size, packet_header_size); if (static_cast<QuicByteCount>(largest_frame) > max_datagram_frame_size_) { largest_frame = static_cast<size_t>(max_datagram_frame_size_); } const QuicPacketLength largest_payload = largest_frame - std::min(largest_frame, kQuicFrameTypeSize); QUICHE_DCHECK_LE(largest_payload, GetCurrentLargestMessagePayload()) << ENDPOINT; return largest_payload; } bool QuicPacketCreator::AttemptingToSendUnencryptedStreamData() { if (packet_.encryption_level == ENCRYPTION_ZERO_RTT || packet_.encryption_level == ENCRYPTION_FORWARD_SECURE) { return false; } const std::string error_details = absl::StrCat("Cannot send stream data with level: ", EncryptionLevelToString(packet_.encryption_level)); QUIC_BUG(quic_bug_10752_37) << ENDPOINT << error_details; delegate_->OnUnrecoverableError(QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA, error_details); return true; } bool QuicPacketCreator::HasIetfLongHeader() const { return packet_.encryption_level < ENCRYPTION_FORWARD_SECURE; } size_t QuicPacketCreator::MinPlaintextPacketSize( const ParsedQuicVersion& version, QuicPacketNumberLength packet_number_length) { if (!version.HasHeaderProtection()) { return 0; } return (version.UsesTls() ? 4 : 8) - packet_number_length; } QuicPacketNumber QuicPacketCreator::NextSendingPacketNumber() const { if (!packet_number().IsInitialized()) { return framer_->first_sending_packet_number(); } return packet_number() + 1; } bool QuicPacketCreator::PacketFlusherAttached() const { return flusher_attached_; } bool QuicPacketCreator::HasSoftMaxPacketLength() const { return latched_hard_max_packet_length_ != 0; } void QuicPacketCreator::SetDefaultPeerAddress(QuicSocketAddress address) { if (!packet_.peer_address.IsInitialized()) { packet_.peer_address = address; return; } if (packet_.peer_address != address) { FlushCurrentPacket(); packet_.peer_address = address; } } #define ENDPOINT2 \ (creator_->framer_->perspective() == Perspective::IS_SERVER ? "Server: " \ : "Client: ") QuicPacketCreator::ScopedPeerAddressContext::ScopedPeerAddressContext( QuicPacketCreator* creator, QuicSocketAddress address, const QuicConnectionId& client_connection_id, const QuicConnectionId& server_connection_id) : creator_(creator), old_peer_address_(creator_->packet_.peer_address), old_client_connection_id_(creator_->GetClientConnectionId()), old_server_connection_id_(creator_->GetServerConnectionId()) { QUIC_BUG_IF(quic_bug_12398_19, !old_peer_address_.IsInitialized()) << ENDPOINT2 << "Context is used before serialized packet's peer address is " "initialized."; creator_->SetDefaultPeerAddress(address); if (creator_->version().HasIetfQuicFrames()) { if (address == old_peer_address_ && ((client_connection_id.length() != old_client_connection_id_.length()) || (server_connection_id.length() != old_server_connection_id_.length()))) { creator_->FlushCurrentPacket(); } creator_->SetClientConnectionId(client_connection_id); creator_->SetServerConnectionId(server_connection_id); } } QuicPacketCreator::ScopedPeerAddressContext::~ScopedPeerAddressContext() { creator_->SetDefaultPeerAddress(old_peer_address_); if (creator_->version().HasIetfQuicFrames()) { creator_->SetClientConnectionId(old_client_connection_id_); creator_->SetServerConnectionId(old_server_connection_id_); } } QuicPacketCreator::ScopedSerializationFailureHandler:: ScopedSerializationFailureHandler(QuicPacketCreator* creator) : creator_(creator) {} QuicPacketCreator::ScopedSerializationFailureHandler:: ~ScopedSerializationFailureHandler() { if (creator_ == nullptr) { return; } creator_->queued_frames_.clear(); if (creator_->packet_.encrypted_buffer == nullptr) { const std::string error_details = "Failed to SerializePacket."; QUIC_BUG(quic_bug_10752_38) << ENDPOINT2 << error_details; creator_->delegate_->OnUnrecoverableError(QUIC_FAILED_TO_SERIALIZE_PACKET, error_details); } } #undef ENDPOINT2 void QuicPacketCreator::set_encryption_level(EncryptionLevel level) { QUICHE_DCHECK(level == packet_.encryption_level || !HasPendingFrames()) << ENDPOINT << "Cannot update encryption level from " << packet_.encryption_level << " to " << level << " when we already have pending frames: " << QuicFramesToString(queued_frames_); packet_.encryption_level = level; } void QuicPacketCreator::AddPathChallengeFrame( const QuicPathFrameBuffer& payload) { QUIC_BUG_IF(quic_bug_10752_39, !flusher_attached_) << ENDPOINT << "Packet flusher is not attached when " "generator tries to write stream data."; QuicFrame frame(QuicPathChallengeFrame(0, payload)); if (AddPaddedFrameWithRetry(frame)) { return; } QUIC_DVLOG(1) << ENDPOINT << "Can't send PATH_CHALLENGE now"; } bool QuicPacketCreator::AddPathResponseFrame( const QuicPathFrameBuffer& data_buffer) { QuicFrame frame(QuicPathResponseFrame(kInvalidControlFrameId, data_buffer)); if (AddPaddedFrameWithRetry(frame)) { return true; } QUIC_DVLOG(1) << ENDPOINT << "Can't send PATH_RESPONSE now"; return false; } bool QuicPacketCreator::AddPaddedFrameWithRetry(const QuicFrame& frame) { if (HasPendingFrames()) { if (AddPaddedSavedFrame(frame, NOT_RETRANSMISSION)) { return true; } } QUICHE_DCHECK(!HasPendingFrames()) << ENDPOINT; if (!delegate_->ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, NOT_HANDSHAKE)) { return false; } bool success = AddPaddedSavedFrame(frame, NOT_RETRANSMISSION); QUIC_BUG_IF(quic_bug_12398_20, !success) << ENDPOINT; return true; } bool QuicPacketCreator::HasRetryToken() const { return !retry_token_.empty(); } #undef ENDPOINT }
#include "quiche/quic/core/quic_packet_creator.h" #include <cstdint> #include <limits> #include <memory> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/base/macros.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/crypto/quic_decrypter.h" #include "quiche/quic/core/crypto/quic_encrypter.h" #include "quiche/quic/core/frames/quic_frame.h" #include "quiche/quic/core/frames/quic_stream_frame.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_framer_peer.h" #include "quiche/quic/test_tools/quic_packet_creator_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/test_tools/simple_data_producer.h" #include "quiche/quic/test_tools/simple_quic_framer.h" #include "quiche/common/simple_buffer_allocator.h" #include "quiche/common/test_tools/quiche_test_utils.h" using ::testing::_; using ::testing::AtLeast; using ::testing::DoAll; using ::testing::InSequence; using ::testing::Invoke; using ::testing::Return; using ::testing::SaveArg; using ::testing::StrictMock; namespace quic { namespace test { namespace { const QuicPacketNumber kPacketNumber = QuicPacketNumber(UINT64_C(0x12345678)); QuicConnectionId CreateTestConnectionId() { return TestConnectionId(UINT64_C(0xFEDCBA9876543210)); } struct TestParams { TestParams(ParsedQuicVersion version, bool version_serialization) : version(version), version_serialization(version_serialization) {} ParsedQuicVersion version; bool version_serialization; }; std::string PrintToString(const TestParams& p) { return absl::StrCat(ParsedQuicVersionToString(p.version), "_", (p.version_serialization ? "Include" : "No"), "Version"); } std::vector<TestParams> GetTestParams() { std::vector<TestParams> params; ParsedQuicVersionVector all_supported_versions = AllSupportedVersions(); for (size_t i = 0; i < all_supported_versions.size(); ++i) { params.push_back(TestParams(all_supported_versions[i], true)); params.push_back(TestParams(all_supported_versions[i], false)); } return params; } class MockDebugDelegate : public QuicPacketCreator::DebugDelegate { public: ~MockDebugDelegate() override = default; MOCK_METHOD(void, OnFrameAddedToPacket, (const QuicFrame& frame), (override)); MOCK_METHOD(void, OnStreamFrameCoalesced, (const QuicStreamFrame& frame), (override)); }; class TestPacketCreator : public QuicPacketCreator { public: TestPacketCreator(QuicConnectionId connection_id, QuicFramer* framer, DelegateInterface* delegate, SimpleDataProducer* producer) : QuicPacketCreator(connection_id, framer, delegate), producer_(producer), version_(framer->version()) {} bool ConsumeDataToFillCurrentPacket(QuicStreamId id, absl::string_view data, QuicStreamOffset offset, bool fin, bool needs_full_padding, TransmissionType transmission_type, QuicFrame* frame) { if (!data.empty()) { producer_->SaveStreamData(id, data); } return QuicPacketCreator::ConsumeDataToFillCurrentPacket( id, data.length(), offset, fin, needs_full_padding, transmission_type, frame); } void StopSendingVersion() { set_encryption_level(ENCRYPTION_FORWARD_SECURE); } SimpleDataProducer* producer_; ParsedQuicVersion version_; }; class QuicPacketCreatorTest : public QuicTestWithParam<TestParams> { public: void ClearSerializedPacketForTests(SerializedPacket ) { } void SaveSerializedPacket(SerializedPacket serialized_packet) { serialized_packet_.reset(CopySerializedPacket( serialized_packet, &allocator_, true)); } void DeleteSerializedPacket() { serialized_packet_ = nullptr; } protected: QuicPacketCreatorTest() : connection_id_(TestConnectionId(2)), server_framer_(SupportedVersions(GetParam().version), QuicTime::Zero(), Perspective::IS_SERVER, connection_id_.length()), client_framer_(SupportedVersions(GetParam().version), QuicTime::Zero(), Perspective::IS_CLIENT, connection_id_.length()), data_("foo"), creator_(connection_id_, &client_framer_, &delegate_, &producer_) { EXPECT_CALL(delegate_, GetPacketBuffer()) .WillRepeatedly(Return(QuicPacketBuffer())); EXPECT_CALL(delegate_, GetSerializedPacketFate(_, _)) .WillRepeatedly(Return(SEND_TO_WRITER)); creator_.SetEncrypter( ENCRYPTION_INITIAL, std::make_unique<TaggingEncrypter>(ENCRYPTION_INITIAL)); creator_.SetEncrypter( ENCRYPTION_HANDSHAKE, std::make_unique<TaggingEncrypter>(ENCRYPTION_HANDSHAKE)); creator_.SetEncrypter( ENCRYPTION_ZERO_RTT, std::make_unique<TaggingEncrypter>(ENCRYPTION_ZERO_RTT)); creator_.SetEncrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique<TaggingEncrypter>(ENCRYPTION_FORWARD_SECURE)); client_framer_.set_visitor(&framer_visitor_); server_framer_.set_visitor(&framer_visitor_); client_framer_.set_data_producer(&producer_); if (server_framer_.version().KnowsWhichDecrypterToUse()) { server_framer_.InstallDecrypter(ENCRYPTION_INITIAL, std::make_unique<TaggingDecrypter>()); server_framer_.InstallDecrypter(ENCRYPTION_ZERO_RTT, std::make_unique<TaggingDecrypter>()); server_framer_.InstallDecrypter(ENCRYPTION_HANDSHAKE, std::make_unique<TaggingDecrypter>()); server_framer_.InstallDecrypter(ENCRYPTION_FORWARD_SECURE, std::make_unique<TaggingDecrypter>()); } else { server_framer_.SetDecrypter(ENCRYPTION_INITIAL, std::make_unique<TaggingDecrypter>()); server_framer_.SetAlternativeDecrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique<TaggingDecrypter>(), false); } } ~QuicPacketCreatorTest() override {} SerializedPacket SerializeAllFrames(const QuicFrames& frames) { SerializedPacket packet = QuicPacketCreatorPeer::SerializeAllFrames( &creator_, frames, buffer_, kMaxOutgoingPacketSize); EXPECT_EQ(QuicPacketCreatorPeer::GetEncryptionLevel(&creator_), packet.encryption_level); return packet; } void ProcessPacket(const SerializedPacket& packet) { QuicEncryptedPacket encrypted_packet(packet.encrypted_buffer, packet.encrypted_length); server_framer_.ProcessPacket(encrypted_packet); } void CheckStreamFrame(const QuicFrame& frame, QuicStreamId stream_id, const std::string& data, QuicStreamOffset offset, bool fin) { EXPECT_EQ(STREAM_FRAME, frame.type); EXPECT_EQ(stream_id, frame.stream_frame.stream_id); char buf[kMaxOutgoingPacketSize]; QuicDataWriter writer(kMaxOutgoingPacketSize, buf, quiche::HOST_BYTE_ORDER); if (frame.stream_frame.data_length > 0) { producer_.WriteStreamData(stream_id, frame.stream_frame.offset, frame.stream_frame.data_length, &writer); } EXPECT_EQ(data, absl::string_view(buf, frame.stream_frame.data_length)); EXPECT_EQ(offset, frame.stream_frame.offset); EXPECT_EQ(fin, frame.stream_frame.fin); } size_t GetPacketHeaderOverhead(QuicTransportVersion version) { return GetPacketHeaderSize( version, creator_.GetDestinationConnectionIdLength(), creator_.GetSourceConnectionIdLength(), QuicPacketCreatorPeer::SendVersionInPacket(&creator_), !kIncludeDiversificationNonce, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_), QuicPacketCreatorPeer::GetRetryTokenLengthLength(&creator_), 0, QuicPacketCreatorPeer::GetLengthLength(&creator_)); } size_t GetEncryptionOverhead() { return creator_.max_packet_length() - client_framer_.GetMaxPlaintextSize(creator_.max_packet_length()); } size_t GetStreamFrameOverhead(QuicTransportVersion version) { return QuicFramer::GetMinStreamFrameSize( version, GetNthClientInitiatedStreamId(1), kOffset, true, 0); } bool IsDefaultTestConfiguration() { TestParams p = GetParam(); return p.version == AllSupportedVersions()[0] && p.version_serialization; } QuicStreamId GetNthClientInitiatedStreamId(int n) const { return QuicUtils::GetFirstBidirectionalStreamId( creator_.transport_version(), Perspective::IS_CLIENT) + n * 2; } void TestChaosProtection(bool enabled); static constexpr QuicStreamOffset kOffset = 0u; char buffer_[kMaxOutgoingPacketSize]; QuicConnectionId connection_id_; QuicFrames frames_; QuicFramer server_framer_; QuicFramer client_framer_; StrictMock<MockFramerVisitor> framer_visitor_; StrictMock<MockPacketCreatorDelegate> delegate_; std::string data_; TestPacketCreator creator_; std::unique_ptr<SerializedPacket> serialized_packet_; SimpleDataProducer producer_; quiche::SimpleBufferAllocator allocator_; }; INSTANTIATE_TEST_SUITE_P(QuicPacketCreatorTests, QuicPacketCreatorTest, ::testing::ValuesIn(GetTestParams()), ::testing::PrintToStringParamName()); TEST_P(QuicPacketCreatorTest, SerializeFrames) { ParsedQuicVersion version = client_framer_.version(); for (int i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; ++i) { EncryptionLevel level = static_cast<EncryptionLevel>(i); bool has_ack = false, has_stream = false; creator_.set_encryption_level(level); size_t payload_len = 0; if (level != ENCRYPTION_ZERO_RTT) { frames_.push_back(QuicFrame(new QuicAckFrame(InitAckFrame(1)))); has_ack = true; payload_len += version.UsesTls() ? 12 : 6; } if (level != ENCRYPTION_INITIAL && level != ENCRYPTION_HANDSHAKE) { QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); frames_.push_back(QuicFrame( QuicStreamFrame(stream_id, false, 0u, absl::string_view()))); has_stream = true; payload_len += 2; } SerializedPacket serialized = SerializeAllFrames(frames_); EXPECT_EQ(level, serialized.encryption_level); if (level != ENCRYPTION_ZERO_RTT) { delete frames_[0].ack_frame; } frames_.clear(); ASSERT_GT(payload_len, 0); size_t min_payload = version.UsesTls() ? 3 : 7; bool need_padding = (version.HasHeaderProtection() && (payload_len < min_payload)); { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); if (need_padding) { EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)); } if (has_ack) { EXPECT_CALL(framer_visitor_, OnAckFrameStart(_, _)) .WillOnce(Return(true)); EXPECT_CALL(framer_visitor_, OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2))) .WillOnce(Return(true)); EXPECT_CALL(framer_visitor_, OnAckFrameEnd(QuicPacketNumber(1), _)) .WillOnce(Return(true)); } if (has_stream) { EXPECT_CALL(framer_visitor_, OnStreamFrame(_)); } EXPECT_CALL(framer_visitor_, OnPacketComplete()); } ProcessPacket(serialized); } } TEST_P(QuicPacketCreatorTest, SerializeConnectionClose) { QuicConnectionCloseFrame* frame = new QuicConnectionCloseFrame( creator_.transport_version(), QUIC_NO_ERROR, NO_IETF_QUIC_ERROR, "error", 0); QuicFrames frames; frames.push_back(QuicFrame(frame)); SerializedPacket serialized = SerializeAllFrames(frames); EXPECT_EQ(ENCRYPTION_INITIAL, serialized.encryption_level); ASSERT_EQ(QuicPacketNumber(1u), serialized.packet_number); ASSERT_EQ(QuicPacketNumber(1u), creator_.packet_number()); InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); EXPECT_CALL(framer_visitor_, OnConnectionCloseFrame(_)); EXPECT_CALL(framer_visitor_, OnPacketComplete()); ProcessPacket(serialized); } TEST_P(QuicPacketCreatorTest, SerializePacketWithPadding) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); creator_.AddFrame(QuicFrame(QuicWindowUpdateFrame()), NOT_RETRANSMISSION); creator_.AddFrame(QuicFrame(QuicPaddingFrame()), NOT_RETRANSMISSION); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); ASSERT_TRUE(serialized_packet_->encrypted_buffer); EXPECT_EQ(kDefaultMaxPacketSize, serialized_packet_->encrypted_length); DeleteSerializedPacket(); } TEST_P(QuicPacketCreatorTest, SerializeLargerPacketWithPadding) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); const QuicByteCount packet_size = 100 + kDefaultMaxPacketSize; creator_.SetMaxPacketLength(packet_size); creator_.AddFrame(QuicFrame(QuicWindowUpdateFrame()), NOT_RETRANSMISSION); creator_.AddFrame(QuicFrame(QuicPaddingFrame()), NOT_RETRANSMISSION); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); ASSERT_TRUE(serialized_packet_->encrypted_buffer); EXPECT_EQ(packet_size, serialized_packet_->encrypted_length); DeleteSerializedPacket(); } TEST_P(QuicPacketCreatorTest, IncreaseMaxPacketLengthWithFramesPending) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); const QuicByteCount packet_size = 100 + kDefaultMaxPacketSize; creator_.AddFrame(QuicFrame(QuicWindowUpdateFrame()), NOT_RETRANSMISSION); creator_.SetMaxPacketLength(packet_size); creator_.AddFrame(QuicFrame(QuicPaddingFrame()), NOT_RETRANSMISSION); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); ASSERT_TRUE(serialized_packet_->encrypted_buffer); EXPECT_EQ(kDefaultMaxPacketSize, serialized_packet_->encrypted_length); DeleteSerializedPacket(); creator_.AddFrame(QuicFrame(QuicWindowUpdateFrame()), NOT_RETRANSMISSION); creator_.AddFrame(QuicFrame(QuicPaddingFrame()), NOT_RETRANSMISSION); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); ASSERT_TRUE(serialized_packet_->encrypted_buffer); EXPECT_EQ(packet_size, serialized_packet_->encrypted_length); EXPECT_EQ(packet_size, serialized_packet_->encrypted_length); DeleteSerializedPacket(); } TEST_P(QuicPacketCreatorTest, ConsumeCryptoDataToFillCurrentPacket) { std::string data = "crypto data"; QuicFrame frame; ASSERT_TRUE(creator_.ConsumeCryptoDataToFillCurrentPacket( ENCRYPTION_INITIAL, data.length(), 0, true, NOT_RETRANSMISSION, &frame)); EXPECT_EQ(frame.crypto_frame->data_length, data.length()); EXPECT_TRUE(creator_.HasPendingFrames()); } TEST_P(QuicPacketCreatorTest, ConsumeDataToFillCurrentPacket) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); QuicFrame frame; QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); const std::string data("test"); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id, data, 0u, false, false, NOT_RETRANSMISSION, &frame)); size_t consumed = frame.stream_frame.data_length; EXPECT_EQ(4u, consumed); CheckStreamFrame(frame, stream_id, "test", 0u, false); EXPECT_TRUE(creator_.HasPendingFrames()); } TEST_P(QuicPacketCreatorTest, ConsumeDataFin) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); QuicFrame frame; QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); const std::string data("test"); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id, data, 0u, true, false, NOT_RETRANSMISSION, &frame)); size_t consumed = frame.stream_frame.data_length; EXPECT_EQ(4u, consumed); CheckStreamFrame(frame, stream_id, "test", 0u, true); EXPECT_TRUE(creator_.HasPendingFrames()); } TEST_P(QuicPacketCreatorTest, ConsumeDataFinOnly) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); QuicFrame frame; QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id, {}, 0u, true, false, NOT_RETRANSMISSION, &frame)); size_t consumed = frame.stream_frame.data_length; EXPECT_EQ(0u, consumed); CheckStreamFrame(frame, stream_id, std::string(), 0u, true); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(absl::StartsWith(creator_.GetPendingFramesInfo(), "type { STREAM_FRAME }")); } TEST_P(QuicPacketCreatorTest, CreateAllFreeBytesForStreamFrames) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); const size_t overhead = GetPacketHeaderOverhead(client_framer_.transport_version()) + GetEncryptionOverhead(); for (size_t i = overhead + QuicPacketCreator::MinPlaintextPacketSize( client_framer_.version(), QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); i < overhead + 100; ++i) { SCOPED_TRACE(i); creator_.SetMaxPacketLength(i); const bool should_have_room = i > overhead + GetStreamFrameOverhead(client_framer_.transport_version()); ASSERT_EQ(should_have_room, creator_.HasRoomForStreamFrame(GetNthClientInitiatedStreamId(1), kOffset, 0xffff)); if (should_have_room) { QuicFrame frame; const std::string data("testdata"); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillRepeatedly(Invoke( this, &QuicPacketCreatorTest::ClearSerializedPacketForTests)); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( GetNthClientInitiatedStreamId(1), data, kOffset, false, false, NOT_RETRANSMISSION, &frame)); size_t bytes_consumed = frame.stream_frame.data_length; EXPECT_LT(0u, bytes_consumed); creator_.FlushCurrentPacket(); } } } TEST_P(QuicPacketCreatorTest, StreamFrameConsumption) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); const size_t overhead = GetPacketHeaderOverhead(client_framer_.transport_version()) + GetEncryptionOverhead() + GetStreamFrameOverhead(client_framer_.transport_version()); size_t capacity = kDefaultMaxPacketSize - overhead; for (int delta = -5; delta <= 5; ++delta) { std::string data(capacity + delta, 'A'); size_t bytes_free = delta > 0 ? 0 : 0 - delta; QuicFrame frame; ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( GetNthClientInitiatedStreamId(1), data, kOffset, false, false, NOT_RETRANSMISSION, &frame)); EXPECT_EQ(2u, creator_.ExpansionOnNewFrame()); size_t expected_bytes_free = bytes_free < 3 ? 0 : bytes_free - 2; EXPECT_EQ(expected_bytes_free, creator_.BytesFree()) << "delta: " << delta; EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); ASSERT_TRUE(serialized_packet_->encrypted_buffer); DeleteSerializedPacket(); } } TEST_P(QuicPacketCreatorTest, CryptoStreamFramePacketPadding) { SetQuicFlag(quic_enforce_single_packet_chlo, false); size_t overhead = GetPacketHeaderOverhead(client_framer_.transport_version()) + GetEncryptionOverhead(); if (QuicVersionUsesCryptoFrames(client_framer_.transport_version())) { overhead += QuicFramer::GetMinCryptoFrameSize(kOffset, kMaxOutgoingPacketSize); } else { overhead += QuicFramer::GetMinStreamFrameSize( client_framer_.transport_version(), GetNthClientInitiatedStreamId(1), kOffset, false, 0); } ASSERT_GT(kMaxOutgoingPacketSize, overhead); size_t capacity = kDefaultMaxPacketSize - overhead; for (int delta = -5; delta <= 5; ++delta) { SCOPED_TRACE(delta); std::string data(capacity + delta, 'A'); size_t bytes_free = delta > 0 ? 0 : 0 - delta; QuicFrame frame; EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillRepeatedly( Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); if (client_framer_.version().CanSendCoalescedPackets()) { EXPECT_CALL(delegate_, GetSerializedPacketFate(_, _)) .WillRepeatedly(Return(COALESCE)); } if (!QuicVersionUsesCryptoFrames(client_framer_.transport_version())) { ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( QuicUtils::GetCryptoStreamId(client_framer_.transport_version()), data, kOffset, false, true, NOT_RETRANSMISSION, &frame)); size_t bytes_consumed = frame.stream_frame.data_length; EXPECT_LT(0u, bytes_consumed); } else { producer_.SaveCryptoData(ENCRYPTION_INITIAL, kOffset, data); ASSERT_TRUE(creator_.ConsumeCryptoDataToFillCurrentPacket( ENCRYPTION_INITIAL, data.length(), kOffset, true, NOT_RETRANSMISSION, &frame)); size_t bytes_consumed = frame.crypto_frame->data_length; EXPECT_LT(0u, bytes_consumed); } creator_.FlushCurrentPacket(); ASSERT_TRUE(serialized_packet_->encrypted_buffer); if (client_framer_.version().CanSendCoalescedPackets()) { EXPECT_EQ(kDefaultMaxPacketSize - bytes_free, serialized_packet_->encrypted_length); } else { EXPECT_EQ(kDefaultMaxPacketSize, serialized_packet_->encrypted_length); } DeleteSerializedPacket(); } } TEST_P(QuicPacketCreatorTest, NonCryptoStreamFramePacketNonPadding) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); const size_t overhead = GetPacketHeaderOverhead(client_framer_.transport_version()) + GetEncryptionOverhead() + GetStreamFrameOverhead(client_framer_.transport_version()); ASSERT_GT(kDefaultMaxPacketSize, overhead); size_t capacity = kDefaultMaxPacketSize - overhead; for (int delta = -5; delta <= 5; ++delta) { std::string data(capacity + delta, 'A'); size_t bytes_free = delta > 0 ? 0 : 0 - delta; QuicFrame frame; EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( GetNthClientInitiatedStreamId(1), data, kOffset, false, false, NOT_RETRANSMISSION, &frame)); size_t bytes_consumed = frame.stream_frame.data_length; EXPECT_LT(0u, bytes_consumed); creator_.FlushCurrentPacket(); ASSERT_TRUE(serialized_packet_->encrypted_buffer); if (bytes_free > 0) { EXPECT_EQ(kDefaultMaxPacketSize - bytes_free, serialized_packet_->encrypted_length); } else { EXPECT_EQ(kDefaultMaxPacketSize, serialized_packet_->encrypted_length); } DeleteSerializedPacket(); } } TEST_P(QuicPacketCreatorTest, BuildPathChallengePacket) { if (!VersionHasIetfQuicFrames(creator_.transport_version())) { return; } QuicPacketHeader header; header.destination_connection_id = CreateTestConnectionId(); header.reset_flag = false; header.version_flag = false; header.packet_number = kPacketNumber; MockRandom randomizer; QuicPathFrameBuffer payload; randomizer.RandBytes(payload.data(), payload.size()); unsigned char packet[] = { 0x43, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0x12, 0x34, 0x56, 0x78, 0x1a, 'r', 'r', 'r', 'r', 'r', 'r', 'r', 'r', 0x00, 0x00, 0x00, 0x00, 0x00 }; std::unique_ptr<char[]> buffer(new char[kMaxOutgoingPacketSize]); size_t length = creator_.BuildPaddedPathChallengePacket( header, buffer.get(), ABSL_ARRAYSIZE(packet), payload, ENCRYPTION_INITIAL); EXPECT_EQ(length, ABSL_ARRAYSIZE(packet)); EXPECT_EQ(kQuicPathFrameBufferSize, payload.size()); QuicPacket data(creator_.transport_version(), buffer.release(), length, true, header); quiche::test::CompareCharArraysWithHexError( "constructed packet", data.data(), data.length(), reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet)); } TEST_P(QuicPacketCreatorTest, BuildConnectivityProbingPacket) { QuicPacketHeader header; header.destination_connection_id = CreateTestConnectionId(); header.reset_flag = false; header.version_flag = false; header.packet_number = kPacketNumber; unsigned char packet[] = { 0x43, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0x12, 0x34, 0x56, 0x78, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00 }; unsigned char packet99[] = { 0x43, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0x12, 0x34, 0x56, 0x78, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 }; unsigned char* p = packet; size_t packet_size = ABSL_ARRAYSIZE(packet); if (creator_.version().HasIetfQuicFrames()) { p = packet99; packet_size = ABSL_ARRAYSIZE(packet99); } std::unique_ptr<char[]> buffer(new char[kMaxOutgoingPacketSize]); size_t length = creator_.BuildConnectivityProbingPacket( header, buffer.get(), packet_size, ENCRYPTION_INITIAL); EXPECT_NE(0u, length); QuicPacket data(creator_.transport_version(), buffer.release(), length, true, header); quiche::test::CompareCharArraysWithHexError( "constructed packet", data.data(), data.length(), reinterpret_cast<char*>(p), packet_size); } TEST_P(QuicPacketCreatorTest, BuildPathResponsePacket1ResponseUnpadded) { if (!VersionHasIetfQuicFrames(creator_.transport_version())) { return; } QuicPacketHeader header; header.destination_connection_id = CreateTestConnectionId(); header.reset_flag = false; header.version_flag = false; header.packet_number = kPacketNumber; QuicPathFrameBuffer payload0 = { {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}}; unsigned char packet[] = { 0x43, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0x12, 0x34, 0x56, 0x78, 0x1b, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, }; std::unique_ptr<char[]> buffer(new char[kMaxOutgoingPacketSize]); quiche::QuicheCircularDeque<QuicPathFrameBuffer> payloads; payloads.push_back(payload0); size_t length = creator_.BuildPathResponsePacket( header, buffer.get(), ABSL_ARRAYSIZE(packet), payloads, false, ENCRYPTION_INITIAL); EXPECT_EQ(length, ABSL_ARRAYSIZE(packet)); QuicPacket data(creator_.transport_version(), buffer.release(), length, true, header); quiche::test::CompareCharArraysWithHexError( "constructed packet", data.data(), data.length(), reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet)); } TEST_P(QuicPacketCreatorTest, BuildPathResponsePacket1ResponsePadded) { if (!VersionHasIetfQuicFrames(creator_.transport_version())) { return; } QuicPacketHeader header; header.destination_connection_id = CreateTestConnectionId(); header.reset_flag = false; header.version_flag = false; header.packet_number = kPacketNumber; QuicPathFrameBuffer payload0 = { {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}}; unsigned char packet[] = { 0x43, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0x12, 0x34, 0x56, 0x78, 0x1b, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00 }; std::unique_ptr<char[]> buffer(new char[kMaxOutgoingPacketSize]); quiche::QuicheCircularDeque<QuicPathFrameBuffer> payloads; payloads.push_back(payload0); size_t length = creator_.BuildPathResponsePacket( header, buffer.get(), ABSL_ARRAYSIZE(packet), payloads, true, ENCRYPTION_INITIAL); EXPECT_EQ(length, ABSL_ARRAYSIZE(packet)); QuicPacket data(creator_.transport_version(), buffer.release(), length, true, header); quiche::test::CompareCharArraysWithHexError( "constructed packet", data.data(), data.length(), reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet)); } TEST_P(QuicPacketCreatorTest, BuildPathResponsePacket3ResponsesUnpadded) { if (!VersionHasIetfQuicFrames(creator_.transport_version())) { return; } QuicPacketHeader header; header.destination_connection_id = CreateTestConnectionId(); header.reset_flag = false; header.version_flag = false; header.packet_number = kPacketNumber; QuicPathFrameBuffer payload0 = { {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}}; QuicPathFrameBuffer payload1 = { {0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18}}; QuicPathFrameBuffer payload2 = { {0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28}}; unsigned char packet[] = { 0x43, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0x12, 0x34, 0x56, 0x78, 0x1b, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x1b, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x1b, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, }; std::unique_ptr<char[]> buffer(new char[kMaxOutgoingPacketSize]); quiche::QuicheCircularDeque<QuicPathFrameBuffer> payloads; payloads.push_back(payload0); payloads.push_back(payload1); payloads.push_back(payload2); size_t length = creator_.BuildPathResponsePacket( header, buffer.get(), ABSL_ARRAYSIZE(packet), payloads, false, ENCRYPTION_INITIAL); EXPECT_EQ(length, ABSL_ARRAYSIZE(packet)); QuicPacket data(creator_.transport_version(), buffer.release(), length, true, header); quiche::test::CompareCharArraysWithHexError( "constructed packet", data.data(), data.length(), reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet)); } TEST_P(QuicPacketCreatorTest, BuildPathResponsePacket3ResponsesPadded) { if (!VersionHasIetfQuicFrames(creator_.transport_version())) { return; } QuicPacketHeader header; header.destination_connection_id = CreateTestConnectionId(); header.reset_flag = false; header.version_flag = false; header.packet_number = kPacketNumber; QuicPathFrameBuffer payload0 = { {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}}; QuicPathFrameBuffer payload1 = { {0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18}}; QuicPathFrameBuffer payload2 = { {0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28}}; unsigned char packet[] = { 0x43, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10, 0x12, 0x34, 0x56, 0x78, 0x1b, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x1b, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x1b, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x00, 0x00, 0x00, 0x00, 0x00 }; std::unique_ptr<char[]> buffer(new char[kMaxOutgoingPacketSize]); quiche::QuicheCircularDeque<QuicPathFrameBuffer> payloads; payloads.push_back(payload0); payloads.push_back(payload1); payloads.push_back(payload2); size_t length = creator_.BuildPathResponsePacket( header, buffer.get(), ABSL_ARRAYSIZE(packet), payloads, true, ENCRYPTION_INITIAL); EXPECT_EQ(length, ABSL_ARRAYSIZE(packet)); QuicPacket data(creator_.transport_version(), buffer.release(), length, true, header); quiche::test::CompareCharArraysWithHexError( "constructed packet", data.data(), data.length(), reinterpret_cast<char*>(packet), ABSL_ARRAYSIZE(packet)); } TEST_P(QuicPacketCreatorTest, SerializeConnectivityProbingPacket) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); std::unique_ptr<SerializedPacket> encrypted; if (VersionHasIetfQuicFrames(creator_.transport_version())) { QuicPathFrameBuffer payload = { {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}}; encrypted = creator_.SerializePathChallengeConnectivityProbingPacket(payload); } else { encrypted = creator_.SerializeConnectivityProbingPacket(); } { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); if (VersionHasIetfQuicFrames(creator_.transport_version())) { EXPECT_CALL(framer_visitor_, OnPathChallengeFrame(_)); EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)); } else { EXPECT_CALL(framer_visitor_, OnPingFrame(_)); EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)); } EXPECT_CALL(framer_visitor_, OnPacketComplete()); } server_framer_.ProcessPacket(QuicEncryptedPacket( encrypted->encrypted_buffer, encrypted->encrypted_length)); } TEST_P(QuicPacketCreatorTest, SerializePathChallengeProbePacket) { if (!VersionHasIetfQuicFrames(creator_.transport_version())) { return; } QuicPathFrameBuffer payload = { {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee}}; creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); std::unique_ptr<SerializedPacket> encrypted( creator_.SerializePathChallengeConnectivityProbingPacket(payload)); { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); EXPECT_CALL(framer_visitor_, OnPathChallengeFrame(_)); EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)); EXPECT_CALL(framer_visitor_, OnPacketComplete()); } server_framer_.ProcessPacket(QuicEncryptedPacket( encrypted->encrypted_buffer, encrypted->encrypted_length)); } TEST_P(QuicPacketCreatorTest, SerializePathResponseProbePacket1PayloadPadded) { if (!VersionHasIetfQuicFrames(creator_.transport_version())) { return; } QuicPathFrameBuffer payload0 = { {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee}}; creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); quiche::QuicheCircularDeque<QuicPathFrameBuffer> payloads; payloads.push_back(payload0); std::unique_ptr<SerializedPacket> encrypted( creator_.SerializePathResponseConnectivityProbingPacket(payloads, true)); { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); EXPECT_CALL(framer_visitor_, OnPathResponseFrame(_)); EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)); EXPECT_CALL(framer_visitor_, OnPacketComplete()); } server_framer_.ProcessPacket(QuicEncryptedPacket( encrypted->encrypted_buffer, encrypted->encrypted_length)); } TEST_P(QuicPacketCreatorTest, SerializePathResponseProbePacket1PayloadUnPadded) { if (!VersionHasIetfQuicFrames(creator_.transport_version())) { return; } QuicPathFrameBuffer payload0 = { {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee}}; creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); quiche::QuicheCircularDeque<QuicPathFrameBuffer> payloads; payloads.push_back(payload0); std::unique_ptr<SerializedPacket> encrypted( creator_.SerializePathResponseConnectivityProbingPacket(payloads, false)); { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); EXPECT_CALL(framer_visitor_, OnPathResponseFrame(_)); EXPECT_CALL(framer_visitor_, OnPacketComplete()); } server_framer_.ProcessPacket(QuicEncryptedPacket( encrypted->encrypted_buffer, encrypted->encrypted_length)); } TEST_P(QuicPacketCreatorTest, SerializePathResponseProbePacket2PayloadsPadded) { if (!VersionHasIetfQuicFrames(creator_.transport_version())) { return; } QuicPathFrameBuffer payload0 = { {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee}}; QuicPathFrameBuffer payload1 = { {0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee, 0xde}}; creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); quiche::QuicheCircularDeque<QuicPathFrameBuffer> payloads; payloads.push_back(payload0); payloads.push_back(payload1); std::unique_ptr<SerializedPacket> encrypted( creator_.SerializePathResponseConnectivityProbingPacket(payloads, true)); { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); EXPECT_CALL(framer_visitor_, OnPathResponseFrame(_)).Times(2); EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)); EXPECT_CALL(framer_visitor_, OnPacketComplete()); } server_framer_.ProcessPacket(QuicEncryptedPacket( encrypted->encrypted_buffer, encrypted->encrypted_length)); } TEST_P(QuicPacketCreatorTest, SerializePathResponseProbePacket2PayloadsUnPadded) { if (!VersionHasIetfQuicFrames(creator_.transport_version())) { return; } QuicPathFrameBuffer payload0 = { {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee}}; QuicPathFrameBuffer payload1 = { {0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee, 0xde}}; creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); quiche::QuicheCircularDeque<QuicPathFrameBuffer> payloads; payloads.push_back(payload0); payloads.push_back(payload1); std::unique_ptr<SerializedPacket> encrypted( creator_.SerializePathResponseConnectivityProbingPacket(payloads, false)); { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); EXPECT_CALL(framer_visitor_, OnPathResponseFrame(_)).Times(2); EXPECT_CALL(framer_visitor_, OnPacketComplete()); } server_framer_.ProcessPacket(QuicEncryptedPacket( encrypted->encrypted_buffer, encrypted->encrypted_length)); } TEST_P(QuicPacketCreatorTest, SerializePathResponseProbePacket3PayloadsPadded) { if (!VersionHasIetfQuicFrames(creator_.transport_version())) { return; } QuicPathFrameBuffer payload0 = { {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee}}; QuicPathFrameBuffer payload1 = { {0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee, 0xde}}; QuicPathFrameBuffer payload2 = { {0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee, 0xde, 0xad}}; creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); quiche::QuicheCircularDeque<QuicPathFrameBuffer> payloads; payloads.push_back(payload0); payloads.push_back(payload1); payloads.push_back(payload2); std::unique_ptr<SerializedPacket> encrypted( creator_.SerializePathResponseConnectivityProbingPacket(payloads, true)); { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); EXPECT_CALL(framer_visitor_, OnPathResponseFrame(_)).Times(3); EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)); EXPECT_CALL(framer_visitor_, OnPacketComplete()); } server_framer_.ProcessPacket(QuicEncryptedPacket( encrypted->encrypted_buffer, encrypted->encrypted_length)); } TEST_P(QuicPacketCreatorTest, SerializePathResponseProbePacket3PayloadsUnpadded) { if (!VersionHasIetfQuicFrames(creator_.transport_version())) { return; } QuicPathFrameBuffer payload0 = { {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee}}; QuicPathFrameBuffer payload1 = { {0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee, 0xde}}; QuicPathFrameBuffer payload2 = { {0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xee, 0xde, 0xad}}; creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); quiche::QuicheCircularDeque<QuicPathFrameBuffer> payloads; payloads.push_back(payload0); payloads.push_back(payload1); payloads.push_back(payload2); std::unique_ptr<SerializedPacket> encrypted( creator_.SerializePathResponseConnectivityProbingPacket(payloads, false)); InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); EXPECT_CALL(framer_visitor_, OnPathResponseFrame(_)).Times(3); EXPECT_CALL(framer_visitor_, OnPacketComplete()); server_framer_.ProcessPacket(QuicEncryptedPacket( encrypted->encrypted_buffer, encrypted->encrypted_length)); } TEST_P(QuicPacketCreatorTest, SerializeLargePacketNumberConnectionClosePacket) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); std::unique_ptr<SerializedPacket> encrypted( creator_.SerializeLargePacketNumberConnectionClosePacket( QuicPacketNumber(1), QUIC_CLIENT_LOST_NETWORK_ACCESS, "QuicPacketCreatorTest")); InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); EXPECT_CALL(framer_visitor_, OnConnectionCloseFrame(_)); EXPECT_CALL(framer_visitor_, OnPacketComplete()); server_framer_.ProcessPacket(QuicEncryptedPacket( encrypted->encrypted_buffer, encrypted->encrypted_length)); } TEST_P(QuicPacketCreatorTest, UpdatePacketSequenceNumberLengthLeastAwaiting) { if (!GetParam().version.SendsVariableLengthPacketNumberInLongHeader()) { EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); } else { EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); } QuicPacketCreatorPeer::SetPacketNumber(&creator_, 64); creator_.UpdatePacketNumberLength(QuicPacketNumber(2), 10000 / kDefaultMaxPacketSize); EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); QuicPacketCreatorPeer::SetPacketNumber(&creator_, 64 * 256); creator_.UpdatePacketNumberLength(QuicPacketNumber(2), 10000 / kDefaultMaxPacketSize); EXPECT_EQ(PACKET_2BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); QuicPacketCreatorPeer::SetPacketNumber(&creator_, 64 * 256 * 256); creator_.UpdatePacketNumberLength(QuicPacketNumber(2), 10000 / kDefaultMaxPacketSize); EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); QuicPacketCreatorPeer::SetPacketNumber(&creator_, UINT64_C(64) * 256 * 256 * 256 * 256); creator_.UpdatePacketNumberLength(QuicPacketNumber(2), 10000 / kDefaultMaxPacketSize); EXPECT_EQ(PACKET_6BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); } TEST_P(QuicPacketCreatorTest, UpdatePacketSequenceNumberLengthCwnd) { QuicPacketCreatorPeer::SetPacketNumber(&creator_, 1); if (!GetParam().version.SendsVariableLengthPacketNumberInLongHeader()) { EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); } else { EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); } creator_.UpdatePacketNumberLength(QuicPacketNumber(1), 10000 / kDefaultMaxPacketSize); EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); creator_.UpdatePacketNumberLength(QuicPacketNumber(1), 10000 * 256 / kDefaultMaxPacketSize); EXPECT_EQ(PACKET_2BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); creator_.UpdatePacketNumberLength(QuicPacketNumber(1), 10000 * 256 * 256 / kDefaultMaxPacketSize); EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); creator_.UpdatePacketNumberLength( QuicPacketNumber(1), UINT64_C(1000) * 256 * 256 * 256 * 256 / kDefaultMaxPacketSize); EXPECT_EQ(PACKET_6BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); } TEST_P(QuicPacketCreatorTest, SkipNPacketNumbers) { QuicPacketCreatorPeer::SetPacketNumber(&creator_, 1); if (!GetParam().version.SendsVariableLengthPacketNumberInLongHeader()) { EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); } else { EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); } creator_.SkipNPacketNumbers(63, QuicPacketNumber(2), 10000 / kDefaultMaxPacketSize); EXPECT_EQ(QuicPacketNumber(64), creator_.packet_number()); EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); creator_.SkipNPacketNumbers(64 * 255, QuicPacketNumber(2), 10000 / kDefaultMaxPacketSize); EXPECT_EQ(QuicPacketNumber(64 * 256), creator_.packet_number()); EXPECT_EQ(PACKET_2BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); creator_.SkipNPacketNumbers(64 * 256 * 255, QuicPacketNumber(2), 10000 / kDefaultMaxPacketSize); EXPECT_EQ(QuicPacketNumber(64 * 256 * 256), creator_.packet_number()); EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)); } TEST_P(QuicPacketCreatorTest, SerializeFrame) { if (!GetParam().version_serialization) { creator_.StopSendingVersion(); } std::string data("test data"); if (!QuicVersionUsesCryptoFrames(client_framer_.transport_version())) { QuicStreamFrame stream_frame( QuicUtils::GetCryptoStreamId(client_framer_.transport_version()), false, 0u, absl::string_view()); frames_.push_back(QuicFrame(stream_frame)); } else { producer_.SaveCryptoData(ENCRYPTION_INITIAL, 0, data); frames_.push_back( QuicFrame(new QuicCryptoFrame(ENCRYPTION_INITIAL, 0, data.length()))); } SerializedPacket serialized = SerializeAllFrames(frames_); QuicPacketHeader header; { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)) .WillOnce(DoAll(SaveArg<0>(&header), Return(true))); if (QuicVersionUsesCryptoFrames(client_framer_.transport_version())) { EXPECT_CALL(framer_visitor_, OnCryptoFrame(_)); } else { EXPECT_CALL(framer_visitor_, OnStreamFrame(_)); } EXPECT_CALL(framer_visitor_, OnPacketComplete()); } ProcessPacket(serialized); EXPECT_EQ(GetParam().version_serialization, header.version_flag); } TEST_P(QuicPacketCreatorTest, SerializeFrameShortData) { if (!GetParam().version_serialization) { creator_.StopSendingVersion(); } std::string data("Hello World!"); if (!QuicVersionUsesCryptoFrames(client_framer_.transport_version())) { QuicStreamFrame stream_frame( QuicUtils::GetCryptoStreamId(client_framer_.transport_version()), false, 0u, absl::string_view()); frames_.push_back(QuicFrame(stream_frame)); } else { producer_.SaveCryptoData(ENCRYPTION_INITIAL, 0, data); frames_.push_back( QuicFrame(new QuicCryptoFrame(ENCRYPTION_INITIAL, 0, data.length()))); } SerializedPacket serialized = SerializeAllFrames(frames_); QuicPacketHeader header; { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)) .WillOnce(DoAll(SaveArg<0>(&header), Return(true))); if (QuicVersionUsesCryptoFrames(client_framer_.transport_version())) { EXPECT_CALL(framer_visitor_, OnCryptoFrame(_)); } else { EXPECT_CALL(framer_visitor_, OnStreamFrame(_)); } EXPECT_CALL(framer_visitor_, OnPacketComplete()); } ProcessPacket(serialized); EXPECT_EQ(GetParam().version_serialization, header.version_flag); } void QuicPacketCreatorTest::TestChaosProtection(bool enabled) { if (!GetParam().version.UsesCryptoFrames()) { return; } MockRandom mock_random(2); QuicPacketCreatorPeer::SetRandom(&creator_, &mock_random); std::string data("ChAoS_ThEoRy!"); producer_.SaveCryptoData(ENCRYPTION_INITIAL, 0, data); frames_.push_back( QuicFrame(new QuicCryptoFrame(ENCRYPTION_INITIAL, 0, data.length()))); frames_.push_back(QuicFrame(QuicPaddingFrame(33))); SerializedPacket serialized = SerializeAllFrames(frames_); EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); if (enabled) { EXPECT_CALL(framer_visitor_, OnCryptoFrame(_)).Times(AtLeast(2)); EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)).Times(AtLeast(2)); EXPECT_CALL(framer_visitor_, OnPingFrame(_)).Times(AtLeast(1)); } else { EXPECT_CALL(framer_visitor_, OnCryptoFrame(_)).Times(1); EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)).Times(1); EXPECT_CALL(framer_visitor_, OnPingFrame(_)).Times(0); } EXPECT_CALL(framer_visitor_, OnPacketComplete()); ProcessPacket(serialized); } TEST_P(QuicPacketCreatorTest, ChaosProtectionEnabled) { TestChaosProtection(true); } TEST_P(QuicPacketCreatorTest, ChaosProtectionDisabled) { SetQuicFlag(quic_enable_chaos_protection, false); TestChaosProtection(false); } TEST_P(QuicPacketCreatorTest, ConsumeDataLargerThanOneStreamFrame) { if (!GetParam().version_serialization) { creator_.StopSendingVersion(); } creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); QuicFrame frame; size_t payload_length = creator_.max_packet_length(); const std::string too_long_payload(payload_length, 'a'); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id, too_long_payload, 0u, true, false, NOT_RETRANSMISSION, &frame)); size_t consumed = frame.stream_frame.data_length; EXPECT_GT(payload_length, consumed); creator_.FlushCurrentPacket(); DeleteSerializedPacket(); } TEST_P(QuicPacketCreatorTest, AddFrameAndFlush) { if (!GetParam().version_serialization) { creator_.StopSendingVersion(); } const size_t max_plaintext_size = client_framer_.GetMaxPlaintextSize(creator_.max_packet_length()); EXPECT_FALSE(creator_.HasPendingFrames()); creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); if (!QuicVersionUsesCryptoFrames(client_framer_.transport_version())) { stream_id = QuicUtils::GetCryptoStreamId(client_framer_.transport_version()); } EXPECT_FALSE(creator_.HasPendingStreamFramesOfStream(stream_id)); EXPECT_EQ(max_plaintext_size - GetPacketHeaderSize( client_framer_.transport_version(), creator_.GetDestinationConnectionIdLength(), creator_.GetSourceConnectionIdLength(), QuicPacketCreatorPeer::SendVersionInPacket(&creator_), !kIncludeDiversificationNonce, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_), QuicPacketCreatorPeer::GetRetryTokenLengthLength(&creator_), 0, QuicPacketCreatorPeer::GetLengthLength(&creator_)), creator_.BytesFree()); StrictMock<MockDebugDelegate> debug; creator_.set_debug_delegate(&debug); QuicAckFrame ack_frame(InitAckFrame(10u)); EXPECT_CALL(debug, OnFrameAddedToPacket(_)); EXPECT_TRUE(creator_.AddFrame(QuicFrame(&ack_frame), NOT_RETRANSMISSION)); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingStreamFramesOfStream(stream_id)); QuicFrame frame; const std::string data("test"); EXPECT_CALL(debug, OnFrameAddedToPacket(_)); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id, data, 0u, false, false, NOT_RETRANSMISSION, &frame)); size_t consumed = frame.stream_frame.data_length; EXPECT_EQ(4u, consumed); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(creator_.HasPendingStreamFramesOfStream(stream_id)); QuicPaddingFrame padding_frame; EXPECT_CALL(debug, OnFrameAddedToPacket(_)); EXPECT_TRUE(creator_.AddFrame(QuicFrame(padding_frame), NOT_RETRANSMISSION)); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_EQ(0u, creator_.BytesFree()); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); EXPECT_FALSE(creator_.AddFrame(QuicFrame(&ack_frame), NOT_RETRANSMISSION)); ASSERT_TRUE(serialized_packet_->encrypted_buffer); ASSERT_FALSE(serialized_packet_->retransmittable_frames.empty()); const QuicFrames& retransmittable = serialized_packet_->retransmittable_frames; ASSERT_EQ(1u, retransmittable.size()); EXPECT_EQ(STREAM_FRAME, retransmittable[0].type); EXPECT_TRUE(serialized_packet_->has_ack); EXPECT_EQ(QuicPacketNumber(10u), serialized_packet_->largest_acked); DeleteSerializedPacket(); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingStreamFramesOfStream(stream_id)); EXPECT_EQ(max_plaintext_size - GetPacketHeaderSize( client_framer_.transport_version(), creator_.GetDestinationConnectionIdLength(), creator_.GetSourceConnectionIdLength(), QuicPacketCreatorPeer::SendVersionInPacket(&creator_), !kIncludeDiversificationNonce, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_), QuicPacketCreatorPeer::GetRetryTokenLengthLength(&creator_), 0, QuicPacketCreatorPeer::GetLengthLength(&creator_)), creator_.BytesFree()); } TEST_P(QuicPacketCreatorTest, SerializeAndSendStreamFrame) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); if (!GetParam().version_serialization) { creator_.StopSendingVersion(); } EXPECT_FALSE(creator_.HasPendingFrames()); const std::string data("test"); producer_.SaveStreamData(GetNthClientInitiatedStreamId(0), data); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); size_t num_bytes_consumed; StrictMock<MockDebugDelegate> debug; creator_.set_debug_delegate(&debug); EXPECT_CALL(debug, OnFrameAddedToPacket(_)); creator_.CreateAndSerializeStreamFrame( GetNthClientInitiatedStreamId(0), data.length(), 0, 0, true, NOT_RETRANSMISSION, &num_bytes_consumed); EXPECT_EQ(4u, num_bytes_consumed); ASSERT_TRUE(serialized_packet_->encrypted_buffer); ASSERT_FALSE(serialized_packet_->retransmittable_frames.empty()); const QuicFrames& retransmittable = serialized_packet_->retransmittable_frames; ASSERT_EQ(1u, retransmittable.size()); EXPECT_EQ(STREAM_FRAME, retransmittable[0].type); DeleteSerializedPacket(); EXPECT_FALSE(creator_.HasPendingFrames()); } TEST_P(QuicPacketCreatorTest, SerializeStreamFrameWithPadding) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); if (!GetParam().version_serialization) { creator_.StopSendingVersion(); } EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); size_t num_bytes_consumed; creator_.CreateAndSerializeStreamFrame(GetNthClientInitiatedStreamId(0), 0, 0, 0, true, NOT_RETRANSMISSION, &num_bytes_consumed); EXPECT_EQ(0u, num_bytes_consumed); ASSERT_TRUE(serialized_packet_->encrypted_buffer); ASSERT_FALSE(serialized_packet_->retransmittable_frames.empty()); ASSERT_EQ(serialized_packet_->packet_number_length, PACKET_1BYTE_PACKET_NUMBER); { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); if (client_framer_.version().HasHeaderProtection()) { EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)); EXPECT_CALL(framer_visitor_, OnStreamFrame(_)); } else { EXPECT_CALL(framer_visitor_, OnStreamFrame(_)); } EXPECT_CALL(framer_visitor_, OnPacketComplete()); } ProcessPacket(*serialized_packet_); } TEST_P(QuicPacketCreatorTest, AddUnencryptedStreamDataClosesConnection) { if (!IsDefaultTestConfiguration()) { return; } creator_.set_encryption_level(ENCRYPTION_INITIAL); QuicStreamFrame stream_frame(GetNthClientInitiatedStreamId(0), false, 0u, absl::string_view()); EXPECT_QUIC_BUG( { EXPECT_CALL(delegate_, OnUnrecoverableError(_, _)); creator_.AddFrame(QuicFrame(stream_frame), NOT_RETRANSMISSION); }, "Cannot send stream data with level: ENCRYPTION_INITIAL"); } TEST_P(QuicPacketCreatorTest, SendStreamDataWithEncryptionHandshake) { if (!IsDefaultTestConfiguration()) { return; } creator_.set_encryption_level(ENCRYPTION_HANDSHAKE); QuicStreamFrame stream_frame(GetNthClientInitiatedStreamId(0), false, 0u, absl::string_view()); EXPECT_QUIC_BUG( { EXPECT_CALL(delegate_, OnUnrecoverableError(_, _)); creator_.AddFrame(QuicFrame(stream_frame), NOT_RETRANSMISSION); }, "Cannot send stream data with level: ENCRYPTION_HANDSHAKE"); } TEST_P(QuicPacketCreatorTest, ChloTooLarge) { if (!IsDefaultTestConfiguration()) { return; } if (QuicVersionUsesCryptoFrames(client_framer_.transport_version())) { return; } CryptoHandshakeMessage message; message.set_tag(kCHLO); message.set_minimum_size(kMaxOutgoingPacketSize); CryptoFramer framer; std::unique_ptr<QuicData> message_data; message_data = framer.ConstructHandshakeMessage(message); QuicFrame frame; EXPECT_CALL(delegate_, OnUnrecoverableError(QUIC_CRYPTO_CHLO_TOO_LARGE, _)); EXPECT_QUIC_BUG( creator_.ConsumeDataToFillCurrentPacket( QuicUtils::GetCryptoStreamId(client_framer_.transport_version()), absl::string_view(message_data->data(), message_data->length()), 0u, false, false, NOT_RETRANSMISSION, &frame), "Client hello won't fit in a single packet."); } TEST_P(QuicPacketCreatorTest, PendingPadding) { EXPECT_EQ(0u, creator_.pending_padding_bytes()); creator_.AddPendingPadding(kMaxNumRandomPaddingBytes * 10); EXPECT_EQ(kMaxNumRandomPaddingBytes * 10, creator_.pending_padding_bytes()); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillRepeatedly( Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); while (creator_.pending_padding_bytes() > 0) { creator_.FlushCurrentPacket(); { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)); EXPECT_CALL(framer_visitor_, OnPacketComplete()); } ProcessPacket(*serialized_packet_); } EXPECT_EQ(0u, creator_.pending_padding_bytes()); } TEST_P(QuicPacketCreatorTest, FullPaddingDoesNotConsumePendingPadding) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); creator_.AddPendingPadding(kMaxNumRandomPaddingBytes); QuicFrame frame; QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); const std::string data("test"); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id, data, 0u, false, true, NOT_RETRANSMISSION, &frame)); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); EXPECT_EQ(kMaxNumRandomPaddingBytes, creator_.pending_padding_bytes()); } TEST_P(QuicPacketCreatorTest, ConsumeDataAndRandomPadding) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); const QuicByteCount kStreamFramePayloadSize = 100u; QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); size_t length = GetPacketHeaderOverhead(client_framer_.transport_version()) + GetEncryptionOverhead() + QuicFramer::GetMinStreamFrameSize( client_framer_.transport_version(), stream_id, 0, true, kStreamFramePayloadSize + 1) + kStreamFramePayloadSize + 1; creator_.SetMaxPacketLength(length); creator_.AddPendingPadding(kMaxNumRandomPaddingBytes); QuicByteCount pending_padding_bytes = creator_.pending_padding_bytes(); QuicFrame frame; char buf[kStreamFramePayloadSize + 1] = {}; EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillRepeatedly( Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.ConsumeDataToFillCurrentPacket( stream_id, absl::string_view(buf, kStreamFramePayloadSize), 0u, false, false, NOT_RETRANSMISSION, &frame); creator_.FlushCurrentPacket(); EXPECT_EQ(pending_padding_bytes - 1, creator_.pending_padding_bytes()); creator_.ConsumeDataToFillCurrentPacket( stream_id, absl::string_view(buf, kStreamFramePayloadSize + 1), kStreamFramePayloadSize, false, false, NOT_RETRANSMISSION, &frame); creator_.FlushCurrentPacket(); EXPECT_EQ(pending_padding_bytes - 1, creator_.pending_padding_bytes()); while (creator_.pending_padding_bytes() > 0) { creator_.FlushCurrentPacket(); } EXPECT_EQ(0u, creator_.pending_padding_bytes()); } TEST_P(QuicPacketCreatorTest, FlushWithExternalBuffer) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); char* buffer = new char[kMaxOutgoingPacketSize]; QuicPacketBuffer external_buffer = {buffer, [](const char* p) { delete[] p; }}; EXPECT_CALL(delegate_, GetPacketBuffer()).WillOnce(Return(external_buffer)); QuicFrame frame; QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); const std::string data("test"); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id, data, 0u, false, true, NOT_RETRANSMISSION, &frame)); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke([&external_buffer](SerializedPacket serialized_packet) { EXPECT_EQ(external_buffer.buffer, serialized_packet.encrypted_buffer); })); creator_.FlushCurrentPacket(); } TEST_P(QuicPacketCreatorTest, IetfAckGapErrorRegression) { QuicAckFrame ack_frame = InitAckFrame({{QuicPacketNumber(60), QuicPacketNumber(61)}, {QuicPacketNumber(125), QuicPacketNumber(126)}}); frames_.push_back(QuicFrame(&ack_frame)); SerializeAllFrames(frames_); } TEST_P(QuicPacketCreatorTest, AddMessageFrame) { if (client_framer_.version().UsesTls()) { creator_.SetMaxDatagramFrameSize(kMaxAcceptedDatagramFrameSize); } creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .Times(3) .WillRepeatedly( Invoke(this, &QuicPacketCreatorTest::ClearSerializedPacketForTests)); EXPECT_TRUE(creator_.HasRoomForMessageFrame( creator_.GetCurrentLargestMessagePayload())); std::string large_message(creator_.GetCurrentLargestMessagePayload(), 'a'); QuicMessageFrame* message_frame = new QuicMessageFrame(1, MemSliceFromString(large_message)); EXPECT_TRUE(creator_.AddFrame(QuicFrame(message_frame), NOT_RETRANSMISSION)); EXPECT_TRUE(creator_.HasPendingFrames()); creator_.FlushCurrentPacket(); QuicMessageFrame* frame2 = new QuicMessageFrame(2, MemSliceFromString("message")); EXPECT_TRUE(creator_.AddFrame(QuicFrame(frame2), NOT_RETRANSMISSION)); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_EQ(1u, creator_.ExpansionOnNewFrame()); QuicMessageFrame* frame3 = new QuicMessageFrame(3, MemSliceFromString("message2")); EXPECT_TRUE(creator_.AddFrame(QuicFrame(frame3), NOT_RETRANSMISSION)); EXPECT_EQ(1u, creator_.ExpansionOnNewFrame()); creator_.FlushCurrentPacket(); QuicFrame frame; QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); const std::string data("test"); EXPECT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id, data, 0u, false, false, NOT_RETRANSMISSION, &frame)); QuicMessageFrame* frame4 = new QuicMessageFrame(4, MemSliceFromString("message")); EXPECT_TRUE(creator_.AddFrame(QuicFrame(frame4), NOT_RETRANSMISSION)); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasRoomForMessageFrame( creator_.GetCurrentLargestMessagePayload())); QuicMessageFrame frame5(5, MemSliceFromString(large_message)); EXPECT_FALSE(creator_.AddFrame(QuicFrame(&frame5), NOT_RETRANSMISSION)); EXPECT_FALSE(creator_.HasPendingFrames()); } TEST_P(QuicPacketCreatorTest, MessageFrameConsumption) { if (client_framer_.version().UsesTls()) { creator_.SetMaxDatagramFrameSize(kMaxAcceptedDatagramFrameSize); } std::string message_data(kDefaultMaxPacketSize, 'a'); for (EncryptionLevel level : {ENCRYPTION_ZERO_RTT, ENCRYPTION_FORWARD_SECURE}) { creator_.set_encryption_level(level); for (size_t message_size = 0; message_size <= creator_.GetCurrentLargestMessagePayload(); ++message_size) { QuicMessageFrame* frame = new QuicMessageFrame(0, MemSliceFromString(absl::string_view( message_data.data(), message_size))); EXPECT_TRUE(creator_.AddFrame(QuicFrame(frame), NOT_RETRANSMISSION)); EXPECT_TRUE(creator_.HasPendingFrames()); size_t expansion_bytes = message_size >= 64 ? 2 : 1; EXPECT_EQ(expansion_bytes, creator_.ExpansionOnNewFrame()); size_t expected_bytes_free = creator_.GetCurrentLargestMessagePayload() - message_size < expansion_bytes ? 0 : creator_.GetCurrentLargestMessagePayload() - expansion_bytes - message_size; EXPECT_EQ(expected_bytes_free, creator_.BytesFree()); EXPECT_LE(creator_.GetGuaranteedLargestMessagePayload(), creator_.GetCurrentLargestMessagePayload()); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); ASSERT_TRUE(serialized_packet_->encrypted_buffer); DeleteSerializedPacket(); } } } TEST_P(QuicPacketCreatorTest, GetGuaranteedLargestMessagePayload) { ParsedQuicVersion version = GetParam().version; if (version.UsesTls()) { creator_.SetMaxDatagramFrameSize(kMaxAcceptedDatagramFrameSize); } QuicPacketLength expected_largest_payload = 1215; if (version.HasLongHeaderLengths()) { expected_largest_payload -= 2; } if (version.HasLengthPrefixedConnectionIds()) { expected_largest_payload -= 1; } EXPECT_EQ(expected_largest_payload, creator_.GetGuaranteedLargestMessagePayload()); EXPECT_TRUE(creator_.HasRoomForMessageFrame( creator_.GetGuaranteedLargestMessagePayload())); creator_.SetMaxDatagramFrameSize(expected_largest_payload + 1 + kQuicFrameTypeSize); EXPECT_EQ(expected_largest_payload, creator_.GetGuaranteedLargestMessagePayload()); EXPECT_TRUE(creator_.HasRoomForMessageFrame( creator_.GetGuaranteedLargestMessagePayload())); creator_.SetMaxDatagramFrameSize(expected_largest_payload + kQuicFrameTypeSize); EXPECT_EQ(expected_largest_payload, creator_.GetGuaranteedLargestMessagePayload()); EXPECT_TRUE(creator_.HasRoomForMessageFrame( creator_.GetGuaranteedLargestMessagePayload())); creator_.SetMaxDatagramFrameSize(expected_largest_payload - 1 + kQuicFrameTypeSize); EXPECT_EQ(expected_largest_payload - 1, creator_.GetGuaranteedLargestMessagePayload()); EXPECT_TRUE(creator_.HasRoomForMessageFrame( creator_.GetGuaranteedLargestMessagePayload())); constexpr QuicPacketLength kFrameSizeLimit = 1000; constexpr QuicPacketLength kPayloadSizeLimit = kFrameSizeLimit - kQuicFrameTypeSize; creator_.SetMaxDatagramFrameSize(kFrameSizeLimit); EXPECT_EQ(creator_.GetGuaranteedLargestMessagePayload(), kPayloadSizeLimit); EXPECT_TRUE(creator_.HasRoomForMessageFrame(kPayloadSizeLimit)); EXPECT_FALSE(creator_.HasRoomForMessageFrame(kPayloadSizeLimit + 1)); } TEST_P(QuicPacketCreatorTest, GetCurrentLargestMessagePayload) { ParsedQuicVersion version = GetParam().version; if (version.UsesTls()) { creator_.SetMaxDatagramFrameSize(kMaxAcceptedDatagramFrameSize); } QuicPacketLength expected_largest_payload = 1215; if (version.SendsVariableLengthPacketNumberInLongHeader()) { expected_largest_payload += 3; } if (version.HasLongHeaderLengths()) { expected_largest_payload -= 2; } if (version.HasLengthPrefixedConnectionIds()) { expected_largest_payload -= 1; } EXPECT_EQ(expected_largest_payload, creator_.GetCurrentLargestMessagePayload()); creator_.SetMaxDatagramFrameSize(expected_largest_payload + 1 + kQuicFrameTypeSize); EXPECT_EQ(expected_largest_payload, creator_.GetCurrentLargestMessagePayload()); creator_.SetMaxDatagramFrameSize(expected_largest_payload + kQuicFrameTypeSize); EXPECT_EQ(expected_largest_payload, creator_.GetCurrentLargestMessagePayload()); creator_.SetMaxDatagramFrameSize(expected_largest_payload - 1 + kQuicFrameTypeSize); EXPECT_EQ(expected_largest_payload - 1, creator_.GetCurrentLargestMessagePayload()); } TEST_P(QuicPacketCreatorTest, PacketTransmissionType) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); QuicAckFrame temp_ack_frame = InitAckFrame(1); QuicFrame ack_frame(&temp_ack_frame); ASSERT_FALSE(QuicUtils::IsRetransmittableFrame(ack_frame.type)); QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); QuicFrame stream_frame(QuicStreamFrame(stream_id, false, 0u, absl::string_view())); ASSERT_TRUE(QuicUtils::IsRetransmittableFrame(stream_frame.type)); QuicFrame stream_frame_2(QuicStreamFrame(stream_id, false, 1u, absl::string_view())); QuicFrame padding_frame{QuicPaddingFrame()}; ASSERT_FALSE(QuicUtils::IsRetransmittableFrame(padding_frame.type)); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); EXPECT_TRUE(creator_.AddFrame(ack_frame, LOSS_RETRANSMISSION)); ASSERT_EQ(serialized_packet_, nullptr); EXPECT_TRUE(creator_.AddFrame(stream_frame, PTO_RETRANSMISSION)); ASSERT_EQ(serialized_packet_, nullptr); EXPECT_TRUE(creator_.AddFrame(stream_frame_2, PATH_RETRANSMISSION)); ASSERT_EQ(serialized_packet_, nullptr); EXPECT_TRUE(creator_.AddFrame(padding_frame, PTO_RETRANSMISSION)); creator_.FlushCurrentPacket(); ASSERT_TRUE(serialized_packet_->encrypted_buffer); EXPECT_EQ(serialized_packet_->transmission_type, PATH_RETRANSMISSION); DeleteSerializedPacket(); } TEST_P(QuicPacketCreatorTest, PacketBytesRetransmitted_AddFrame_Retransmission) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); QuicAckFrame temp_ack_frame = InitAckFrame(1); QuicFrame ack_frame(&temp_ack_frame); EXPECT_TRUE(creator_.AddFrame(ack_frame, LOSS_RETRANSMISSION)); QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); QuicFrame stream_frame; const std::string data("data"); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id, data, 0u, false, false, PTO_RETRANSMISSION, &stream_frame)); EXPECT_EQ(4u, stream_frame.stream_frame.data_length); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); ASSERT_TRUE(serialized_packet_->encrypted_buffer); ASSERT_FALSE(serialized_packet_->bytes_not_retransmitted.has_value()); DeleteSerializedPacket(); } TEST_P(QuicPacketCreatorTest, PacketBytesRetransmitted_AddFrame_NotRetransmission) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); QuicAckFrame temp_ack_frame = InitAckFrame(1); QuicFrame ack_frame(&temp_ack_frame); EXPECT_TRUE(creator_.AddFrame(ack_frame, NOT_RETRANSMISSION)); QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); QuicFrame stream_frame; const std::string data("data"); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id, data, 0u, false, false, NOT_RETRANSMISSION, &stream_frame)); EXPECT_EQ(4u, stream_frame.stream_frame.data_length); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); ASSERT_TRUE(serialized_packet_->encrypted_buffer); ASSERT_FALSE(serialized_packet_->bytes_not_retransmitted.has_value()); DeleteSerializedPacket(); } TEST_P(QuicPacketCreatorTest, PacketBytesRetransmitted_AddFrame_MixedFrames) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); QuicAckFrame temp_ack_frame = InitAckFrame(1); QuicFrame ack_frame(&temp_ack_frame); EXPECT_TRUE(creator_.AddFrame(ack_frame, NOT_RETRANSMISSION)); QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); QuicFrame stream_frame; const std::string data("data"); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id, data, 0u, false, false, NOT_RETRANSMISSION, &stream_frame)); EXPECT_EQ(4u, stream_frame.stream_frame.data_length); QuicFrame stream_frame2; ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id, data, 0u, false, false, LOSS_RETRANSMISSION, &stream_frame2)); EXPECT_EQ(4u, stream_frame2.stream_frame.data_length); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); ASSERT_TRUE(serialized_packet_->encrypted_buffer); ASSERT_TRUE(serialized_packet_->bytes_not_retransmitted.has_value()); ASSERT_GE(serialized_packet_->bytes_not_retransmitted.value(), 4u); DeleteSerializedPacket(); } TEST_P(QuicPacketCreatorTest, PacketBytesRetransmitted_CreateAndSerializeStreamFrame_Retransmission) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); const std::string data("test"); producer_.SaveStreamData(GetNthClientInitiatedStreamId(0), data); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); size_t num_bytes_consumed; creator_.CreateAndSerializeStreamFrame( GetNthClientInitiatedStreamId(0), data.length(), 0, 0, true, LOSS_RETRANSMISSION, &num_bytes_consumed); EXPECT_EQ(4u, num_bytes_consumed); ASSERT_TRUE(serialized_packet_->encrypted_buffer); ASSERT_FALSE(serialized_packet_->bytes_not_retransmitted.has_value()); DeleteSerializedPacket(); EXPECT_FALSE(creator_.HasPendingFrames()); } TEST_P( QuicPacketCreatorTest, PacketBytesRetransmitted_CreateAndSerializeStreamFrame_NotRetransmission) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); const std::string data("test"); producer_.SaveStreamData(GetNthClientInitiatedStreamId(0), data); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); size_t num_bytes_consumed; creator_.CreateAndSerializeStreamFrame( GetNthClientInitiatedStreamId(0), data.length(), 0, 0, true, NOT_RETRANSMISSION, &num_bytes_consumed); EXPECT_EQ(4u, num_bytes_consumed); ASSERT_TRUE(serialized_packet_->encrypted_buffer); ASSERT_FALSE(serialized_packet_->bytes_not_retransmitted.has_value()); DeleteSerializedPacket(); EXPECT_FALSE(creator_.HasPendingFrames()); } TEST_P(QuicPacketCreatorTest, RetryToken) { if (!GetParam().version_serialization || !QuicVersionHasLongHeaderLengths(client_framer_.transport_version())) { return; } char retry_token_bytes[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; creator_.SetRetryToken( std::string(retry_token_bytes, sizeof(retry_token_bytes))); frames_.push_back(QuicFrame(QuicPingFrame())); SerializedPacket serialized = SerializeAllFrames(frames_); QuicPacketHeader header; { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)) .WillOnce(DoAll(SaveArg<0>(&header), Return(true))); if (client_framer_.version().HasHeaderProtection()) { EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)); } EXPECT_CALL(framer_visitor_, OnPingFrame(_)); EXPECT_CALL(framer_visitor_, OnPacketComplete()); } ProcessPacket(serialized); ASSERT_TRUE(header.version_flag); ASSERT_EQ(header.long_packet_type, INITIAL); ASSERT_EQ(header.retry_token.length(), sizeof(retry_token_bytes)); quiche::test::CompareCharArraysWithHexError( "retry token", header.retry_token.data(), header.retry_token.length(), retry_token_bytes, sizeof(retry_token_bytes)); } TEST_P(QuicPacketCreatorTest, GetConnectionId) { EXPECT_EQ(TestConnectionId(2), creator_.GetDestinationConnectionId()); EXPECT_EQ(EmptyQuicConnectionId(), creator_.GetSourceConnectionId()); } TEST_P(QuicPacketCreatorTest, ClientConnectionId) { if (!client_framer_.version().SupportsClientConnectionIds()) { return; } EXPECT_EQ(TestConnectionId(2), creator_.GetDestinationConnectionId()); EXPECT_EQ(EmptyQuicConnectionId(), creator_.GetSourceConnectionId()); creator_.SetClientConnectionId(TestConnectionId(0x33)); EXPECT_EQ(TestConnectionId(2), creator_.GetDestinationConnectionId()); EXPECT_EQ(TestConnectionId(0x33), creator_.GetSourceConnectionId()); } TEST_P(QuicPacketCreatorTest, CoalesceStreamFrames) { InSequence s; if (!GetParam().version_serialization) { creator_.StopSendingVersion(); } const size_t max_plaintext_size = client_framer_.GetMaxPlaintextSize(creator_.max_packet_length()); EXPECT_FALSE(creator_.HasPendingFrames()); creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); QuicStreamId stream_id1 = QuicUtils::GetFirstBidirectionalStreamId( client_framer_.transport_version(), Perspective::IS_CLIENT); QuicStreamId stream_id2 = GetNthClientInitiatedStreamId(1); EXPECT_FALSE(creator_.HasPendingStreamFramesOfStream(stream_id1)); EXPECT_EQ(max_plaintext_size - GetPacketHeaderSize( client_framer_.transport_version(), creator_.GetDestinationConnectionIdLength(), creator_.GetSourceConnectionIdLength(), QuicPacketCreatorPeer::SendVersionInPacket(&creator_), !kIncludeDiversificationNonce, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_), QuicPacketCreatorPeer::GetRetryTokenLengthLength(&creator_), 0, QuicPacketCreatorPeer::GetLengthLength(&creator_)), creator_.BytesFree()); StrictMock<MockDebugDelegate> debug; creator_.set_debug_delegate(&debug); QuicFrame frame; const std::string data1("test"); EXPECT_CALL(debug, OnFrameAddedToPacket(_)); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id1, data1, 0u, false, false, NOT_RETRANSMISSION, &frame)); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(creator_.HasPendingStreamFramesOfStream(stream_id1)); const std::string data2("coalesce"); const auto previous_size = creator_.PacketSize(); QuicStreamFrame target(stream_id1, true, 0, data1.length() + data2.length()); EXPECT_CALL(debug, OnStreamFrameCoalesced(target)); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id1, data2, 4u, true, false, NOT_RETRANSMISSION, &frame)); EXPECT_EQ(frame.stream_frame.data_length, creator_.PacketSize() - previous_size); const auto length = creator_.BytesFree() - 10u; const std::string data3(length, 'x'); EXPECT_CALL(debug, OnFrameAddedToPacket(_)); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id2, data3, 0u, false, false, NOT_RETRANSMISSION, &frame)); EXPECT_TRUE(creator_.HasPendingStreamFramesOfStream(stream_id2)); EXPECT_CALL(debug, OnStreamFrameCoalesced(_)); const std::string data4("somerandomdata"); ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( stream_id2, data4, length, false, false, NOT_RETRANSMISSION, &frame)); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); EXPECT_CALL(framer_visitor_, OnStreamFrame(_)); EXPECT_CALL(framer_visitor_, OnStreamFrame(_)); EXPECT_CALL(framer_visitor_, OnPacketComplete()); ProcessPacket(*serialized_packet_); } TEST_P(QuicPacketCreatorTest, SaveNonRetransmittableFrames) { QuicAckFrame ack_frame(InitAckFrame(1)); frames_.push_back(QuicFrame(&ack_frame)); frames_.push_back(QuicFrame(QuicPaddingFrame(-1))); SerializedPacket serialized = SerializeAllFrames(frames_); ASSERT_EQ(2u, serialized.nonretransmittable_frames.size()); EXPECT_EQ(ACK_FRAME, serialized.nonretransmittable_frames[0].type); EXPECT_EQ(PADDING_FRAME, serialized.nonretransmittable_frames[1].type); EXPECT_LT( 0, serialized.nonretransmittable_frames[1].padding_frame.num_padding_bytes); frames_.clear(); SerializedPacket packet = QuicPacketCreatorPeer::SerializeAllFrames( &creator_, serialized.nonretransmittable_frames, buffer_, kMaxOutgoingPacketSize); EXPECT_EQ(serialized.encrypted_length, packet.encrypted_length); } TEST_P(QuicPacketCreatorTest, SerializeCoalescedPacket) { QuicCoalescedPacket coalesced; quiche::SimpleBufferAllocator allocator; QuicSocketAddress self_address(QuicIpAddress::Loopback4(), 1); QuicSocketAddress peer_address(QuicIpAddress::Loopback4(), 2); for (size_t i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; ++i) { EncryptionLevel level = static_cast<EncryptionLevel>(i); creator_.set_encryption_level(level); QuicAckFrame ack_frame(InitAckFrame(1)); if (level != ENCRYPTION_ZERO_RTT) { frames_.push_back(QuicFrame(&ack_frame)); } if (level != ENCRYPTION_INITIAL && level != ENCRYPTION_HANDSHAKE) { frames_.push_back( QuicFrame(QuicStreamFrame(1, false, 0u, absl::string_view()))); } SerializedPacket serialized = SerializeAllFrames(frames_); EXPECT_EQ(level, serialized.encryption_level); frames_.clear(); ASSERT_TRUE(coalesced.MaybeCoalescePacket( serialized, self_address, peer_address, &allocator, creator_.max_packet_length(), ECN_NOT_ECT)); } char buffer[kMaxOutgoingPacketSize]; size_t coalesced_length = creator_.SerializeCoalescedPacket( coalesced, buffer, kMaxOutgoingPacketSize); ASSERT_EQ(coalesced.max_packet_length(), coalesced_length); if (!QuicVersionHasLongHeaderLengths(server_framer_.transport_version())) { return; } std::unique_ptr<QuicEncryptedPacket> packets[NUM_ENCRYPTION_LEVELS]; packets[ENCRYPTION_INITIAL] = std::make_unique<QuicEncryptedPacket>(buffer, coalesced_length); for (size_t i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; ++i) { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); if (i < ENCRYPTION_FORWARD_SECURE) { EXPECT_CALL(framer_visitor_, OnCoalescedPacket(_)) .WillOnce(Invoke([i, &packets](const QuicEncryptedPacket& packet) { packets[i + 1] = packet.Clone(); })); } EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_, _)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); if (i != ENCRYPTION_ZERO_RTT) { if (i != ENCRYPTION_INITIAL) { EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)) .Times(testing::AtMost(1)); } EXPECT_CALL(framer_visitor_, OnAckFrameStart(_, _)) .WillOnce(Return(true)); EXPECT_CALL(framer_visitor_, OnAckRange(QuicPacketNumber(1), QuicPacketNumber(2))) .WillOnce(Return(true)); EXPECT_CALL(framer_visitor_, OnAckFrameEnd(_, _)).WillOnce(Return(true)); } if (i == ENCRYPTION_INITIAL) { EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)); } if (i == ENCRYPTION_ZERO_RTT) { EXPECT_CALL(framer_visitor_, OnPaddingFrame(_)); } if (i != ENCRYPTION_INITIAL && i != ENCRYPTION_HANDSHAKE) { EXPECT_CALL(framer_visitor_, OnStreamFrame(_)); } EXPECT_CALL(framer_visitor_, OnPacketComplete()); server_framer_.ProcessPacket(*packets[i]); } } TEST_P(QuicPacketCreatorTest, SoftMaxPacketLength) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); QuicByteCount previous_max_packet_length = creator_.max_packet_length(); const size_t overhead = GetPacketHeaderOverhead(client_framer_.transport_version()) + QuicPacketCreator::MinPlaintextPacketSize( client_framer_.version(), QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)) + GetEncryptionOverhead(); creator_.SetSoftMaxPacketLength(overhead - 1); EXPECT_EQ(previous_max_packet_length, creator_.max_packet_length()); creator_.SetSoftMaxPacketLength(overhead); EXPECT_EQ(overhead, creator_.max_packet_length()); ASSERT_TRUE(creator_.HasRoomForStreamFrame( GetNthClientInitiatedStreamId(1), kMaxIetfVarInt, std::numeric_limits<uint32_t>::max())); EXPECT_EQ(previous_max_packet_length, creator_.max_packet_length()); creator_.SetSoftMaxPacketLength(overhead); if (client_framer_.version().UsesTls()) { creator_.SetMaxDatagramFrameSize(kMaxAcceptedDatagramFrameSize); } EXPECT_LT(1u, creator_.GetCurrentLargestMessagePayload()); EXPECT_EQ(overhead, creator_.max_packet_length()); ASSERT_TRUE(creator_.HasRoomForMessageFrame( creator_.GetCurrentLargestMessagePayload())); EXPECT_EQ(previous_max_packet_length, creator_.max_packet_length()); creator_.SetSoftMaxPacketLength(overhead); EXPECT_EQ(overhead, creator_.max_packet_length()); const std::string data = "crypto data"; QuicFrame frame; if (!QuicVersionUsesCryptoFrames(client_framer_.transport_version())) { ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( QuicUtils::GetCryptoStreamId(client_framer_.transport_version()), data, kOffset, false, true, NOT_RETRANSMISSION, &frame)); size_t bytes_consumed = frame.stream_frame.data_length; EXPECT_LT(0u, bytes_consumed); } else { producer_.SaveCryptoData(ENCRYPTION_INITIAL, kOffset, data); ASSERT_TRUE(creator_.ConsumeCryptoDataToFillCurrentPacket( ENCRYPTION_INITIAL, data.length(), kOffset, true, NOT_RETRANSMISSION, &frame)); size_t bytes_consumed = frame.crypto_frame->data_length; EXPECT_LT(0u, bytes_consumed); } EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); creator_.SetSoftMaxPacketLength(overhead); EXPECT_EQ(overhead, creator_.max_packet_length()); QuicAckFrame ack_frame(InitAckFrame(10u)); EXPECT_TRUE(creator_.AddFrame(QuicFrame(&ack_frame), NOT_RETRANSMISSION)); EXPECT_TRUE(creator_.HasPendingFrames()); } TEST_P(QuicPacketCreatorTest, ChangingEncryptionLevelRemovesSoftMaxPacketLength) { if (!client_framer_.version().CanSendCoalescedPackets()) { return; } creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); const QuicByteCount previous_max_packet_length = creator_.max_packet_length(); const size_t min_acceptable_packet_size = GetPacketHeaderOverhead(client_framer_.transport_version()) + QuicPacketCreator::MinPlaintextPacketSize( client_framer_.version(), QuicPacketCreatorPeer::GetPacketNumberLength(&creator_)) + GetEncryptionOverhead(); creator_.SetSoftMaxPacketLength(min_acceptable_packet_size); EXPECT_EQ(creator_.max_packet_length(), min_acceptable_packet_size); creator_.set_encryption_level(ENCRYPTION_HANDSHAKE); QuicAckFrame ack_frame(InitAckFrame(1)); frames_.push_back(QuicFrame(&ack_frame)); SerializedPacket serialized = SerializeAllFrames(frames_); EXPECT_EQ(serialized.encryption_level, ENCRYPTION_HANDSHAKE); EXPECT_EQ(creator_.max_packet_length(), previous_max_packet_length); } TEST_P(QuicPacketCreatorTest, MinPayloadLength) { ParsedQuicVersion version = client_framer_.version(); for (QuicPacketNumberLength pn_length : {PACKET_1BYTE_PACKET_NUMBER, PACKET_2BYTE_PACKET_NUMBER, PACKET_3BYTE_PACKET_NUMBER, PACKET_4BYTE_PACKET_NUMBER}) { if (!version.HasHeaderProtection()) { EXPECT_EQ(creator_.MinPlaintextPacketSize(version, pn_length), 0); } else { EXPECT_EQ(creator_.MinPlaintextPacketSize(version, pn_length), (version.UsesTls() ? 4 : 8) - pn_length); } } } TEST_P(QuicPacketCreatorTest, PadWhenAlmostMaxLength) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); const size_t overhead = GetPacketHeaderOverhead(client_framer_.transport_version()) + GetEncryptionOverhead() + GetStreamFrameOverhead(client_framer_.transport_version()); size_t capacity = kDefaultMaxPacketSize - overhead; for (size_t bytes_free = 1; bytes_free <= 2; bytes_free++) { std::string data(capacity - bytes_free, 'A'); QuicFrame frame; ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( GetNthClientInitiatedStreamId(1), data, kOffset, false, true, NOT_RETRANSMISSION, &frame)); EXPECT_EQ(2u, creator_.ExpansionOnNewFrame()); EXPECT_EQ(0u, creator_.BytesFree()); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); EXPECT_EQ(serialized_packet_->encrypted_length, kDefaultMaxPacketSize); DeleteSerializedPacket(); } } TEST_P(QuicPacketCreatorTest, MorePendingPaddingThanBytesFree) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); const size_t overhead = GetPacketHeaderOverhead(client_framer_.transport_version()) + GetEncryptionOverhead() + GetStreamFrameOverhead(client_framer_.transport_version()); size_t capacity = kDefaultMaxPacketSize - overhead; const size_t pending_padding = 10; std::string data(capacity - pending_padding, 'A'); QuicFrame frame; ASSERT_TRUE(creator_.ConsumeDataToFillCurrentPacket( GetNthClientInitiatedStreamId(1), data, kOffset, false, false, NOT_RETRANSMISSION, &frame)); creator_.AddPendingPadding(pending_padding); EXPECT_EQ(2u, creator_.ExpansionOnNewFrame()); EXPECT_EQ(pending_padding - 2u, creator_.BytesFree()); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke(this, &QuicPacketCreatorTest::SaveSerializedPacket)); creator_.FlushCurrentPacket(); EXPECT_EQ(serialized_packet_->encrypted_length, kDefaultMaxPacketSize); DeleteSerializedPacket(); } class MockDelegate : public QuicPacketCreator::DelegateInterface { public: MockDelegate() {} MockDelegate(const MockDelegate&) = delete; MockDelegate& operator=(const MockDelegate&) = delete; ~MockDelegate() override {} MOCK_METHOD(bool, ShouldGeneratePacket, (HasRetransmittableData retransmittable, IsHandshake handshake), (override)); MOCK_METHOD(void, MaybeBundleOpportunistically, (TransmissionType transmission_type), (override)); MOCK_METHOD(QuicByteCount, GetFlowControlSendWindowSize, (QuicStreamId), (override)); MOCK_METHOD(QuicPacketBuffer, GetPacketBuffer, (), (override)); MOCK_METHOD(void, OnSerializedPacket, (SerializedPacket), (override)); MOCK_METHOD(void, OnUnrecoverableError, (QuicErrorCode, const std::string&), (override)); MOCK_METHOD(SerializedPacketFate, GetSerializedPacketFate, (bool, EncryptionLevel), (override)); void SetCanWriteAnything() { EXPECT_CALL(*this, ShouldGeneratePacket(_, _)).WillRepeatedly(Return(true)); EXPECT_CALL(*this, ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, _)) .WillRepeatedly(Return(true)); } void SetCanNotWrite() { EXPECT_CALL(*this, ShouldGeneratePacket(_, _)) .WillRepeatedly(Return(false)); EXPECT_CALL(*this, ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, _)) .WillRepeatedly(Return(false)); } void SetCanWriteOnlyNonRetransmittable() { EXPECT_CALL(*this, ShouldGeneratePacket(_, _)) .WillRepeatedly(Return(false)); EXPECT_CALL(*this, ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, _)) .WillRepeatedly(Return(true)); } }; struct PacketContents { PacketContents() : num_ack_frames(0), num_connection_close_frames(0), num_goaway_frames(0), num_rst_stream_frames(0), num_stop_waiting_frames(0), num_stream_frames(0), num_crypto_frames(0), num_ping_frames(0), num_mtu_discovery_frames(0), num_padding_frames(0) {} size_t num_ack_frames; size_t num_connection_close_frames; size_t num_goaway_frames; size_t num_rst_stream_frames; size_t num_stop_waiting_frames; size_t num_stream_frames; size_t num_crypto_frames; size_t num_ping_frames; size_t num_mtu_discovery_frames; size_t num_padding_frames; }; class MultiplePacketsTestPacketCreator : public QuicPacketCreator { public: MultiplePacketsTestPacketCreator( QuicConnectionId connection_id, QuicFramer* framer, QuicRandom* random_generator, QuicPacketCreator::DelegateInterface* delegate, SimpleDataProducer* producer) : QuicPacketCreator(connection_id, framer, random_generator, delegate), ack_frame_(InitAckFrame(1)), delegate_(static_cast<MockDelegate*>(delegate)), producer_(producer) {} bool ConsumeRetransmittableControlFrame(const QuicFrame& frame, bool bundle_ack) { QuicFrames frames; if (bundle_ack) { frames.push_back(QuicFrame(&ack_frame_)); } EXPECT_CALL(*delegate_, MaybeBundleOpportunistically(_)) .WillOnce(Invoke([this, frames = std::move(frames)] { FlushAckFrame(frames); return QuicFrames(); })); return QuicPacketCreator::ConsumeRetransmittableControlFrame(frame); } QuicConsumedData ConsumeDataFastPath(QuicStreamId id, absl::string_view data) { if (!data.empty()) { producer_->SaveStreamData(id, data); } return QuicPacketCreator::ConsumeDataFastPath(id, data.length(), 0, true, 0); } QuicConsumedData ConsumeData(QuicStreamId id, absl::string_view data, QuicStreamOffset offset, StreamSendingState state) { if (!data.empty()) { producer_->SaveStreamData(id, data); } EXPECT_CALL(*delegate_, MaybeBundleOpportunistically(_)).Times(1); return QuicPacketCreator::ConsumeData(id, data.length(), offset, state); } MessageStatus AddMessageFrame(QuicMessageId message_id, quiche::QuicheMemSlice message) { if (!has_ack() && delegate_->ShouldGeneratePacket(NO_RETRANSMITTABLE_DATA, NOT_HANDSHAKE)) { EXPECT_CALL(*delegate_, MaybeBundleOpportunistically(_)).Times(1); } return QuicPacketCreator::AddMessageFrame(message_id, absl::MakeSpan(&message, 1)); } size_t ConsumeCryptoData(EncryptionLevel level, absl::string_view data, QuicStreamOffset offset) { producer_->SaveCryptoData(level, offset, data); EXPECT_CALL(*delegate_, MaybeBundleOpportunistically(_)).Times(1); return QuicPacketCreator::ConsumeCryptoData(level, data.length(), offset); } QuicAckFrame ack_frame_; MockDelegate* delegate_; SimpleDataProducer* producer_; }; class QuicPacketCreatorMultiplePacketsTest : public QuicTest { public: QuicPacketCreatorMultiplePacketsTest() : framer_(AllSupportedVersions(), QuicTime::Zero(), Perspective::IS_CLIENT, kQuicDefaultConnectionIdLength), creator_(TestConnectionId(), &framer_, &random_creator_, &delegate_, &producer_), ack_frame_(InitAckFrame(1)) { EXPECT_CALL(delegate_, GetPacketBuffer()) .WillRepeatedly(Return(QuicPacketBuffer())); EXPECT_CALL(delegate_, GetSerializedPacketFate(_, _)) .WillRepeatedly(Return(SEND_TO_WRITER)); EXPECT_CALL(delegate_, GetFlowControlSendWindowSize(_)) .WillRepeatedly(Return(std::numeric_limits<QuicByteCount>::max())); creator_.SetEncrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique<TaggingEncrypter>(ENCRYPTION_FORWARD_SECURE)); creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); framer_.set_data_producer(&producer_); if (simple_framer_.framer()->version().KnowsWhichDecrypterToUse()) { simple_framer_.framer()->InstallDecrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique<TaggingDecrypter>()); } creator_.AttachPacketFlusher(); } ~QuicPacketCreatorMultiplePacketsTest() override {} void SavePacket(SerializedPacket packet) { QUICHE_DCHECK(packet.release_encrypted_buffer == nullptr); packet.encrypted_buffer = CopyBuffer(packet); packet.release_encrypted_buffer = [](const char* p) { delete[] p; }; packets_.push_back(std::move(packet)); } protected: QuicRstStreamFrame* CreateRstStreamFrame() { return new QuicRstStreamFrame(1, 1, QUIC_STREAM_NO_ERROR, 0); } QuicGoAwayFrame* CreateGoAwayFrame() { return new QuicGoAwayFrame(2, QUIC_NO_ERROR, 1, std::string()); } void CheckPacketContains(const PacketContents& contents, size_t packet_index) { ASSERT_GT(packets_.size(), packet_index); const SerializedPacket& packet = packets_[packet_index]; size_t num_retransmittable_frames = contents.num_connection_close_frames + contents.num_goaway_frames + contents.num_rst_stream_frames + contents.num_stream_frames + contents.num_crypto_frames + contents.num_ping_frames; size_t num_frames = contents.num_ack_frames + contents.num_stop_waiting_frames + contents.num_mtu_discovery_frames + contents.num_padding_frames + num_retransmittable_frames; if (num_retransmittable_frames == 0) { ASSERT_TRUE(packet.retransmittable_frames.empty()); } else { EXPECT_EQ(num_retransmittable_frames, packet.retransmittable_frames.size()); } ASSERT_TRUE(packet.encrypted_buffer != nullptr); ASSERT_TRUE(simple_framer_.ProcessPacket( QuicEncryptedPacket(packet.encrypted_buffer, packet.encrypted_length))); size_t num_padding_frames = 0; if (contents.num_padding_frames == 0) { num_padding_frames = simple_framer_.padding_frames().size(); } EXPECT_EQ(num_frames + num_padding_frames, simple_framer_.num_frames()); EXPECT_EQ(contents.num_ack_frames, simple_framer_.ack_frames().size()); EXPECT_EQ(contents.num_connection_close_frames, simple_framer_.connection_close_frames().size()); EXPECT_EQ(contents.num_goaway_frames, simple_framer_.goaway_frames().size()); EXPECT_EQ(contents.num_rst_stream_frames, simple_framer_.rst_stream_frames().size()); EXPECT_EQ(contents.num_stream_frames, simple_framer_.stream_frames().size()); EXPECT_EQ(contents.num_crypto_frames, simple_framer_.crypto_frames().size()); EXPECT_EQ(contents.num_stop_waiting_frames, simple_framer_.stop_waiting_frames().size()); if (contents.num_padding_frames != 0) { EXPECT_EQ(contents.num_padding_frames, simple_framer_.padding_frames().size()); } EXPECT_EQ(contents.num_ping_frames + contents.num_mtu_discovery_frames, simple_framer_.ping_frames().size()); } void CheckPacketHasSingleStreamFrame(size_t packet_index) { ASSERT_GT(packets_.size(), packet_index); const SerializedPacket& packet = packets_[packet_index]; ASSERT_FALSE(packet.retransmittable_frames.empty()); EXPECT_EQ(1u, packet.retransmittable_frames.size()); ASSERT_TRUE(packet.encrypted_buffer != nullptr); ASSERT_TRUE(simple_framer_.ProcessPacket( QuicEncryptedPacket(packet.encrypted_buffer, packet.encrypted_length))); EXPECT_EQ(1u, simple_framer_.num_frames()); EXPECT_EQ(1u, simple_framer_.stream_frames().size()); } void CheckAllPacketsHaveSingleStreamFrame() { for (size_t i = 0; i < packets_.size(); i++) { CheckPacketHasSingleStreamFrame(i); } } QuicFramer framer_; MockRandom random_creator_; StrictMock<MockDelegate> delegate_; MultiplePacketsTestPacketCreator creator_; SimpleQuicFramer simple_framer_; std::vector<SerializedPacket> packets_; QuicAckFrame ack_frame_; struct iovec iov_; quiche::SimpleBufferAllocator allocator_; private: std::unique_ptr<char[]> data_array_; SimpleDataProducer producer_; }; TEST_F(QuicPacketCreatorMultiplePacketsTest, AddControlFrame_NotWritable) { delegate_.SetCanNotWrite(); QuicRstStreamFrame* rst_frame = CreateRstStreamFrame(); const bool consumed = creator_.ConsumeRetransmittableControlFrame(QuicFrame(rst_frame), false); EXPECT_FALSE(consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); delete rst_frame; } TEST_F(QuicPacketCreatorMultiplePacketsTest, WrongEncryptionLevelForStreamDataFastPath) { creator_.set_encryption_level(ENCRYPTION_HANDSHAKE); delegate_.SetCanWriteAnything(); const std::string data(10000, '?'); EXPECT_CALL(delegate_, OnSerializedPacket(_)).Times(0); EXPECT_QUIC_BUG( { EXPECT_CALL(delegate_, OnUnrecoverableError(_, _)); creator_.ConsumeDataFastPath( QuicUtils::GetFirstBidirectionalStreamId( framer_.transport_version(), Perspective::IS_CLIENT), data); }, ""); } TEST_F(QuicPacketCreatorMultiplePacketsTest, AddControlFrame_OnlyAckWritable) { delegate_.SetCanWriteOnlyNonRetransmittable(); QuicRstStreamFrame* rst_frame = CreateRstStreamFrame(); const bool consumed = creator_.ConsumeRetransmittableControlFrame(QuicFrame(rst_frame), false); EXPECT_FALSE(consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); delete rst_frame; } TEST_F(QuicPacketCreatorMultiplePacketsTest, AddControlFrame_WritableAndShouldNotFlush) { delegate_.SetCanWriteAnything(); creator_.ConsumeRetransmittableControlFrame(QuicFrame(CreateRstStreamFrame()), false); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(creator_.HasPendingRetransmittableFrames()); } TEST_F(QuicPacketCreatorMultiplePacketsTest, AddControlFrame_NotWritableBatchThenFlush) { delegate_.SetCanNotWrite(); QuicRstStreamFrame* rst_frame = CreateRstStreamFrame(); const bool consumed = creator_.ConsumeRetransmittableControlFrame(QuicFrame(rst_frame), false); EXPECT_FALSE(consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); delete rst_frame; } TEST_F(QuicPacketCreatorMultiplePacketsTest, AddControlFrame_WritableAndShouldFlush) { delegate_.SetCanWriteAnything(); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); creator_.ConsumeRetransmittableControlFrame(QuicFrame(CreateRstStreamFrame()), false); creator_.Flush(); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); PacketContents contents; contents.num_rst_stream_frames = 1; CheckPacketContains(contents, 0); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeCryptoData) { delegate_.SetCanWriteAnything(); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); std::string data = "crypto data"; size_t consumed_bytes = creator_.ConsumeCryptoData(ENCRYPTION_INITIAL, data, 0); creator_.Flush(); EXPECT_EQ(data.length(), consumed_bytes); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); PacketContents contents; contents.num_crypto_frames = 1; contents.num_padding_frames = 1; CheckPacketContains(contents, 0); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeCryptoDataCheckShouldGeneratePacket) { delegate_.SetCanNotWrite(); EXPECT_CALL(delegate_, OnSerializedPacket(_)).Times(0); std::string data = "crypto data"; size_t consumed_bytes = creator_.ConsumeCryptoData(ENCRYPTION_INITIAL, data, 0); creator_.Flush(); EXPECT_EQ(0u, consumed_bytes); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeDataAdjustWriteLengthAfterBundledData) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); creator_.SetTransmissionType(NOT_RETRANSMISSION); delegate_.SetCanWriteAnything(); const std::string data(1000, 'D'); QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( framer_.transport_version(), Perspective::IS_CLIENT); EXPECT_CALL(delegate_, GetFlowControlSendWindowSize(stream_id)) .WillOnce(Return(data.length() - 1)); QuicConsumedData consumed = creator_.ConsumeData(stream_id, data, 0u, FIN); EXPECT_EQ(consumed.bytes_consumed, data.length() - 1); EXPECT_FALSE(consumed.fin_consumed); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeDataDoesNotAdjustWriteLengthAfterBundledData) { creator_.set_encryption_level(ENCRYPTION_FORWARD_SECURE); creator_.SetTransmissionType(NOT_RETRANSMISSION); delegate_.SetCanWriteAnything(); const std::string data(1000, 'D'); QuicStreamId stream_id = QuicUtils::GetFirstBidirectionalStreamId( framer_.transport_version(), Perspective::IS_CLIENT); EXPECT_CALL(delegate_, GetFlowControlSendWindowSize(stream_id)) .WillOnce(Return(data.length())); QuicConsumedData consumed = creator_.ConsumeData(stream_id, data, 0u, FIN); EXPECT_EQ(consumed.bytes_consumed, data.length()); EXPECT_TRUE(consumed.fin_consumed); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeData_NotWritable) { delegate_.SetCanNotWrite(); QuicConsumedData consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), "foo", 0, FIN); EXPECT_EQ(0u, consumed.bytes_consumed); EXPECT_FALSE(consumed.fin_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeData_WritableAndShouldNotFlush) { delegate_.SetCanWriteAnything(); QuicConsumedData consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), "foo", 0, FIN); EXPECT_EQ(3u, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(creator_.HasPendingRetransmittableFrames()); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeData_WritableAndShouldFlush) { delegate_.SetCanWriteAnything(); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); QuicConsumedData consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), "foo", 0, FIN); creator_.Flush(); EXPECT_EQ(3u, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); PacketContents contents; contents.num_stream_frames = 1; CheckPacketContains(contents, 0); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeData_Handshake) { delegate_.SetCanWriteAnything(); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); const std::string data = "foo bar"; size_t consumed_bytes = 0; if (QuicVersionUsesCryptoFrames(framer_.transport_version())) { consumed_bytes = creator_.ConsumeCryptoData(ENCRYPTION_INITIAL, data, 0); } else { consumed_bytes = creator_ .ConsumeData( QuicUtils::GetCryptoStreamId(framer_.transport_version()), data, 0, NO_FIN) .bytes_consumed; } EXPECT_EQ(7u, consumed_bytes); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); PacketContents contents; if (QuicVersionUsesCryptoFrames(framer_.transport_version())) { contents.num_crypto_frames = 1; } else { contents.num_stream_frames = 1; } contents.num_padding_frames = 1; CheckPacketContains(contents, 0); ASSERT_EQ(1u, packets_.size()); ASSERT_EQ(kDefaultMaxPacketSize, creator_.max_packet_length()); EXPECT_EQ(kDefaultMaxPacketSize, packets_[0].encrypted_length); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeData_Handshake_PaddingDisabled) { creator_.set_fully_pad_crypto_handshake_packets(false); delegate_.SetCanWriteAnything(); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); const std::string data = "foo"; size_t bytes_consumed = 0; if (QuicVersionUsesCryptoFrames(framer_.transport_version())) { bytes_consumed = creator_.ConsumeCryptoData(ENCRYPTION_INITIAL, data, 0); } else { bytes_consumed = creator_ .ConsumeData( QuicUtils::GetCryptoStreamId(framer_.transport_version()), data, 0, NO_FIN) .bytes_consumed; } EXPECT_EQ(3u, bytes_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); PacketContents contents; if (QuicVersionUsesCryptoFrames(framer_.transport_version())) { contents.num_crypto_frames = 1; } else { contents.num_stream_frames = 1; } contents.num_padding_frames = 0; CheckPacketContains(contents, 0); ASSERT_EQ(1u, packets_.size()); ASSERT_EQ(kDefaultMaxPacketSize, creator_.max_packet_length()); size_t expected_packet_length = 31; if (QuicVersionUsesCryptoFrames(framer_.transport_version())) { expected_packet_length = 32; } EXPECT_EQ(expected_packet_length, packets_[0].encrypted_length); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeData_EmptyData) { delegate_.SetCanWriteAnything(); EXPECT_QUIC_BUG(creator_.ConsumeData( QuicUtils::QuicUtils::GetFirstBidirectionalStreamId( framer_.transport_version(), Perspective::IS_CLIENT), {}, 0, NO_FIN), "Attempt to consume empty data without FIN."); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeDataMultipleTimes_WritableAndShouldNotFlush) { delegate_.SetCanWriteAnything(); creator_.ConsumeData(QuicUtils::GetFirstBidirectionalStreamId( framer_.transport_version(), Perspective::IS_CLIENT), "foo", 0, FIN); QuicConsumedData consumed = creator_.ConsumeData(3, "quux", 3, NO_FIN); EXPECT_EQ(4u, consumed.bytes_consumed); EXPECT_FALSE(consumed.fin_consumed); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(creator_.HasPendingRetransmittableFrames()); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeData_BatchOperations) { delegate_.SetCanWriteAnything(); creator_.ConsumeData(QuicUtils::GetFirstBidirectionalStreamId( framer_.transport_version(), Perspective::IS_CLIENT), "foo", 0, NO_FIN); QuicConsumedData consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), "quux", 3, FIN); EXPECT_EQ(4u, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(creator_.HasPendingRetransmittableFrames()); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); creator_.Flush(); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); PacketContents contents; contents.num_stream_frames = 1; CheckPacketContains(contents, 0); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeData_FramesPreviouslyQueued) { size_t length = TaggingEncrypter(0x00).GetCiphertextSize(0) + GetPacketHeaderSize( framer_.transport_version(), creator_.GetDestinationConnectionIdLength(), creator_.GetSourceConnectionIdLength(), QuicPacketCreatorPeer::SendVersionInPacket(&creator_), !kIncludeDiversificationNonce, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_), QuicPacketCreatorPeer::GetRetryTokenLengthLength(&creator_), 0, QuicPacketCreatorPeer::GetLengthLength(&creator_)) + QuicFramer::GetMinStreamFrameSize(framer_.transport_version(), 1, 0, false, 3) + 3 + QuicFramer::GetMinStreamFrameSize(framer_.transport_version(), 1, 0, true, 1) + 1; creator_.SetMaxPacketLength(length); delegate_.SetCanWriteAnything(); { InSequence dummy; EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); } QuicConsumedData consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), "foo", 0, NO_FIN); EXPECT_EQ(3u, consumed.bytes_consumed); EXPECT_FALSE(consumed.fin_consumed); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(creator_.HasPendingRetransmittableFrames()); consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), "bar", 3, FIN); EXPECT_EQ(3u, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(creator_.HasPendingRetransmittableFrames()); creator_.FlushCurrentPacket(); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); PacketContents contents; contents.num_stream_frames = 1; CheckPacketContains(contents, 0); CheckPacketContains(contents, 1); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeDataFastPath) { delegate_.SetCanWriteAnything(); creator_.SetTransmissionType(LOSS_RETRANSMISSION); const std::string data(10000, '?'); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillRepeatedly( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); QuicConsumedData consumed = creator_.ConsumeDataFastPath( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), data); EXPECT_EQ(10000u, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); PacketContents contents; contents.num_stream_frames = 1; CheckPacketContains(contents, 0); EXPECT_FALSE(packets_.empty()); SerializedPacket& packet = packets_.back(); EXPECT_TRUE(!packet.retransmittable_frames.empty()); EXPECT_EQ(LOSS_RETRANSMISSION, packet.transmission_type); EXPECT_EQ(STREAM_FRAME, packet.retransmittable_frames.front().type); const QuicStreamFrame& stream_frame = packet.retransmittable_frames.front().stream_frame; EXPECT_EQ(10000u, stream_frame.data_length + stream_frame.offset); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeDataLarge) { delegate_.SetCanWriteAnything(); const std::string data(10000, '?'); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillRepeatedly( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); QuicConsumedData consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), data, 0, FIN); EXPECT_EQ(10000u, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); PacketContents contents; contents.num_stream_frames = 1; CheckPacketContains(contents, 0); EXPECT_FALSE(packets_.empty()); SerializedPacket& packet = packets_.back(); EXPECT_TRUE(!packet.retransmittable_frames.empty()); EXPECT_EQ(STREAM_FRAME, packet.retransmittable_frames.front().type); const QuicStreamFrame& stream_frame = packet.retransmittable_frames.front().stream_frame; EXPECT_EQ(10000u, stream_frame.data_length + stream_frame.offset); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeDataLargeSendAckFalse) { delegate_.SetCanNotWrite(); QuicRstStreamFrame* rst_frame = CreateRstStreamFrame(); const bool success = creator_.ConsumeRetransmittableControlFrame(QuicFrame(rst_frame), true); EXPECT_FALSE(success); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); delegate_.SetCanWriteAnything(); creator_.ConsumeRetransmittableControlFrame(QuicFrame(rst_frame), false); const std::string data(10000, '?'); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillRepeatedly( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); creator_.ConsumeRetransmittableControlFrame(QuicFrame(CreateRstStreamFrame()), true); QuicConsumedData consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), data, 0, FIN); creator_.Flush(); EXPECT_EQ(10000u, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); EXPECT_FALSE(packets_.empty()); SerializedPacket& packet = packets_.back(); EXPECT_TRUE(!packet.retransmittable_frames.empty()); EXPECT_EQ(STREAM_FRAME, packet.retransmittable_frames.front().type); const QuicStreamFrame& stream_frame = packet.retransmittable_frames.front().stream_frame; EXPECT_EQ(10000u, stream_frame.data_length + stream_frame.offset); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConsumeDataLargeSendAckTrue) { delegate_.SetCanNotWrite(); delegate_.SetCanWriteAnything(); const std::string data(10000, '?'); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillRepeatedly( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); QuicConsumedData consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), data, 0, FIN); creator_.Flush(); EXPECT_EQ(10000u, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); EXPECT_FALSE(packets_.empty()); SerializedPacket& packet = packets_.back(); EXPECT_TRUE(!packet.retransmittable_frames.empty()); EXPECT_EQ(STREAM_FRAME, packet.retransmittable_frames.front().type); const QuicStreamFrame& stream_frame = packet.retransmittable_frames.front().stream_frame; EXPECT_EQ(10000u, stream_frame.data_length + stream_frame.offset); } TEST_F(QuicPacketCreatorMultiplePacketsTest, NotWritableThenBatchOperations) { delegate_.SetCanNotWrite(); QuicRstStreamFrame* rst_frame = CreateRstStreamFrame(); const bool consumed = creator_.ConsumeRetransmittableControlFrame(QuicFrame(rst_frame), true); EXPECT_FALSE(consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); EXPECT_FALSE(creator_.HasPendingStreamFramesOfStream(3)); delegate_.SetCanWriteAnything(); EXPECT_TRUE( creator_.ConsumeRetransmittableControlFrame(QuicFrame(rst_frame), false)); creator_.ConsumeData(3, "quux", 0, NO_FIN); if (!VersionHasIetfQuicFrames(framer_.transport_version())) { creator_.ConsumeRetransmittableControlFrame(QuicFrame(CreateGoAwayFrame()), false); } EXPECT_TRUE(creator_.HasPendingStreamFramesOfStream(3)); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); creator_.Flush(); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); EXPECT_FALSE(creator_.HasPendingStreamFramesOfStream(3)); PacketContents contents; contents.num_ack_frames = 0; if (!VersionHasIetfQuicFrames(framer_.transport_version())) { contents.num_goaway_frames = 1; } else { contents.num_goaway_frames = 0; } contents.num_rst_stream_frames = 1; contents.num_stream_frames = 1; CheckPacketContains(contents, 0); } TEST_F(QuicPacketCreatorMultiplePacketsTest, NotWritableThenBatchOperations2) { delegate_.SetCanNotWrite(); QuicRstStreamFrame* rst_frame = CreateRstStreamFrame(); const bool success = creator_.ConsumeRetransmittableControlFrame(QuicFrame(rst_frame), true); EXPECT_FALSE(success); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); delegate_.SetCanWriteAnything(); { InSequence dummy; EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); } EXPECT_TRUE( creator_.ConsumeRetransmittableControlFrame(QuicFrame(rst_frame), false)); size_t data_len = kDefaultMaxPacketSize + 100; const std::string data(data_len, '?'); QuicConsumedData consumed = creator_.ConsumeData(3, data, 0, FIN); EXPECT_EQ(data_len, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); if (!VersionHasIetfQuicFrames(framer_.transport_version())) { creator_.ConsumeRetransmittableControlFrame(QuicFrame(CreateGoAwayFrame()), false); } creator_.Flush(); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); PacketContents contents; contents.num_ack_frames = 0; contents.num_rst_stream_frames = 1; contents.num_stream_frames = 1; CheckPacketContains(contents, 0); PacketContents contents2; if (!VersionHasIetfQuicFrames(framer_.transport_version())) { contents2.num_goaway_frames = 1; } else { contents2.num_goaway_frames = 0; } contents2.num_stream_frames = 1; CheckPacketContains(contents2, 1); } TEST_F(QuicPacketCreatorMultiplePacketsTest, PacketTransmissionType) { delegate_.SetCanWriteAnything(); creator_.SetTransmissionType(LOSS_RETRANSMISSION); size_t data_len = 1220; const std::string data(data_len, '?'); QuicStreamId stream1_id = QuicUtils::GetFirstBidirectionalStreamId( framer_.transport_version(), Perspective::IS_CLIENT); QuicConsumedData consumed = creator_.ConsumeData(stream1_id, data, 0, NO_FIN); EXPECT_EQ(data_len, consumed.bytes_consumed); ASSERT_EQ(0u, creator_.BytesFree()) << "Test setup failed: Please increase data_len to " << data_len + creator_.BytesFree() << " bytes."; creator_.SetTransmissionType(NOT_RETRANSMISSION); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); QuicStreamId stream2_id = stream1_id + 4; consumed = creator_.ConsumeData(stream2_id, data, 0, NO_FIN); EXPECT_EQ(data_len, consumed.bytes_consumed); ASSERT_EQ(1u, packets_.size()); ASSERT_TRUE(packets_[0].encrypted_buffer); ASSERT_EQ(1u, packets_[0].retransmittable_frames.size()); EXPECT_EQ(stream1_id, packets_[0].retransmittable_frames[0].stream_frame.stream_id); EXPECT_EQ(packets_[0].transmission_type, LOSS_RETRANSMISSION); } TEST_F(QuicPacketCreatorMultiplePacketsTest, TestConnectionIdLength) { QuicFramerPeer::SetPerspective(&framer_, Perspective::IS_SERVER); creator_.SetServerConnectionIdLength(0); EXPECT_EQ(0, creator_.GetDestinationConnectionIdLength()); for (size_t i = 1; i < 10; i++) { creator_.SetServerConnectionIdLength(i); EXPECT_EQ(0, creator_.GetDestinationConnectionIdLength()); } } TEST_F(QuicPacketCreatorMultiplePacketsTest, SetMaxPacketLength_Initial) { delegate_.SetCanWriteAnything(); size_t data_len = 3 * kDefaultMaxPacketSize + 1; size_t packet_len = kDefaultMaxPacketSize + 100; ASSERT_LE(packet_len, kMaxOutgoingPacketSize); creator_.SetMaxPacketLength(packet_len); EXPECT_EQ(packet_len, creator_.max_packet_length()); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .Times(3) .WillRepeatedly( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); const std::string data(data_len, '?'); QuicConsumedData consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), data, 0, FIN); EXPECT_EQ(data_len, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); ASSERT_EQ(3u, packets_.size()); EXPECT_EQ(packet_len, packets_[0].encrypted_length); EXPECT_EQ(packet_len, packets_[1].encrypted_length); CheckAllPacketsHaveSingleStreamFrame(); } TEST_F(QuicPacketCreatorMultiplePacketsTest, SetMaxPacketLength_Middle) { delegate_.SetCanWriteAnything(); size_t data_len = kDefaultMaxPacketSize; size_t packet_len = kDefaultMaxPacketSize + 100; ASSERT_LE(packet_len, kMaxOutgoingPacketSize); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .Times(3) .WillRepeatedly( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); const std::string data(data_len, '?'); QuicConsumedData consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), data, 0, NO_FIN); creator_.Flush(); EXPECT_EQ(data_len, consumed.bytes_consumed); EXPECT_FALSE(consumed.fin_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); ASSERT_EQ(2u, packets_.size()); creator_.SetMaxPacketLength(packet_len); EXPECT_EQ(packet_len, creator_.max_packet_length()); creator_.AttachPacketFlusher(); consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), data, data_len, FIN); creator_.Flush(); EXPECT_EQ(data_len, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); ASSERT_EQ(3u, packets_.size()); EXPECT_EQ(kDefaultMaxPacketSize, packets_[0].encrypted_length); EXPECT_LE(kDefaultMaxPacketSize, packets_[2].encrypted_length); CheckAllPacketsHaveSingleStreamFrame(); } TEST_F(QuicPacketCreatorMultiplePacketsTest, SetMaxPacketLength_MidpacketFlush) { delegate_.SetCanWriteAnything(); size_t first_write_len = kDefaultMaxPacketSize / 2; size_t packet_len = kDefaultMaxPacketSize + 100; size_t second_write_len = packet_len + 1; ASSERT_LE(packet_len, kMaxOutgoingPacketSize); const std::string first_write(first_write_len, '?'); QuicConsumedData consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), first_write, 0, NO_FIN); EXPECT_EQ(first_write_len, consumed.bytes_consumed); EXPECT_FALSE(consumed.fin_consumed); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(creator_.HasPendingRetransmittableFrames()); ASSERT_EQ(0u, packets_.size()); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); creator_.FlushCurrentPacket(); creator_.SetMaxPacketLength(packet_len); EXPECT_EQ(packet_len, creator_.max_packet_length()); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); const std::string second_write(second_write_len, '?'); consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), second_write, first_write_len, FIN); EXPECT_EQ(second_write_len, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(creator_.HasPendingRetransmittableFrames()); ASSERT_EQ(2u, packets_.size()); EXPECT_GT(kDefaultMaxPacketSize, packets_[0].encrypted_length); EXPECT_EQ(packet_len, packets_[1].encrypted_length); CheckAllPacketsHaveSingleStreamFrame(); } TEST_F(QuicPacketCreatorMultiplePacketsTest, GenerateConnectivityProbingPacket) { delegate_.SetCanWriteAnything(); std::unique_ptr<SerializedPacket> probing_packet; if (VersionHasIetfQuicFrames(framer_.transport_version())) { QuicPathFrameBuffer payload = { {0xde, 0xad, 0xbe, 0xef, 0xba, 0xdc, 0x0f, 0xfe}}; probing_packet = creator_.SerializePathChallengeConnectivityProbingPacket(payload); } else { probing_packet = creator_.SerializeConnectivityProbingPacket(); } ASSERT_TRUE(simple_framer_.ProcessPacket(QuicEncryptedPacket( probing_packet->encrypted_buffer, probing_packet->encrypted_length))); EXPECT_EQ(2u, simple_framer_.num_frames()); if (VersionHasIetfQuicFrames(framer_.transport_version())) { EXPECT_EQ(1u, simple_framer_.path_challenge_frames().size()); } else { EXPECT_EQ(1u, simple_framer_.ping_frames().size()); } EXPECT_EQ(1u, simple_framer_.padding_frames().size()); } TEST_F(QuicPacketCreatorMultiplePacketsTest, GenerateMtuDiscoveryPacket_Simple) { delegate_.SetCanWriteAnything(); const size_t target_mtu = kDefaultMaxPacketSize + 100; static_assert(target_mtu < kMaxOutgoingPacketSize, "The MTU probe used by the test exceeds maximum packet size"); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); creator_.GenerateMtuDiscoveryPacket(target_mtu); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); ASSERT_EQ(1u, packets_.size()); EXPECT_EQ(target_mtu, packets_[0].encrypted_length); PacketContents contents; contents.num_mtu_discovery_frames = 1; contents.num_padding_frames = 1; CheckPacketContains(contents, 0); } TEST_F(QuicPacketCreatorMultiplePacketsTest, GenerateMtuDiscoveryPacket_SurroundedByData) { delegate_.SetCanWriteAnything(); const size_t target_mtu = kDefaultMaxPacketSize + 100; static_assert(target_mtu < kMaxOutgoingPacketSize, "The MTU probe used by the test exceeds maximum packet size"); const size_t data_len = target_mtu + 1; EXPECT_CALL(delegate_, OnSerializedPacket(_)) .Times(5) .WillRepeatedly( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); const std::string data(data_len, '?'); QuicConsumedData consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), data, 0, NO_FIN); creator_.Flush(); EXPECT_EQ(data_len, consumed.bytes_consumed); EXPECT_FALSE(consumed.fin_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); creator_.GenerateMtuDiscoveryPacket(target_mtu); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); creator_.AttachPacketFlusher(); consumed = creator_.ConsumeData( QuicUtils::GetFirstBidirectionalStreamId(framer_.transport_version(), Perspective::IS_CLIENT), data, data_len, FIN); creator_.Flush(); EXPECT_EQ(data_len, consumed.bytes_consumed); EXPECT_TRUE(consumed.fin_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); ASSERT_EQ(5u, packets_.size()); EXPECT_EQ(kDefaultMaxPacketSize, packets_[0].encrypted_length); EXPECT_EQ(target_mtu, packets_[2].encrypted_length); EXPECT_EQ(kDefaultMaxPacketSize, packets_[3].encrypted_length); PacketContents probe_contents; probe_contents.num_mtu_discovery_frames = 1; probe_contents.num_padding_frames = 1; CheckPacketHasSingleStreamFrame(0); CheckPacketHasSingleStreamFrame(1); CheckPacketContains(probe_contents, 2); CheckPacketHasSingleStreamFrame(3); CheckPacketHasSingleStreamFrame(4); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConnectionCloseFrameLargerThanPacketSize) { delegate_.SetCanWriteAnything(); char buf[2000] = {}; absl::string_view error_details(buf, 2000); const QuicErrorCode kQuicErrorCode = QUIC_PACKET_WRITE_ERROR; QuicConnectionCloseFrame* frame = new QuicConnectionCloseFrame( framer_.transport_version(), kQuicErrorCode, NO_IETF_QUIC_ERROR, std::string(error_details), 0); creator_.ConsumeRetransmittableControlFrame(QuicFrame(frame), false); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(creator_.HasPendingRetransmittableFrames()); } TEST_F(QuicPacketCreatorMultiplePacketsTest, RandomPaddingAfterFinSingleStreamSinglePacket) { const QuicByteCount kStreamFramePayloadSize = 100u; char buf[kStreamFramePayloadSize] = {}; const QuicStreamId kDataStreamId = 5; size_t length = TaggingEncrypter(0x00).GetCiphertextSize(0) + GetPacketHeaderSize( framer_.transport_version(), creator_.GetDestinationConnectionIdLength(), creator_.GetSourceConnectionIdLength(), QuicPacketCreatorPeer::SendVersionInPacket(&creator_), !kIncludeDiversificationNonce, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_), QuicPacketCreatorPeer::GetRetryTokenLengthLength(&creator_), 0, QuicPacketCreatorPeer::GetLengthLength(&creator_)) + QuicFramer::GetMinStreamFrameSize( framer_.transport_version(), kDataStreamId, 0, false, kStreamFramePayloadSize + kMaxNumRandomPaddingBytes) + kStreamFramePayloadSize + kMaxNumRandomPaddingBytes; creator_.SetMaxPacketLength(length); delegate_.SetCanWriteAnything(); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); QuicConsumedData consumed = creator_.ConsumeData( kDataStreamId, absl::string_view(buf, kStreamFramePayloadSize), 0, FIN_AND_PADDING); creator_.Flush(); EXPECT_EQ(kStreamFramePayloadSize, consumed.bytes_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); EXPECT_EQ(1u, packets_.size()); PacketContents contents; contents.num_padding_frames = 1; contents.num_stream_frames = 1; CheckPacketContains(contents, 0); } TEST_F(QuicPacketCreatorMultiplePacketsTest, RandomPaddingAfterFinSingleStreamMultiplePackets) { const QuicByteCount kStreamFramePayloadSize = 100u; char buf[kStreamFramePayloadSize] = {}; const QuicStreamId kDataStreamId = 5; size_t length = TaggingEncrypter(0x00).GetCiphertextSize(0) + GetPacketHeaderSize( framer_.transport_version(), creator_.GetDestinationConnectionIdLength(), creator_.GetSourceConnectionIdLength(), QuicPacketCreatorPeer::SendVersionInPacket(&creator_), !kIncludeDiversificationNonce, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_), QuicPacketCreatorPeer::GetRetryTokenLengthLength(&creator_), 0, QuicPacketCreatorPeer::GetLengthLength(&creator_)) + QuicFramer::GetMinStreamFrameSize( framer_.transport_version(), kDataStreamId, 0, false, kStreamFramePayloadSize + 1) + kStreamFramePayloadSize + 1; creator_.SetMaxPacketLength(length); delegate_.SetCanWriteAnything(); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillRepeatedly( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); QuicConsumedData consumed = creator_.ConsumeData( kDataStreamId, absl::string_view(buf, kStreamFramePayloadSize), 0, FIN_AND_PADDING); creator_.Flush(); EXPECT_EQ(kStreamFramePayloadSize, consumed.bytes_consumed); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); EXPECT_LE(1u, packets_.size()); PacketContents contents; contents.num_stream_frames = 1; contents.num_padding_frames = 1; CheckPacketContains(contents, 0); for (size_t i = 1; i < packets_.size(); ++i) { contents.num_stream_frames = 0; contents.num_padding_frames = 1; CheckPacketContains(contents, i); } } TEST_F(QuicPacketCreatorMultiplePacketsTest, RandomPaddingAfterFinMultipleStreamsMultiplePackets) { const QuicByteCount kStreamFramePayloadSize = 100u; char buf[kStreamFramePayloadSize] = {}; const QuicStreamId kDataStreamId1 = 5; const QuicStreamId kDataStreamId2 = 6; size_t length = TaggingEncrypter(0x00).GetCiphertextSize(0) + GetPacketHeaderSize( framer_.transport_version(), creator_.GetDestinationConnectionIdLength(), creator_.GetSourceConnectionIdLength(), QuicPacketCreatorPeer::SendVersionInPacket(&creator_), !kIncludeDiversificationNonce, QuicPacketCreatorPeer::GetPacketNumberLength(&creator_), QuicPacketCreatorPeer::GetRetryTokenLengthLength(&creator_), 0, QuicPacketCreatorPeer::GetLengthLength(&creator_)) + QuicFramer::GetMinStreamFrameSize( framer_.transport_version(), kDataStreamId1, 0, false, kStreamFramePayloadSize) + kStreamFramePayloadSize + QuicFramer::GetMinStreamFrameSize(framer_.transport_version(), kDataStreamId1, 0, false, 1) + 1; creator_.SetMaxPacketLength(length); delegate_.SetCanWriteAnything(); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillRepeatedly( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); QuicConsumedData consumed = creator_.ConsumeData( kDataStreamId1, absl::string_view(buf, kStreamFramePayloadSize), 0, FIN_AND_PADDING); EXPECT_EQ(kStreamFramePayloadSize, consumed.bytes_consumed); consumed = creator_.ConsumeData( kDataStreamId2, absl::string_view(buf, kStreamFramePayloadSize), 0, FIN_AND_PADDING); EXPECT_EQ(kStreamFramePayloadSize, consumed.bytes_consumed); creator_.Flush(); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_FALSE(creator_.HasPendingRetransmittableFrames()); EXPECT_LE(2u, packets_.size()); PacketContents contents; contents.num_stream_frames = 2; CheckPacketContains(contents, 0); contents.num_stream_frames = 1; contents.num_padding_frames = 1; CheckPacketContains(contents, 1); for (size_t i = 2; i < packets_.size(); ++i) { contents.num_stream_frames = 0; contents.num_padding_frames = 1; CheckPacketContains(contents, i); } } TEST_F(QuicPacketCreatorMultiplePacketsTest, AddMessageFrame) { if (framer_.version().UsesTls()) { creator_.SetMaxDatagramFrameSize(kMaxAcceptedDatagramFrameSize); } delegate_.SetCanWriteAnything(); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); creator_.ConsumeData(QuicUtils::GetFirstBidirectionalStreamId( framer_.transport_version(), Perspective::IS_CLIENT), "foo", 0, FIN); EXPECT_EQ(MESSAGE_STATUS_SUCCESS, creator_.AddMessageFrame(1, MemSliceFromString("message"))); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_TRUE(creator_.HasPendingRetransmittableFrames()); EXPECT_EQ(MESSAGE_STATUS_SUCCESS, creator_.AddMessageFrame( 2, MemSliceFromString(std::string( creator_.GetCurrentLargestMessagePayload(), 'a')))); EXPECT_TRUE(creator_.HasPendingRetransmittableFrames()); EXPECT_EQ(MESSAGE_STATUS_TOO_LARGE, creator_.AddMessageFrame( 3, MemSliceFromString(std::string( creator_.GetCurrentLargestMessagePayload() + 10, 'a')))); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ConnectionId) { creator_.SetServerConnectionId(TestConnectionId(0x1337)); EXPECT_EQ(TestConnectionId(0x1337), creator_.GetDestinationConnectionId()); EXPECT_EQ(EmptyQuicConnectionId(), creator_.GetSourceConnectionId()); if (!framer_.version().SupportsClientConnectionIds()) { return; } creator_.SetClientConnectionId(TestConnectionId(0x33)); EXPECT_EQ(TestConnectionId(0x1337), creator_.GetDestinationConnectionId()); EXPECT_EQ(TestConnectionId(0x33), creator_.GetSourceConnectionId()); } TEST_F(QuicPacketCreatorMultiplePacketsTest, ExtraPaddingNeeded) { if (!framer_.version().HasHeaderProtection()) { return; } delegate_.SetCanWriteAnything(); EXPECT_EQ(QuicPacketCreatorPeer::GetPacketNumberLength(&creator_), PACKET_1BYTE_PACKET_NUMBER); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce( Invoke(this, &QuicPacketCreatorMultiplePacketsTest::SavePacket)); creator_.ConsumeData(QuicUtils::GetFirstBidirectionalStreamId( framer_.transport_version(), Perspective::IS_CLIENT), "", 0, FIN); creator_.Flush(); ASSERT_FALSE(packets_[0].nonretransmittable_frames.empty()); QuicFrame padding = packets_[0].nonretransmittable_frames[0]; EXPECT_EQ(padding.padding_frame.num_padding_bytes, 1); } TEST_F(QuicPacketCreatorMultiplePacketsTest, PeerAddressContextWithSameAddress) { QuicConnectionId client_connection_id = TestConnectionId(1); QuicConnectionId server_connection_id = TestConnectionId(2); QuicSocketAddress peer_addr(QuicIpAddress::Any4(), 12345); creator_.SetDefaultPeerAddress(peer_addr); creator_.SetClientConnectionId(client_connection_id); creator_.SetServerConnectionId(server_connection_id); EXPECT_CALL(delegate_, ShouldGeneratePacket(_, _)) .WillRepeatedly(Return(true)); EXPECT_EQ(3u, creator_ .ConsumeData(QuicUtils::GetFirstBidirectionalStreamId( creator_.transport_version(), Perspective::IS_CLIENT), "foo", 0, NO_FIN) .bytes_consumed); EXPECT_TRUE(creator_.HasPendingFrames()); { QuicPacketCreator::ScopedPeerAddressContext context( &creator_, peer_addr, client_connection_id, server_connection_id); ASSERT_EQ(client_connection_id, creator_.GetClientConnectionId()); ASSERT_EQ(server_connection_id, creator_.GetServerConnectionId()); EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_EQ(3u, creator_ .ConsumeData(QuicUtils::GetFirstBidirectionalStreamId( creator_.transport_version(), Perspective::IS_CLIENT), "foo", 0, FIN) .bytes_consumed); } EXPECT_TRUE(creator_.HasPendingFrames()); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke([=](SerializedPacket packet) { EXPECT_EQ(peer_addr, packet.peer_address); ASSERT_EQ(2u, packet.retransmittable_frames.size()); EXPECT_EQ(STREAM_FRAME, packet.retransmittable_frames.front().type); EXPECT_EQ(STREAM_FRAME, packet.retransmittable_frames.back().type); })); creator_.FlushCurrentPacket(); } TEST_F(QuicPacketCreatorMultiplePacketsTest, PeerAddressContextWithDifferentAddress) { QuicSocketAddress peer_addr(QuicIpAddress::Any4(), 12345); creator_.SetDefaultPeerAddress(peer_addr); EXPECT_CALL(delegate_, ShouldGeneratePacket(_, _)) .WillRepeatedly(Return(true)); EXPECT_EQ(3u, creator_ .ConsumeData(QuicUtils::GetFirstBidirectionalStreamId( creator_.transport_version(), Perspective::IS_CLIENT), "foo", 0, NO_FIN) .bytes_consumed); QuicSocketAddress peer_addr1(QuicIpAddress::Any4(), 12346); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke([=](SerializedPacket packet) { EXPECT_EQ(peer_addr, packet.peer_address); ASSERT_EQ(1u, packet.retransmittable_frames.size()); EXPECT_EQ(STREAM_FRAME, packet.retransmittable_frames.front().type); })) .WillOnce(Invoke([=](SerializedPacket packet) { EXPECT_EQ(peer_addr1, packet.peer_address); ASSERT_EQ(1u, packet.retransmittable_frames.size()); EXPECT_EQ(STREAM_FRAME, packet.retransmittable_frames.front().type); })); EXPECT_TRUE(creator_.HasPendingFrames()); { QuicConnectionId client_connection_id = TestConnectionId(1); QuicConnectionId server_connection_id = TestConnectionId(2); QuicPacketCreator::ScopedPeerAddressContext context( &creator_, peer_addr1, client_connection_id, server_connection_id); ASSERT_EQ(client_connection_id, creator_.GetClientConnectionId()); ASSERT_EQ(server_connection_id, creator_.GetServerConnectionId()); EXPECT_FALSE(creator_.HasPendingFrames()); EXPECT_EQ(3u, creator_ .ConsumeData(QuicUtils::GetFirstBidirectionalStreamId( creator_.transport_version(), Perspective::IS_CLIENT), "foo", 0, FIN) .bytes_consumed); EXPECT_TRUE(creator_.HasPendingFrames()); } EXPECT_FALSE(creator_.HasPendingFrames()); } TEST_F(QuicPacketCreatorMultiplePacketsTest, NestedPeerAddressContextWithDifferentAddress) { QuicConnectionId client_connection_id1 = creator_.GetClientConnectionId(); QuicConnectionId server_connection_id1 = creator_.GetServerConnectionId(); QuicSocketAddress peer_addr(QuicIpAddress::Any4(), 12345); creator_.SetDefaultPeerAddress(peer_addr); QuicPacketCreator::ScopedPeerAddressContext context( &creator_, peer_addr, client_connection_id1, server_connection_id1); ASSERT_EQ(client_connection_id1, creator_.GetClientConnectionId()); ASSERT_EQ(server_connection_id1, creator_.GetServerConnectionId()); EXPECT_CALL(delegate_, ShouldGeneratePacket(_, _)) .WillRepeatedly(Return(true)); EXPECT_EQ(3u, creator_ .ConsumeData(QuicUtils::GetFirstBidirectionalStreamId( creator_.transport_version(), Perspective::IS_CLIENT), "foo", 0, NO_FIN) .bytes_consumed); EXPECT_TRUE(creator_.HasPendingFrames()); QuicSocketAddress peer_addr1(QuicIpAddress::Any4(), 12346); EXPECT_CALL(delegate_, OnSerializedPacket(_)) .WillOnce(Invoke([=, this](SerializedPacket packet) { EXPECT_EQ(peer_addr, packet.peer_address); ASSERT_EQ(1u, packet.retransmittable_frames.size()); EXPECT_EQ(STREAM_FRAME, packet.retransmittable_frames.front().type); QuicConnectionId client_connection_id2 = TestConnectionId(3); QuicConnectionId server_connection_id2 = TestConnectionId(4); QuicPacketCreator::ScopedPeerAddressContext context( &creator_, peer_addr1, client_connection_id2, server_connection_id2); ASSERT_EQ(client_connection_id2, creator_.GetClientConnectionId()); ASSERT_EQ(server_connection_id2, creator_.GetServerConnectionId()); EXPECT_CALL(delegate_, ShouldGeneratePacket(_, _)) .WillRepeatedly(Return(true)); EXPECT_EQ(3u, creator_ .ConsumeData(QuicUtils::GetFirstBidirectionalStreamId( creator_.transport_version(), Perspective::IS_CLIENT), "foo", 0, NO_FIN) .bytes_consumed); EXPECT_TRUE(creator_.HasPendingFrames()); creator_.FlushCurrentPacket(); })) .WillOnce(Invoke([=](SerializedPacket packet) { EXPECT_EQ(peer_addr1, packet.peer_address); ASSERT_EQ(1u, packet.retransmittable_frames.size()); EXPECT_EQ(STREAM_FRAME, packet.retransmittable_frames.front().type); })); creator_.FlushCurrentPacket(); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_packet_creator.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_packet_creator_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
bdce681d-16ba-4605-99c8-21cd2cd7c581
cpp
tensorflow/tensorflow
coordinator
tensorflow/cc/training/coordinator.cc
tensorflow/cc/training/coordinator_test.cc
#include "tensorflow/cc/training/coordinator.h" #include "absl/status/status.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { Coordinator::Coordinator() : Coordinator(std::vector<error::Code>()) {} Coordinator::Coordinator(const std::vector<error::Code>& clean_stop_errors) : should_stop_(false) { if (clean_stop_errors.empty()) { clean_stop_errors_.insert(error::OUT_OF_RANGE); } else { for (const auto& code : clean_stop_errors) { clean_stop_errors_.insert(static_cast<int>(code)); } } } Coordinator::~Coordinator() { RequestStop().IgnoreError(); Join().IgnoreError(); } Status Coordinator::RegisterRunner(std::unique_ptr<RunnerInterface> runner) { { mutex_lock l(mu_); if (should_stop_) { return Status(absl::StatusCode::kFailedPrecondition, "The coordinator has been stopped."); } } mutex_lock l(runners_lock_); runners_.push_back(std::move(runner)); return absl::OkStatus(); } bool Coordinator::AllRunnersStopped() { mutex_lock l(runners_lock_); for (const auto& runner : runners_) { if (runner->IsRunning()) { return false; } } return true; } Status Coordinator::RequestStop() { mutex_lock l(mu_); if (should_stop_) { return Status(absl::StatusCode::kFailedPrecondition, "The Coordinator is not running."); } should_stop_ = true; wait_for_stop_.notify_all(); return absl::OkStatus(); } bool Coordinator::ShouldStop() { mutex_lock l(mu_); return should_stop_; } Status Coordinator::Join() { { mutex_lock l(mu_); if (!should_stop_) { return Status(absl::StatusCode::kFailedPrecondition, "Joining coordinator without requesting to stop."); } } { mutex_lock l(runners_lock_); for (const auto& t : runners_) { ReportStatus(t->Join()); } runners_.clear(); } return GetStatus(); } void Coordinator::ReportStatus(const Status& status) { mutex_lock l(status_lock_); if (status.ok() || !status_.ok() || clean_stop_errors_.count(static_cast<int>(status.code())) > 0) { return; } status_ = status; } Status Coordinator::GetStatus() { mutex_lock l(status_lock_); return status_; } void Coordinator::WaitForStop() { mutex_lock l(mu_); while (!should_stop_) { wait_for_stop_.wait(l); } } Status Coordinator::ExportCostGraph(CostGraphDef* cost_graph) const { mutex_lock l(runners_lock_); for (auto& t : runners_) { Status s = t->ExportCostGraph(cost_graph); if (!s.ok()) { return s; } } return absl::OkStatus(); } }
#include "tensorflow/cc/training/coordinator.h" #include "absl/status/status.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/threadpool.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace { using error::Code; void WaitForStopThread(Coordinator* coord, Notification* about_to_wait, Notification* done) { about_to_wait->Notify(); coord->WaitForStop(); done->Notify(); } TEST(CoordinatorTest, TestStopAndWaitOnStop) { Coordinator coord; EXPECT_EQ(coord.ShouldStop(), false); Notification about_to_wait; Notification done; Env::Default()->SchedClosure( std::bind(&WaitForStopThread, &coord, &about_to_wait, &done)); about_to_wait.WaitForNotification(); Env::Default()->SleepForMicroseconds(1000 * 1000); EXPECT_FALSE(done.HasBeenNotified()); TF_EXPECT_OK(coord.RequestStop()); done.WaitForNotification(); EXPECT_TRUE(coord.ShouldStop()); } class MockQueueRunner : public RunnerInterface { public: explicit MockQueueRunner(Coordinator* coord) { coord_ = coord; join_counter_ = nullptr; thread_pool_.reset(new thread::ThreadPool(Env::Default(), "test-pool", 10)); stopped_ = false; } MockQueueRunner(Coordinator* coord, int* join_counter) : MockQueueRunner(coord) { join_counter_ = join_counter; } void StartCounting(std::atomic<int>* counter, int until, Notification* start = nullptr) { thread_pool_->Schedule( std::bind(&MockQueueRunner::CountThread, this, counter, until, start)); } void StartSettingStatus(const Status& status, BlockingCounter* counter, Notification* start) { thread_pool_->Schedule(std::bind(&MockQueueRunner::SetStatusThread, this, status, counter, start)); } Status Join() override { if (join_counter_ != nullptr) { (*join_counter_)++; } thread_pool_.reset(); return status_; } Status GetStatus() { return status_; } void SetStatus(const Status& status) { status_ = status; } bool IsRunning() const override { return !stopped_; }; void Stop() { stopped_ = true; } private: void CountThread(std::atomic<int>* counter, int until, Notification* start) { if (start != nullptr) start->WaitForNotification(); while (!coord_->ShouldStop() && counter->load() < until) { (*counter)++; Env::Default()->SleepForMicroseconds(10 * 1000); } coord_->RequestStop().IgnoreError(); } void SetStatusThread(const Status& status, BlockingCounter* counter, Notification* start) { start->WaitForNotification(); SetStatus(status); counter->DecrementCount(); } std::unique_ptr<thread::ThreadPool> thread_pool_; Status status_; Coordinator* coord_; int* join_counter_; bool stopped_; }; TEST(CoordinatorTest, TestRealStop) { std::atomic<int> counter(0); Coordinator coord; std::unique_ptr<MockQueueRunner> qr1(new MockQueueRunner(&coord)); qr1->StartCounting(&counter, 100); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr1))); std::unique_ptr<MockQueueRunner> qr2(new MockQueueRunner(&coord)); qr2->StartCounting(&counter, 100); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr2))); while (counter.load() == 0) ; TF_EXPECT_OK(coord.RequestStop()); int temp_counter = counter.load(); Env::Default()->SleepForMicroseconds(1000 * 1000); EXPECT_EQ(temp_counter, counter.load()); TF_EXPECT_OK(coord.Join()); } TEST(CoordinatorTest, TestRequestStop) { Coordinator coord; std::atomic<int> counter(0); Notification start; std::unique_ptr<MockQueueRunner> qr; for (int i = 0; i < 10; i++) { qr.reset(new MockQueueRunner(&coord)); qr->StartCounting(&counter, 10, &start); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr))); } start.Notify(); coord.WaitForStop(); EXPECT_EQ(coord.ShouldStop(), true); EXPECT_EQ(counter.load(), 10); TF_EXPECT_OK(coord.Join()); } TEST(CoordinatorTest, TestJoin) { Coordinator coord; int join_counter = 0; std::unique_ptr<MockQueueRunner> qr1( new MockQueueRunner(&coord, &join_counter)); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr1))); std::unique_ptr<MockQueueRunner> qr2( new MockQueueRunner(&coord, &join_counter)); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr2))); TF_EXPECT_OK(coord.RequestStop()); TF_EXPECT_OK(coord.Join()); EXPECT_EQ(join_counter, 2); } TEST(CoordinatorTest, StatusReporting) { Coordinator coord({Code::CANCELLED, Code::OUT_OF_RANGE}); Notification start; BlockingCounter counter(3); std::unique_ptr<MockQueueRunner> qr1(new MockQueueRunner(&coord)); qr1->StartSettingStatus(Status(absl::StatusCode::kCancelled, ""), &counter, &start); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr1))); std::unique_ptr<MockQueueRunner> qr2(new MockQueueRunner(&coord)); qr2->StartSettingStatus(Status(absl::StatusCode::kInvalidArgument, ""), &counter, &start); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr2))); std::unique_ptr<MockQueueRunner> qr3(new MockQueueRunner(&coord)); qr3->StartSettingStatus(Status(absl::StatusCode::kOutOfRange, ""), &counter, &start); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr3))); start.Notify(); counter.Wait(); TF_EXPECT_OK(coord.RequestStop()); EXPECT_EQ(coord.Join().code(), absl::StatusCode::kInvalidArgument); } TEST(CoordinatorTest, JoinWithoutStop) { Coordinator coord; std::unique_ptr<MockQueueRunner> qr(new MockQueueRunner(&coord)); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr))); EXPECT_EQ(coord.Join().code(), Code::FAILED_PRECONDITION); } TEST(CoordinatorTest, AllRunnersStopped) { Coordinator coord; MockQueueRunner* qr = new MockQueueRunner(&coord); TF_ASSERT_OK(coord.RegisterRunner(std::unique_ptr<RunnerInterface>(qr))); EXPECT_FALSE(coord.AllRunnersStopped()); qr->Stop(); EXPECT_TRUE(coord.AllRunnersStopped()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/training/coordinator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/training/coordinator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a581d489-5070-4705-82dd-ec7c21b84a0a
cpp
tensorflow/tensorflow
exponential
tensorflow/lite/experimental/shlo/ops/exponential.cc
tensorflow/lite/experimental/shlo/ops/exponential_test.cc
#include "tensorflow/lite/experimental/shlo/ops/exponential.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Exponential { template <class T> T operator()(T v) const { return std::exp(v); } }; template <> F16 Exponential::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Exponential::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } ExponentialOp Create(ExponentialOp::Attributes) { return {}; } absl::Status Prepare(ExponentialOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes( CheckCtx("cosine"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("cosine"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(ExponentialOp& op, const Tensor& input, Tensor& output) { Exponential exponential; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), exponential, input, output) } else if (IsFloatTensor(input)) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), exponential, input, output); } return absl::FailedPreconditionError( "stablehlo.tanh: Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/exponential.h" #include <cmath> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<ExponentialOp> { static std::string Get() { return "Exponential"; } }; namespace { struct Exponential { template <class T> T operator()(T v) const { return std::exp(v); } } exponential_ref; template <> F16 Exponential::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Exponential::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } INSTANTIATE_TYPED_TEST_SUITE_P(Exponential, UnaryElementwiseOpShapePropagationTest, ExponentialOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( Exponential, UnaryElementwiseSameBaselineElementTypeConstraintTest, UnaryElementwiseConstraint1Types<ExponentialOp>, TestParamNames); using UnsupportedTypes = WithOpTypes<ExponentialOp, ConcatTypes<BoolTestType, IntTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Exponential, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct ExponentialTest : ::testing::Test {}; TYPED_TEST_SUITE(ExponentialTest, FloatTestTypes, TestParamNames); TYPED_TEST(ExponentialTest, FloatTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), exponential_ref); auto op = Create(ExponentialOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } template <class T> struct QuantizedExponentialTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedExponentialTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedExponentialTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor input_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = input_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( input_data, expected_data.begin(), [zero_point, scale](auto v) { const ExpressedT dequantized_input = Dequantize(v, zero_point, scale); const ExpressedT dequantized_res = exponential_ref(dequantized_input); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(ExponentialOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/exponential.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/exponential_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
efe8eb53-2350-4abc-aafc-adeb5a15e0e5
cpp
google/tensorstore
dimension_units
tensorstore/index_space/dimension_units.cc
tensorstore/index_space/dimension_units_test.cc
#include "tensorstore/index_space/dimension_units.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { Result<DimensionUnitsVector> TransformInputDimensionUnits( IndexTransformView<> transform, DimensionUnitsVector input_units) { if (!transform.valid()) return input_units; const DimensionIndex input_rank = transform.input_rank(), output_rank = transform.output_rank(); assert(input_units.size() == input_rank); std::optional<Unit> output_units[kMaxRank]; DimensionSet seen_input_dims; for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) continue; const Index stride = map.stride(); if (stride == 0) continue; const DimensionIndex input_dim = map.input_dimension(); const auto& input_unit = input_units[input_dim]; if (!input_unit) continue; seen_input_dims[input_dim] = true; auto& output_unit = output_units[output_dim]; output_unit = input_unit; *output_unit /= std::abs(static_cast<double>(stride)); } for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { if (!input_units[input_dim] || seen_input_dims[input_dim]) continue; return absl::InvalidArgumentError(tensorstore::StrCat( "No output dimension corresponds to input dimension ", input_dim, " with unit ", *input_units[input_dim])); } input_units.resize(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { input_units[output_dim] = std::move(output_units[output_dim]); } return input_units; } DimensionUnitsVector TransformOutputDimensionUnits( IndexTransformView<> transform, DimensionUnitsVector output_units) { if (!transform.valid()) return output_units; const DimensionIndex input_rank = transform.input_rank(), output_rank = transform.output_rank(); assert(output_units.size() == output_rank); DimensionSet one_to_one_input_dims = internal::GetOneToOneInputDimensions(transform).one_to_one; std::optional<Unit> input_units[kMaxRank]; for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& output_unit = output_units[output_dim]; if (!output_unit) continue; const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) continue; const Index stride = map.stride(); if (stride == 0) continue; const DimensionIndex input_dim = map.input_dimension(); if (!one_to_one_input_dims[input_dim]) continue; auto& input_unit = input_units[input_dim]; input_unit = output_unit; *input_unit *= std::abs(static_cast<double>(stride)); } output_units.resize(input_rank); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { output_units[input_dim] = std::move(input_units[input_dim]); } return output_units; } absl::Status MergeDimensionUnits(DimensionUnitsVector& existing_units, span<const std::optional<Unit>> new_units) { assert(existing_units.empty() || existing_units.size() == new_units.size()); existing_units.resize(new_units.size()); for (size_t i = 0; i < new_units.size(); ++i) { auto& existing_unit = existing_units[i]; auto& new_unit = new_units[i]; if (!new_unit) continue; if (existing_unit && existing_unit != new_unit) { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot merge dimension units ", DimensionUnitsToString(new_units), " and ", DimensionUnitsToString(existing_units))); } } for (size_t i = 0; i < new_units.size(); ++i) { auto& existing_unit = existing_units[i]; auto& new_unit = new_units[i]; if (!new_unit || existing_unit) continue; existing_unit = new_unit; } return absl::OkStatus(); } std::string DimensionUnitsToString(span<const std::optional<Unit>> u) { std::string result = "["; std::string_view sep = ""; for (const auto& unit : u) { result += sep; sep = ", "; if (!unit) { result += "null"; } else { result += tensorstore::QuoteString(tensorstore::StrCat(*unit)); } } result += "]"; return result; } }
#include "tensorstore/index_space/dimension_units.h" #include <stddef.h> #include <iterator> #include <optional> #include <random> #include <string> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/random/bit_gen_ref.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/unit.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::DimensionUnitsToString; using ::tensorstore::DimensionUnitsVector; using ::tensorstore::MatchesStatus; using ::tensorstore::MergeDimensionUnits; using ::tensorstore::TransformInputDimensionUnits; using ::tensorstore::TransformOutputDimensionUnits; using ::tensorstore::Unit; TEST(DimensionUnitsToStringTest, Basic) { EXPECT_EQ("[null, \"4 nm\"]", DimensionUnitsToString(DimensionUnitsVector{ std::nullopt, Unit("4nm")})); } TEST(MergeDimensionUnitsTest, BothUnspecified) { DimensionUnitsVector existing_units{std::nullopt, std::nullopt}; DimensionUnitsVector new_units{std::nullopt, std::nullopt}; TENSORSTORE_EXPECT_OK(MergeDimensionUnits(existing_units, new_units)); EXPECT_THAT(existing_units, ::testing::ElementsAre(std::nullopt, std::nullopt)); } TEST(MergeDimensionUnitsTest, OneSpecifiedOneUnspecified) { DimensionUnitsVector existing_units{std::nullopt, Unit("4nm")}; DimensionUnitsVector new_units{Unit("8nm"), std::nullopt}; TENSORSTORE_EXPECT_OK(MergeDimensionUnits(existing_units, new_units)); EXPECT_THAT(existing_units, ::testing::ElementsAre(Unit("8nm"), Unit("4nm"))); } TEST(MergeDimensionUnitsTest, BothSpecifiedSame) { DimensionUnitsVector existing_units{Unit("8nm"), Unit("4nm")}; DimensionUnitsVector new_units{Unit("8nm"), std::nullopt}; TENSORSTORE_EXPECT_OK(MergeDimensionUnits(existing_units, new_units)); EXPECT_THAT(existing_units, ::testing::ElementsAre(Unit("8nm"), Unit("4nm"))); } TEST(MergeDimensionUnitsTest, BothSpecifiedDistinct) { DimensionUnitsVector existing_units{std::nullopt, Unit("4nm")}; DimensionUnitsVector new_units{Unit("8nm"), Unit("5nm")}; EXPECT_THAT( MergeDimensionUnits(existing_units, new_units), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot merge dimension units \\[\"8 nm\", \"5 nm\"\\] " "and \\[null, \"4 nm\"\\]")); EXPECT_THAT(existing_units, ::testing::ElementsAre(std::nullopt, Unit("4nm"))); } std::optional<Unit> MakeRandomUnit(absl::BitGenRef gen) { constexpr std::string_view kBaseUnits[] = { "", "nm", "um", }; if (absl::Bernoulli(gen, 0.2)) return std::nullopt; const double multiplier = absl::Uniform<int>(gen, 5, 20); const auto base_unit = kBaseUnits[absl::Uniform<size_t>(gen, 0, std::size(kBaseUnits))]; return Unit(multiplier, std::string(base_unit)); } DimensionUnitsVector MakeRandomDimensionUnits(DimensionIndex rank, absl::BitGenRef gen) { DimensionUnitsVector units(rank); for (auto& unit : units) { unit = MakeRandomUnit(gen); } return units; } TEST(TransformOutputDimensionUnitsTest, InvertibleRoundTrip) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_TRANSFORM_DIMENSION_UNITS_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto domain = tensorstore::IndexDomain(box); auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain); auto output_units = MakeRandomDimensionUnits(domain.rank(), gen); auto input_units = TransformOutputDimensionUnits(transform, output_units); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_transform, InverseTransform(transform)); EXPECT_THAT(TransformInputDimensionUnits(transform, input_units), ::testing::Optional(::testing::ElementsAreArray(output_units))); EXPECT_THAT(TransformOutputDimensionUnits(inv_transform, input_units), ::testing::ElementsAreArray(output_units)); } } TEST(TransformOutputDimensionUnitsTest, StridedNonInvertibleRoundTrip) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_TRANSFORM_DIMENSION_UNITS_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto domain = tensorstore::IndexDomain(box); tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters p; p.max_stride = 4; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain, p); auto output_units = MakeRandomDimensionUnits(domain.rank(), gen); auto input_units = TransformOutputDimensionUnits(transform, output_units); EXPECT_THAT(TransformInputDimensionUnits(transform, input_units), ::testing::Optional(::testing::ElementsAreArray(output_units))); } } TEST(TransformInputDimensionUnitsTest, NoCorrespondingOutputDimension) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IndexTransformBuilder(1, 0).Finalize()); DimensionUnitsVector input_units{"4nm"}; EXPECT_THAT(TransformInputDimensionUnits(transform, input_units), MatchesStatus(absl::StatusCode::kInvalidArgument, "No output dimension corresponds to " "input dimension 0 with unit 4 nm")); } TEST(TransformOutputDimensionUnitsTest, NonUnique) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IndexTransformBuilder(2, 3) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 0) .output_single_input_dimension(2, 1) .Finalize()); DimensionUnitsVector output_units{"4nm", "5nm", "6nm"}; EXPECT_THAT(TransformOutputDimensionUnits(transform, output_units), ::testing::ElementsAre(std::nullopt, Unit("6nm"))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/dimension_units.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/dimension_units_test.cc
4f887a6430414cd6088e1743555015b10f116d50
83652685-43bf-41f1-a1cd-a1370e304951
cpp
abseil/abseil-cpp
no_destructor
absl/base/no_destructor.h
absl/base/no_destructor_test.cc
#ifndef ABSL_BASE_NO_DESTRUCTOR_H_ #define ABSL_BASE_NO_DESTRUCTOR_H_ #include <new> #include <type_traits> #include <utility> #include "absl/base/config.h" #include "absl/base/nullability.h" namespace absl { ABSL_NAMESPACE_BEGIN template <typename T> class NoDestructor { public: template <typename... Ts, typename std::enable_if<!std::is_same<void(std::decay_t<Ts>&...), void(NoDestructor&)>::value, int>::type = 0> explicit constexpr NoDestructor(Ts&&... args) : impl_(std::forward<Ts>(args)...) {} explicit constexpr NoDestructor(const T& x) : impl_(x) {} explicit constexpr NoDestructor(T&& x) : impl_(std::move(x)) {} NoDestructor(const NoDestructor&) = delete; NoDestructor& operator=(const NoDestructor&) = delete; T& operator*() { return *get(); } absl::Nonnull<T*> operator->() { return get(); } absl::Nonnull<T*> get() { return impl_.get(); } const T& operator*() const { return *get(); } absl::Nonnull<const T*> operator->() const { return get(); } absl::Nonnull<const T*> get() const { return impl_.get(); } private: class DirectImpl { public: template <typename... Args> explicit constexpr DirectImpl(Args&&... args) : value_(std::forward<Args>(args)...) {} absl::Nonnull<const T*> get() const { return &value_; } absl::Nonnull<T*> get() { return &value_; } private: T value_; }; class PlacementImpl { public: template <typename... Args> explicit PlacementImpl(Args&&... args) { new (&space_) T(std::forward<Args>(args)...); } absl::Nonnull<const T*> get() const { return Launder(reinterpret_cast<const T*>(&space_)); } absl::Nonnull<T*> get() { return Launder(reinterpret_cast<T*>(&space_)); } private: template <typename P> static absl::Nonnull<P*> Launder(absl::Nonnull<P*> p) { #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606L return std::launder(p); #elif ABSL_HAVE_BUILTIN(__builtin_launder) return __builtin_launder(p); #else #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wstrict-aliasing" #endif return p; #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic pop #endif #endif } alignas(T) unsigned char space_[sizeof(T)]; }; std::conditional_t<std::is_trivially_destructible<T>::value, DirectImpl, PlacementImpl> impl_; }; #ifdef ABSL_HAVE_CLASS_TEMPLATE_ARGUMENT_DEDUCTION template <typename T> NoDestructor(T) -> NoDestructor<T>; #endif ABSL_NAMESPACE_END } #endif
#include "absl/base/no_destructor.h" #include <array> #include <initializer_list> #include <string> #include <type_traits> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/base/internal/raw_logging.h" namespace { struct Blob { Blob() : val(42) {} Blob(int x, int y) : val(x + y) {} Blob(std::initializer_list<int> xs) { val = 0; for (auto& x : xs) val += x; } Blob(const Blob& ) = delete; Blob(Blob&& b) noexcept : val(b.val) { b.moved_out = true; } ~Blob() { ABSL_INTERNAL_CHECK(moved_out, "~Blob"); } int val; bool moved_out = false; }; struct TypeWithDeletedDestructor { ~TypeWithDeletedDestructor() = delete; }; TEST(NoDestructorTest, DestructorNeverCalled) { absl::NoDestructor<TypeWithDeletedDestructor> a; (void)a; } TEST(NoDestructorTest, Noncopyable) { using T = absl::NoDestructor<int>; EXPECT_FALSE((std::is_constructible<T, T>::value)); EXPECT_FALSE((std::is_constructible<T, const T>::value)); EXPECT_FALSE((std::is_constructible<T, T&>::value)); EXPECT_FALSE((std::is_constructible<T, const T&>::value)); EXPECT_FALSE((std::is_assignable<T&, T>::value)); EXPECT_FALSE((std::is_assignable<T&, const T>::value)); EXPECT_FALSE((std::is_assignable<T&, T&>::value)); EXPECT_FALSE((std::is_assignable<T&, const T&>::value)); } TEST(NoDestructorTest, Interface) { EXPECT_TRUE(std::is_trivially_destructible<absl::NoDestructor<Blob>>::value); EXPECT_TRUE( std::is_trivially_destructible<absl::NoDestructor<const Blob>>::value); { absl::NoDestructor<Blob> b; EXPECT_EQ(42, (*b).val); (*b).val = 55; EXPECT_EQ(55, b->val); b->val = 66; EXPECT_EQ(66, b.get()->val); b.get()->val = 42; EXPECT_EQ(42, (*b).val); } { absl::NoDestructor<const Blob> b(70, 7); EXPECT_EQ(77, (*b).val); EXPECT_EQ(77, b->val); EXPECT_EQ(77, b.get()->val); } { const absl::NoDestructor<Blob> b{ {20, 28, 40}}; EXPECT_EQ(88, (*b).val); EXPECT_EQ(88, b->val); EXPECT_EQ(88, b.get()->val); } } TEST(NoDestructorTest, SfinaeRegressionAbstractArg) { struct Abstract { virtual ~Abstract() = default; virtual int foo() const = 0; }; struct Concrete : Abstract { int foo() const override { return 17; } }; struct UsesAbstractInConstructor { explicit UsesAbstractInConstructor(const Abstract& abstract) : i(abstract.foo()) {} int i; }; Concrete input; absl::NoDestructor<UsesAbstractInConstructor> foo1(input); EXPECT_EQ(foo1->i, 17); absl::NoDestructor<UsesAbstractInConstructor> foo2( static_cast<const Abstract&>(input)); EXPECT_EQ(foo2->i, 17); } std::string* Str0() { static absl::NoDestructor<std::string> x; return x.get(); } extern const std::string& Str2(); const char* Str1() { static absl::NoDestructor<std::string> x(Str2() + "_Str1"); return x->c_str(); } const std::string& Str2() { static absl::NoDestructor<std::string> x("Str2"); return *x; } const std::string& Str2Copy() { static absl::NoDestructor<std::string> x(Str2()); return *x; } typedef std::array<std::string, 3> MyArray; const MyArray& Array() { static absl::NoDestructor<MyArray> x{{{"foo", "bar", "baz"}}}; return *x; } typedef std::vector<int> MyVector; const MyVector& Vector() { static absl::NoDestructor<MyVector> x{{1, 2, 3}}; return *x; } const int& Int() { static absl::NoDestructor<int> x; return *x; } TEST(NoDestructorTest, StaticPattern) { EXPECT_TRUE( std::is_trivially_destructible<absl::NoDestructor<std::string>>::value); EXPECT_TRUE( std::is_trivially_destructible<absl::NoDestructor<MyArray>>::value); EXPECT_TRUE( std::is_trivially_destructible<absl::NoDestructor<MyVector>>::value); EXPECT_TRUE(std::is_trivially_destructible<absl::NoDestructor<int>>::value); EXPECT_EQ(*Str0(), ""); Str0()->append("foo"); EXPECT_EQ(*Str0(), "foo"); EXPECT_EQ(std::string(Str1()), "Str2_Str1"); EXPECT_EQ(Str2(), "Str2"); EXPECT_EQ(Str2Copy(), "Str2"); EXPECT_THAT(Array(), testing::ElementsAre("foo", "bar", "baz")); EXPECT_THAT(Vector(), testing::ElementsAre(1, 2, 3)); EXPECT_EQ(0, Int()); } #ifdef ABSL_HAVE_CLASS_TEMPLATE_ARGUMENT_DEDUCTION TEST(NoDestructorTest, ClassTemplateArgumentDeduction) { absl::NoDestructor i(1); static_assert(std::is_same<decltype(i), absl::NoDestructor<int>>::value, "Expected deduced type to be int."); } #endif }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/base/no_destructor.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/base/no_destructor_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
9722a3da-f201-47f3-8264-7d91231aa0cb
cpp
abseil/abseil-cpp
parse
absl/flags/parse.cc
absl/flags/parse_test.cc
#include "absl/flags/parse.h" #include <stdlib.h> #include <algorithm> #include <cstdint> #include <cstdlib> #include <fstream> #include <iostream> #include <ostream> #include <string> #include <tuple> #include <utility> #include <vector> #ifdef _WIN32 #include <windows.h> #endif #include "absl/algorithm/container.h" #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/const_init.h" #include "absl/base/thread_annotations.h" #include "absl/flags/commandlineflag.h" #include "absl/flags/config.h" #include "absl/flags/flag.h" #include "absl/flags/internal/commandlineflag.h" #include "absl/flags/internal/flag.h" #include "absl/flags/internal/parse.h" #include "absl/flags/internal/private_handle_accessor.h" #include "absl/flags/internal/program_name.h" #include "absl/flags/internal/usage.h" #include "absl/flags/reflection.h" #include "absl/flags/usage.h" #include "absl/flags/usage_config.h" #include "absl/strings/ascii.h" #include "absl/strings/internal/damerau_levenshtein_distance.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "absl/synchronization/mutex.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace flags_internal { namespace { ABSL_CONST_INIT absl::Mutex processing_checks_guard(absl::kConstInit); ABSL_CONST_INIT bool flagfile_needs_processing ABSL_GUARDED_BY(processing_checks_guard) = false; ABSL_CONST_INIT bool fromenv_needs_processing ABSL_GUARDED_BY(processing_checks_guard) = false; ABSL_CONST_INIT bool tryfromenv_needs_processing ABSL_GUARDED_BY(processing_checks_guard) = false; ABSL_CONST_INIT absl::Mutex specified_flags_guard(absl::kConstInit); ABSL_CONST_INIT std::vector<const CommandLineFlag*>* specified_flags ABSL_GUARDED_BY(specified_flags_guard) = nullptr; ABSL_CONST_INIT const size_t kMaxHints = 100; ABSL_CONST_INIT const size_t kMaxDistance = 3; struct SpecifiedFlagsCompare { bool operator()(const CommandLineFlag* a, const CommandLineFlag* b) const { return a->Name() < b->Name(); } bool operator()(const CommandLineFlag* a, absl::string_view b) const { return a->Name() < b; } bool operator()(absl::string_view a, const CommandLineFlag* b) const { return a < b->Name(); } }; } } ABSL_NAMESPACE_END } ABSL_FLAG(std::vector<std::string>, flagfile, {}, "comma-separated list of files to load flags from") .OnUpdate([]() { if (absl::GetFlag(FLAGS_flagfile).empty()) return; absl::MutexLock l(&absl::flags_internal::processing_checks_guard); if (absl::flags_internal::flagfile_needs_processing) { ABSL_INTERNAL_LOG(WARNING, "flagfile set twice before it is handled"); } absl::flags_internal::flagfile_needs_processing = true; }); ABSL_FLAG(std::vector<std::string>, fromenv, {}, "comma-separated list of flags to set from the environment" " [use 'export FLAGS_flag1=value']") .OnUpdate([]() { if (absl::GetFlag(FLAGS_fromenv).empty()) return; absl::MutexLock l(&absl::flags_internal::processing_checks_guard); if (absl::flags_internal::fromenv_needs_processing) { ABSL_INTERNAL_LOG(WARNING, "fromenv set twice before it is handled."); } absl::flags_internal::fromenv_needs_processing = true; }); ABSL_FLAG(std::vector<std::string>, tryfromenv, {}, "comma-separated list of flags to try to set from the environment if " "present") .OnUpdate([]() { if (absl::GetFlag(FLAGS_tryfromenv).empty()) return; absl::MutexLock l(&absl::flags_internal::processing_checks_guard); if (absl::flags_internal::tryfromenv_needs_processing) { ABSL_INTERNAL_LOG(WARNING, "tryfromenv set twice before it is handled."); } absl::flags_internal::tryfromenv_needs_processing = true; }); ABSL_FLAG(std::vector<std::string>, undefok, {}, "comma-separated list of flag names that it is okay to specify " "on the command line even if the program does not define a flag " "with that name"); namespace absl { ABSL_NAMESPACE_BEGIN namespace flags_internal { namespace { class ArgsList { public: ArgsList() : next_arg_(0) {} ArgsList(int argc, char* argv[]) : args_(argv, argv + argc), next_arg_(0) {} explicit ArgsList(const std::vector<std::string>& args) : args_(args), next_arg_(0) {} bool ReadFromFlagfile(const std::string& flag_file_name); size_t Size() const { return args_.size() - next_arg_; } size_t FrontIndex() const { return next_arg_; } absl::string_view Front() const { return args_[next_arg_]; } void PopFront() { next_arg_++; } private: std::vector<std::string> args_; size_t next_arg_; }; bool ArgsList::ReadFromFlagfile(const std::string& flag_file_name) { std::ifstream flag_file(flag_file_name); if (!flag_file) { flags_internal::ReportUsageError( absl::StrCat("Can't open flagfile ", flag_file_name), true); return false; } args_.emplace_back(""); std::string line; bool success = true; while (std::getline(flag_file, line)) { absl::string_view stripped = absl::StripLeadingAsciiWhitespace(line); if (stripped.empty() || stripped[0] == '#') { continue; } if (stripped[0] == '-') { if (stripped == "--") { flags_internal::ReportUsageError( "Flagfile can't contain position arguments or --", true); success = false; break; } args_.emplace_back(stripped); continue; } flags_internal::ReportUsageError( absl::StrCat("Unexpected line in the flagfile ", flag_file_name, ": ", line), true); success = false; } return success; } bool GetEnvVar(const char* var_name, std::string& var_value) { #ifdef _WIN32 char buf[1024]; auto get_res = GetEnvironmentVariableA(var_name, buf, sizeof(buf)); if (get_res >= sizeof(buf)) { return false; } if (get_res == 0) { return false; } var_value = std::string(buf, get_res); #else const char* val = ::getenv(var_name); if (val == nullptr) { return false; } var_value = val; #endif return true; } std::tuple<absl::string_view, absl::string_view, bool> SplitNameAndValue( absl::string_view arg) { absl::ConsumePrefix(&arg, "-"); if (arg.empty()) { return std::make_tuple("", "", false); } auto equal_sign_pos = arg.find('='); absl::string_view flag_name = arg.substr(0, equal_sign_pos); absl::string_view value; bool is_empty_value = false; if (equal_sign_pos != absl::string_view::npos) { value = arg.substr(equal_sign_pos + 1); is_empty_value = value.empty(); } return std::make_tuple(flag_name, value, is_empty_value); } std::tuple<CommandLineFlag*, bool> LocateFlag(absl::string_view flag_name) { CommandLineFlag* flag = absl::FindCommandLineFlag(flag_name); bool is_negative = false; if (!flag && absl::ConsumePrefix(&flag_name, "no")) { flag = absl::FindCommandLineFlag(flag_name); is_negative = true; } return std::make_tuple(flag, is_negative); } void CheckDefaultValuesParsingRoundtrip() { #ifndef NDEBUG flags_internal::ForEachFlag([&](CommandLineFlag& flag) { if (flag.IsRetired()) return; #define ABSL_FLAGS_INTERNAL_IGNORE_TYPE(T, _) \ if (flag.IsOfType<T>()) return; ABSL_FLAGS_INTERNAL_SUPPORTED_TYPES(ABSL_FLAGS_INTERNAL_IGNORE_TYPE) #undef ABSL_FLAGS_INTERNAL_IGNORE_TYPE flags_internal::PrivateHandleAccessor::CheckDefaultValueParsingRoundtrip( flag); }); #endif } bool ReadFlagfiles(const std::vector<std::string>& flagfiles, std::vector<ArgsList>& input_args) { bool success = true; for (auto it = flagfiles.rbegin(); it != flagfiles.rend(); ++it) { ArgsList al; if (al.ReadFromFlagfile(*it)) { input_args.push_back(al); } else { success = false; } } return success; } bool ReadFlagsFromEnv(const std::vector<std::string>& flag_names, std::vector<ArgsList>& input_args, bool fail_on_absent_in_env) { bool success = true; std::vector<std::string> args; args.emplace_back(""); for (const auto& flag_name : flag_names) { if (flag_name == "fromenv" || flag_name == "tryfromenv") { flags_internal::ReportUsageError( absl::StrCat("Infinite recursion on flag ", flag_name), true); success = false; continue; } const std::string envname = absl::StrCat("FLAGS_", flag_name); std::string envval; if (!GetEnvVar(envname.c_str(), envval)) { if (fail_on_absent_in_env) { flags_internal::ReportUsageError( absl::StrCat(envname, " not found in environment"), true); success = false; } continue; } args.push_back(absl::StrCat("--", flag_name, "=", envval)); } if (success) { input_args.emplace_back(args); } return success; } bool HandleGeneratorFlags(std::vector<ArgsList>& input_args, std::vector<std::string>& flagfile_value) { bool success = true; absl::MutexLock l(&flags_internal::processing_checks_guard); if (flags_internal::flagfile_needs_processing) { auto flagfiles = absl::GetFlag(FLAGS_flagfile); if (input_args.size() == 1) { flagfile_value.insert(flagfile_value.end(), flagfiles.begin(), flagfiles.end()); } success &= ReadFlagfiles(flagfiles, input_args); flags_internal::flagfile_needs_processing = false; } if (flags_internal::fromenv_needs_processing) { auto flags_list = absl::GetFlag(FLAGS_fromenv); success &= ReadFlagsFromEnv(flags_list, input_args, true); flags_internal::fromenv_needs_processing = false; } if (flags_internal::tryfromenv_needs_processing) { auto flags_list = absl::GetFlag(FLAGS_tryfromenv); success &= ReadFlagsFromEnv(flags_list, input_args, false); flags_internal::tryfromenv_needs_processing = false; } return success; } void ResetGeneratorFlags(const std::vector<std::string>& flagfile_value) { if (!flagfile_value.empty()) { absl::SetFlag(&FLAGS_flagfile, flagfile_value); absl::MutexLock l(&flags_internal::processing_checks_guard); flags_internal::flagfile_needs_processing = false; } if (!absl::GetFlag(FLAGS_fromenv).empty()) { absl::SetFlag(&FLAGS_fromenv, {}); } if (!absl::GetFlag(FLAGS_tryfromenv).empty()) { absl::SetFlag(&FLAGS_tryfromenv, {}); } absl::MutexLock l(&flags_internal::processing_checks_guard); flags_internal::fromenv_needs_processing = false; flags_internal::tryfromenv_needs_processing = false; } std::tuple<bool, absl::string_view> DeduceFlagValue(const CommandLineFlag& flag, absl::string_view value, bool is_negative, bool is_empty_value, ArgsList* curr_list) { if (flag.IsOfType<bool>()) { if (value.empty()) { if (is_empty_value) { flags_internal::ReportUsageError( absl::StrCat( "Missing the value after assignment for the boolean flag '", flag.Name(), "'"), true); return std::make_tuple(false, ""); } value = is_negative ? "0" : "1"; } else if (is_negative) { flags_internal::ReportUsageError( absl::StrCat("Negative form with assignment is not valid for the " "boolean flag '", flag.Name(), "'"), true); return std::make_tuple(false, ""); } } else if (is_negative) { flags_internal::ReportUsageError( absl::StrCat("Negative form is not valid for the flag '", flag.Name(), "'"), true); return std::make_tuple(false, ""); } else if (value.empty() && (!is_empty_value)) { if (curr_list->Size() == 1) { flags_internal::ReportUsageError( absl::StrCat("Missing the value for the flag '", flag.Name(), "'"), true); return std::make_tuple(false, ""); } curr_list->PopFront(); value = curr_list->Front(); if (!value.empty() && value[0] == '-' && flag.IsOfType<std::string>()) { auto maybe_flag_name = std::get<0>(SplitNameAndValue(value.substr(1))); if (maybe_flag_name.empty() || std::get<0>(LocateFlag(maybe_flag_name)) != nullptr) { ABSL_INTERNAL_LOG( WARNING, absl::StrCat("Did you really mean to set flag '", flag.Name(), "' to the value '", value, "'?")); } } } return std::make_tuple(true, value); } bool CanIgnoreUndefinedFlag(absl::string_view flag_name) { auto undefok = absl::GetFlag(FLAGS_undefok); if (std::find(undefok.begin(), undefok.end(), flag_name) != undefok.end()) { return true; } if (absl::ConsumePrefix(&flag_name, "no") && std::find(undefok.begin(), undefok.end(), flag_name) != undefok.end()) { return true; } return false; } void ReportUnrecognizedFlags( const std::vector<UnrecognizedFlag>& unrecognized_flags, bool report_as_fatal_error) { for (const auto& unrecognized : unrecognized_flags) { std::vector<std::string> misspelling_hints; if (unrecognized.source == UnrecognizedFlag::kFromArgv) { misspelling_hints = flags_internal::GetMisspellingHints(unrecognized.flag_name); } if (misspelling_hints.empty()) { flags_internal::ReportUsageError( absl::StrCat("Unknown command line flag '", unrecognized.flag_name, "'"), report_as_fatal_error); } else { flags_internal::ReportUsageError( absl::StrCat("Unknown command line flag '", unrecognized.flag_name, "'. Did you mean: ", absl::StrJoin(misspelling_hints, ", "), " ?"), report_as_fatal_error); } } } } bool WasPresentOnCommandLine(absl::string_view flag_name) { absl::ReaderMutexLock l(&specified_flags_guard); ABSL_INTERNAL_CHECK(specified_flags != nullptr, "ParseCommandLine is not invoked yet"); return std::binary_search(specified_flags->begin(), specified_flags->end(), flag_name, SpecifiedFlagsCompare{}); } struct BestHints { explicit BestHints(uint8_t _max) : best_distance(_max + 1) {} bool AddHint(absl::string_view hint, uint8_t distance) { if (hints.size() >= kMaxHints) return false; if (distance == best_distance) { hints.emplace_back(hint); } if (distance < best_distance) { best_distance = distance; hints = std::vector<std::string>{std::string(hint)}; } return true; } uint8_t best_distance; std::vector<std::string> hints; }; std::vector<std::string> GetMisspellingHints(const absl::string_view flag) { const size_t maxCutoff = std::min(flag.size() / 2 + 1, kMaxDistance); auto undefok = absl::GetFlag(FLAGS_undefok); BestHints best_hints(static_cast<uint8_t>(maxCutoff)); flags_internal::ForEachFlag([&](const CommandLineFlag& f) { if (best_hints.hints.size() >= kMaxHints) return; uint8_t distance = strings_internal::CappedDamerauLevenshteinDistance( flag, f.Name(), best_hints.best_distance); best_hints.AddHint(f.Name(), distance); if (f.IsOfType<bool>()) { const std::string negated_flag = absl::StrCat("no", f.Name()); distance = strings_internal::CappedDamerauLevenshteinDistance( flag, negated_flag, best_hints.best_distance); best_hints.AddHint(negated_flag, distance); } }); absl::c_for_each(undefok, [&](const absl::string_view f) { if (best_hints.hints.size() >= kMaxHints) return; uint8_t distance = strings_internal::CappedDamerauLevenshteinDistance( flag, f, best_hints.best_distance); best_hints.AddHint(absl::StrCat(f, " (undefok)"), distance); }); return best_hints.hints; } std::vector<char*> ParseCommandLineImpl(int argc, char* argv[], UsageFlagsAction usage_flag_action, OnUndefinedFlag undef_flag_action, std::ostream& error_help_output) { std::vector<char*> positional_args; std::vector<UnrecognizedFlag> unrecognized_flags; auto help_mode = flags_internal::ParseAbseilFlagsOnlyImpl( argc, argv, positional_args, unrecognized_flags, usage_flag_action); if (undef_flag_action != OnUndefinedFlag::kIgnoreUndefined) { flags_internal::ReportUnrecognizedFlags( unrecognized_flags, (undef_flag_action == OnUndefinedFlag::kAbortIfUndefined)); if (undef_flag_action == OnUndefinedFlag::kAbortIfUndefined) { if (!unrecognized_flags.empty()) { flags_internal::HandleUsageFlags(error_help_output, ProgramUsageMessage()); std::exit(1); } } } flags_internal::MaybeExit(help_mode); return positional_args; } HelpMode ParseAbseilFlagsOnlyImpl( int argc, char* argv[], std::vector<char*>& positional_args, std::vector<UnrecognizedFlag>& unrecognized_flags, UsageFlagsAction usage_flag_action) { ABSL_INTERNAL_CHECK(argc > 0, "Missing argv[0]"); using flags_internal::ArgsList; using flags_internal::specified_flags; std::vector<std::string> flagfile_value; std::vector<ArgsList> input_args; flags_internal::FinalizeRegistry(); flags_internal::CheckDefaultValuesParsingRoundtrip(); input_args.push_back(ArgsList(argc, argv)); if (flags_internal::ProgramInvocationName() == "UNKNOWN") { flags_internal::SetProgramInvocationName(argv[0]); } positional_args.push_back(argv[0]); absl::MutexLock l(&flags_internal::specified_flags_guard); if (specified_flags == nullptr) { specified_flags = new std::vector<const CommandLineFlag*>; } else { specified_flags->clear(); } bool success = true; while (!input_args.empty()) { success &= flags_internal::HandleGeneratorFlags(input_args, flagfile_value); ArgsList& curr_list = input_args.back(); curr_list.PopFront(); if (curr_list.Size() == 0) { input_args.pop_back(); continue; } absl::string_view arg(curr_list.Front()); bool arg_from_argv = input_args.size() == 1; if (!absl::ConsumePrefix(&arg, "-") || arg.empty()) { ABSL_INTERNAL_CHECK(arg_from_argv, "Flagfile cannot contain positional argument"); positional_args.push_back(argv[curr_list.FrontIndex()]); continue; } absl::string_view flag_name; absl::string_view value; bool is_empty_value = false; std::tie(flag_name, value, is_empty_value) = flags_internal::SplitNameAndValue(arg); if (flag_name.empty()) { ABSL_INTERNAL_CHECK(arg_from_argv, "Flagfile cannot contain positional argument"); curr_list.PopFront(); break; } CommandLineFlag* flag = nullptr; bool is_negative = false; std::tie(flag, is_negative) = flags_internal::LocateFlag(flag_name); if (flag == nullptr) { if (flags_internal::DeduceUsageFlags(flag_name, value)) { continue; } unrecognized_flags.emplace_back(arg_from_argv ? UnrecognizedFlag::kFromArgv : UnrecognizedFlag::kFromFlagfile, flag_name); continue; } bool value_success = true; std::tie(value_success, value) = flags_internal::DeduceFlagValue( *flag, value, is_negative, is_empty_value, &curr_list); success &= value_success; std::string error; if (!flags_internal::PrivateHandleAccessor::ParseFrom( *flag, value, flags_internal::SET_FLAGS_VALUE, flags_internal::kCommandLine, error)) { if (flag->IsRetired()) continue; flags_internal::ReportUsageError(error, true); success = false; } else { specified_flags->push_back(flag); } } flags_internal::ResetGeneratorFlags(flagfile_value); if (!input_args.empty()) { for (size_t arg_index = input_args.back().FrontIndex(); arg_index < static_cast<size_t>(argc); ++arg_index) { positional_args.push_back(argv[arg_index]); } } specified_flags->shrink_to_fit(); std::sort(specified_flags->begin(), specified_flags->end(), flags_internal::SpecifiedFlagsCompare{}); std::vector<UnrecognizedFlag> filtered; filtered.reserve(unrecognized_flags.size()); for (const auto& unrecognized : unrecognized_flags) { if (flags_internal::CanIgnoreUndefinedFlag(unrecognized.flag_name)) continue; filtered.push_back(unrecognized); } std::swap(unrecognized_flags, filtered); if (!success) { #if ABSL_FLAGS_STRIP_NAMES flags_internal::ReportUsageError( "NOTE: command line flags are disabled in this build", true); #else flags_internal::HandleUsageFlags(std::cerr, ProgramUsageMessage()); #endif return HelpMode::kFull; } return usage_flag_action == UsageFlagsAction::kHandleUsage ? flags_internal::HandleUsageFlags(std::cout, ProgramUsageMessage()) : HelpMode::kNone; } } void ParseAbseilFlagsOnly(int argc, char* argv[], std::vector<char*>& positional_args, std::vector<UnrecognizedFlag>& unrecognized_flags) { auto help_mode = flags_internal::ParseAbseilFlagsOnlyImpl( argc, argv, positional_args, unrecognized_flags, flags_internal::UsageFlagsAction::kHandleUsage); flags_internal::MaybeExit(help_mode); } void ReportUnrecognizedFlags( const std::vector<UnrecognizedFlag>& unrecognized_flags) { flags_internal::ReportUnrecognizedFlags(unrecognized_flags, true); } std::vector<char*> ParseCommandLine(int argc, char* argv[]) { return flags_internal::ParseCommandLineImpl( argc, argv, flags_internal::UsageFlagsAction::kHandleUsage, flags_internal::OnUndefinedFlag::kAbortIfUndefined); } ABSL_NAMESPACE_END }
#include "absl/flags/parse.h" #include <stdlib.h> #include <fstream> #include <iostream> #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/internal/scoped_set_env.h" #include "absl/flags/config.h" #include "absl/flags/flag.h" #include "absl/flags/internal/parse.h" #include "absl/flags/internal/usage.h" #include "absl/flags/reflection.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "absl/types/span.h" #ifdef _WIN32 #include <windows.h> #endif #define FLAG_MULT(x) F3(x) #define TEST_FLAG_HEADER FLAG_HEADER_ #define F(name) ABSL_FLAG(int, name, 0, "") #define F1(name) \ F(name##1); \ F(name##2); \ F(name##3); \ F(name##4); \ F(name##5) #define F2(name) \ F1(name##1); \ F1(name##2); \ F1(name##3); \ F1(name##4); \ F1(name##5) #define F3(name) \ F2(name##1); \ F2(name##2); \ F2(name##3); \ F2(name##4); \ F2(name##5) FLAG_MULT(TEST_FLAG_HEADER); namespace { using absl::base_internal::ScopedSetEnv; struct UDT { UDT() = default; UDT(const UDT&) = default; UDT& operator=(const UDT&) = default; UDT(int v) : value(v) {} int value; }; bool AbslParseFlag(absl::string_view in, UDT* udt, std::string* err) { if (in == "A") { udt->value = 1; return true; } if (in == "AAA") { udt->value = 10; return true; } *err = "Use values A, AAA instead"; return false; } std::string AbslUnparseFlag(const UDT& udt) { return udt.value == 1 ? "A" : "AAA"; } std::string GetTestTmpDirEnvVar(const char* const env_var_name) { #ifdef _WIN32 char buf[MAX_PATH]; auto get_res = GetEnvironmentVariableA(env_var_name, buf, sizeof(buf)); if (get_res >= sizeof(buf) || get_res == 0) { return ""; } return std::string(buf, get_res); #else const char* val = ::getenv(env_var_name); if (val == nullptr) { return ""; } return val; #endif } const std::string& GetTestTempDir() { static std::string* temp_dir_name = []() -> std::string* { std::string* res = new std::string(GetTestTmpDirEnvVar("TEST_TMPDIR")); if (res->empty()) { *res = GetTestTmpDirEnvVar("TMPDIR"); } if (res->empty()) { #ifdef _WIN32 char temp_path_buffer[MAX_PATH]; auto len = GetTempPathA(MAX_PATH, temp_path_buffer); if (len < MAX_PATH && len != 0) { std::string temp_dir_name = temp_path_buffer; if (!absl::EndsWith(temp_dir_name, "\\")) { temp_dir_name.push_back('\\'); } absl::StrAppend(&temp_dir_name, "parse_test.", GetCurrentProcessId()); if (CreateDirectoryA(temp_dir_name.c_str(), nullptr)) { *res = temp_dir_name; } } #else char temp_dir_template[] = "/tmp/parse_test.XXXXXX"; if (auto* unique_name = ::mkdtemp(temp_dir_template)) { *res = unique_name; } #endif } if (res->empty()) { LOG(FATAL) << "Failed to make temporary directory for data files"; } #ifdef _WIN32 *res += "\\"; #else *res += "/"; #endif return res; }(); return *temp_dir_name; } struct FlagfileData { const absl::string_view file_name; const absl::Span<const char* const> file_lines; }; constexpr const char* const ff1_data[] = { "# comment ", " # comment ", "", " ", "--int_flag=-1", " --string_flag=q2w2 ", " ## ", " --double_flag=0.1", "--bool_flag=Y " }; constexpr const char* const ff2_data[] = { "# Setting legacy flag", "--legacy_int=1111", "--legacy_bool", "--nobool_flag", "--legacy_str=aqsw", "--int_flag=100", " ## =============" }; const char* GetFlagfileFlag(const std::vector<FlagfileData>& ffd, std::string& flagfile_flag) { flagfile_flag = "--flagfile="; absl::string_view separator; for (const auto& flagfile_data : ffd) { std::string flagfile_name = absl::StrCat(GetTestTempDir(), flagfile_data.file_name); std::ofstream flagfile_out(flagfile_name); for (auto line : flagfile_data.file_lines) { flagfile_out << absl::Substitute(line, GetTestTempDir()) << "\n"; } absl::StrAppend(&flagfile_flag, separator, flagfile_name); separator = ","; } return flagfile_flag.c_str(); } } ABSL_FLAG(int, int_flag, 1, ""); ABSL_FLAG(double, double_flag, 1.1, ""); ABSL_FLAG(std::string, string_flag, "a", ""); ABSL_FLAG(bool, bool_flag, false, ""); ABSL_FLAG(UDT, udt_flag, -1, ""); ABSL_RETIRED_FLAG(int, legacy_int, 1, ""); ABSL_RETIRED_FLAG(bool, legacy_bool, false, ""); ABSL_RETIRED_FLAG(std::string, legacy_str, "l", ""); namespace { namespace flags = absl::flags_internal; using testing::AllOf; using testing::ElementsAreArray; using testing::HasSubstr; class ParseTest : public testing::Test { public: ~ParseTest() override { flags::SetFlagsHelpMode(flags::HelpMode::kNone); } void SetUp() override { #if ABSL_FLAGS_STRIP_NAMES GTEST_SKIP() << "This test requires flag names to be present"; #endif } private: absl::FlagSaver flag_saver_; }; template <int N> flags::HelpMode InvokeParseAbslOnlyImpl(const char* (&in_argv)[N]) { std::vector<char*> positional_args; std::vector<absl::UnrecognizedFlag> unrecognized_flags; return flags::ParseAbseilFlagsOnlyImpl(N, const_cast<char**>(in_argv), positional_args, unrecognized_flags, flags::UsageFlagsAction::kHandleUsage); } template <int N> void InvokeParseAbslOnly(const char* (&in_argv)[N]) { std::vector<char*> positional_args; std::vector<absl::UnrecognizedFlag> unrecognized_flags; absl::ParseAbseilFlagsOnly(2, const_cast<char**>(in_argv), positional_args, unrecognized_flags); } template <int N> std::vector<char*> InvokeParseCommandLineImpl(const char* (&in_argv)[N]) { return flags::ParseCommandLineImpl( N, const_cast<char**>(in_argv), flags::UsageFlagsAction::kHandleUsage, flags::OnUndefinedFlag::kAbortIfUndefined, std::cerr); } template <int N> std::vector<char*> InvokeParse(const char* (&in_argv)[N]) { return absl::ParseCommandLine(N, const_cast<char**>(in_argv)); } template <int N> void TestParse(const char* (&in_argv)[N], int int_flag_value, double double_flag_val, absl::string_view string_flag_val, bool bool_flag_val, int exp_position_args = 0) { auto out_args = InvokeParse(in_argv); EXPECT_EQ(out_args.size(), 1 + exp_position_args); EXPECT_STREQ(out_args[0], "testbin"); EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), int_flag_value); EXPECT_NEAR(absl::GetFlag(FLAGS_double_flag), double_flag_val, 0.0001); EXPECT_EQ(absl::GetFlag(FLAGS_string_flag), string_flag_val); EXPECT_EQ(absl::GetFlag(FLAGS_bool_flag), bool_flag_val); } TEST_F(ParseTest, TestEmptyArgv) { const char* in_argv[] = {"testbin"}; auto out_args = InvokeParse(in_argv); EXPECT_EQ(out_args.size(), 1); EXPECT_STREQ(out_args[0], "testbin"); } TEST_F(ParseTest, TestValidIntArg) { const char* in_args1[] = { "testbin", "--int_flag=10", }; TestParse(in_args1, 10, 1.1, "a", false); const char* in_args2[] = { "testbin", "-int_flag=020", }; TestParse(in_args2, 20, 1.1, "a", false); const char* in_args3[] = { "testbin", "--int_flag", "-30", }; TestParse(in_args3, -30, 1.1, "a", false); const char* in_args4[] = { "testbin", "-int_flag", "0x21", }; TestParse(in_args4, 33, 1.1, "a", false); } TEST_F(ParseTest, TestValidDoubleArg) { const char* in_args1[] = { "testbin", "--double_flag=2.3", }; TestParse(in_args1, 1, 2.3, "a", false); const char* in_args2[] = { "testbin", "--double_flag=0x1.2", }; TestParse(in_args2, 1, 1.125, "a", false); const char* in_args3[] = { "testbin", "--double_flag", "99.7", }; TestParse(in_args3, 1, 99.7, "a", false); const char* in_args4[] = { "testbin", "--double_flag", "0x20.1", }; TestParse(in_args4, 1, 32.0625, "a", false); } TEST_F(ParseTest, TestValidStringArg) { const char* in_args1[] = { "testbin", "--string_flag=aqswde", }; TestParse(in_args1, 1, 1.1, "aqswde", false); const char* in_args2[] = { "testbin", "-string_flag=a=b=c", }; TestParse(in_args2, 1, 1.1, "a=b=c", false); const char* in_args3[] = { "testbin", "--string_flag", "zaxscd", }; TestParse(in_args3, 1, 1.1, "zaxscd", false); const char* in_args4[] = { "testbin", "-string_flag", "--int_flag", }; TestParse(in_args4, 1, 1.1, "--int_flag", false); const char* in_args5[] = { "testbin", "--string_flag", "--no_a_flag=11", }; TestParse(in_args5, 1, 1.1, "--no_a_flag=11", false); } TEST_F(ParseTest, TestValidBoolArg) { const char* in_args1[] = { "testbin", "--bool_flag", }; TestParse(in_args1, 1, 1.1, "a", true); const char* in_args2[] = { "testbin", "--nobool_flag", }; TestParse(in_args2, 1, 1.1, "a", false); const char* in_args3[] = { "testbin", "--bool_flag=true", }; TestParse(in_args3, 1, 1.1, "a", true); const char* in_args4[] = { "testbin", "-bool_flag=false", }; TestParse(in_args4, 1, 1.1, "a", false); } TEST_F(ParseTest, TestValidUDTArg) { const char* in_args1[] = { "testbin", "--udt_flag=A", }; InvokeParse(in_args1); EXPECT_EQ(absl::GetFlag(FLAGS_udt_flag).value, 1); const char* in_args2[] = {"testbin", "--udt_flag", "AAA"}; InvokeParse(in_args2); EXPECT_EQ(absl::GetFlag(FLAGS_udt_flag).value, 10); } TEST_F(ParseTest, TestValidMultipleArg) { const char* in_args1[] = { "testbin", "--bool_flag", "--int_flag=2", "--double_flag=0.1", "--string_flag=asd", }; TestParse(in_args1, 2, 0.1, "asd", true); const char* in_args2[] = { "testbin", "--string_flag=", "--nobool_flag", "--int_flag", "-011", "--double_flag", "-1e-2", }; TestParse(in_args2, -11, -0.01, "", false); const char* in_args3[] = { "testbin", "--int_flag", "-0", "--string_flag", "\"\"", "--bool_flag=true", "--double_flag=1e18", }; TestParse(in_args3, 0, 1e18, "\"\"", true); } TEST_F(ParseTest, TestPositionalArgs) { const char* in_args1[] = { "testbin", "p1", "p2", }; TestParse(in_args1, 1, 1.1, "a", false, 2); auto out_args1 = InvokeParse(in_args1); EXPECT_STREQ(out_args1[1], "p1"); EXPECT_STREQ(out_args1[2], "p2"); const char* in_args2[] = { "testbin", "--int_flag=2", "p1", }; TestParse(in_args2, 2, 1.1, "a", false, 1); auto out_args2 = InvokeParse(in_args2); EXPECT_STREQ(out_args2[1], "p1"); const char* in_args3[] = {"testbin", "p1", "--int_flag=3", "p2", "--bool_flag", "true"}; TestParse(in_args3, 3, 1.1, "a", true, 3); auto out_args3 = InvokeParse(in_args3); EXPECT_STREQ(out_args3[1], "p1"); EXPECT_STREQ(out_args3[2], "p2"); EXPECT_STREQ(out_args3[3], "true"); const char* in_args4[] = { "testbin", "--", "p1", "p2", }; TestParse(in_args4, 3, 1.1, "a", true, 2); auto out_args4 = InvokeParse(in_args4); EXPECT_STREQ(out_args4[1], "p1"); EXPECT_STREQ(out_args4[2], "p2"); const char* in_args5[] = { "testbin", "p1", "--int_flag=4", "--", "--bool_flag", "false", "p2", }; TestParse(in_args5, 4, 1.1, "a", true, 4); auto out_args5 = InvokeParse(in_args5); EXPECT_STREQ(out_args5[1], "p1"); EXPECT_STREQ(out_args5[2], "--bool_flag"); EXPECT_STREQ(out_args5[3], "false"); EXPECT_STREQ(out_args5[4], "p2"); } using ParseDeathTest = ParseTest; TEST_F(ParseDeathTest, TestUndefinedArg) { const char* in_args1[] = { "testbin", "--undefined_flag", }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args1), "Unknown command line flag 'undefined_flag'"); const char* in_args2[] = { "testbin", "--noprefixed_flag", }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args2), "Unknown command line flag 'noprefixed_flag'"); const char* in_args3[] = { "testbin", "--Int_flag=1", }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args3), "Unknown command line flag 'Int_flag'"); } TEST_F(ParseDeathTest, TestInvalidBoolFlagFormat) { const char* in_args1[] = { "testbin", "--bool_flag=", }; EXPECT_DEATH_IF_SUPPORTED( InvokeParse(in_args1), "Missing the value after assignment for the boolean flag 'bool_flag'"); const char* in_args2[] = { "testbin", "--nobool_flag=true", }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args2), "Negative form with assignment is not valid for the boolean " "flag 'bool_flag'"); } TEST_F(ParseDeathTest, TestInvalidNonBoolFlagFormat) { const char* in_args1[] = { "testbin", "--nostring_flag", }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args1), "Negative form is not valid for the flag 'string_flag'"); const char* in_args2[] = { "testbin", "--int_flag", }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args2), "Missing the value for the flag 'int_flag'"); } TEST_F(ParseDeathTest, TestInvalidUDTFlagFormat) { const char* in_args1[] = { "testbin", "--udt_flag=1", }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args1), "Illegal value '1' specified for flag 'udt_flag'; Use values A, " "AAA instead"); const char* in_args2[] = { "testbin", "--udt_flag", "AA", }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args2), "Illegal value 'AA' specified for flag 'udt_flag'; Use values " "A, AAA instead"); } TEST_F(ParseDeathTest, TestFlagSuggestions) { const char* in_args1[] = { "testbin", "--legacy_boo", }; EXPECT_DEATH_IF_SUPPORTED( InvokeParse(in_args1), "Unknown command line flag 'legacy_boo'. Did you mean: legacy_bool ?"); const char* in_args2[] = {"testbin", "--foo", "--undefok=foo1"}; EXPECT_DEATH_IF_SUPPORTED( InvokeParse(in_args2), "Unknown command line flag 'foo'. Did you mean: foo1 \\(undefok\\)?"); const char* in_args3[] = { "testbin", "--nolegacy_ino", }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args3), "Unknown command line flag 'nolegacy_ino'. Did " "you mean: nolegacy_bool, legacy_int ?"); } TEST_F(ParseTest, GetHints) { EXPECT_THAT(absl::flags_internal::GetMisspellingHints("legacy_boo"), testing::ContainerEq(std::vector<std::string>{"legacy_bool"})); EXPECT_THAT(absl::flags_internal::GetMisspellingHints("nolegacy_itn"), testing::ContainerEq(std::vector<std::string>{"legacy_int"})); EXPECT_THAT(absl::flags_internal::GetMisspellingHints("nolegacy_int1"), testing::ContainerEq(std::vector<std::string>{"legacy_int"})); EXPECT_THAT(absl::flags_internal::GetMisspellingHints("nolegacy_int"), testing::ContainerEq(std::vector<std::string>{"legacy_int"})); EXPECT_THAT(absl::flags_internal::GetMisspellingHints("nolegacy_ino"), testing::ContainerEq( std::vector<std::string>{"nolegacy_bool", "legacy_int"})); EXPECT_THAT( absl::flags_internal::GetMisspellingHints("FLAG_HEADER_000").size(), 100); } TEST_F(ParseTest, TestLegacyFlags) { const char* in_args1[] = { "testbin", "--legacy_int=11", }; TestParse(in_args1, 1, 1.1, "a", false); const char* in_args2[] = { "testbin", "--legacy_bool", }; TestParse(in_args2, 1, 1.1, "a", false); const char* in_args3[] = { "testbin", "--legacy_int", "22", "--int_flag=2", "--legacy_bool", "true", "--legacy_str", "--string_flag=qwe", }; TestParse(in_args3, 2, 1.1, "a", false, 1); } TEST_F(ParseTest, TestSimpleValidFlagfile) { std::string flagfile_flag; const char* in_args1[] = { "testbin", GetFlagfileFlag({{"parse_test.ff1", absl::MakeConstSpan(ff1_data)}}, flagfile_flag), }; TestParse(in_args1, -1, 0.1, "q2w2 ", true); const char* in_args2[] = { "testbin", GetFlagfileFlag({{"parse_test.ff2", absl::MakeConstSpan(ff2_data)}}, flagfile_flag), }; TestParse(in_args2, 100, 0.1, "q2w2 ", false); } TEST_F(ParseTest, TestValidMultiFlagfile) { std::string flagfile_flag; const char* in_args1[] = { "testbin", GetFlagfileFlag({{"parse_test.ff2", absl::MakeConstSpan(ff2_data)}, {"parse_test.ff1", absl::MakeConstSpan(ff1_data)}}, flagfile_flag), }; TestParse(in_args1, -1, 0.1, "q2w2 ", true); } TEST_F(ParseTest, TestFlagfileMixedWithRegularFlags) { std::string flagfile_flag; const char* in_args1[] = { "testbin", "--int_flag=3", GetFlagfileFlag({{"parse_test.ff1", absl::MakeConstSpan(ff1_data)}}, flagfile_flag), "-double_flag=0.2"}; TestParse(in_args1, -1, 0.2, "q2w2 ", true); } TEST_F(ParseTest, TestFlagfileInFlagfile) { std::string flagfile_flag; constexpr const char* const ff3_data[] = { "--flagfile=$0/parse_test.ff1", "--flagfile=$0/parse_test.ff2", }; GetFlagfileFlag({{"parse_test.ff2", absl::MakeConstSpan(ff2_data)}, {"parse_test.ff1", absl::MakeConstSpan(ff1_data)}}, flagfile_flag); const char* in_args1[] = { "testbin", GetFlagfileFlag({{"parse_test.ff3", absl::MakeConstSpan(ff3_data)}}, flagfile_flag), }; TestParse(in_args1, 100, 0.1, "q2w2 ", false); } TEST_F(ParseDeathTest, TestInvalidFlagfiles) { std::string flagfile_flag; constexpr const char* const ff4_data[] = { "--unknown_flag=10" }; const char* in_args1[] = { "testbin", GetFlagfileFlag({{"parse_test.ff4", absl::MakeConstSpan(ff4_data)}}, flagfile_flag), }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args1), "Unknown command line flag 'unknown_flag'"); constexpr const char* const ff5_data[] = { "--int_flag 10", }; const char* in_args2[] = { "testbin", GetFlagfileFlag({{"parse_test.ff5", absl::MakeConstSpan(ff5_data)}}, flagfile_flag), }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args2), "Unknown command line flag 'int_flag 10'"); constexpr const char* const ff6_data[] = { "--int_flag=10", "--", "arg1", "arg2", "arg3", }; const char* in_args3[] = { "testbin", GetFlagfileFlag({{"parse_test.ff6", absl::MakeConstSpan(ff6_data)}}, flagfile_flag), }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args3), "Flagfile can't contain position arguments or --"); const char* in_args4[] = { "testbin", "--flagfile=invalid_flag_file", }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args4), "Can't open flagfile invalid_flag_file"); constexpr const char* const ff7_data[] = { "--int_flag=10", "*bin*", "--str_flag=aqsw", }; const char* in_args5[] = { "testbin", GetFlagfileFlag({{"parse_test.ff7", absl::MakeConstSpan(ff7_data)}}, flagfile_flag), }; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args5), "Unexpected line in the flagfile .*: \\*bin\\*"); } TEST_F(ParseTest, TestReadingRequiredFlagsFromEnv) { const char* in_args1[] = {"testbin", "--fromenv=int_flag,bool_flag,string_flag"}; ScopedSetEnv set_int_flag("FLAGS_int_flag", "33"); ScopedSetEnv set_bool_flag("FLAGS_bool_flag", "True"); ScopedSetEnv set_string_flag("FLAGS_string_flag", "AQ12"); TestParse(in_args1, 33, 1.1, "AQ12", true); } TEST_F(ParseDeathTest, TestReadingUnsetRequiredFlagsFromEnv) { const char* in_args1[] = {"testbin", "--fromenv=int_flag"}; EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args1), "FLAGS_int_flag not found in environment"); } TEST_F(ParseDeathTest, TestRecursiveFlagsFromEnv) { const char* in_args1[] = {"testbin", "--fromenv=tryfromenv"}; ScopedSetEnv set_tryfromenv("FLAGS_tryfromenv", "int_flag"); EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args1), "Infinite recursion on flag tryfromenv"); } TEST_F(ParseTest, TestReadingOptionalFlagsFromEnv) { const char* in_args1[] = { "testbin", "--tryfromenv=int_flag,bool_flag,string_flag,other_flag"}; ScopedSetEnv set_int_flag("FLAGS_int_flag", "17"); ScopedSetEnv set_bool_flag("FLAGS_bool_flag", "Y"); TestParse(in_args1, 17, 1.1, "a", true); } TEST_F(ParseTest, TestReadingFlagsFromEnvMoxedWithRegularFlags) { const char* in_args1[] = { "testbin", "--bool_flag=T", "--tryfromenv=int_flag,bool_flag", "--int_flag=-21", }; ScopedSetEnv set_int_flag("FLAGS_int_flag", "-15"); ScopedSetEnv set_bool_flag("FLAGS_bool_flag", "F"); TestParse(in_args1, -21, 1.1, "a", false); } TEST_F(ParseDeathTest, TestSimpleHelpFlagHandling) { const char* in_args1[] = { "testbin", "--help", }; EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args1), flags::HelpMode::kImportant); EXPECT_EXIT(InvokeParse(in_args1), testing::ExitedWithCode(1), ""); const char* in_args2[] = { "testbin", "--help", "--int_flag=3", }; EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args2), flags::HelpMode::kImportant); EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 3); const char* in_args3[] = {"testbin", "--help", "some_positional_arg"}; EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args3), flags::HelpMode::kImportant); } TEST_F(ParseTest, TestSubstringHelpFlagHandling) { const char* in_args1[] = { "testbin", "--help=abcd", }; EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args1), flags::HelpMode::kMatch); EXPECT_EQ(flags::GetFlagsHelpMatchSubstr(), "abcd"); } TEST_F(ParseDeathTest, TestVersionHandling) { const char* in_args1[] = { "testbin", "--version", }; EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args1), flags::HelpMode::kVersion); } TEST_F(ParseTest, TestCheckArgsHandling) { const char* in_args1[] = {"testbin", "--only_check_args", "--int_flag=211"}; EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args1), flags::HelpMode::kOnlyCheckArgs); EXPECT_EXIT(InvokeParseAbslOnly(in_args1), testing::ExitedWithCode(0), ""); EXPECT_EXIT(InvokeParse(in_args1), testing::ExitedWithCode(0), ""); const char* in_args2[] = {"testbin", "--only_check_args", "--unknown_flag=a"}; EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args2), flags::HelpMode::kOnlyCheckArgs); EXPECT_EXIT(InvokeParseAbslOnly(in_args2), testing::ExitedWithCode(0), ""); EXPECT_EXIT(InvokeParse(in_args2), testing::ExitedWithCode(1), ""); } TEST_F(ParseTest, WasPresentOnCommandLine) { const char* in_args1[] = { "testbin", "arg1", "--bool_flag", "--int_flag=211", "arg2", "--double_flag=1.1", "--string_flag", "asd", "--", "--some_flag", "arg4", }; InvokeParse(in_args1); EXPECT_TRUE(flags::WasPresentOnCommandLine("bool_flag")); EXPECT_TRUE(flags::WasPresentOnCommandLine("int_flag")); EXPECT_TRUE(flags::WasPresentOnCommandLine("double_flag")); EXPECT_TRUE(flags::WasPresentOnCommandLine("string_flag")); EXPECT_FALSE(flags::WasPresentOnCommandLine("some_flag")); EXPECT_FALSE(flags::WasPresentOnCommandLine("another_flag")); } TEST_F(ParseTest, ParseAbseilFlagsOnlySuccess) { const char* in_args[] = { "testbin", "arg1", "--bool_flag", "--int_flag=211", "arg2", "--double_flag=1.1", "--undef_flag1", "--undef_flag2=123", "--string_flag", "asd", "--", "--some_flag", "arg4", }; std::vector<char*> positional_args; std::vector<absl::UnrecognizedFlag> unrecognized_flags; absl::ParseAbseilFlagsOnly(13, const_cast<char**>(in_args), positional_args, unrecognized_flags); EXPECT_THAT(positional_args, ElementsAreArray( {absl::string_view("testbin"), absl::string_view("arg1"), absl::string_view("arg2"), absl::string_view("--some_flag"), absl::string_view("arg4")})); EXPECT_THAT(unrecognized_flags, ElementsAreArray( {absl::UnrecognizedFlag(absl::UnrecognizedFlag::kFromArgv, "undef_flag1"), absl::UnrecognizedFlag(absl::UnrecognizedFlag::kFromArgv, "undef_flag2")})); } TEST_F(ParseDeathTest, ParseAbseilFlagsOnlyFailure) { const char* in_args[] = { "testbin", "--int_flag=21.1", }; EXPECT_DEATH_IF_SUPPORTED( InvokeParseAbslOnly(in_args), "Illegal value '21.1' specified for flag 'int_flag'"); } TEST_F(ParseTest, UndefOkFlagsAreIgnored) { const char* in_args[] = { "testbin", "--undef_flag1", "--undef_flag2=123", "--undefok=undef_flag2", "--undef_flag3", "value", }; std::vector<char*> positional_args; std::vector<absl::UnrecognizedFlag> unrecognized_flags; absl::ParseAbseilFlagsOnly(6, const_cast<char**>(in_args), positional_args, unrecognized_flags); EXPECT_THAT(positional_args, ElementsAreArray({absl::string_view("testbin"), absl::string_view("value")})); EXPECT_THAT(unrecognized_flags, ElementsAreArray( {absl::UnrecognizedFlag(absl::UnrecognizedFlag::kFromArgv, "undef_flag1"), absl::UnrecognizedFlag(absl::UnrecognizedFlag::kFromArgv, "undef_flag3")})); } TEST_F(ParseTest, AllUndefOkFlagsAreIgnored) { const char* in_args[] = { "testbin", "--undef_flag1", "--undef_flag2=123", "--undefok=undef_flag2,undef_flag1,undef_flag3", "--undef_flag3", "value", "--", "--undef_flag4", }; std::vector<char*> positional_args; std::vector<absl::UnrecognizedFlag> unrecognized_flags; absl::ParseAbseilFlagsOnly(8, const_cast<char**>(in_args), positional_args, unrecognized_flags); EXPECT_THAT(positional_args, ElementsAreArray({absl::string_view("testbin"), absl::string_view("value"), absl::string_view("--undef_flag4")})); EXPECT_THAT(unrecognized_flags, testing::IsEmpty()); } TEST_F(ParseDeathTest, ExitOnUnrecognizedFlagPrintsHelp) { const char* in_args[] = { "testbin", "--undef_flag1", "--help=int_flag", }; EXPECT_EXIT(InvokeParseCommandLineImpl(in_args), testing::ExitedWithCode(1), AllOf(HasSubstr("Unknown command line flag 'undef_flag1'"), HasSubstr("Try --helpfull to get a list of all flags"))); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/parse.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/parse_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
ba3ccac4-9de1-481a-a94c-43c91831dbcf
cpp
tensorflow/tensorflow
tfdataz_metrics
tensorflow/core/data/tfdataz_metrics.cc
tensorflow/core/data/tfdataz_metrics_test.cc
#include "tensorflow/core/data/tfdataz_metrics.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/time/time.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { ApproximateLatencyEstimator::ApproximateLatencyEstimator(const Env& env) : env_(env), last_updated_time_mins_(0), latency_value_counter_(0), latency_count_counter_(0), next_slot_(0) { for (int i = 0; i < kSlots; ++i) { latency_value_[i] = 0; latency_count_[i] = 0; } } void ApproximateLatencyEstimator::AddLatency(const int64_t latency_usec) TF_LOCKS_EXCLUDED(mu_) { UpdateRingBuffer(); mutex_lock l(mu_); latency_value_counter_ += latency_usec; latency_count_counter_ += 1; } void ApproximateLatencyEstimator::UpdateRingBuffer() TF_LOCKS_EXCLUDED(mu_) { int64_t now_minutes = absl::ToInt64Minutes(absl::Microseconds(env_.NowMicros())); mutex_lock l(mu_); int64_t elapsed_minutes = now_minutes - last_updated_time_mins_; int64_t minutes_to_update = std::min(elapsed_minutes, kSlots); for (int i = 0; i < minutes_to_update; ++i) { latency_value_[next_slot_] = latency_value_counter_; latency_count_[next_slot_] = latency_count_counter_; IncrementNextSlot(); } last_updated_time_mins_ = now_minutes; } void ApproximateLatencyEstimator::IncrementNextSlot() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { next_slot_ = (next_slot_ + 1) % kSlots; } int ApproximateLatencyEstimator::PrevSlot(int steps) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return (next_slot_ - steps + kSlots) % kSlots; } absl::Duration ApproximateLatencyEstimator::GetAverageLatency(Duration duration) TF_LOCKS_EXCLUDED(mu_) { UpdateRingBuffer(); mutex_lock l(mu_); double interval_latency = static_cast<double>(latency_value_counter_ - latency_value_[PrevSlot(static_cast<int>(duration))]); double interval_count = static_cast<double>(latency_count_counter_ - latency_count_[PrevSlot(static_cast<int>(duration))]); if (interval_count == 0) { return absl::ZeroDuration(); } return absl::Duration(absl::Microseconds(interval_latency)) / interval_count; } TfDatazMetricsCollector::TfDatazMetricsCollector( const Env& env, DatasetBaseIterator* iterator, std::shared_ptr<model::Model> model) : iterator_(iterator), model_(std::move(model)), latency_estimator_(env) {} void TfDatazMetricsCollector::RecordGetNextLatency( int64_t get_next_latency_usec) { if (get_next_latency_usec > 0) { latency_estimator_.AddLatency(get_next_latency_usec); } } absl::Duration TfDatazMetricsCollector::GetAverageLatencyForLastOneMinute() { return latency_estimator_.GetAverageLatency( ApproximateLatencyEstimator::Duration::kMinute); } absl::Duration TfDatazMetricsCollector::GetAverageLatencyForLastFiveMinutes() { return latency_estimator_.GetAverageLatency( ApproximateLatencyEstimator::Duration::kFiveMinutes); } absl::Duration TfDatazMetricsCollector::GetAverageLatencyForLastSixtyMinutes() { return latency_estimator_.GetAverageLatency( ApproximateLatencyEstimator::Duration::kSixtyMinutes); } std::optional<std::string> TfDatazMetricsCollector::DatasetName() { auto options = iterator_->dataset()->options(); if (options.has_dataset_name()) { return std::make_optional(options.dataset_name()); } return std::nullopt; } int64_t TfDatazMetricsCollector::GetIteratorTotalMemoryUsage() { return iterator_->TotalBufferedBytes(); } std::shared_ptr<model::Model> TfDatazMetricsCollector::GetModel() { return model_; } namespace { static mutex* get_tfdataz_metrics_registry_lock() { static mutex tfdataz_metrics_registry_lock(LINKER_INITIALIZED); return &tfdataz_metrics_registry_lock; } using TfDatazMetricsCollectors = absl::flat_hash_set<std::shared_ptr<TfDatazMetricsCollector>>; TfDatazMetricsCollectors& tfdataz_metric_collectors() { static auto& collectors = *new TfDatazMetricsCollectors(); return collectors; } } void TfDatazMetricsRegistry::Register( std::shared_ptr<TfDatazMetricsCollector> collector) { mutex_lock l(*get_tfdataz_metrics_registry_lock()); tfdataz_metric_collectors().insert(collector); } void TfDatazMetricsRegistry::Deregister( std::shared_ptr<TfDatazMetricsCollector> collector) { mutex_lock l(*get_tfdataz_metrics_registry_lock()); tfdataz_metric_collectors().erase(collector); } absl::flat_hash_set<std::shared_ptr<TfDatazMetricsCollector>> TfDatazMetricsRegistry::GetIteratorMetricCollectors() { mutex_lock l(*get_tfdataz_metrics_registry_lock()); return tfdataz_metric_collectors(); } } }
#include "tensorflow/core/data/tfdataz_metrics.h" #include <memory> #include <utility> #include "absl/time/time.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/fake_clock_env.h" namespace tensorflow { namespace data { namespace { static int64_t k1MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(1)); static int64_t k2MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(2)); static int64_t k5MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(5)); static int64_t k59MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(59)); static int64_t k60MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(60)); static int64_t k61MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(61)); class TfDatazMetricsTest : public ::testing::Test { protected: void SetUp() override { env_ = std::make_unique<FakeClockEnv>(Env::Default()); tfdataz_metrics_ = std::make_unique<TfDatazMetricsCollector>( *env_, iterator_.get(), nullptr); } void TearDown() override { env_.reset(); tfdataz_metrics_.reset(); } std::unique_ptr<DatasetBaseIterator> iterator_; std::unique_ptr<FakeClockEnv> env_; std::unique_ptr<TfDatazMetricsCollector> tfdataz_metrics_; }; TEST_F(TfDatazMetricsTest, RecordGetNextLatency) { tfdataz_metrics_->RecordGetNextLatency(1); tfdataz_metrics_->RecordGetNextLatency(2); tfdataz_metrics_->RecordGetNextLatency(3); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 2.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastOneMinute) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k2MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(2); tfdataz_metrics_->RecordGetNextLatency(3); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 2.5); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastFiveMinutes) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k5MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(4); tfdataz_metrics_->RecordGetNextLatency(5); tfdataz_metrics_->RecordGetNextLatency(6); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 5.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastSixtyMinutesWithAdvanceBySixtyMinutes) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k60MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(4); tfdataz_metrics_->RecordGetNextLatency(5); tfdataz_metrics_->RecordGetNextLatency(6); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 5.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastSixtyMinutesWithAdvanceByFiftyNineMinutes) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k59MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(4); tfdataz_metrics_->RecordGetNextLatency(5); tfdataz_metrics_->RecordGetNextLatency(6); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 4.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastSixtyMinutesWithAdvanceBySixtyOneMinutes) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k61MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(2); tfdataz_metrics_->RecordGetNextLatency(3); tfdataz_metrics_->RecordGetNextLatency(4); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 3.0); } TEST_F(TfDatazMetricsTest, GetMultipleAverageLatencies) { tfdataz_metrics_->RecordGetNextLatency(1); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 1.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 1.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 1.0); env_->AdvanceByMicroseconds(k1MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(2); tfdataz_metrics_->RecordGetNextLatency(3); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 2.5); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 2.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 2.0); env_->AdvanceByMicroseconds(k60MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(4); tfdataz_metrics_->RecordGetNextLatency(5); tfdataz_metrics_->RecordGetNextLatency(6); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 5.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 5.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 5.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyWithZeroGetNextCalls) { EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 0); } class ScopedTfDataMetricsRegistration { public: explicit ScopedTfDataMetricsRegistration( std::shared_ptr<TfDatazMetricsCollector> collector) : collector_(std::move(collector)) { TfDatazMetricsRegistry::Register(collector_); } ~ScopedTfDataMetricsRegistration() { TfDatazMetricsRegistry::Deregister(collector_); } void Deregister() { TfDatazMetricsRegistry::Deregister(collector_); } private: std::shared_ptr<TfDatazMetricsCollector> collector_; }; TEST(TfDatazMetricsRegistryTest, Register) { std::unique_ptr<DatasetBaseIterator> iterator; auto collector_one = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); auto collector_two = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); ScopedTfDataMetricsRegistration scoped_registration_one(collector_one); ScopedTfDataMetricsRegistration scoped_registration_two(collector_two); EXPECT_EQ(TfDatazMetricsRegistry::GetIteratorMetricCollectors().size(), 2); } TEST(TfDatazMetricsRegistryTest, Deregister) { std::unique_ptr<DatasetBaseIterator> iterator; auto collector_one = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); auto collector_two = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); auto collector_three = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); ScopedTfDataMetricsRegistration scoped_registration_one(collector_one); ScopedTfDataMetricsRegistration scoped_registration_two(collector_two); ScopedTfDataMetricsRegistration scoped_registration_three(collector_three); EXPECT_EQ(TfDatazMetricsRegistry::GetIteratorMetricCollectors().size(), 3); scoped_registration_one.Deregister(); EXPECT_EQ(TfDatazMetricsRegistry::GetIteratorMetricCollectors().size(), 2); scoped_registration_two.Deregister(); scoped_registration_three.Deregister(); EXPECT_EQ(TfDatazMetricsRegistry::GetIteratorMetricCollectors().size(), 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/tfdataz_metrics.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/tfdataz_metrics_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3797474d-2ba5-43bc-bc6a-07e9099bc36a
cpp
google/quiche
quiche_file_utils
quiche/common/platform/api/quiche_file_utils.cc
quiche/common/platform/api/quiche_file_utils_test.cc
#include "quiche/common/platform/api/quiche_file_utils.h" #include <optional> #include <string> #include <vector> #include "quiche_platform_impl/quiche_file_utils_impl.h" namespace quiche { std::string JoinPath(absl::string_view a, absl::string_view b) { return JoinPathImpl(a, b); } std::optional<std::string> ReadFileContents(absl::string_view file) { return ReadFileContentsImpl(file); } bool EnumerateDirectory(absl::string_view path, std::vector<std::string>& directories, std::vector<std::string>& files) { return EnumerateDirectoryImpl(path, directories, files); } bool EnumerateDirectoryRecursivelyInner(absl::string_view path, int recursion_limit, std::vector<std::string>& files) { if (recursion_limit < 0) { return false; } std::vector<std::string> local_files; std::vector<std::string> directories; if (!EnumerateDirectory(path, directories, local_files)) { return false; } for (const std::string& directory : directories) { if (!EnumerateDirectoryRecursivelyInner(JoinPath(path, directory), recursion_limit - 1, files)) { return false; } } for (const std::string& file : local_files) { files.push_back(JoinPath(path, file)); } return true; } bool EnumerateDirectoryRecursively(absl::string_view path, std::vector<std::string>& files) { constexpr int kRecursionLimit = 20; return EnumerateDirectoryRecursivelyInner(path, kRecursionLimit, files); } }
#include "quiche/common/platform/api/quiche_file_utils.h" #include <optional> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "absl/strings/str_cat.h" #include "absl/strings/strip.h" #include "quiche/common/platform/api/quiche_test.h" namespace quiche { namespace test { namespace { using testing::UnorderedElementsAre; using testing::UnorderedElementsAreArray; TEST(QuicheFileUtilsTest, ReadFileContents) { std::string path = absl::StrCat(QuicheGetCommonSourcePath(), "/platform/api/testdir/testfile"); std::optional<std::string> contents = ReadFileContents(path); ASSERT_TRUE(contents.has_value()); EXPECT_EQ(*contents, "This is a test file."); } TEST(QuicheFileUtilsTest, ReadFileContentsFileNotFound) { std::string path = absl::StrCat(QuicheGetCommonSourcePath(), "/platform/api/testdir/file-that-does-not-exist"); std::optional<std::string> contents = ReadFileContents(path); EXPECT_FALSE(contents.has_value()); } TEST(QuicheFileUtilsTest, EnumerateDirectory) { std::string path = absl::StrCat(QuicheGetCommonSourcePath(), "/platform/api/testdir"); std::vector<std::string> dirs; std::vector<std::string> files; bool success = EnumerateDirectory(path, dirs, files); EXPECT_TRUE(success); EXPECT_THAT(files, UnorderedElementsAre("testfile", "README.md")); EXPECT_THAT(dirs, UnorderedElementsAre("a")); } TEST(QuicheFileUtilsTest, EnumerateDirectoryNoSuchDirectory) { std::string path = absl::StrCat(QuicheGetCommonSourcePath(), "/platform/api/testdir/no-such-directory"); std::vector<std::string> dirs; std::vector<std::string> files; bool success = EnumerateDirectory(path, dirs, files); EXPECT_FALSE(success); } TEST(QuicheFileUtilsTest, EnumerateDirectoryNotADirectory) { std::string path = absl::StrCat(QuicheGetCommonSourcePath(), "/platform/api/testdir/testfile"); std::vector<std::string> dirs; std::vector<std::string> files; bool success = EnumerateDirectory(path, dirs, files); EXPECT_FALSE(success); } TEST(QuicheFileUtilsTest, EnumerateDirectoryRecursively) { std::vector<std::string> expected_paths = {"a/b/c/d/e", "a/subdir/testfile", "a/z", "testfile", "README.md"}; std::string root_path = absl::StrCat(QuicheGetCommonSourcePath(), "/platform/api/testdir"); for (std::string& path : expected_paths) { if (JoinPath("a", "b") == "a\\b") { absl::c_replace(path, '/', '\\'); } path = JoinPath(root_path, path); } std::vector<std::string> files; bool success = EnumerateDirectoryRecursively(root_path, files); EXPECT_TRUE(success); EXPECT_THAT(files, UnorderedElementsAreArray(expected_paths)); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/platform/api/quiche_file_utils.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/platform/api/quiche_file_utils_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
69e4171f-276f-4c20-a4b6-d6c7373352d8
cpp
tensorflow/tensorflow
gloo_collectives
third_party/xla/xla/pjrt/cpu/gloo_collectives.cc
third_party/xla/xla/pjrt/cpu/gloo_collectives_test.cc
#include "xla/pjrt/cpu/gloo_collectives.h" #include <complex> #include <cstddef> #include <cstdint> #include <cstring> #include <exception> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "gloo/algorithm.h" #include "gloo/allgather.h" #include "gloo/allreduce.h" #include "gloo/context.h" #include "gloo/math.h" #include "gloo/reduce_scatter.h" #include "gloo/rendezvous/context.h" #include "gloo/rendezvous/prefix_store.h" #include "gloo/rendezvous/store.h" #include "gloo/transport/device.h" #include "gloo/transport/unbound_buffer.h" #include "gloo/types.h" #include "xla/primitive_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/global_device_id.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla::cpu { GlooCollectivesCommunicator::GlooCollectivesCommunicator( std::shared_ptr<gloo::Context> context) : context_(std::move(context)) {} GlooCollectivesCommunicator::~GlooCollectivesCommunicator() = default; template <typename T> static absl::Status SetAllReduceOptions(ReductionKind reduction_kind, const void* input_buffer, void* output_buffer, size_t num_elements, gloo::AllreduceOptions& options) { options.setInput(reinterpret_cast<T*>(const_cast<void*>(input_buffer)), num_elements); options.setOutput(reinterpret_cast<T*>(const_cast<void*>(output_buffer)), num_elements); using ReductionFn = void (*)(void*, const void*, const void*, size_t); switch (reduction_kind) { case ReductionKind::SUM: options.setReduceFunction(static_cast<ReductionFn>(&gloo::sum<T>)); break; case ReductionKind::PRODUCT: options.setReduceFunction(static_cast<ReductionFn>(&gloo::product<T>)); break; case ReductionKind::MIN: if constexpr (!is_complex_v<T>) { options.setReduceFunction(static_cast<ReductionFn>(&gloo::min<T>)); } else { return absl::InvalidArgumentError( "MIN reduction not supported for complex types"); } break; case ReductionKind::MAX: if constexpr (!is_complex_v<T>) { options.setReduceFunction(static_cast<ReductionFn>(&gloo::max<T>)); } else { return absl::InvalidArgumentError( "MAX reduction not supported for complex types"); } break; } return absl::OkStatus(); } absl::Status GlooCollectivesCommunicator::AllReduce( const RendezvousKey& key, ReductionKind reduction_kind, PrimitiveType element_type, size_t num_elements, const void* input_buffer, void* output_buffer, absl::Duration timeout) { gloo::AllreduceOptions options(context_); switch (element_type) { case S8: TF_RETURN_IF_ERROR(SetAllReduceOptions<int8_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case PRED: case U8: TF_RETURN_IF_ERROR(SetAllReduceOptions<uint8_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case S16: TF_RETURN_IF_ERROR(SetAllReduceOptions<int16_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case U16: TF_RETURN_IF_ERROR(SetAllReduceOptions<uint16_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case S32: TF_RETURN_IF_ERROR(SetAllReduceOptions<int32_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case U32: TF_RETURN_IF_ERROR(SetAllReduceOptions<uint32_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case S64: TF_RETURN_IF_ERROR(SetAllReduceOptions<int64_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case U64: TF_RETURN_IF_ERROR(SetAllReduceOptions<uint64_t>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case F16: TF_RETURN_IF_ERROR(SetAllReduceOptions<gloo::float16>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case BF16: TF_RETURN_IF_ERROR(SetAllReduceOptions<bfloat16>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case F32: TF_RETURN_IF_ERROR(SetAllReduceOptions<float>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case F64: TF_RETURN_IF_ERROR(SetAllReduceOptions<double>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case C64: TF_RETURN_IF_ERROR(SetAllReduceOptions<std::complex<float>>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; case C128: TF_RETURN_IF_ERROR(SetAllReduceOptions<std::complex<double>>( reduction_kind, input_buffer, output_buffer, num_elements, options)); break; default: return absl::InvalidArgumentError("Unknown datatype in allreduce"); } options.setAlgorithm(gloo::AllreduceOptions::Algorithm::RING); options.setTimeout(absl::ToChronoMilliseconds(timeout)); try { gloo::allreduce(options); } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo all-reduce failed: ", e.what())); } return absl::OkStatus(); } static constexpr uint8_t kCollectivePermuteSlotPrefix = 0x40; absl::Status GlooCollectivesCommunicator::CollectivePermute( const RendezvousKey& key, size_t num_bytes, std::optional<int> source_rank, absl::Span<int const> target_ranks, const void* input_buffer, void* output_buffer, absl::Duration timeout) { uint32_t tag = 0; const auto slot = gloo::Slot::build(kCollectivePermuteSlotPrefix, tag); try { std::unique_ptr<gloo::transport::UnboundBuffer> in; std::unique_ptr<gloo::transport::UnboundBuffer> out; for (int target : target_ranks) { if (target != context_->rank) { VLOG(1) << "send from " << context_->rank << " to " << target; if (!in) { in = context_->createUnboundBuffer(const_cast<void*>(input_buffer), num_bytes); } in->send(target, slot); } } if (source_rank) { if (*source_rank == context_->rank) { std::memcpy(output_buffer, input_buffer, num_bytes); } else { VLOG(1) << "recv at " << context_->rank << " from " << *source_rank; out = context_->createUnboundBuffer(output_buffer, num_bytes); out->recv(*source_rank, slot); } } else { std::memset(output_buffer, 0, num_bytes); } VLOG(1) << "wait for send at " << context_->rank; auto deadline = absl::ToChronoTime(absl::Now() + timeout); if (in) { in->waitSend(deadline); } VLOG(1) << "wait for recv at " << context_->rank; if (out) { out->waitRecv(deadline); } VLOG(1) << "done waiting at " << context_->rank; } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo collective permute failed: ", e.what())); } return absl::OkStatus(); } absl::Status GlooCollectivesCommunicator::AllToAll( const RendezvousKey& key, size_t chunk_bytes, absl::Span<const void* const> input_buffers, absl::Span<void* const> output_buffers, absl::Duration timeout) { uint32_t tag = 0; int my_rank = context_->rank; int world_size = context_->size; TF_RET_CHECK(world_size == input_buffers.size()); TF_RET_CHECK(world_size == output_buffers.size()); try { const auto slot = gloo::Slot::build(gloo::kAlltoallSlotPrefix, tag); std::vector<std::unique_ptr<gloo::transport::UnboundBuffer>> ins( context_->size); std::vector<std::unique_ptr<gloo::transport::UnboundBuffer>> outs( context_->size); for (size_t i = 0; i < world_size; ++i) { if (i != my_rank) { ins[i] = context_->createUnboundBuffer( const_cast<void*>(input_buffers[i]), chunk_bytes); outs[i] = context_->createUnboundBuffer(output_buffers[i], chunk_bytes); } } for (int i = 1; i < world_size; i++) { int send_rank = (my_rank + i) % world_size; int recv_rank = (my_rank + world_size - i) % world_size; ins[send_rank]->send(send_rank, slot); outs[recv_rank]->recv(recv_rank, slot); } std::memcpy(output_buffers[my_rank], input_buffers[my_rank], chunk_bytes); auto deadline = absl::ToChronoTime(absl::Now() + timeout); for (int i = 0; i < world_size; i++) { if (i != my_rank) { ins[i]->waitSend(deadline); outs[i]->waitRecv(deadline); } } } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo all-to-all failed: ", e.what())); } return absl::OkStatus(); } absl::Status GlooCollectivesCommunicator::AllGather(const RendezvousKey& key, size_t chunk_bytes, const void* input_buffer, void* output_buffer, absl::Duration timeout) { uint32_t tag = 0; gloo::AllgatherOptions options(context_); options.setTag(tag); options.setTimeout(absl::ToChronoMilliseconds(timeout)); options.setInput(reinterpret_cast<char*>(const_cast<void*>(input_buffer)), chunk_bytes); options.setOutput(reinterpret_cast<char*>(output_buffer), chunk_bytes * context_->size); try { gloo::allgather(options); } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo AllGather failed: ", e.what())); } return absl::OkStatus(); } template <typename T> absl::Status ReduceScatterHelper(std::shared_ptr<gloo::Context> context, ReductionKind reduction_kind, void* buffer, size_t chunk_elems) { const gloo::ReductionFunction<T>* reduction_function = nullptr; if constexpr (is_complex_v<T>) { switch (reduction_kind) { case ReductionKind::SUM: reduction_function = gloo::ReductionFunction<T>::sum; break; case ReductionKind::PRODUCT: reduction_function = gloo::ReductionFunction<T>::product; break; default: return absl::InvalidArgumentError(absl::StrCat( "Unsupported reduction kind: ", static_cast<int>(reduction_kind))); } } else { switch (reduction_kind) { case ReductionKind::SUM: reduction_function = gloo::ReductionFunction<T>::sum; break; case ReductionKind::PRODUCT: reduction_function = gloo::ReductionFunction<T>::product; break; case ReductionKind::MAX: reduction_function = gloo::ReductionFunction<T>::max; break; case ReductionKind::MIN: reduction_function = gloo::ReductionFunction<T>::min; break; default: return absl::InvalidArgumentError(absl::StrCat( "Unsupported reduction kind: ", static_cast<int>(reduction_kind))); } } try { std::vector<int> recv_elems(context->size, chunk_elems); gloo::ReduceScatterHalvingDoubling<T> algorithm( context, std::vector<T*>{reinterpret_cast<T*>(buffer)}, chunk_elems * context->size, recv_elems, reduction_function); algorithm.run(); } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo ReduceScatter failed: ", e.what())); } return absl::OkStatus(); } absl::Status GlooCollectivesCommunicator::ReduceScatter( const RendezvousKey& key, ReductionKind reduction_kind, PrimitiveType element_type, size_t chunk_elems, const void* input_buffer, void* output_buffer, absl::Duration timeout) { size_t chunk_bytes = chunk_elems * primitive_util::ByteWidth(element_type); std::unique_ptr<char[]> temp(new char[chunk_bytes * context_->size]); std::memcpy(temp.get(), input_buffer, chunk_bytes * context_->size); switch (element_type) { case S8: TF_RETURN_IF_ERROR(ReduceScatterHelper<int8_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case PRED: case U8: TF_RETURN_IF_ERROR(ReduceScatterHelper<uint8_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case S16: TF_RETURN_IF_ERROR(ReduceScatterHelper<int16_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case U16: TF_RETURN_IF_ERROR(ReduceScatterHelper<uint16_t>( context_, reduction_kind, temp.get(), chunk_elems)); break; case S32: TF_RETURN_IF_ERROR(ReduceScatterHelper<int32_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case U32: TF_RETURN_IF_ERROR(ReduceScatterHelper<uint32_t>( context_, reduction_kind, temp.get(), chunk_elems)); break; case S64: TF_RETURN_IF_ERROR(ReduceScatterHelper<int64_t>(context_, reduction_kind, temp.get(), chunk_elems)); break; case U64: TF_RETURN_IF_ERROR(ReduceScatterHelper<uint64_t>( context_, reduction_kind, temp.get(), chunk_elems)); break; case BF16: TF_RETURN_IF_ERROR(ReduceScatterHelper<bfloat16>( context_, reduction_kind, temp.get(), chunk_elems)); break; case F16: TF_RETURN_IF_ERROR(ReduceScatterHelper<gloo::float16>( context_, reduction_kind, temp.get(), chunk_elems)); break; case F32: TF_RETURN_IF_ERROR(ReduceScatterHelper<float>(context_, reduction_kind, temp.get(), chunk_elems)); break; case F64: TF_RETURN_IF_ERROR(ReduceScatterHelper<double>(context_, reduction_kind, temp.get(), chunk_elems)); break; case C64: TF_RETURN_IF_ERROR(ReduceScatterHelper<std::complex<float>>( context_, reduction_kind, temp.get(), chunk_elems)); break; case C128: TF_RETURN_IF_ERROR(ReduceScatterHelper<std::complex<double>>( context_, reduction_kind, temp.get(), chunk_elems)); break; default: return absl::InvalidArgumentError("Unknown datatype in reducescatter"); } std::memcpy(output_buffer, temp.get(), chunk_bytes); return absl::OkStatus(); } GlooCollectives::GlooCollectives( std::unique_ptr<gloo::rendezvous::Store> store, std::shared_ptr<gloo::transport::Device> device) : store_(std::move(store)), device_(std::move(device)) {} GlooCollectives::~GlooCollectives() = default; absl::StatusOr<std::shared_ptr<CollectivesCommunicator>> GlooCollectives::GetCommunicator( absl::Span<GlobalDeviceId const> global_devices, int rank) { Context* context; { absl::MutexLock lock(&mu_); auto& context_ref = contexts_[std::make_tuple( std::vector<GlobalDeviceId>(global_devices.begin(), global_devices.end()), rank)]; if (!context_ref) { context_ref = std::make_unique<Context>(); } context = context_ref.get(); } absl::MutexLock context_lock(&context->mu); if (context->communicator) { return context->communicator; } auto gloo_context = std::make_shared<gloo::rendezvous::Context>(rank, global_devices.size()); auto prefix_store = gloo::rendezvous::PrefixStore( absl::StrCat("gloo/", absl::StrJoin(global_devices, ",", [](std::string* out, GlobalDeviceId id) { absl::StrAppend(out, id.value()); })), *store_); try { gloo_context->connectFullMesh(prefix_store, device_); } catch (std::exception& e) { return absl::UnknownError( absl::StrCat("Gloo context initialization failed: ", e.what())); } context->communicator = std::make_shared<GlooCollectivesCommunicator>(std::move(gloo_context)); return context->communicator; } }
#include "xla/pjrt/cpu/gloo_collectives.h" #include <unistd.h> #include <cstddef> #include <cstdint> #include <memory> #include <vector> #include "absl/status/statusor.h" #include "absl/time/time.h" #include "absl/types/span.h" #if defined(__linux__) #include "gloo/transport/tcp/attr.h" #include "gloo/transport/tcp/device.h" #elif defined(__APPLE__) #include "gloo/transport/uv/device.h" #endif #include "xla/executable_run_options.h" #include "xla/pjrt/cpu/gloo_kv_store.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/global_device_id.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace xla::cpu { namespace { using ::testing::Each; using ::testing::Eq; constexpr int kNumParticipants = 2; constexpr size_t kBufferSize = 256; constexpr absl::Duration kTimeout = absl::Seconds(5); absl::StatusOr<std::shared_ptr<CollectivesCommunicator>> GetCommunicator( size_t kNumParticipants, absl::Span<GlobalDeviceId const> global_devices, const std::shared_ptr<xla::KeyValueStoreInterface>& kv_store, int rank) { auto collectives = std::make_shared<cpu::GlooCollectives>( std::make_unique<cpu::GlooKeyValueStore>(kv_store), #if defined(__linux__) gloo::transport::tcp::CreateDevice(gloo::transport::tcp::attr())); #elif defined(__APPLE__) gloo::transport::uv::CreateDevice(gloo::transport::uv::attr())); #endif return collectives->GetCommunicator(global_devices, rank); } RendezvousKey MakeRendezvousKey(std::vector<GlobalDeviceId> global_devices) { return RendezvousKey(RunId(0), global_devices, kNumParticipants, RendezvousKey::CollectiveOpKind::kCrossModule, 0); } absl::StatusOr<std::vector<uint8_t>> AllReduce( const std::shared_ptr<xla::KeyValueStoreInterface>& kv_store, const std::vector<uint8_t>& input_buffer, std::vector<GlobalDeviceId> global_devices, int rank) { std::vector<uint8_t> output_buffer(kBufferSize); RendezvousKey rendezvous_key = MakeRendezvousKey(global_devices); TF_ASSIGN_OR_RETURN( auto communicator, GetCommunicator(kNumParticipants, global_devices, kv_store, rank)); TF_RETURN_IF_ERROR(communicator->AllReduce( rendezvous_key, xla::ReductionKind::SUM, xla::PrimitiveType::U8, kBufferSize, input_buffer.data(), output_buffer.data(), kTimeout)); return output_buffer; } TEST(GlooCollectives, AllReduce) { std::vector<GlobalDeviceId> global_devices; global_devices.reserve(kNumParticipants); for (int rank = 0; rank < kNumParticipants; ++rank) { global_devices.push_back(GlobalDeviceId(rank)); } auto kv_store = std::make_shared<xla::InMemoryKeyValueStore>(); std::vector<absl::StatusOr<std::vector<uint8_t>>> output_buffers( kNumParticipants); { tsl::thread::ThreadPool thread_pool( tsl::Env::Default(), "AllReduceParticipants", kNumParticipants); for (int rank = 0; rank < kNumParticipants; ++rank) { thread_pool.Schedule( [rank, &output_buffers, &kv_store, &global_devices]() { std::vector<uint8_t> input_buffer(kBufferSize, rank + 1); output_buffers[rank] = AllReduce(kv_store, input_buffer, global_devices, rank); }); } } for (int rank = 0; rank < kNumParticipants; ++rank) { TF_ASSERT_OK(output_buffers[rank].status()); } for (int rank = 0; rank < kNumParticipants; ++rank) { EXPECT_THAT(output_buffers[rank].value(), Each(Eq(kNumParticipants * (kNumParticipants + 1) / 2))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/gloo_collectives.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/gloo_collectives_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fde120b0-1aa9-42e2-bdb5-409300d0c5d4
cpp
google/cel-cpp
shadowable_value_step
eval/eval/shadowable_value_step.cc
eval/eval/shadowable_value_step_test.cc
#include "eval/eval/shadowable_value_step.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "common/value.h" #include "eval/eval/attribute_trail.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" #include "eval/eval/expression_step_base.h" #include "internal/status_macros.h" namespace google::api::expr::runtime { namespace { using ::cel::Value; class ShadowableValueStep : public ExpressionStepBase { public: ShadowableValueStep(std::string identifier, cel::Value value, int64_t expr_id) : ExpressionStepBase(expr_id), identifier_(std::move(identifier)), value_(std::move(value)) {} absl::Status Evaluate(ExecutionFrame* frame) const override; private: std::string identifier_; Value value_; }; absl::Status ShadowableValueStep::Evaluate(ExecutionFrame* frame) const { cel::Value result; CEL_ASSIGN_OR_RETURN(auto found, frame->modern_activation().FindVariable( frame->value_factory(), identifier_, result)); if (found) { frame->value_stack().Push(std::move(result)); } else { frame->value_stack().Push(value_); } return absl::OkStatus(); } class DirectShadowableValueStep : public DirectExpressionStep { public: DirectShadowableValueStep(std::string identifier, cel::Value value, int64_t expr_id) : DirectExpressionStep(expr_id), identifier_(std::move(identifier)), value_(std::move(value)) {} absl::Status Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute) const override; private: std::string identifier_; Value value_; }; absl::Status DirectShadowableValueStep::Evaluate( ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute) const { CEL_ASSIGN_OR_RETURN(auto found, frame.activation().FindVariable(frame.value_manager(), identifier_, result)); if (!found) { result = value_; } return absl::OkStatus(); } } absl::StatusOr<std::unique_ptr<ExpressionStep>> CreateShadowableValueStep( std::string identifier, cel::Value value, int64_t expr_id) { return absl::make_unique<ShadowableValueStep>(std::move(identifier), std::move(value), expr_id); } std::unique_ptr<DirectExpressionStep> CreateDirectShadowableValueStep( std::string identifier, cel::Value value, int64_t expr_id) { return std::make_unique<DirectShadowableValueStep>(std::move(identifier), std::move(value), expr_id); } }
#include "eval/eval/shadowable_value_step.h" #include <string> #include <utility> #include "absl/status/statusor.h" #include "base/type_provider.h" #include "common/value.h" #include "eval/eval/cel_expression_flat_impl.h" #include "eval/eval/evaluator_core.h" #include "eval/internal/interop.h" #include "eval/public/activation.h" #include "eval/public/cel_value.h" #include "internal/status_macros.h" #include "internal/testing.h" #include "runtime/runtime_options.h" namespace google::api::expr::runtime { namespace { using ::cel::TypeProvider; using ::cel::interop_internal::CreateTypeValueFromView; using ::google::protobuf::Arena; using ::testing::Eq; absl::StatusOr<CelValue> RunShadowableExpression(std::string identifier, cel::Value value, const Activation& activation, Arena* arena) { CEL_ASSIGN_OR_RETURN( auto step, CreateShadowableValueStep(std::move(identifier), std::move(value), 1)); ExecutionPath path; path.push_back(std::move(step)); CelExpressionFlatImpl impl( FlatExpression(std::move(path), 0, TypeProvider::Builtin(), cel::RuntimeOptions{})); return impl.Evaluate(activation, arena); } TEST(ShadowableValueStepTest, TestEvaluateNoShadowing) { std::string type_name = "google.api.expr.runtime.TestMessage"; Activation activation; Arena arena; auto type_value = CreateTypeValueFromView(&arena, type_name); auto status = RunShadowableExpression(type_name, type_value, activation, &arena); ASSERT_OK(status); auto value = status.value(); ASSERT_TRUE(value.IsCelType()); EXPECT_THAT(value.CelTypeOrDie().value(), Eq(type_name)); } TEST(ShadowableValueStepTest, TestEvaluateShadowedIdentifier) { std::string type_name = "int"; auto shadow_value = CelValue::CreateInt64(1024L); Activation activation; activation.InsertValue(type_name, shadow_value); Arena arena; auto type_value = CreateTypeValueFromView(&arena, type_name); auto status = RunShadowableExpression(type_name, type_value, activation, &arena); ASSERT_OK(status); auto value = status.value(); ASSERT_TRUE(value.IsInt64()); EXPECT_THAT(value.Int64OrDie(), Eq(1024L)); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/shadowable_value_step.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/shadowable_value_step_test.cc
4552db5798fb0853b131b783d8875794334fae7f
9daa5f58-6a74-4c1f-a089-e61cfed04987
cpp
tensorflow/tensorflow
eigen_attention
tensorflow/core/kernels/eigen_attention.h
tensorflow/core/kernels/eigen_attention_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_EIGEN_ATTENTION_H_ #define TENSORFLOW_CORE_KERNELS_EIGEN_ATTENTION_H_ #include "unsupported/Eigen/CXX11/Tensor" namespace Eigen { enum ExtractGlimpsesNoiseMode { UNIFORM = 0, GAUSSIAN = 1, ZERO = 2, }; namespace { template <typename Index> struct GlimpseExtractionOp { GlimpseExtractionOp(const Index width, const Index height, const std::vector<IndexPair<float> >& offsets, const bool normalized, const bool centered, const ExtractGlimpsesNoiseMode noise, const int version) : width_(width), height_(height), offsets_(offsets), normalized_(normalized), centered_(centered), noise_(noise), version_(version) {} template <typename Input> DSizes<Index, 4> dimensions(const Input& input) const { typedef typename internal::traits<Input>::Index IndexType; typedef TensorRef<Tensor<typename internal::traits<Input>::Scalar, 4, internal::traits<Input>::Layout, IndexType> > Ref; Ref in(input); DSizes<Index, 4> dims = in.dimensions(); dims[0] = in.dimension(0); dims[1] = width_; dims[2] = height_; dims[3] = in.dimension(3); return dims; } template <typename Input, typename Output, typename Device> EIGEN_DEVICE_FUNC void eval(const Input& input, Output& output, const Device& device) const { typedef typename internal::traits<Input>::Index IndexType; typedef TensorRef<Tensor<typename internal::traits<Input>::Scalar, 4, internal::traits<Input>::Layout, IndexType> > Ref; Ref in(input); const Index num_channels = in.dimension(0); const Index input_width = in.dimension(1); const Index input_height = in.dimension(2); const Index batch_size = in.dimension(3); eigen_assert(input_width > 0); eigen_assert(input_height > 0); internal::NormalRandomGenerator<float> gen; internal::UniformRandomGenerator<float> unigen; for (Index i = 0; i < batch_size; ++i) { float x = offsets_[i].first, y = offsets_[i].second; if (version_ == 1) { if (normalized_) { x *= input_width; y *= input_height; } if (centered_) { x /= 2.0f; y /= 2.0f; x += input_width / 2.0f; y += input_height / 2.0f; } x -= width_ / 2.0f; y -= height_ / 2.0f; } else { if (normalized_) { x *= input_width; y *= input_height; if (centered_) { x /= 2.0f; y /= 2.0f; x += input_width / 2.0f; y += input_height / 2.0f; x -= width_ / 2.0f; y -= height_ / 2.0f; } } else { if (centered_) { x += input_width / 2.0f; y += input_height / 2.0f; } } } const Index offset_x = (Index)x; const Index offset_y = (Index)y; Index glimpse_width = width_; Index glimpse_height = height_; bool partial_overlap = false; DSizes<Index, 3> slice_offset(0, offset_x, offset_y); DSizes<Index, 3> slice_extent(num_channels, width_, height_); DSizes<Index, 3> base_offset(0, 0, 0); if (offset_x < 0) { slice_offset[1] = 0; glimpse_width = (std::max<Index>)(0, width_ + offset_x); slice_extent[1] = glimpse_width; base_offset[1] = width_ - glimpse_width; partial_overlap = true; } else if (offset_x + width_ >= input_width) { glimpse_width = (std::max<Index>)(0, input_width - offset_x); slice_extent[1] = glimpse_width; partial_overlap = true; } if (offset_y < 0) { slice_offset[2] = 0; glimpse_height = (std::max<Index>)(0, height_ + offset_y); slice_extent[2] = glimpse_height; base_offset[2] = height_ - glimpse_height; partial_overlap = true; } else if (offset_y + height_ >= input_height) { glimpse_height = (std::max<Index>)(0, input_height - offset_y); slice_extent[2] = glimpse_height; partial_overlap = true; } slice_extent[1] = std::min<Index>(input_width, slice_extent[1]); slice_extent[2] = std::min<Index>(input_height, slice_extent[2]); if (partial_overlap) { switch (noise_) { case ZERO: { output.template chip<3>(i).device(device) = output.template chip<3>(i).constant(0); } break; case UNIFORM: { typedef std::remove_const_t< typename internal::traits<Input>::Scalar> Scalar; TensorFixedSize<Scalar, Sizes<> > mini; mini.device(device) = input.template chip<3>(i).minimum(); TensorFixedSize<float, Sizes<> > range; range.device(device) = (input.template chip<3>(i).maximum() - mini) .template cast<float>(); DSizes<Index, 3> glimpse_size(num_channels, width_, height_); TensorMap<Tensor<float, 3> > tmp(nullptr, glimpse_size); output.template chip<3>(i).device(device) = mini.reshape(Sizes<1, 1, 1>()).broadcast(glimpse_size) + (tmp.random(unigen) * range.reshape(Sizes<1, 1, 1>()).broadcast(glimpse_size)) .template cast<Scalar>(); } break; case GAUSSIAN: { DSizes<Index, 2> glimpse_size(width_, height_); DSizes<Index, 2> input_size(input_width, input_height); typedef std::remove_const_t< typename internal::traits<Input>::Scalar> Scalar; for (int j = 0; j < num_channels; ++j) { TensorFixedSize<Scalar, Sizes<> > mean; mean.device(device) = input.template chip<3>(i) .template chip<0>(j) .template cast<float>() .mean(); TensorFixedSize<float, Sizes<> > sigma; sigma.device(device) = (input.template chip<3>(i) .template chip<0>(j) .template cast<float>() - mean.reshape(Sizes<1, 1>()).broadcast(input_size)) .square() .mean() .sqrt(); TensorFixedSize<Scalar, Sizes<> > mini; mini.device(device) = input.template chip<3>(i).template chip<0>(j).minimum(); TensorFixedSize<float, Sizes<> > maxi; maxi.device(device) = input.template chip<3>(i).template chip<0>(j).maximum(); TensorMap<Tensor<float, 2> > tmp(nullptr, glimpse_size); output.template chip<3>(i).template chip<0>(j).device(device) = (mean.reshape(Sizes<1, 1>()).broadcast(glimpse_size) + (tmp.random(gen) * sigma.reshape(Sizes<1, 1>()).broadcast(glimpse_size)) .template cast<Scalar>()) .cwiseMin( maxi.reshape(Sizes<1, 1>()).broadcast(glimpse_size)) .cwiseMax( mini.reshape(Sizes<1, 1>()).broadcast(glimpse_size)); } } break; } if (glimpse_width == 0 || glimpse_height == 0) { continue; } output.template chip<3>(i) .slice(base_offset, slice_extent) .device(device) = input.template chip<3>(i).slice(slice_offset, slice_extent); } else { output.template chip<3>(i).device(device) = input.template chip<3>(i).slice(slice_offset, slice_extent); } } } private: const Index width_; const Index height_; const std::vector<IndexPair<float> > offsets_; const bool normalized_; const bool centered_; const ExtractGlimpsesNoiseMode noise_; const int version_; }; } template <typename Input> EIGEN_ALWAYS_INLINE static const TensorCustomUnaryOp< const GlimpseExtractionOp<typename internal::traits<Input>::Index>, const Input> ExtractGlimpses( const Input& input, const typename internal::traits<Input>::Index width, const typename internal::traits<Input>::Index height, const std::vector<IndexPair<float> >& offsets, const bool normalized = true, const bool centered = true, const ExtractGlimpsesNoiseMode noise = ExtractGlimpsesNoiseMode::UNIFORM, const int version = 2) { EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout == ColMajor, YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 4, YOU_MADE_A_PROGRAMMING_MISTAKE); typedef typename internal::traits<Input>::Index Index; const GlimpseExtractionOp<Index> op(width, height, offsets, normalized, centered, noise, version); return input.customOp(op); } } #endif
#include "tensorflow/core/kernels/eigen_attention.h" #include "tensorflow/core/platform/test.h" namespace Eigen { namespace { void EigenApprox(float a, float b) { ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3); } } TEST(EigenAttentionTest, Simple) { const ptrdiff_t depth = 3; const ptrdiff_t batch = 10; const ptrdiff_t rows = 32; const ptrdiff_t cols = 48; const ptrdiff_t glimpse_rows = 8; const ptrdiff_t glimpse_cols = 6; Tensor<float, 4> input(depth, rows, cols, batch); input.setRandom(); std::vector<IndexPair<float>> offsets; offsets.resize(batch); for (int i = 0; i < batch; ++i) { offsets[i].first = (-5 + i) / 10.0f; offsets[i].second = (5 - i) / 10.0f; } Tensor<float, 4> result(depth, glimpse_rows, glimpse_cols, batch); result = ExtractGlimpses(input, glimpse_rows, glimpse_cols, offsets); for (int b = 0; b < batch; ++b) { for (int c = 0; c < glimpse_cols; ++c) { ptrdiff_t source_c = c + ((1.0f + offsets[b].second) * cols - glimpse_cols) / 2; for (int r = 0; r < glimpse_rows; ++r) { ptrdiff_t source_r = r + ((1.0f + offsets[b].first) * rows - glimpse_rows) / 2; for (int d = 0; d < depth; ++d) { EigenApprox(result(d, r, c, b), input(d, source_r, source_c, b)); } } } } } TEST(EigenAttentionTest, OutOfBoundsGlimpse) { const ptrdiff_t depth = 3; const ptrdiff_t batch = 10; const ptrdiff_t rows = 32; const ptrdiff_t cols = 48; const ptrdiff_t glimpse_rows = 8; const ptrdiff_t glimpse_cols = 6; Tensor<float, 4> input(depth, rows, cols, batch); input.setRandom(); std::vector<IndexPair<float>> offsets; offsets.resize(batch); for (int i = 0; i < batch; ++i) { offsets[i].first = (-5 + i) / 2.0f; offsets[i].second = (5 - i) / 2.0f; } Tensor<float, 4> result(depth, glimpse_rows, glimpse_cols, batch); result = ExtractGlimpses(input, glimpse_rows, glimpse_cols, offsets); for (int b = 0; b < batch; ++b) { for (int c = 0; c < glimpse_cols; ++c) { ptrdiff_t source_c = c + ((1.0f + offsets[b].second) * cols - glimpse_cols) / 2; if (source_c < glimpse_cols / 2 || source_c >= cols - glimpse_cols / 2) { continue; } for (int r = 0; r < glimpse_rows; ++r) { ptrdiff_t source_r = r + ((1.0f + offsets[b].first) * rows - glimpse_rows) / 2; if (source_r < glimpse_rows / 2 || source_r >= rows - glimpse_rows / 2) { continue; } for (int d = 0; d < depth; ++d) { EigenApprox(result(d, r, c, b), input(d, source_r, source_c, b)); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_attention.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/eigen_attention_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2dbc3bb9-9f0d-4727-be03-8810e34b02b3
cpp
abseil/abseil-cpp
reflection
absl/flags/reflection.cc
absl/flags/reflection_test.cc
#include "absl/flags/reflection.h" #include <assert.h> #include <atomic> #include <string> #include "absl/base/config.h" #include "absl/base/no_destructor.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/flags/commandlineflag.h" #include "absl/flags/internal/private_handle_accessor.h" #include "absl/flags/internal/registry.h" #include "absl/flags/usage_config.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace flags_internal { class FlagRegistry { public: FlagRegistry() = default; ~FlagRegistry() = default; void RegisterFlag(CommandLineFlag& flag, const char* filename); void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION(lock_) { lock_.Lock(); } void Unlock() ABSL_UNLOCK_FUNCTION(lock_) { lock_.Unlock(); } CommandLineFlag* FindFlag(absl::string_view name); static FlagRegistry& GlobalRegistry(); private: friend class flags_internal::FlagSaverImpl; friend void ForEachFlag(std::function<void(CommandLineFlag&)> visitor); friend void FinalizeRegistry(); using FlagMap = absl::flat_hash_map<absl::string_view, CommandLineFlag*>; using FlagIterator = FlagMap::iterator; using FlagConstIterator = FlagMap::const_iterator; FlagMap flags_; std::vector<CommandLineFlag*> flat_flags_; std::atomic<bool> finalized_flags_{false}; absl::Mutex lock_; FlagRegistry(const FlagRegistry&); FlagRegistry& operator=(const FlagRegistry&); }; namespace { class FlagRegistryLock { public: explicit FlagRegistryLock(FlagRegistry& fr) : fr_(fr) { fr_.Lock(); } ~FlagRegistryLock() { fr_.Unlock(); } private: FlagRegistry& fr_; }; } CommandLineFlag* FlagRegistry::FindFlag(absl::string_view name) { if (finalized_flags_.load(std::memory_order_acquire)) { auto it = std::partition_point( flat_flags_.begin(), flat_flags_.end(), [=](CommandLineFlag* f) { return f->Name() < name; }); if (it != flat_flags_.end() && (*it)->Name() == name) return *it; } FlagRegistryLock frl(*this); auto it = flags_.find(name); return it != flags_.end() ? it->second : nullptr; } void FlagRegistry::RegisterFlag(CommandLineFlag& flag, const char* filename) { if (filename != nullptr && flag.Filename() != GetUsageConfig().normalize_filename(filename)) { flags_internal::ReportUsageError( absl::StrCat( "Inconsistency between flag object and registration for flag '", flag.Name(), "', likely due to duplicate flags or an ODR violation. Relevant " "files: ", flag.Filename(), " and ", filename), true); std::exit(1); } FlagRegistryLock registry_lock(*this); std::pair<FlagIterator, bool> ins = flags_.insert(FlagMap::value_type(flag.Name(), &flag)); if (ins.second == false) { CommandLineFlag& old_flag = *ins.first->second; if (flag.IsRetired() != old_flag.IsRetired()) { flags_internal::ReportUsageError( absl::StrCat( "Retired flag '", flag.Name(), "' was defined normally in file '", (flag.IsRetired() ? old_flag.Filename() : flag.Filename()), "'."), true); } else if (flags_internal::PrivateHandleAccessor::TypeId(flag) != flags_internal::PrivateHandleAccessor::TypeId(old_flag)) { flags_internal::ReportUsageError( absl::StrCat("Flag '", flag.Name(), "' was defined more than once but with " "differing types. Defined in files '", old_flag.Filename(), "' and '", flag.Filename(), "'."), true); } else if (old_flag.IsRetired()) { return; } else if (old_flag.Filename() != flag.Filename()) { flags_internal::ReportUsageError( absl::StrCat("Flag '", flag.Name(), "' was defined more than once (in files '", old_flag.Filename(), "' and '", flag.Filename(), "')."), true); } else { flags_internal::ReportUsageError( absl::StrCat( "Something is wrong with flag '", flag.Name(), "' in file '", flag.Filename(), "'. One possibility: file '", flag.Filename(), "' is being linked both statically and dynamically into this " "executable. e.g. some files listed as srcs to a test and also " "listed as srcs of some shared lib deps of the same test."), true); } std::exit(1); } } FlagRegistry& FlagRegistry::GlobalRegistry() { static absl::NoDestructor<FlagRegistry> global_registry; return *global_registry; } void ForEachFlag(std::function<void(CommandLineFlag&)> visitor) { FlagRegistry& registry = FlagRegistry::GlobalRegistry(); if (registry.finalized_flags_.load(std::memory_order_acquire)) { for (const auto& i : registry.flat_flags_) visitor(*i); } FlagRegistryLock frl(registry); for (const auto& i : registry.flags_) visitor(*i.second); } bool RegisterCommandLineFlag(CommandLineFlag& flag, const char* filename) { FlagRegistry::GlobalRegistry().RegisterFlag(flag, filename); return true; } void FinalizeRegistry() { auto& registry = FlagRegistry::GlobalRegistry(); FlagRegistryLock frl(registry); if (registry.finalized_flags_.load(std::memory_order_relaxed)) { return; } registry.flat_flags_.reserve(registry.flags_.size()); for (const auto& f : registry.flags_) { registry.flat_flags_.push_back(f.second); } std::sort(std::begin(registry.flat_flags_), std::end(registry.flat_flags_), [](const CommandLineFlag* lhs, const CommandLineFlag* rhs) { return lhs->Name() < rhs->Name(); }); registry.flags_.clear(); registry.finalized_flags_.store(true, std::memory_order_release); } namespace { #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wnon-virtual-dtor" #endif class RetiredFlagObj final : public CommandLineFlag { public: constexpr RetiredFlagObj(const char* name, FlagFastTypeId type_id) : name_(name), type_id_(type_id) {} private: absl::string_view Name() const override { return name_; } std::string Filename() const override { OnAccess(); return "RETIRED"; } FlagFastTypeId TypeId() const override { return type_id_; } std::string Help() const override { OnAccess(); return ""; } bool IsRetired() const override { return true; } bool IsSpecifiedOnCommandLine() const override { OnAccess(); return false; } std::string DefaultValue() const override { OnAccess(); return ""; } std::string CurrentValue() const override { OnAccess(); return ""; } bool ValidateInputValue(absl::string_view) const override { OnAccess(); return true; } std::unique_ptr<flags_internal::FlagStateInterface> SaveState() override { return nullptr; } bool ParseFrom(absl::string_view, flags_internal::FlagSettingMode, flags_internal::ValueSource, std::string&) override { OnAccess(); return false; } void CheckDefaultValueParsingRoundtrip() const override { OnAccess(); } void Read(void*) const override { OnAccess(); } void OnAccess() const { flags_internal::ReportUsageError( absl::StrCat("Accessing retired flag '", name_, "'"), false); } const char* const name_; const FlagFastTypeId type_id_; }; #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic pop #endif } void Retire(const char* name, FlagFastTypeId type_id, char* buf) { static_assert(sizeof(RetiredFlagObj) == kRetiredFlagObjSize, ""); static_assert(alignof(RetiredFlagObj) == kRetiredFlagObjAlignment, ""); auto* flag = ::new (static_cast<void*>(buf)) flags_internal::RetiredFlagObj(name, type_id); FlagRegistry::GlobalRegistry().RegisterFlag(*flag, nullptr); } class FlagSaverImpl { public: FlagSaverImpl() = default; FlagSaverImpl(const FlagSaverImpl&) = delete; void operator=(const FlagSaverImpl&) = delete; void SaveFromRegistry() { assert(backup_registry_.empty()); flags_internal::ForEachFlag([&](CommandLineFlag& flag) { if (auto flag_state = flags_internal::PrivateHandleAccessor::SaveState(flag)) { backup_registry_.emplace_back(std::move(flag_state)); } }); } void RestoreToRegistry() { for (const auto& flag_state : backup_registry_) { flag_state->Restore(); } } private: std::vector<std::unique_ptr<flags_internal::FlagStateInterface>> backup_registry_; }; } FlagSaver::FlagSaver() : impl_(new flags_internal::FlagSaverImpl) { impl_->SaveFromRegistry(); } FlagSaver::~FlagSaver() { if (!impl_) return; impl_->RestoreToRegistry(); delete impl_; } CommandLineFlag* FindCommandLineFlag(absl::string_view name) { if (name.empty()) return nullptr; flags_internal::FlagRegistry& registry = flags_internal::FlagRegistry::GlobalRegistry(); return registry.FindFlag(name); } absl::flat_hash_map<absl::string_view, absl::CommandLineFlag*> GetAllFlags() { absl::flat_hash_map<absl::string_view, absl::CommandLineFlag*> res; flags_internal::ForEachFlag([&](CommandLineFlag& flag) { if (!flag.IsRetired()) res.insert({flag.Name(), &flag}); }); return res; } ABSL_NAMESPACE_END }
#include "absl/flags/reflection.h" #include <memory> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/flags/config.h" #include "absl/flags/flag.h" #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" ABSL_FLAG(int, int_flag, 1, "int_flag help"); ABSL_FLAG(std::string, string_flag, "dflt", "string_flag help"); ABSL_RETIRED_FLAG(bool, bool_retired_flag, false, "bool_retired_flag help"); namespace { class ReflectionTest : public testing::Test { protected: void SetUp() override { #if ABSL_FLAGS_STRIP_NAMES GTEST_SKIP() << "This test requires flag names to be present"; #endif flag_saver_ = absl::make_unique<absl::FlagSaver>(); } void TearDown() override { flag_saver_.reset(); } private: std::unique_ptr<absl::FlagSaver> flag_saver_; }; TEST_F(ReflectionTest, TestFindCommandLineFlag) { auto* handle = absl::FindCommandLineFlag("some_flag"); EXPECT_EQ(handle, nullptr); handle = absl::FindCommandLineFlag("int_flag"); EXPECT_NE(handle, nullptr); handle = absl::FindCommandLineFlag("string_flag"); EXPECT_NE(handle, nullptr); handle = absl::FindCommandLineFlag("bool_retired_flag"); EXPECT_NE(handle, nullptr); } TEST_F(ReflectionTest, TestGetAllFlags) { auto all_flags = absl::GetAllFlags(); EXPECT_NE(all_flags.find("int_flag"), all_flags.end()); EXPECT_EQ(all_flags.find("bool_retired_flag"), all_flags.end()); EXPECT_EQ(all_flags.find("some_undefined_flag"), all_flags.end()); std::vector<absl::string_view> flag_names_first_attempt; auto all_flags_1 = absl::GetAllFlags(); for (auto f : all_flags_1) { flag_names_first_attempt.push_back(f.first); } std::vector<absl::string_view> flag_names_second_attempt; auto all_flags_2 = absl::GetAllFlags(); for (auto f : all_flags_2) { flag_names_second_attempt.push_back(f.first); } EXPECT_THAT(flag_names_first_attempt, ::testing::UnorderedElementsAreArray(flag_names_second_attempt)); } struct CustomUDT { CustomUDT() : a(1), b(1) {} CustomUDT(int a_, int b_) : a(a_), b(b_) {} friend bool operator==(const CustomUDT& f1, const CustomUDT& f2) { return f1.a == f2.a && f1.b == f2.b; } int a; int b; }; bool AbslParseFlag(absl::string_view in, CustomUDT* f, std::string*) { std::vector<absl::string_view> parts = absl::StrSplit(in, ':', absl::SkipWhitespace()); if (parts.size() != 2) return false; if (!absl::SimpleAtoi(parts[0], &f->a)) return false; if (!absl::SimpleAtoi(parts[1], &f->b)) return false; return true; } std::string AbslUnparseFlag(const CustomUDT& f) { return absl::StrCat(f.a, ":", f.b); } } ABSL_FLAG(bool, test_flag_01, true, ""); ABSL_FLAG(int, test_flag_02, 1234, ""); ABSL_FLAG(int16_t, test_flag_03, -34, ""); ABSL_FLAG(uint16_t, test_flag_04, 189, ""); ABSL_FLAG(int32_t, test_flag_05, 10765, ""); ABSL_FLAG(uint32_t, test_flag_06, 40000, ""); ABSL_FLAG(int64_t, test_flag_07, -1234567, ""); ABSL_FLAG(uint64_t, test_flag_08, 9876543, ""); ABSL_FLAG(double, test_flag_09, -9.876e-50, ""); ABSL_FLAG(float, test_flag_10, 1.234e12f, ""); ABSL_FLAG(std::string, test_flag_11, "", ""); ABSL_FLAG(absl::Duration, test_flag_12, absl::Minutes(10), ""); static int counter = 0; ABSL_FLAG(int, test_flag_13, 200, "").OnUpdate([]() { counter++; }); ABSL_FLAG(CustomUDT, test_flag_14, {}, ""); namespace { TEST_F(ReflectionTest, TestFlagSaverInScope) { { absl::FlagSaver s; counter = 0; absl::SetFlag(&FLAGS_test_flag_01, false); absl::SetFlag(&FLAGS_test_flag_02, -1021); absl::SetFlag(&FLAGS_test_flag_03, 6009); absl::SetFlag(&FLAGS_test_flag_04, 44); absl::SetFlag(&FLAGS_test_flag_05, +800); absl::SetFlag(&FLAGS_test_flag_06, -40978756); absl::SetFlag(&FLAGS_test_flag_07, 23405); absl::SetFlag(&FLAGS_test_flag_08, 975310); absl::SetFlag(&FLAGS_test_flag_09, 1.00001); absl::SetFlag(&FLAGS_test_flag_10, -3.54f); absl::SetFlag(&FLAGS_test_flag_11, "asdf"); absl::SetFlag(&FLAGS_test_flag_12, absl::Hours(20)); absl::SetFlag(&FLAGS_test_flag_13, 4); absl::SetFlag(&FLAGS_test_flag_14, CustomUDT{-1, -2}); } EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_01), true); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_02), 1234); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_03), -34); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_04), 189); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_05), 10765); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_06), 40000); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_07), -1234567); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 9876543); EXPECT_NEAR(absl::GetFlag(FLAGS_test_flag_09), -9.876e-50, 1e-55); EXPECT_NEAR(absl::GetFlag(FLAGS_test_flag_10), 1.234e12f, 1e5f); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_11), ""); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_12), absl::Minutes(10)); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_13), 200); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_14), CustomUDT{}); EXPECT_EQ(counter, 2); } TEST_F(ReflectionTest, TestFlagSaverVsUpdateViaReflection) { { absl::FlagSaver s; counter = 0; std::string error; EXPECT_TRUE( absl::FindCommandLineFlag("test_flag_01")->ParseFrom("false", &error)) << error; EXPECT_TRUE( absl::FindCommandLineFlag("test_flag_02")->ParseFrom("-4536", &error)) << error; EXPECT_TRUE( absl::FindCommandLineFlag("test_flag_03")->ParseFrom("111", &error)) << error; EXPECT_TRUE( absl::FindCommandLineFlag("test_flag_04")->ParseFrom("909", &error)) << error; EXPECT_TRUE( absl::FindCommandLineFlag("test_flag_05")->ParseFrom("-2004", &error)) << error; EXPECT_TRUE( absl::FindCommandLineFlag("test_flag_06")->ParseFrom("1000023", &error)) << error; EXPECT_TRUE( absl::FindCommandLineFlag("test_flag_07")->ParseFrom("69305", &error)) << error; EXPECT_TRUE(absl::FindCommandLineFlag("test_flag_08") ->ParseFrom("1000000001", &error)) << error; EXPECT_TRUE( absl::FindCommandLineFlag("test_flag_09")->ParseFrom("2.09021", &error)) << error; EXPECT_TRUE( absl::FindCommandLineFlag("test_flag_10")->ParseFrom("-33.1", &error)) << error; EXPECT_TRUE( absl::FindCommandLineFlag("test_flag_11")->ParseFrom("ADD_FOO", &error)) << error; EXPECT_TRUE(absl::FindCommandLineFlag("test_flag_12") ->ParseFrom("3h11m16s", &error)) << error; EXPECT_TRUE( absl::FindCommandLineFlag("test_flag_13")->ParseFrom("0", &error)) << error; EXPECT_TRUE( absl::FindCommandLineFlag("test_flag_14")->ParseFrom("10:1", &error)) << error; } EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_01), true); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_02), 1234); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_03), -34); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_04), 189); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_05), 10765); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_06), 40000); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_07), -1234567); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 9876543); EXPECT_NEAR(absl::GetFlag(FLAGS_test_flag_09), -9.876e-50, 1e-55); EXPECT_NEAR(absl::GetFlag(FLAGS_test_flag_10), 1.234e12f, 1e5f); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_11), ""); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_12), absl::Minutes(10)); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_13), 200); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_14), CustomUDT{}); EXPECT_EQ(counter, 2); } TEST_F(ReflectionTest, TestMultipleFlagSaversInEnclosedScopes) { { absl::FlagSaver s; absl::SetFlag(&FLAGS_test_flag_08, 10); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 10); { absl::FlagSaver s; absl::SetFlag(&FLAGS_test_flag_08, 20); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 20); { absl::FlagSaver s; absl::SetFlag(&FLAGS_test_flag_08, -200); EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), -200); } EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 20); } EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 10); } EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 9876543); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/reflection.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/reflection_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
36f6b8c3-4e4d-44d4-a114-9c8ef199e3e6
cpp
tensorflow/tensorflow
execution_trace_utils
third_party/xla/xla/mlir/tools/mlir_replay/public/execution_trace_utils.cc
third_party/xla/xla/mlir/tools/mlir_replay/public/execution_trace_utils_test.cc
#include "xla/mlir/tools/mlir_replay/public/execution_trace_utils.h" #include <cassert> #include <complex> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <type_traits> #include <utility> #include <variant> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Region.h" #include "mlir/IR/Types.h" #include "mlir/Support/LLVM.h" #include "xla/literal.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" #include "xla/mlir/tools/mlir_replay/public/execution_trace.pb.h" #include "xla/primitive_util.h" #include "tsl/platform/statusor.h" namespace mlir { namespace interpreter { namespace { struct TraceInterpreterValueVisitor { TracedValue out; void Add(float v) { out.add_floats(v); } void Add(double v) { out.add_doubles(v); } void Add(std::complex<float> v) { out.add_floats(v.real()); out.add_floats(v.imag()); } void Add(std::complex<double> v) { out.add_doubles(v.real()); out.add_doubles(v.imag()); } void Add(int64_t v) { out.add_ints(v); } void Add(int32_t v) { out.add_ints(v); } void Add(int16_t v) { out.add_ints(v); } void Add(int8_t v) { out.add_ints(v); } void Add(uint64_t v) { out.add_uints(v); } void Add(uint32_t v) { out.add_uints(v); } void Add(uint16_t v) { out.add_uints(v); } void Add(uint8_t v) { out.add_uints(v); } void Add(bool v) { out.add_ints(static_cast<int64_t>(v)); } template <typename T> void operator()(T v) { SetElementType<T>(); out.set_is_scalar(true); Add(v); } void operator()(const Tuple& t) { out.set_element_type(TracedValue::TUPLE); for (const auto& v : t.values) { *out.add_tuple_elements() = ValueToTracedValue(*v); } } template <typename T> void operator()(const TensorOrMemref<T>& v) { for (int64_t size : v.view.sizes) { out.add_shape(size); } SetElementType<T>(); for (const auto& index : v.view.Indices()) { Add(v.at(index)); } } template <typename T> void SetElementType() { out.set_element_type(GetElementType(T{})); if constexpr (std::is_same_v<T, bool>) { out.set_bit_width(1); } else { out.set_bit_width(sizeof(T) * 8); } } template <typename T> static TracedValue::ElementType GetElementType(const T&) { if constexpr (std::is_floating_point_v<T>) { return TracedValue::FLOAT; } else if constexpr (std::is_integral_v<T>) { if constexpr (std::is_unsigned_v<T>) { return TracedValue::UNSIGNED; } else { return TracedValue::INTEGRAL; } } else { T{"invalid type"} + 0; return TracedValue::UNKNOWN; } } template <typename T> static TracedValue::ElementType GetElementType(const std::complex<T>&) { return TracedValue::COMPLEX; } }; } void ExecutionTraceListener::BeforeOp(ArrayRef<InterpreterValue> args, Operation* op) { auto* inst = regions_.back()->add_instructions(); inst->set_name(op->getName().getStringRef().str()); for (const auto& arg : args) { *inst->add_args() = ValueToTracedValue(arg); } } void ExecutionTraceListener::AfterOp(ArrayRef<InterpreterValue> results) { auto* traced_results = regions_.back()->mutable_instructions()->rbegin()->mutable_results(); for (const auto& result : results) { *traced_results->Add() = ValueToTracedValue(result); } } void ExecutionTraceListener::EnterRegion(ArrayRef<InterpreterValue> bbargs, Region& region) { if (regions_.empty()) { regions_.push_back(trace_->mutable_trace()); } else { regions_.push_back( regions_.back()->mutable_instructions()->rbegin()->add_regions()); } auto& traced_region = *regions_.back(); traced_region.set_region_number(region.getRegionNumber()); for (const auto& bbarg : bbargs) { *traced_region.add_bbargs() = ValueToTracedValue(bbarg); } } void ExecutionTraceListener::LeaveRegion(ArrayRef<InterpreterValue> yielded) { for (const auto& result : yielded) { *regions_.back()->add_results() = ValueToTracedValue(result); } regions_.pop_back(); } llvm::SmallVector<mlir::Attribute> ValueToAttribute( const InterpreterValue& value, mlir::Type type) { if (std::holds_alternative<Tuple>(value.storage)) { auto types = type.cast<TupleType>().getTypes(); const auto& t = std::get<Tuple>(value.storage); llvm::SmallVector<mlir::Attribute> attrs; for (const auto& [v, ty] : llvm::zip(t.values, types)) { auto attr = ValueToAttribute(*v, ty); assert(attr.size() == 1 && "nested tuples not supported"); attrs.push_back(attr.front()); } return attrs; } if (!value.IsTensor()) { return {cast<DenseElementsAttr>( ValueToAttribute(value.AsUnitTensor(), mlir::RankedTensorType::get({}, type)) .front()) .getValues<mlir::Attribute>()[0]}; } if (!type.isa<ShapedType>()) { return {}; } auto shaped_ty = type.cast<ShapedType>(); return {DispatchScalarType(shaped_ty, [&](auto dummy) -> mlir::Attribute { using T = decltype(dummy); auto& t = std::get<TensorOrMemref<T>>(value.storage); SmallVector<T> vals; for (const auto& index : t.view.Indices()) { vals.push_back(t.at(index)); } auto attr_ty = shaped_ty.cloneWith(t.view.sizes, shaped_ty.getElementType()); if constexpr (std::is_same_v<T, bool>) { return mlir::DenseElementsAttr::get(attr_ty, vals); } else { return mlir::DenseElementsAttr::get<T>(attr_ty, vals); } })}; } namespace { template <typename T> TensorOrMemref<T> ArrayLiteralToTensor(const xla::Literal& literal) { SmallVector<int64_t> layout; if (literal.shape().has_layout()) { llvm::copy(literal.shape().layout().minor_to_major(), std::back_inserter(layout)); } SmallVector<int64_t> shape{literal.shape().dimensions().begin(), literal.shape().dimensions().end()}; auto result = TensorOrMemref<T>::Empty(shape, layout); assert(literal.size_bytes() == result.buffer->GetByteSize() && "expected buffer sizes to match"); memcpy(result.buffer->at(0, 0), literal.untyped_data(), result.buffer->GetByteSize()); return result; } } absl::StatusOr<InterpreterValue> LiteralToValue(const xla::Literal& literal) { if (literal.shape().IsTuple()) { auto elements = literal.Clone().DecomposeTuple(); Tuple result; for (auto& element : elements) { TF_ASSIGN_OR_RETURN(auto converted, LiteralToValue(element)); result.values.push_back( std::make_shared<InterpreterValue>(std::move(converted))); } return {{result}}; } if (literal.shape().IsToken()) { return absl::UnimplementedError("token arguments are not implemented"); } if (literal.shape().IsArray()) { auto type = literal.shape().element_type(); if (xla::primitive_util::IsF8Type(type)) { return absl::UnimplementedError( absl::StrCat(xla::primitive_util::LowercasePrimitiveTypeName(type), " not implemented")); } switch (type) { case xla::PRED: return {{ArrayLiteralToTensor<bool>(literal)}}; case xla::S8: return {{ArrayLiteralToTensor<int8_t>(literal)}}; case xla::S16: return {{ArrayLiteralToTensor<int16_t>(literal)}}; case xla::S32: return {{ArrayLiteralToTensor<int32_t>(literal)}}; case xla::S64: return {{ArrayLiteralToTensor<int64_t>(literal)}}; case xla::U8: return {{ArrayLiteralToTensor<uint8_t>(literal)}}; case xla::U16: return {{ArrayLiteralToTensor<uint16_t>(literal)}}; case xla::U32: return {{ArrayLiteralToTensor<uint32_t>(literal)}}; case xla::U64: return {{ArrayLiteralToTensor<uint64_t>(literal)}}; case xla::F16: return absl::UnimplementedError("F16 not implemented"); case xla::F32: return {{ArrayLiteralToTensor<float>(literal)}}; case xla::BF16: return absl::UnimplementedError("BF16 not implemented"); case xla::F64: return {{ArrayLiteralToTensor<double>(literal)}}; case xla::C64: return {{ArrayLiteralToTensor<std::complex<float>>(literal)}}; case xla::C128: return {{ArrayLiteralToTensor<std::complex<double>>(literal)}}; default: break; } } return absl::InvalidArgumentError("unexpected literal type"); } absl::StatusOr<InterpreterValue> LiteralToValue( const xla::LiteralProto& literal) { TF_ASSIGN_OR_RETURN(auto deserialized, xla::Literal::CreateFromProto(literal)); return LiteralToValue(deserialized); } absl::StatusOr<InterpreterValue> LiteralToValue( const xla::LiteralProto& literal, mlir::Type type) { TF_ASSIGN_OR_RETURN(auto result, LiteralToValue(literal)); return {DispatchScalarType(type, [&](auto dummy) -> InterpreterValue { TensorOrMemref<decltype(dummy)> cast; cast.view = result.View(); cast.buffer = result.GetBuffer(); return {cast}; })}; } TracedValue ValueToTracedValue(const InterpreterValue& value) { TraceInterpreterValueVisitor visitor; std::visit(visitor, value.storage); return visitor.out; } absl::StatusOr<InterpreterValue> TracedValueToValue( const TracedValue& traced_value) { auto extract = [&](auto dummy, auto& elements) -> InterpreterValue { using T = decltype(dummy); if (traced_value.is_scalar()) { return {static_cast<T>(elements[0])}; } auto result = TensorOrMemref<T>::Empty(llvm::to_vector(traced_value.shape())); for (auto [index, element] : llvm::zip(result.view.Indices(), elements)) { result.at(index) = element; } return {result}; }; auto extract_complex = [&](auto& elements) -> InterpreterValue { using T = std::complex<std::decay_t<decltype(elements[0])>>; if (traced_value.is_scalar()) { return {T{elements[0], elements[1]}}; } auto result = TensorOrMemref<T>::Empty(llvm::to_vector(traced_value.shape())); int64_t i = 0; for (auto it = result.view.Indices().begin(), end = result.view.Indices().end(); it != end; ++it, i += 2) { result.at(*it) = {elements[i], elements[i + 1]}; } return {result}; }; switch (traced_value.element_type()) { case TracedValue::UNKNOWN: break; case TracedValue::FLOAT: if (traced_value.bit_width() == 32) { return extract(float{}, traced_value.floats()); } return extract(double{}, traced_value.doubles()); case TracedValue::UNSIGNED: switch (traced_value.bit_width()) { case 1: return extract(bool{}, traced_value.ints()); case 8: return extract(uint8_t{}, traced_value.uints()); case 16: return extract(uint16_t{}, traced_value.uints()); case 32: return extract(uint32_t{}, traced_value.uints()); case 64: return extract(uint64_t{}, traced_value.uints()); } break; case TracedValue::INTEGRAL: switch (traced_value.bit_width()) { case 8: return extract(int8_t{}, traced_value.ints()); case 16: return extract(int16_t{}, traced_value.ints()); case 32: return extract(int32_t{}, traced_value.ints()); case 64: return extract(int64_t{}, traced_value.ints()); } break; case TracedValue::COMPLEX: switch (traced_value.bit_width()) { case 64: return extract_complex(traced_value.floats()); case 128: return extract_complex(traced_value.doubles()); } break; case TracedValue::TUPLE: Tuple result; for (const auto& elem : traced_value.tuple_elements()) { TF_ASSIGN_OR_RETURN(auto converted, TracedValueToValue(elem)); result.values.push_back( std::make_shared<InterpreterValue>(std::move(converted))); } return {{std::move(result)}}; } return absl::InvalidArgumentError("unexpected type: " + traced_value.DebugString()); } llvm::SmallVector<const InstructionTrace*> FindOpExecutionsInTrace( const ExecutionTrace& trace, mlir::Operation* op) { llvm::SmallVector<int64_t> region_indices; llvm::SmallVector<int64_t> op_indices; std::function<void(mlir::Operation*)> get_op_path; get_op_path = [&](mlir::Operation* op) { auto* parent = op->getParentOp(); if (!llvm::isa<func::FuncOp>(parent)) { get_op_path(parent); region_indices.push_back(op->getParentRegion()->getRegionNumber()); } int64_t index = 0; while ((op = op->getPrevNode()) != nullptr) ++index; op_indices.push_back(index); }; get_op_path(op); llvm::SmallVector<const InstructionTrace*> result; std::function<void(const RegionTrace& trace, int index)> step; step = [&](const RegionTrace& trace, int index) { auto& instruction_trace = trace.instructions(op_indices[index]); if (region_indices.size() > index) { for (const auto& region : instruction_trace.regions()) { if (region.region_number() == region_indices[index]) { step(region, index + 1); } } } else { result.push_back(&instruction_trace); } }; step(trace.trace(), 0); return result; } } }
#include "xla/mlir/tools/mlir_replay/public/execution_trace_utils.h" #include <cmath> #include <complex> #include <cstdint> #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "llvm/ADT/STLExtras.h" #include "mlir/Support/LLVM.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include "xla/mlir/tools/mlir_interpreter/framework/tensor_or_memref.h" #include "tsl/platform/statusor.h" namespace mlir { namespace interpreter { namespace { class TracedValueRoundTripTest : public ::testing::TestWithParam<InterpreterValue> {}; TEST_P(TracedValueRoundTripTest, Run) { auto traced_value = ValueToTracedValue(GetParam()); TF_ASSERT_OK_AND_ASSIGN(auto value, TracedValueToValue(traced_value)); EXPECT_EQ(GetParam(), value) << GetParam().ToString(); } template <typename T> InterpreterValue MakeTensor(ArrayRef<int64_t> shape, ArrayRef<T> values) { auto result = TensorOrMemref<T>::Empty(shape); for (auto [indices, value] : llvm::zip(result.view.Indices(), values)) { result.at(indices) = value; } return {result}; } template <typename T> std::shared_ptr<T> WrapShared(T value) { return std::make_shared<T>(std::move(value)); } INSTANTIATE_TEST_SUITE_P( RoundTrip, TracedValueRoundTripTest, ::testing::ValuesIn(std::vector<InterpreterValue>{ {uint8_t{42}}, {uint16_t{43}}, {uint32_t{44}}, {uint64_t{45}}, {int8_t{-47}}, {int16_t{-48}}, {int32_t{-49}}, {int64_t{-50}}, {float{42.0}}, {double{42.0}}, {std::complex<float>{1.0, 2.0}}, {std::complex<double>{3.0, 4.0}}, {true}, {false}, {MakeTensor<int16_t>({1, 2}, {42, 43})}, {MakeTensor<double>({2, 2}, {1.0, -INFINITY, INFINITY, NAN})}, {MakeTensor<std::complex<double>>({}, {{1.0, 2.0}})}, {Tuple{SmallVector<std::shared_ptr<InterpreterValue>>{ WrapShared(InterpreterValue{42}), WrapShared(InterpreterValue{43.0}), }}}})); class FromLiteralTest : public ::testing::TestWithParam< std::pair<std::shared_ptr<xla::Literal>, InterpreterValue>> {}; TEST_P(FromLiteralTest, Run) { TF_ASSERT_OK_AND_ASSIGN(auto value, LiteralToValue(*GetParam().first)); EXPECT_EQ(value, GetParam().second) << value.ToString() << " vs " << GetParam().second.ToString(); } std::vector<std::pair<std::shared_ptr<xla::Literal>, InterpreterValue>> MakeInputs() { using ::xla::LiteralUtil; return { {WrapShared(LiteralUtil::CreateR2<uint8_t>({{41, 42}})), MakeTensor<uint8_t>({1, 2}, {41, 42})}, {WrapShared(LiteralUtil::CreateR0<uint16_t>(43)), MakeTensor<uint16_t>({}, {43})}, {WrapShared(LiteralUtil::CreateR0<uint32_t>(44)), MakeTensor<uint32_t>({}, {44})}, {WrapShared(LiteralUtil::CreateR0<uint64_t>(45)), MakeTensor<uint64_t>({}, {45})}, {WrapShared(LiteralUtil::CreateR0<int8_t>(46)), MakeTensor<int8_t>({}, {46})}, {WrapShared(LiteralUtil::CreateR0<int16_t>(47)), MakeTensor<int16_t>({}, {47})}, {WrapShared(LiteralUtil::CreateR0<int32_t>(48)), MakeTensor<int32_t>({}, {48})}, {WrapShared(LiteralUtil::CreateR0<int64_t>(49)), MakeTensor<int64_t>({}, {49})}, {WrapShared(LiteralUtil::CreateR0<float>(50.0)), MakeTensor<float>({}, {50.0})}, {WrapShared(LiteralUtil::CreateR0<double>(51.0)), MakeTensor<double>({}, {51.0})}, {WrapShared(LiteralUtil::CreateR0<std::complex<float>>({52.0, 53.0})), MakeTensor<std::complex<float>>({}, {{52.0, 53.0}})}, {WrapShared(LiteralUtil::CreateR0<std::complex<double>>({54.0, 55.0})), MakeTensor<std::complex<double>>({}, {{54.0, 55.0}})}, {WrapShared(LiteralUtil::CreateR1<bool>({true, false})), MakeTensor<bool>({2}, {true, false})}, {WrapShared( LiteralUtil::MakeTupleOwned(LiteralUtil::CreateR0<bool>(true), LiteralUtil::CreateR0<int8_t>(56))), InterpreterValue{Tuple{SmallVector<std::shared_ptr<InterpreterValue>>{ std::make_shared<InterpreterValue>(MakeTensor<bool>({}, {true})), std::make_shared<InterpreterValue>( MakeTensor<int8_t>({}, {56}))}}}}}; } INSTANTIATE_TEST_SUITE_P(Test, FromLiteralTest, ::testing::ValuesIn(MakeInputs())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/mlir/tools/mlir_replay/public/execution_trace_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/mlir/tools/mlir_replay/public/execution_trace_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6bf7de3c-09a8-4dc1-a844-4bd09c44fcb0
cpp
tensorflow/tensorflow
list_dataset_op
tensorflow/core/kernels/data/experimental/list_dataset_op.cc
tensorflow/core/kernels/data/experimental/list_dataset_op_test.cc
#include "tensorflow/core/kernels/data/experimental/list_dataset_op.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/global_shuffle_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/data/split_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/util/batch_util.h" namespace tensorflow { namespace data { constexpr const char* const ListDatasetOp::kDatasetType; constexpr const char* const ListDatasetOp::kTensors; constexpr const char* const ListDatasetOp::kTinputTypes; constexpr const char* const ListDatasetOp::kOutputTypes; constexpr const char* const ListDatasetOp::kOutputShapes; class ListDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, std::vector<Tensor> tensors, const DataTypeVector& input_types, const DataTypeVector& output_types, const std::vector<PartialTensorShape>& output_shapes, int num_components) : DatasetBase(DatasetContext(ctx)), tensors_(std::move(tensors)), num_elements_(tensors_.size() / num_components), num_components_(num_components), input_types_(input_types), output_types_(output_types), output_shapes_(output_shapes) {} std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix)}); } Status MakeSplitProviders(std::vector<std::unique_ptr<SplitProvider>>* split_providers) const override { split_providers->push_back( std::make_unique<IndexSplitProvider>(num_elements_)); return absl::OkStatus(); } const DataTypeVector& output_dtypes() const override { return output_types_; } const std::vector<PartialTensorShape>& output_shapes() const override { return output_shapes_; } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } int64_t CardinalityInternal(CardinalityOptions options) const override { return num_elements_; } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { return absl::OkStatus(); } Status CheckExternalState() const override { return absl::OkStatus(); } absl::Status RandomIndexingCompatible() const override { return absl::OkStatus(); } absl::Status Get(OpKernelContext* ctx, int64_t index, std::vector<Tensor>* out_tensors) const override { return Get(AnyContext(ctx), index, out_tensors); } absl::Status Get(AnyContext ctx, int64_t index, std::vector<Tensor>* out_tensors) const override { TF_RETURN_IF_ERROR(CheckRandomAccessCompatible(index)); out_tensors->clear(); out_tensors->reserve(num_components_); for (int i = 0; i < num_components_; ++i) { out_tensors->push_back(tensors_[i + num_components_ * index]); } return absl::OkStatus(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { std::vector<Node*> tensors; tensors.reserve(tensors_.size()); for (const Tensor& t : tensors_) { Node* node; if (!ctx->is_graph_rewrite()) { TF_RETURN_IF_ERROR(b->AddDatasetOrTensor(ctx, t, &node)); } else { TF_RETURN_IF_ERROR(b->AddPlaceholder(t, &node)); DCHECK_NE(ctx->input_list(), nullptr); ctx->input_list()->emplace_back(node->name(), t); } tensors.emplace_back(node); } AttrValue input_types; b->BuildAttrValue(input_types_, &input_types); TF_RETURN_IF_ERROR(b->AddDataset(this, {}, {{0, tensors}}, {{kTinputTypes, input_types}}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params), global_shuffle_iterator_(dataset()) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { if (ctx->split_providers().empty()) { split_provider_ = std::make_shared<IndexSplitProvider>(dataset()->num_elements_); } else { TF_ASSIGN_OR_RETURN(split_provider_, GetSingleSplitProvider(ctx, dataset())); } return absl::OkStatus(); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { if (ctx->index_mapper() != nullptr) { return global_shuffle_iterator_.GetNext(ctx, out_tensors, end_of_sequence); } Tensor split; TF_RETURN_IF_ERROR(split_provider_->GetNext(&split, end_of_sequence)); if (*end_of_sequence) { return absl::OkStatus(); } int64_t index = split.scalar<int64_t>()(); out_tensors->reserve(dataset()->num_components_); for (size_t i = 0; i < dataset()->num_components_; ++i) { out_tensors->push_back( dataset()->tensors_[i + dataset()->num_components_ * index]); } *end_of_sequence = false; return absl::OkStatus(); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeSourceNode(std::move(args)); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { TF_RETURN_IF_ERROR(split_provider_->Save( [this](const std::string& key) { return full_name(key); }, writer)); TF_RETURN_IF_ERROR(global_shuffle_iterator_.Save(prefix(), ctx, writer)); return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { if (ctx->restored_element_count().has_value()) { return global_shuffle_iterator_.Restore(prefix(), ctx, reader); } return split_provider_->Restore( [this](const std::string& key) { return full_name(key); }, reader); } private: std::shared_ptr<SplitProvider> split_provider_; GlobalShuffleIterator global_shuffle_iterator_; }; const std::vector<Tensor> tensors_; int64 num_elements_; size_t num_components_; DataTypeVector input_types_; DataTypeVector output_types_; std::vector<PartialTensorShape> output_shapes_; }; ListDatasetOp::ListDatasetOp(OpKernelConstruction* ctx) : DatasetOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kTinputTypes, &input_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); } void ListDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase** output) { OpInputList inputs; OP_REQUIRES_OK(ctx, ctx->input_list(kTensors, &inputs)); std::vector<Tensor> tensors(inputs.begin(), inputs.end()); *output = new Dataset(ctx, std::move(tensors), input_types_, output_types_, output_shapes_, output_shapes_.size()); OP_REQUIRES_OK(ctx, VerifyTypesMatch((*output)->output_dtypes(), output_types_)); OP_REQUIRES_OK( ctx, VerifyShapesCompatible((*output)->output_shapes(), output_shapes_)); } namespace { REGISTER_KERNEL_BUILDER(Name("ListDataset").Device(DEVICE_CPU), ListDatasetOp); } } }
#include "tensorflow/core/kernels/data/experimental/list_dataset_op.h" #include <string> #include <utility> #include <vector> #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/serialization_utils.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "tensor_list_dataset"; class ListDatasetOpTest : public DatasetOpsTestBase {}; class ListDatasetParams : public DatasetParams { public: ListDatasetParams(std::vector<std::vector<Tensor>> elements, string node_name) : DatasetParams(ListOutputTypes(elements), ListOutputShapes(elements), std::move(node_name)) { input_types_.reserve(elements.size() * elements.front().size()); tensors_.reserve(elements.size() * elements.front().size()); for (const auto& element : elements) { for (const auto& tensor : element) { input_types_.push_back(tensor.dtype()); tensors_.emplace_back(std::move(tensor)); } } } std::vector<Tensor> GetInputTensors() const override { return tensors_; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->reserve(tensors_.size()); for (int i = 0; i < tensors_.size(); ++i) { input_names->emplace_back(absl::StrCat("tensors_", i)); } return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { *attr_vector = {{"Tinput_types", input_types_}, {"output_types", output_dtypes_}, {"output_shapes", output_shapes_}, {"metadata", ""}}; return absl::OkStatus(); } string dataset_type() const override { return "List"; } int64_t num_elements() const { return tensors_.size() / num_tensors_per_element(); } size_t num_tensors_per_element() const { return output_shapes_.size(); } private: DataTypeVector ListInputTypes( const std::vector<std::vector<Tensor>>& input_elements) { DataTypeVector input_types; for (const auto& element : input_elements) { for (const auto& tensor : element) { input_types.emplace_back(tensor.dtype()); } } return input_types; } DataTypeVector ListOutputTypes( const std::vector<std::vector<Tensor>>& input_elements) { DataTypeVector output_types; for (const auto& tensor : input_elements.front()) { output_types.emplace_back(tensor.dtype()); } return output_types; } std::vector<PartialTensorShape> ListOutputShapes( const std::vector<std::vector<Tensor>>& input_elements) { std::vector<PartialTensorShape> output_shapes; for (const auto& tensor : input_elements.front()) { absl::InlinedVector<int64_t, 4UL> partial_dim_sizes; partial_dim_sizes.reserve(tensor.dims()); for (int i = 0; i < tensor.dims(); ++i) { partial_dim_sizes.push_back(tensor.dim_size(i)); } output_shapes.emplace_back(std::move(partial_dim_sizes)); } return output_shapes; } public: std::vector<Tensor> tensors_; DataTypeVector input_types_; }; ListDatasetParams PlainListDatasetParams() { std::vector<std::vector<Tensor>> elements = { {CreateTensor<int64_t>(TensorShape({}), {1}), CreateTensor<int64_t>(TensorShape({2}), {1, 2}), CreateTensor<uint32>(TensorShape({}), {2}), CreateTensor<uint32>(TensorShape({2}), {2, 3}), CreateTensor<uint64>(TensorShape({}), {3}), CreateTensor<uint64>(TensorShape({2}), {3, 4}), CreateTensor<double>(TensorShape({1}), {37.0}), CreateTensor<tstring>(TensorShape({1}), {"a"})}, {CreateTensor<int64_t>(TensorShape({}), {2}), CreateTensor<int64_t>(TensorShape({2}), {3, 4}), CreateTensor<uint32>(TensorShape({}), {3}), CreateTensor<uint32>(TensorShape({2}), {4, 5}), CreateTensor<uint64>(TensorShape({}), {4}), CreateTensor<uint64>(TensorShape({2}), {5, 6}), CreateTensor<double>(TensorShape({1}), {38.0}), CreateTensor<tstring>(TensorShape({1}), {"b"})}}; return {std::move(elements), kNodeName}; } ListDatasetParams NestedListDatasetParams() { std::vector<std::vector<Tensor>> elements = { {CreateTensor<Variant>( TensorShape({1}), {CreateTensor<double>(TensorShape({2, 2}), {1.0, 2.0, 3.0, 4.0})}), CreateTensor<Variant>( TensorShape({1}), {CreateTensor<tstring>(TensorShape({1, 2}), {"a", "b"})}), CreateTensor<int64_t>(TensorShape({3}), {1, 2, 3})}, {CreateTensor<Variant>( TensorShape({1}), {CreateTensor<double>(TensorShape({2, 2}), {5.0, 6.0, 7.0, 8.0})}), CreateTensor<Variant>( TensorShape({1}), {CreateTensor<tstring>(TensorShape({1, 2}), {"c", "d"})}), CreateTensor<int64_t>(TensorShape({3}), {4, 5, 6})}}; return {std::move(elements), kNodeName}; } std::vector<GetNextTestCase<ListDatasetParams>> GetNextTestCases() { return { {PlainListDatasetParams(), {CreateTensor<int64_t>(TensorShape({}), {1}), CreateTensor<int64_t>(TensorShape({2}), {1, 2}), CreateTensor<uint32>(TensorShape({}), {2}), CreateTensor<uint32>(TensorShape({2}), {2, 3}), CreateTensor<uint64>(TensorShape({}), {3}), CreateTensor<uint64>(TensorShape({2}), {3, 4}), CreateTensor<double>(TensorShape({1}), {37.0}), CreateTensor<tstring>(TensorShape({1}), {"a"}), CreateTensor<int64_t>(TensorShape({}), {2}), CreateTensor<int64_t>(TensorShape({2}), {3, 4}), CreateTensor<uint32>(TensorShape({}), {3}), CreateTensor<uint32>(TensorShape({2}), {4, 5}), CreateTensor<uint64>(TensorShape({}), {4}), CreateTensor<uint64>(TensorShape({2}), {5, 6}), CreateTensor<double>(TensorShape({1}), {38.0}), CreateTensor<tstring>(TensorShape({1}), {"b"})}}, {NestedListDatasetParams(), {CreateTensor<Variant>( TensorShape({1}), {CreateTensor<double>(TensorShape({2, 2}), {1.0, 2.0, 3.0, 4.0})}), CreateTensor<Variant>( TensorShape({1}), {CreateTensor<tstring>(TensorShape({1, 2}), {"a", "b"})}), CreateTensor<int64_t>(TensorShape({3}), {1, 2, 3}), CreateTensor<Variant>( TensorShape({1}), {CreateTensor<double>(TensorShape({2, 2}), {5.0, 6.0, 7.0, 8.0})}), CreateTensor<Variant>( TensorShape({1}), {CreateTensor<tstring>(TensorShape({1, 2}), {"c", "d"})}), CreateTensor<int64_t>(TensorShape({3}), {4, 5, 6})}}}; } class ParameterizedGetNextTest : public ListDatasetOpTest, public ::testing::WithParamInterface<GetNextTestCase<ListDatasetParams>> { }; TEST_P(ParameterizedGetNextTest, GetNext) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); size_t num_tensors_per_element = test_case.dataset_params.num_tensors_per_element(); bool end_of_sequence = false; std::vector<Tensor> out_tensors; int cur_element = 0; while (true) { TF_EXPECT_OK(iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence)); if (end_of_sequence) { EXPECT_TRUE(out_tensors.empty()); break; } for (int i = 0; i < out_tensors.size(); ++i) { EXPECT_LT(i + num_tensors_per_element * cur_element, test_case.expected_outputs.size()); if (out_tensors[i].dtype() == DT_VARIANT) { const Tensor* output = out_tensors[i].scalar<Variant>()().get<Tensor>(); const Tensor* expected_output = test_case .expected_outputs[i + num_tensors_per_element * cur_element] .scalar<Variant>()() .get<Tensor>(); TF_EXPECT_OK(ExpectEqual(*output, *expected_output)); } else { TF_EXPECT_OK(ExpectEqual( out_tensors[i], test_case .expected_outputs[i + num_tensors_per_element * cur_element])); } } cur_element++; } } INSTANTIATE_TEST_SUITE_P(ListDatasetOpTest, ParameterizedGetNextTest, ::testing::ValuesIn(GetNextTestCases())); TEST_F(ListDatasetOpTest, DatasetNodeName) { auto dataset_params = PlainListDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(ListDatasetOpTest, DatasetTypeString) { auto dataset_params = PlainListDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK( CheckDatasetTypeString(name_utils::OpName(ListDatasetOp::kDatasetType))); } std::vector<DatasetOutputDtypesTestCase<ListDatasetParams>> DatasetOutputTypesTestCases() { return { {PlainListDatasetParams(), PlainListDatasetParams().output_dtypes()}, {NestedListDatasetParams(), NestedListDatasetParams().output_dtypes()}}; } DATASET_OUTPUT_DTYPES_TEST_P(ListDatasetOpTest, ListDatasetParams, DatasetOutputTypesTestCases()) std::vector<DatasetOutputShapesTestCase<ListDatasetParams>> DatasetOutputShapesTestCases() { return { {PlainListDatasetParams(), PlainListDatasetParams().output_shapes()}, {NestedListDatasetParams(), NestedListDatasetParams().output_shapes()}}; } DATASET_OUTPUT_SHAPES_TEST_P(ListDatasetOpTest, ListDatasetParams, DatasetOutputShapesTestCases()) std::vector<CardinalityTestCase<ListDatasetParams>> DatasetCardinalityTestCases() { return {{PlainListDatasetParams(), 2}, {NestedListDatasetParams(), 2}}; } DATASET_CARDINALITY_TEST_P(ListDatasetOpTest, ListDatasetParams, DatasetCardinalityTestCases()) std::vector<IteratorOutputDtypesTestCase<ListDatasetParams>> IteratorOutputTypesTestCases() { return { {PlainListDatasetParams(), PlainListDatasetParams().output_dtypes()}, {NestedListDatasetParams(), NestedListDatasetParams().output_dtypes()}}; } ITERATOR_OUTPUT_DTYPES_TEST_P(ListDatasetOpTest, ListDatasetParams, IteratorOutputTypesTestCases()) std::vector<IteratorOutputShapesTestCase<ListDatasetParams>> IteratorOutputShapesTestCases() { return { {PlainListDatasetParams(), PlainListDatasetParams().output_shapes()}, {NestedListDatasetParams(), NestedListDatasetParams().output_shapes()}}; } ITERATOR_OUTPUT_SHAPES_TEST_P(ListDatasetOpTest, ListDatasetParams, IteratorOutputShapesTestCases()) TEST_F(ListDatasetOpTest, IteratorOutputPrefix) { auto dataset_params = PlainListDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( ListDatasetOp::kDatasetType, dataset_params.iterator_prefix()))); } std::vector<IteratorSaveAndRestoreTestCase<ListDatasetParams>> IteratorSaveAndRestoreTestCases() { return { {PlainListDatasetParams(), {0, 1, 2}, {CreateTensor<int64_t>(TensorShape({}), {1}), CreateTensor<int64_t>(TensorShape({2}), {1, 2}), CreateTensor<uint32>(TensorShape({}), {2}), CreateTensor<uint32>(TensorShape({2}), {2, 3}), CreateTensor<uint64>(TensorShape({}), {3}), CreateTensor<uint64>(TensorShape({2}), {3, 4}), CreateTensor<double>(TensorShape({1}), {37.0}), CreateTensor<tstring>(TensorShape({1}), {"a"}), CreateTensor<int64_t>(TensorShape({}), {2}), CreateTensor<int64_t>(TensorShape({2}), {3, 4}), CreateTensor<uint32>(TensorShape({}), {3}), CreateTensor<uint32>(TensorShape({2}), {4, 5}), CreateTensor<uint64>(TensorShape({}), {4}), CreateTensor<uint64>(TensorShape({2}), {5, 6}), CreateTensor<double>(TensorShape({1}), {38.0}), CreateTensor<tstring>(TensorShape({1}), {"b"})}}, {NestedListDatasetParams(), {0, 1, 2}, {CreateTensor<Variant>( TensorShape({1}), {CreateTensor<double>(TensorShape({2, 2}), {1.0, 2.0, 3.0, 4.0})}), CreateTensor<Variant>( TensorShape({1}), {CreateTensor<tstring>(TensorShape({1, 2}), {"a", "b"})}), CreateTensor<int64_t>(TensorShape({3}), {1, 2, 3}), CreateTensor<Variant>( TensorShape({1}), {CreateTensor<double>(TensorShape({2, 2}), {5.0, 6.0, 7.0, 8.0})}), CreateTensor<Variant>( TensorShape({1}), {CreateTensor<tstring>(TensorShape({1, 2}), {"c", "d"})}), CreateTensor<int64_t>(TensorShape({3}), {4, 5, 6})}}}; } class ParameterizedIteratorSaveAndRestoreTest : public ListDatasetOpTest, public ::testing::WithParamInterface< IteratorSaveAndRestoreTestCase<ListDatasetParams>> {}; TEST_P(ParameterizedIteratorSaveAndRestoreTest, SaveAndRestore) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); std::unique_ptr<SerializationContext> serialization_context; TF_ASSERT_OK(CreateSerializationContext(&serialization_context)); int cur_iteration = 0; bool end_of_sequence = false; auto params = static_cast<ListDatasetParams&>(test_case.dataset_params); int64_t num_elements = params.num_elements(); size_t num_tensors_per_element = params.num_tensors_per_element(); std::vector<Tensor> out_tensors; const std::vector<int>& breakpoints = test_case.breakpoints; for (int breakpoint : breakpoints) { while (cur_iteration < breakpoint) { TF_EXPECT_OK(iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence)); cur_iteration++; } if (breakpoint == 0) { EXPECT_FALSE(end_of_sequence); } else if (breakpoint <= num_elements) { for (int i = 0; i < out_tensors.size(); ++i) { if (out_tensors[i].dtype() == DT_VARIANT) { const Tensor* output = out_tensors[i].scalar<Variant>()().get<Tensor>(); const Tensor* expected_output = test_case .expected_outputs[i + num_tensors_per_element * (cur_iteration - 1)] .scalar<Variant>()() .get<Tensor>(); TF_EXPECT_OK(ExpectEqual(*output, *expected_output)); } else { TF_EXPECT_OK(ExpectEqual( out_tensors[i], test_case.expected_outputs[i + num_tensors_per_element * (cur_iteration - 1)])); } } } else { EXPECT_TRUE(end_of_sequence); } VariantTensorDataWriter writer; TF_ASSERT_OK(iterator_->Save(serialization_context.get(), &writer)); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); TF_EXPECT_OK(RestoreIterator(iterator_ctx_.get(), &reader, "Iterator", *dataset_, &iterator_)); } } INSTANTIATE_TEST_SUITE_P( ListDatasetOpTest, ParameterizedIteratorSaveAndRestoreTest, ::testing::ValuesIn(IteratorSaveAndRestoreTestCases())); TEST_F(ListDatasetOpTest, SplitProvider) { auto params = ListDatasetParams({{CreateTensor<int64_t>(TensorShape({}), {6})}, {CreateTensor<int64_t>(TensorShape({}), {2})}, {CreateTensor<int64_t>(TensorShape({}), {3})}, {CreateTensor<int64_t>(TensorShape({}), {8})}, {CreateTensor<int64_t>(TensorShape({}), {7})}, {CreateTensor<int64_t>(TensorShape({}), {0})}, {CreateTensor<int64_t>(TensorShape({}), {10})}}, kNodeName); TF_ASSERT_OK(InitializeRuntime(params)); TF_EXPECT_OK(CheckSplitProviderFullIteration( params, CreateTensors<int64_t>(TensorShape({}), {{6}, {2}, {3}, {8}, {7}, {0}, {10}}))); TF_EXPECT_OK(CheckSplitProviderShardedIteration( params, 3, 1, CreateTensors<int64_t>(TensorShape({}), {{2}, {7}}))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/experimental/list_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/experimental/list_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fb108b70-21f6-4315-9b31-59c2e7d8fca6
cpp
google/cel-cpp
error_type
common/types/error_type.h
common/types/error_type_test.cc
#ifndef THIRD_PARTY_CEL_CPP_COMMON_TYPES_ERROR_TYPE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_TYPES_ERROR_TYPE_H_ #include <ostream> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "common/type_kind.h" namespace cel { class Type; class TypeParameters; class ErrorType final { public: static constexpr TypeKind kKind = TypeKind::kError; static constexpr absl::string_view kName = "*error*"; ErrorType() = default; ErrorType(const ErrorType&) = default; ErrorType(ErrorType&&) = default; ErrorType& operator=(const ErrorType&) = default; ErrorType& operator=(ErrorType&&) = default; static TypeKind kind() { return kKind; } static absl::string_view name() { return kName; } static TypeParameters GetParameters(); static std::string DebugString() { return std::string(name()); } constexpr void swap(ErrorType&) noexcept {} }; inline constexpr void swap(ErrorType& lhs, ErrorType& rhs) noexcept { lhs.swap(rhs); } inline constexpr bool operator==(ErrorType, ErrorType) { return true; } inline constexpr bool operator!=(ErrorType lhs, ErrorType rhs) { return !operator==(lhs, rhs); } template <typename H> H AbslHashValue(H state, ErrorType) { return std::move(state); } inline std::ostream& operator<<(std::ostream& out, const ErrorType& type) { return out << type.DebugString(); } } #endif
#include <sstream> #include "absl/hash/hash.h" #include "common/type.h" #include "internal/testing.h" namespace cel { namespace { TEST(ErrorType, Kind) { EXPECT_EQ(ErrorType().kind(), ErrorType::kKind); EXPECT_EQ(Type(ErrorType()).kind(), ErrorType::kKind); } TEST(ErrorType, Name) { EXPECT_EQ(ErrorType().name(), ErrorType::kName); EXPECT_EQ(Type(ErrorType()).name(), ErrorType::kName); } TEST(ErrorType, DebugString) { { std::ostringstream out; out << ErrorType(); EXPECT_EQ(out.str(), ErrorType::kName); } { std::ostringstream out; out << Type(ErrorType()); EXPECT_EQ(out.str(), ErrorType::kName); } } TEST(ErrorType, Hash) { EXPECT_EQ(absl::HashOf(ErrorType()), absl::HashOf(ErrorType())); } TEST(ErrorType, Equal) { EXPECT_EQ(ErrorType(), ErrorType()); EXPECT_EQ(Type(ErrorType()), ErrorType()); EXPECT_EQ(ErrorType(), Type(ErrorType())); EXPECT_EQ(Type(ErrorType()), Type(ErrorType())); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/error_type.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/error_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
6e2f5336-6a76-45d8-b557-76aa0818c7ef
cpp
tensorflow/tensorflow
fusion_block_level_rewriter
third_party/xla/xla/service/gpu/transforms/fusion_block_level_rewriter.cc
third_party/xla/xla/service/gpu/transforms/fusion_block_level_rewriter_test.cc
#include "xla/service/gpu/transforms/fusion_block_level_rewriter.h" #include <string> #include <utility> #include <variant> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/fusions/triton/triton_support.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/model/fusion_analysis_cache.h" #include "xla/service/gpu/model/gpu_indexing_performance_model.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/instruction_fusion.h" #include "xla/stream_executor/device_description.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::mlir::MLIRContext; absl::StatusOr<bool> ProcessFusionInstruction( HloFusionInstruction* fusion_instruction, const se::DeviceDescription& device_info, HloCostAnalysis::ShapeSizeFunction shape_size, MLIRContext* ctx) { const HloComputation* fusion_computation = fusion_instruction->fused_instructions_computation(); if (CodegenDecision can_codegen = IsTritonSupportedComputation( *fusion_computation, device_info.gpu_compute_capability()); !can_codegen) { VLOG(2) << "Can't rewrite fusion " << fusion_instruction->ToString() << " because one or more instructions is not supported by Triton: " << can_codegen.Explain(); return false; } TF_ASSIGN_OR_RETURN(auto backend_config, fusion_instruction->backend_config<GpuBackendConfig>()); if (backend_config.has_fusion_backend_config() && backend_config.fusion_backend_config().has_block_level_fusion_config()) { return false; } HloFusionAnalysisCache fusion_analysis_cache(device_info); GpuPerformanceModelWithIndexingAnalysis indexing_performance_model( &device_info, &fusion_analysis_cache, shape_size, ctx); auto fusion_adaptor = HloFusionAdaptor::ForInstruction( Cast<HloFusionInstruction>(fusion_instruction)); TF_ASSIGN_OR_RETURN( TiledRunTimeDataOrError tiled_runtime_data_or_error, indexing_performance_model.TryFindBestTilingForFusion(*fusion_adaptor)); if (const auto* fusion_decision = std::get_if<FusionDecision>(&tiled_runtime_data_or_error)) { VLOG(2) << "Can't rewrite fusion " << fusion_instruction->ToString() << " because tiling search failed. (The most likely cause for " << "is that SymbolicTileAnalysis failed.)"; return false; } TiledRunTimeData tiled_runtime_data = std::get<TiledRunTimeData>(std::move(tiled_runtime_data_or_error)); VLOG(1) << "Found parameters " << absl::StrCat( "sizes=[", absl::StrJoin( tiled_runtime_data.block_level_parameters.output_tile_sizes, ", "), "], num_warps=", tiled_runtime_data.block_level_parameters.num_warps) << " for fusion computation " << fusion_computation->ToString(); *backend_config.mutable_fusion_backend_config() ->mutable_block_level_fusion_config() = tiled_runtime_data.block_level_parameters.ToBlockLevelFusionConfig(); backend_config.mutable_fusion_backend_config()->set_kind( std::string(kTritonFusionKind)); TF_RETURN_IF_ERROR(fusion_instruction->set_backend_config(backend_config)); return true; } } absl::StatusOr<bool> FusionBlockLevelRewriter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { TF_RETURN_IF_ERROR(EnsureTritonSupportsComputeCapability( device_info_.gpu_compute_capability())); MLIRContext ctx; bool has_changed = false; for (HloComputation* computation : module->MakeComputationSorted(execution_threads)) { if (!computation->IsFusionComputation()) { continue; } TF_ASSIGN_OR_RETURN( bool changed, ProcessFusionInstruction( ::xla::Cast<HloFusionInstruction>(computation->FusionInstruction()), device_info_, shape_size_, &ctx)); has_changed |= changed; } return has_changed; } } }
#include "xla/service/gpu/transforms/fusion_block_level_rewriter.h" #include <cstdint> #include <memory> #include <variant> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/fusions/triton/triton_support.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/symbolic_tile_analysis.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; using ::tsl::testing::IsOkAndHolds; GpuHloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } bool HasTritonBlockLevelFusionConfig(const HloInstruction* fusion) { return fusion->opcode() == HloOpcode::kFusion && fusion->has_backend_config() && fusion->backend_config<GpuBackendConfig>().ok() && fusion->backend_config<GpuBackendConfig>() ->fusion_backend_config() .has_block_level_fusion_config() && fusion->backend_config<GpuBackendConfig>() ->fusion_backend_config() .kind() == kTritonFusionKind; } class FusionBlockLevelRewriterTest : public HloTestBase { protected: se::DeviceDescription device_info_{TestGpuDeviceInfo::RTXA6000DeviceInfo( se::CudaComputeCapability::Ampere())}; }; TEST_F(FusionBlockLevelRewriterTest, DoesNotRewriteFusionThatIsAlreadyBlockLevel) { const absl::string_view hlo_text = R"( fusion_computation { ROOT param_0 = f32[10,10] parameter(0) } ENTRY entry { param_0 = f32[10,10] parameter(0) ROOT fusion = f32[10,10] fusion(param_0), kind=kCustom, calls=fusion_computation, backend_config={"fusion_backend_config": {"kind":"__triton", "block_level_fusion_config":{}}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); EXPECT_THAT(FusionBlockLevelRewriter(device_info_, ShapeSizeBytesFunction()) .Run(module.get()), IsOkAndHolds(false)); } TEST_F(FusionBlockLevelRewriterTest, RewritesFusionThatIsNotBlockLevelAndCanBeTiledAndCodegenedCorrectly) { const absl::string_view hlo_text = R"( fusion_computation { ROOT param_0 = f32[10,10] parameter(0) } ENTRY entry { param_0 = f32[10,10] parameter(0) ROOT fusion = f32[10,10] fusion(param_0), kind=kLoop, calls=fusion_computation })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); EXPECT_THAT(FusionBlockLevelRewriter(device_info_, ShapeSizeBytesFunction()) .Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter()) .WithPredicate(HasTritonBlockLevelFusionConfig))); } TEST_F(FusionBlockLevelRewriterTest, DoesNotRewriteFusionThatIsNotBlockLevelAndCannotBeTiledCorrectly) { const absl::string_view hlo_text = R"( fusion_computation { param_0 = f32[10,10] parameter(0) ROOT bitcast = f32[25,4] bitcast(param_0) } ENTRY entry { param_0 = f32[10,10] parameter(0) ROOT fusion = f32[25,4] fusion(param_0), kind=kLoop, calls=fusion_computation })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); mlir::MLIRContext ctx; ASSERT_FALSE(std::holds_alternative<SymbolicTileAnalysis>( SymbolicTileAnalysis::AnalyzeComputation( *module->GetComputationWithName("fusion_computation"), &ctx))); EXPECT_THAT(FusionBlockLevelRewriter(device_info_, ShapeSizeBytesFunction()) .Run(module.get()), IsOkAndHolds(false)); } TEST_F(FusionBlockLevelRewriterTest, DoesNotRewriteFusionThatIsNotBlockLevelAndCannotBeCodegenedCorrectly) { const absl::string_view hlo_text = R"( fusion_computation { param_0 = f8e4m3fn[10,10] parameter(0) ROOT add = f8e4m3fn[10,10] add(param_0, param_0) } ENTRY entry { param_0 = f8e4m3fn[10,10] parameter(0) ROOT fusion = f8e4m3fn[10,10] fusion(param_0), kind=kLoop, calls=fusion_computation })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); ASSERT_FALSE(IsTritonSupportedComputation( *module->GetComputationWithName("fusion_computation"), device_info_.gpu_compute_capability())); EXPECT_THAT(FusionBlockLevelRewriter(device_info_, ShapeSizeBytesFunction()) .Run(module.get()), IsOkAndHolds(false)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/fusion_block_level_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/fusion_block_level_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
29bd60c2-1063-443b-b3e5-ead2ffba7234
cpp
tensorflow/tensorflow
optimize_input_output_buffer_alias
third_party/xla/xla/service/optimize_input_output_buffer_alias.cc
third_party/xla/xla/service/optimize_input_output_buffer_alias_test.cc
#include "xla/service/optimize_input_output_buffer_alias.h" #include <cstdint> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" namespace xla { absl::StatusOr<bool> OptimizeInputOutputBufferAlias::Build( absl::Span<const Shape> input_shapes, const Shape& output_shape, HloInputOutputAliasConfig* alias_config, HloBufferDonorConfig* buffer_donor_config) { bool changed = false; if (output_shape.is_dynamic()) { return false; } struct DonorEntry { int64_t param_number; ShapeIndex index; int64_t shape_size; }; absl::flat_hash_map<int64_t, std::vector<DonorEntry>> donors; for (int64_t param_number = 0; param_number < input_shapes.size(); ++param_number) { const Shape& input_shape = input_shapes[param_number]; TF_RET_CHECK(LayoutUtil::HasLayout(input_shape)); VLOG(1) << "input_shape: " << input_shape.ToString(); ShapeUtil::ForEachSubshape(input_shape, [&](const Shape& subshape, const ShapeIndex& index) { if (!LayoutUtil::IsDenseArray(subshape) || subshape.is_dynamic()) { return; } if (alias_config->ParameterHasAlias(param_number, index)) { return; } if (registered_buffer_donor_only_ && !buffer_donor_config->ParameterIsBufferDonor(param_number, index)) { return; } int64_t memory_space = subshape.layout().memory_space(); donors[memory_space].emplace_back( DonorEntry{param_number, index, shape_size_fn_(subshape)}); }); } struct DoneeEntry { ShapeIndex index; int64_t shape_size; }; absl::flat_hash_map<int64_t, std::vector<DoneeEntry>> donees; TF_RET_CHECK(LayoutUtil::HasLayout(output_shape)); VLOG(1) << "output_shape: " << output_shape.ToString(); ShapeUtil::ForEachSubshape( output_shape, [&](const Shape& subshape, const ShapeIndex& index) { if (!LayoutUtil::IsDenseArray(subshape)) { return; } if (alias_config->OutputHasAlias(index)) { return; } int64_t memory_space = subshape.layout().memory_space(); donees[memory_space].emplace_back( DoneeEntry{index, shape_size_fn_(subshape)}); }); for (auto& [memory_space, donor_vector] : donors) { auto donee_it = donees.find(memory_space); if (donee_it == donees.end()) { continue; } auto& donee_vector = donee_it->second; absl::c_stable_sort(donor_vector, [](const DonorEntry& a, const DonorEntry& b) -> bool { return a.shape_size > b.shape_size; }); absl::c_stable_sort(donee_vector, [](const DoneeEntry& a, const DoneeEntry& b) -> bool { return a.shape_size > b.shape_size; }); int64_t donor_vector_index = 0; int64_t donee_vector_index = 0; while (donor_vector_index < donor_vector.size() && donee_vector_index < donee_vector.size()) { const auto& donor = donor_vector[donor_vector_index]; const auto& donee = donee_vector[donee_vector_index]; if (donor.shape_size > donee.shape_size) { donor_vector_index += 1; } else if (donor.shape_size < donee.shape_size) { donee_vector_index += 1; } else { TF_RETURN_IF_ERROR(alias_config->SetUpAlias( donee.index, donor.param_number, donor.index)); TF_RETURN_IF_ERROR(buffer_donor_config->RemoveBufferDonor( donor.param_number, donor.index)); donor_vector_index += 1; donee_vector_index += 1; changed = true; } } } return changed; } absl::StatusOr<bool> OptimizeInputOutputBufferAlias::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { const auto& entry_computation_layout = module->entry_computation_layout(); std::vector<Shape> input_shapes; input_shapes.reserve(module->entry_computation()->num_parameters()); for (int64_t i = 0; i < module->entry_computation()->num_parameters(); ++i) { input_shapes.push_back(entry_computation_layout.parameter_shape(i)); } const Shape& output_shape = entry_computation_layout.result_shape(); HloInputOutputAliasConfig* alias_config = &module->input_output_alias_config(); HloBufferDonorConfig* buffer_donor_config = &module->buffer_donor_config(); TF_ASSIGN_OR_RETURN(bool changed, Build(input_shapes, output_shape, alias_config, buffer_donor_config)); TF_RETURN_IF_ERROR(alias_config->Verify(*module, shape_size_fn_)); return changed; } }
#include "xla/service/optimize_input_output_buffer_alias.h" #include <cstdint> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_utils.h" #include "tsl/platform/test.h" namespace xla { class OptimizeInputOutputBufferAliasTest : public HloTestBase { protected: OptimizeInputOutputBufferAliasTest() { r1f32_ = ShapeUtil::MakeShape(F32, {4}); r2f32_ = ShapeUtil::MakeShape(F32, {4, 5}); r3f32_ = ShapeUtil::MakeShape(F32, {4, 5, 6}); r4f32_ = ShapeUtil::MakeShape(F32, {4, 5, 6, 7}); d1f32_ = ShapeUtil::MakeShape(F32, {256}, {true}); d2f32_ = ShapeUtil::MakeShape(F32, {128, 128}, {false, true}); d3f32_ = ShapeUtil::MakeShape(F32, {512}); } void CreatePassAndBufferDonorConfig( bool registered_donor_buffer_only = false) { optimize_pass_ = std::make_unique<OptimizeInputOutputBufferAlias>( registered_donor_buffer_only); buffer_donor_config_ = HloBufferDonorConfig(); } int64_t AliasCount() { int64_t count = 0; alias_config_.ForEachAlias( [&](const ShapeIndex&, const HloInputOutputAliasConfig::Alias&) { count++; }); return count; } bool BuildAliasConfig(const std::vector<Shape>& input_shapes, const Shape& output_shape) { alias_config_ = HloInputOutputAliasConfig(output_shape); auto changed = optimize_pass_->Build(input_shapes, output_shape, &alias_config_, &buffer_donor_config_); TF_CHECK_OK(changed.status()); return changed.value(); } std::unique_ptr<OptimizeInputOutputBufferAlias> optimize_pass_; HloInputOutputAliasConfig alias_config_; HloBufferDonorConfig buffer_donor_config_; Shape r1f32_; Shape r2f32_; Shape r3f32_; Shape r4f32_; Shape d1f32_; Shape d2f32_; Shape d3f32_; }; TEST_F(OptimizeInputOutputBufferAliasTest, AllDifferentBufferSizes) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {ShapeUtil::MakeTupleShape({r1f32_, r2f32_})}; Shape output = ShapeUtil::MakeTupleShape({r3f32_, r4f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_FALSE(changed); EXPECT_EQ(AliasCount(), 0); } TEST_F(OptimizeInputOutputBufferAliasTest, OrderedNonNestedTuple) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = { ShapeUtil::MakeTupleShape({r1f32_, r2f32_, r3f32_, r4f32_})}; Shape output = ShapeUtil::MakeTupleShape({r1f32_, r2f32_, r3f32_, r4f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_TRUE(changed); EXPECT_EQ(AliasCount(), 4); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {0}), ShapeIndex{0}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {1}), ShapeIndex{1}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {2}), ShapeIndex{2}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {3}), ShapeIndex{3}); } TEST_F(OptimizeInputOutputBufferAliasTest, PartialReuseNonNestedTuple) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = { ShapeUtil::MakeTupleShape({r1f32_, r1f32_, r2f32_, r2f32_})}; Shape output = ShapeUtil::MakeTupleShape({r1f32_, r2f32_, r3f32_, r4f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_TRUE(changed); EXPECT_EQ(AliasCount(), 2); EXPECT_TRUE(alias_config_.OutputHasAlias(ShapeIndex{0})); EXPECT_TRUE(alias_config_.OutputHasAlias(ShapeIndex{1})); EXPECT_FALSE(alias_config_.OutputHasAlias(ShapeIndex{2})); EXPECT_FALSE(alias_config_.OutputHasAlias(ShapeIndex{3})); } TEST_F(OptimizeInputOutputBufferAliasTest, UnorderedNonNestedTuple) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = { ShapeUtil::MakeTupleShape({r1f32_, r2f32_, r3f32_, r4f32_})}; Shape output = ShapeUtil::MakeTupleShape({r4f32_, r3f32_, r2f32_, r1f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_TRUE(changed); EXPECT_EQ(AliasCount(), 4); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {0}), ShapeIndex{3}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {1}), ShapeIndex{2}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {2}), ShapeIndex{1}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {3}), ShapeIndex{0}); } TEST_F(OptimizeInputOutputBufferAliasTest, UnorderedNestedTuple) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({r1f32_}), r2f32_, r3f32_, r4f32_})}; Shape output = ShapeUtil::MakeTupleShape( {r1f32_, ShapeUtil::MakeTupleShape({r3f32_, r2f32_}), r2f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_TRUE(changed); EXPECT_EQ(AliasCount(), 3); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {0, 0}), ShapeIndex{0}); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {1}), ShapeIndex({1, 1})); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {2}), ShapeIndex({1, 0})); EXPECT_FALSE(alias_config_.ParameterHasAlias(0, {0, 3})); } TEST_F(OptimizeInputOutputBufferAliasTest, MultipleParameters) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {{r1f32_, r2f32_, r3f32_, r4f32_}}; Shape output = ShapeUtil::MakeTupleShape({r4f32_, r3f32_, r2f32_, r1f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_TRUE(changed); EXPECT_EQ(AliasCount(), 4); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {}), ShapeIndex{3}); EXPECT_EQ(alias_config_.GetAliasedOutput(1, {}), ShapeIndex{2}); EXPECT_EQ(alias_config_.GetAliasedOutput(2, {}), ShapeIndex{1}); EXPECT_EQ(alias_config_.GetAliasedOutput(3, {}), ShapeIndex{0}); } TEST_F(OptimizeInputOutputBufferAliasTest, BufferDonorOnly) { CreatePassAndBufferDonorConfig(true); std::vector<Shape> input = {ShapeUtil::MakeTupleShape({r1f32_, r2f32_})}; Shape output = ShapeUtil::MakeTupleShape({r2f32_, r1f32_}); TF_CHECK_OK(buffer_donor_config_.AddBufferDonor(0, {0})); EXPECT_TRUE(buffer_donor_config_.ParameterIsBufferDonor(0, {0})); bool changed = BuildAliasConfig(input, output); EXPECT_TRUE(changed); EXPECT_EQ(AliasCount(), 1); EXPECT_FALSE(buffer_donor_config_.ParameterIsBufferDonor(0, {0})); EXPECT_EQ(alias_config_.GetAliasedOutput(0, {0}), ShapeIndex{1}); EXPECT_FALSE(alias_config_.GetAliasedOutput(0, {1})); } TEST_F(OptimizeInputOutputBufferAliasTest, DynamicShapeWithTuple) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {ShapeUtil::MakeTupleShape({d1f32_, d2f32_})}; Shape output = ShapeUtil::MakeTupleShape({d1f32_, d2f32_}); bool changed = BuildAliasConfig(input, output); EXPECT_FALSE(changed); EXPECT_EQ(AliasCount(), 0); } TEST_F(OptimizeInputOutputBufferAliasTest, DynamicShapeNoTuple) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {d1f32_, d2f32_}; Shape output = d1f32_; bool changed = BuildAliasConfig(input, output); EXPECT_FALSE(changed); EXPECT_EQ(AliasCount(), 0); } TEST_F(OptimizeInputOutputBufferAliasTest, DynamicShapeBufferOutput) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {d1f32_, d2f32_}; Shape output = d3f32_; bool changed = BuildAliasConfig(input, output); EXPECT_FALSE(changed); EXPECT_EQ(AliasCount(), 0); } TEST_F(OptimizeInputOutputBufferAliasTest, DynamicShapeBufferInput) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = {d3f32_}; Shape output = d1f32_; bool changed = BuildAliasConfig(input, output); EXPECT_FALSE(changed); EXPECT_EQ(AliasCount(), 0); } TEST_F(OptimizeInputOutputBufferAliasTest, AllDifferentMemorySpaces) { CreatePassAndBufferDonorConfig(false); std::vector<Shape> input = { ShapeUtil::MakeTupleShape({r1f32_, r2f32_, r3f32_, r4f32_})}; Shape output = ShapeUtil::MakeTupleShape({r1f32_, r2f32_, r3f32_, r4f32_}); for (int i = 0; i < output.tuple_shapes_size(); ++i) { output.mutable_tuple_shapes(i)->mutable_layout()->set_memory_space( Layout::kHostMemorySpace); } bool changed = BuildAliasConfig(input, output); EXPECT_FALSE(changed); EXPECT_EQ(AliasCount(), 0); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/optimize_input_output_buffer_alias.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/optimize_input_output_buffer_alias_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
458c05c5-40e1-494f-bb6d-f746c1850d3f
cpp
google/tensorstore
identity_transform
tensorstore/index_space/internal/identity_transform.cc
tensorstore/index_space/identity_transform_test.cc
#include "tensorstore/index_space/internal/identity_transform.h" namespace tensorstore { namespace internal_index_space { void SetToIdentityTransform(span<OutputIndexMap> maps) { for (DimensionIndex i = 0; i < maps.size(); ++i) { auto& map = maps[i]; map.SetSingleInputDimension(i); map.offset() = 0; map.stride() = 1; } } namespace { void SetUnboundedDomain(TransformRep* data, DimensionIndex rank) { assert(data->input_rank_capacity >= rank); data->input_rank = rank; std::fill_n(data->input_origin().begin(), rank, -kInfIndex); std::fill_n(data->input_shape().begin(), rank, kInfSize); const auto mask = DimensionSet::UpTo(rank); data->implicit_lower_bounds = mask; data->implicit_upper_bounds = mask; } void SetIdentityOutputOrDomainOnly(TransformRep* data, DimensionIndex rank, bool domain_only) { if (domain_only) { data->output_rank = 0; } else { assert(data->output_rank_capacity >= rank); data->output_rank = rank; SetToIdentityTransform(data->output_index_maps().first(rank)); } } void SetToIdentityTransform(TransformRep* data, DimensionIndex rank, bool domain_only) { SetUnboundedDomain(data, rank); SetIdentityOutputOrDomainOnly(data, rank, domain_only); } } TransformRep::Ptr<> MakeIdentityTransform(DimensionIndex rank, bool domain_only) { auto data = TransformRep::Allocate(rank, domain_only ? 0 : rank); SetToIdentityTransform(data.get(), rank, domain_only); internal_index_space::DebugCheckInvariants(data.get()); return data; } TransformRep::Ptr<> MakeIdentityTransform(internal::StringLikeSpan labels, bool domain_only) { const DimensionIndex rank = labels.size(); auto data = TransformRep::Allocate(rank, domain_only ? 0 : rank); SetToIdentityTransform(data.get(), rank, domain_only); span<std::string> input_labels = data->input_labels().first(rank); for (DimensionIndex i = 0; i < rank; ++i) { std::string_view label = labels[i]; input_labels[i].assign(label.data(), label.size()); } internal_index_space::DebugCheckInvariants(data.get()); return data; } TransformRep::Ptr<> MakeIdentityTransformLike(TransformRep* data, bool domain_only) { assert(data != nullptr); const DimensionIndex rank = data->input_rank; auto result = TransformRep::Allocate(rank, domain_only ? 0 : rank); CopyTransformRepDomain(data, result.get()); SetIdentityOutputOrDomainOnly(result.get(), rank, domain_only); internal_index_space::DebugCheckInvariants(result.get()); return result; } TransformRep::Ptr<> MakeIdentityTransform(span<const Index> shape, bool domain_only) { const DimensionIndex rank = shape.size(); auto result = TransformRep::Allocate(rank, domain_only ? 0 : rank); result->input_rank = rank; std::fill_n(result->input_origin().begin(), rank, 0); std::copy_n(shape.begin(), rank, result->input_shape().begin()); result->implicit_lower_bounds = false; result->implicit_upper_bounds = false; SetIdentityOutputOrDomainOnly(result.get(), rank, domain_only); internal_index_space::DebugCheckInvariants(result.get()); return result; } TransformRep::Ptr<> MakeIdentityTransform(BoxView<> domain, bool domain_only) { const DimensionIndex rank = domain.rank(); auto result = TransformRep::Allocate(rank, domain_only ? 0 : rank); result->input_rank = rank; result->input_domain(rank).DeepAssign(domain); result->implicit_lower_bounds = false; result->implicit_upper_bounds = false; SetIdentityOutputOrDomainOnly(result.get(), rank, domain_only); internal_index_space::DebugCheckInvariants(result.get()); return result; } } }
#include <type_traits> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::AllocateArray; using ::tensorstore::Box; using ::tensorstore::IdentityTransform; using ::tensorstore::Index; using ::tensorstore::IndexDomain; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::span; TEST(IdentityTransformTest, Static) { auto t = IdentityTransform<2>(); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain(t.input_rank()); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, Dynamic) { auto t = IdentityTransform(2); static_assert(std::is_same_v<decltype(t), IndexTransform<>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain(t.input_rank()); static_assert(std::is_same_v<decltype(d), IndexDomain<>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, LabeledCString) { auto t = IdentityTransform({"x", "y"}); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain({"x", "y"}); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, LabeledStdString) { auto t = IdentityTransform({std::string("x"), std::string("y")}); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain({std::string("x"), std::string("y")}); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IndexTransformTest, LabeledStringView) { auto t = IdentityTransform({std::string_view("x"), std::string_view("y")}); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain({std::string_view("x"), std::string_view("y")}); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformLikeTest, IndexTransform) { EXPECT_EQ((IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({3, 4}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value()), IdentityTransformLike(IndexTransformBuilder<2, 3>() .input_origin({1, 2}) .input_shape({3, 4}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 5, 7, 1) .output_single_input_dimension(1, 6, 8, 0) .output_single_input_dimension(2, 7, 9, 0) .Finalize() .value())); } TEST(IdentityTransformLikeTest, Array) { EXPECT_EQ((IndexTransformBuilder<2, 2>() .input_origin({0, 0}) .input_shape({3, 5}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value()), IdentityTransformLike(AllocateArray<float>({3, 5}))); } TEST(IdentityTransformTest, StaticBox) { auto box = Box({1, 2}, {3, 4}); auto t = IdentityTransform(box); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({3, 4}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); EXPECT_EQ(box, t.domain().box()); static_assert(tensorstore::HasBoxDomain<IndexTransform<2, 2>>); EXPECT_EQ(box, GetBoxDomainOf(t)); auto d = IndexDomain(box); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, DynamicBox) { auto t = IdentityTransform(Box<>({1, 2}, {3, 4})); static_assert(std::is_same_v<decltype(t), IndexTransform<>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({3, 4}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain(Box<>({1, 2}, {3, 4})); static_assert(std::is_same_v<decltype(d), IndexDomain<>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, FromShape) { auto t = IdentityTransform(span<const Index, 2>({2, 3})); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({2, 3}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain(span<const Index, 2>({2, 3})); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, FromShapeBracedList) { auto t = IdentityTransform({2, 3}); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({2, 3}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain({2, 3}); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/identity_transform.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/identity_transform_test.cc
4f887a6430414cd6088e1743555015b10f116d50
ed59ab97-24d9-4a90-96df-bc43c5670b95
cpp
tensorflow/tensorflow
fusion_analysis_cache
third_party/xla/xla/service/gpu/model/fusion_analysis_cache.cc
third_party/xla/xla/service/gpu/model/fusion_analysis_cache_test.cc
#include "xla/service/gpu/model/fusion_analysis_cache.h" #include <utility> #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/hlo_fusion_analysis.h" namespace xla::gpu { const HloFusionAnalysis& HloFusionAnalysisCache::Get( const HloInstruction& instruction) { { absl::MutexLock lock(&mutex_); auto it = analyses_.find(instruction.unique_id()); if (it != analyses_.end()) { return it->second; } } HloFusionAnalysis analysis = HloFusionAnalysis::Create(instruction, device_info_); absl::MutexLock lock(&mutex_); auto it = analyses_.find(instruction.unique_id()); if (it != analyses_.end()) { return it->second; } return analyses_.emplace(instruction.unique_id(), std::move(analysis)) .first->second; } const HloFusionAnalysis& HloFusionAnalysisCache::Get( const HloInstruction& producer, const HloInstruction& consumer) { std::pair<int, int> key{producer.unique_id(), consumer.unique_id()}; { absl::MutexLock lock(&mutex_); auto it = producer_consumer_analyses_.find(key); if (it != producer_consumer_analyses_.end()) { return it->second; } } HloFusionAnalysis analysis = HloFusionAnalysis::Create(producer, consumer, device_info_); absl::MutexLock lock(&mutex_); auto it = producer_consumer_analyses_.find(key); if (it != producer_consumer_analyses_.end()) { return it->second; } producers_for_consumers_[consumer.unique_id()].push_back( producer.unique_id()); consumers_for_producers_[producer.unique_id()].push_back( consumer.unique_id()); return producer_consumer_analyses_.emplace(key, std::move(analysis)) .first->second; } void HloFusionAnalysisCache::Invalidate(const HloInstruction& instruction) { analyses_.erase(instruction.unique_id()); if (auto consumers = consumers_for_producers_.extract(instruction.unique_id())) { for (const auto consumer : consumers.mapped()) { producer_consumer_analyses_.erase({instruction.unique_id(), consumer}); } } if (auto producers = producers_for_consumers_.extract(instruction.unique_id())) { for (const auto producer : producers.mapped()) { producer_consumer_analyses_.erase({producer, instruction.unique_id()}); } } } void HloFusionAnalysisCache::Clear() { analyses_.clear(); producer_consumer_analyses_.clear(); consumers_for_producers_.clear(); producers_for_consumers_.clear(); } }
#include "xla/service/gpu/model/fusion_analysis_cache.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/hlo_parser.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { class FusionAnalysisCacheTest : public HloTestBase { public: stream_executor::DeviceDescription device_{ TestGpuDeviceInfo::RTXA6000DeviceInfo()}; HloFusionAnalysisCache cache_{device_}; }; TEST_F(FusionAnalysisCacheTest, CachesAndInvalidates) { absl::string_view hlo_string = R"( HloModule m f { c0 = f32[] constant(0) b0 = f32[1000] broadcast(c0) ROOT n0 = f32[1000] negate(b0) } ENTRY e { ROOT r.1 = f32[1000] fusion(), kind=kLoop, calls=f })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); auto* computation = module->GetComputationWithName("f"); auto* broadcast = computation->GetInstructionWithName("b0"); auto* negate = computation->GetInstructionWithName("n0"); auto* fusion = module->entry_computation()->root_instruction(); EXPECT_EQ(&cache_.Get(*fusion).fusion_root(0).instruction(), negate); computation->set_root_instruction(broadcast); EXPECT_EQ(&cache_.Get(*fusion).fusion_root(0).instruction(), negate) << "Analysis should be cached."; cache_.Invalidate(*fusion); EXPECT_EQ(&cache_.Get(*fusion).fusion_root(0).instruction(), broadcast) << "Analysis should have been recomputed"; } TEST_F(FusionAnalysisCacheTest, CachesAndInvalidatesProducerConsumerFusions) { absl::string_view hlo_string = R"( HloModule m add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } f { c0 = f32[] constant(0) b0 = f32[1000] broadcast(c0) ROOT r0 = f32[] reduce(b0, c0), dimensions={0}, to_apply=add } ENTRY e { f0 = f32[] fusion(), kind=kInput, calls=f ROOT n0 = f32[] negate(f0) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnUnverifiedModule(hlo_string)); auto* fusion = module->entry_computation()->GetInstructionWithName("f0"); auto* neg = module->entry_computation()->GetInstructionWithName("n0"); auto* computation = module->GetComputationWithName("f"); auto* constant = computation->GetInstructionWithName("c0"); EXPECT_EQ(cache_.Get(*fusion, *neg).GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); computation->set_root_instruction(constant); EXPECT_EQ(cache_.Get(*fusion, *neg).GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction) << "Analysis should be cached."; cache_.Invalidate(*fusion); EXPECT_EQ(cache_.Get(*fusion, *neg).GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kLoop) << "Analysis should have been recomputed"; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/model/fusion_analysis_cache.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/model/fusion_analysis_cache_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
85616131-3443-4e65-a297-10371fcfbd75
cpp
google/quiche
oghttp2_adapter
quiche/http2/adapter/oghttp2_adapter.cc
quiche/http2/adapter/oghttp2_adapter_test.cc
#include "quiche/http2/adapter/oghttp2_adapter.h" #include <memory> #include <string> #include <utility> #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "quiche/http2/adapter/http2_util.h" #include "quiche/http2/core/spdy_protocol.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" namespace http2 { namespace adapter { namespace { using spdy::SpdyGoAwayIR; using spdy::SpdyPingIR; using spdy::SpdyPriorityIR; using spdy::SpdyWindowUpdateIR; } std::unique_ptr<OgHttp2Adapter> OgHttp2Adapter::Create( Http2VisitorInterface& visitor, Options options) { return absl::WrapUnique(new OgHttp2Adapter(visitor, std::move(options))); } OgHttp2Adapter::~OgHttp2Adapter() {} bool OgHttp2Adapter::IsServerSession() const { return session_->IsServerSession(); } int64_t OgHttp2Adapter::ProcessBytes(absl::string_view bytes) { return session_->ProcessBytes(bytes); } void OgHttp2Adapter::SubmitSettings(absl::Span<const Http2Setting> settings) { session_->SubmitSettings(settings); } void OgHttp2Adapter::SubmitPriorityForStream(Http2StreamId stream_id, Http2StreamId parent_stream_id, int weight, bool exclusive) { session_->EnqueueFrame(std::make_unique<SpdyPriorityIR>( stream_id, parent_stream_id, weight, exclusive)); } void OgHttp2Adapter::SubmitPing(Http2PingId ping_id) { session_->EnqueueFrame(std::make_unique<SpdyPingIR>(ping_id)); } void OgHttp2Adapter::SubmitShutdownNotice() { session_->StartGracefulShutdown(); } void OgHttp2Adapter::SubmitGoAway(Http2StreamId last_accepted_stream_id, Http2ErrorCode error_code, absl::string_view opaque_data) { session_->EnqueueFrame(std::make_unique<SpdyGoAwayIR>( last_accepted_stream_id, TranslateErrorCode(error_code), std::string(opaque_data))); } void OgHttp2Adapter::SubmitWindowUpdate(Http2StreamId stream_id, int window_increment) { session_->EnqueueFrame( std::make_unique<SpdyWindowUpdateIR>(stream_id, window_increment)); } void OgHttp2Adapter::SubmitMetadata(Http2StreamId stream_id, size_t , std::unique_ptr<MetadataSource> source) { session_->SubmitMetadata(stream_id, std::move(source)); } void OgHttp2Adapter::SubmitMetadata(Http2StreamId stream_id, size_t ) { session_->SubmitMetadata(stream_id); } int OgHttp2Adapter::Send() { return session_->Send(); } int OgHttp2Adapter::GetSendWindowSize() const { return session_->GetRemoteWindowSize(); } int OgHttp2Adapter::GetStreamSendWindowSize(Http2StreamId stream_id) const { return session_->GetStreamSendWindowSize(stream_id); } int OgHttp2Adapter::GetStreamReceiveWindowLimit(Http2StreamId stream_id) const { return session_->GetStreamReceiveWindowLimit(stream_id); } int OgHttp2Adapter::GetStreamReceiveWindowSize(Http2StreamId stream_id) const { return session_->GetStreamReceiveWindowSize(stream_id); } int OgHttp2Adapter::GetReceiveWindowSize() const { return session_->GetReceiveWindowSize(); } int OgHttp2Adapter::GetHpackEncoderDynamicTableSize() const { return session_->GetHpackEncoderDynamicTableSize(); } int OgHttp2Adapter::GetHpackEncoderDynamicTableCapacity() const { return session_->GetHpackEncoderDynamicTableCapacity(); } int OgHttp2Adapter::GetHpackDecoderDynamicTableSize() const { return session_->GetHpackDecoderDynamicTableSize(); } int OgHttp2Adapter::GetHpackDecoderSizeLimit() const { return session_->GetHpackDecoderSizeLimit(); } Http2StreamId OgHttp2Adapter::GetHighestReceivedStreamId() const { return session_->GetHighestReceivedStreamId(); } void OgHttp2Adapter::MarkDataConsumedForStream(Http2StreamId stream_id, size_t num_bytes) { session_->Consume(stream_id, num_bytes); } void OgHttp2Adapter::SubmitRst(Http2StreamId stream_id, Http2ErrorCode error_code) { session_->EnqueueFrame(std::make_unique<spdy::SpdyRstStreamIR>( stream_id, TranslateErrorCode(error_code))); } int32_t OgHttp2Adapter::SubmitRequest( absl::Span<const Header> headers, std::unique_ptr<DataFrameSource> data_source, bool end_stream, void* user_data) { return session_->SubmitRequest(headers, std::move(data_source), end_stream, user_data); } int OgHttp2Adapter::SubmitResponse(Http2StreamId stream_id, absl::Span<const Header> headers, std::unique_ptr<DataFrameSource> data_source, bool end_stream) { return session_->SubmitResponse(stream_id, headers, std::move(data_source), end_stream); } int OgHttp2Adapter::SubmitTrailer(Http2StreamId stream_id, absl::Span<const Header> trailers) { return session_->SubmitTrailer(stream_id, trailers); } void OgHttp2Adapter::SetStreamUserData(Http2StreamId stream_id, void* user_data) { session_->SetStreamUserData(stream_id, user_data); } void* OgHttp2Adapter::GetStreamUserData(Http2StreamId stream_id) { return session_->GetStreamUserData(stream_id); } bool OgHttp2Adapter::ResumeStream(Http2StreamId stream_id) { return session_->ResumeStream(stream_id); } OgHttp2Adapter::OgHttp2Adapter(Http2VisitorInterface& visitor, Options options) : Http2Adapter(visitor), session_(std::make_unique<OgHttp2Session>(visitor, std::move(options))) {} } }
#include "quiche/http2/adapter/oghttp2_adapter.h" #include <cstdint> #include <limits> #include <memory> #include <string> #include <vector> #include "absl/strings/str_join.h" #include "quiche/http2/adapter/http2_protocol.h" #include "quiche/http2/adapter/http2_visitor_interface.h" #include "quiche/http2/adapter/mock_http2_visitor.h" #include "quiche/http2/adapter/oghttp2_util.h" #include "quiche/http2/adapter/test_frame_sequence.h" #include "quiche/http2/adapter/test_utils.h" #include "quiche/common/http/http_header_block.h" #include "quiche/common/platform/api/quiche_expect_bug.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace adapter { namespace test { namespace { using ConnectionError = Http2VisitorInterface::ConnectionError; using spdy::SpdyFrameType; using testing::_; enum FrameType { DATA, HEADERS, PRIORITY, RST_STREAM, SETTINGS, PUSH_PROMISE, PING, GOAWAY, WINDOW_UPDATE, CONTINUATION, }; TEST(OgHttp2AdapterTest, IsServerSession) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_TRUE(adapter->IsServerSession()); } TEST(OgHttp2AdapterTest, ProcessBytes) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence seq; EXPECT_CALL(visitor, OnFrameHeader(0, 0, 4, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 8, 6, 0)); EXPECT_CALL(visitor, OnPing(17, false)); adapter->ProcessBytes( TestFrameSequence().ClientPreface().Ping(17).Serialize()); } TEST(OgHttp2AdapterTest, HeaderValuesWithObsTextAllowedByDefault) { TestVisitor visitor; OgHttp2Session::Options options; options.perspective = Perspective::kServer; ASSERT_TRUE(options.allow_obs_text); auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {"name", "val\xa1ue"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/")); EXPECT_CALL(visitor, OnHeaderForStream(1, "name", "val\xa1ue")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); } TEST(OgHttp2AdapterTest, HeaderValuesWithObsTextDisallowed) { TestVisitor visitor; OgHttp2Session::Options options; options.allow_obs_text = false; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {"name", "val\xa1ue"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); } TEST(OgHttp2AdapterTest, RequestPathWithSpaceOrTab) { TestVisitor visitor; OgHttp2Session::Options options; options.allow_obs_text = false; options.perspective = Perspective::kServer; ASSERT_EQ(false, options.validate_path); options.validate_path = true; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/ fragment"}}, true) .Headers(3, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/\tfragment2"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":authority", "example.com")); EXPECT_CALL( visitor, OnInvalidFrame(3, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); } TEST(OgHttp2AdapterTest, RequestPathWithSpaceOrTabNoPathValidation) { TestVisitor visitor; OgHttp2Session::Options options; options.allow_obs_text = false; options.perspective = Perspective::kServer; ASSERT_EQ(false, options.validate_path); auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/ fragment"}}, true) .Headers(3, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/\tfragment2"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/ fragment")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":path", "/\tfragment2")); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnEndStream(3)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); } TEST(OgHttp2AdapterTest, InitialSettingsNoExtendedConnect) { TestVisitor client_visitor; OgHttp2Adapter::Options client_options; client_options.perspective = Perspective::kClient; client_options.max_header_list_bytes = 42; client_options.allow_extended_connect = false; auto client_adapter = OgHttp2Adapter::Create(client_visitor, client_options); TestVisitor server_visitor; OgHttp2Adapter::Options server_options; server_options.perspective = Perspective::kServer; server_options.allow_extended_connect = false; auto server_adapter = OgHttp2Adapter::Create(server_visitor, server_options); testing::InSequence s; EXPECT_CALL(client_visitor, OnBeforeFrameSent(SETTINGS, 0, 12, 0x0)); EXPECT_CALL(client_visitor, OnFrameSent(SETTINGS, 0, 12, 0x0, 0)); { int result = client_adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = client_visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS})); } EXPECT_CALL(server_visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x0)); EXPECT_CALL(server_visitor, OnFrameSent(SETTINGS, 0, 0, 0x0, 0)); { int result = server_adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = server_visitor.data(); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS})); } EXPECT_CALL(client_visitor, OnFrameHeader(0, 0, SETTINGS, 0x0)); EXPECT_CALL(client_visitor, OnSettingsStart()); EXPECT_CALL(client_visitor, OnSettingsEnd()); { const int64_t result = client_adapter->ProcessBytes(server_visitor.data()); EXPECT_EQ(server_visitor.data().size(), static_cast<size_t>(result)); } EXPECT_CALL(server_visitor, OnFrameHeader(0, 12, SETTINGS, 0x0)); EXPECT_CALL(server_visitor, OnSettingsStart()); EXPECT_CALL(server_visitor, OnSetting(Http2Setting{Http2KnownSettingsId::ENABLE_PUSH, 0u})); EXPECT_CALL( server_visitor, OnSetting(Http2Setting{Http2KnownSettingsId::MAX_HEADER_LIST_SIZE, 42u})); EXPECT_CALL(server_visitor, OnSettingsEnd()); { const int64_t result = server_adapter->ProcessBytes(client_visitor.data()); EXPECT_EQ(client_visitor.data().size(), static_cast<size_t>(result)); } } TEST(OgHttp2AdapterTest, InitialSettings) { TestVisitor client_visitor; OgHttp2Adapter::Options client_options; client_options.perspective = Perspective::kClient; client_options.max_header_list_bytes = 42; ASSERT_TRUE(client_options.allow_extended_connect); auto client_adapter = OgHttp2Adapter::Create(client_visitor, client_options); TestVisitor server_visitor; OgHttp2Adapter::Options server_options; server_options.perspective = Perspective::kServer; ASSERT_TRUE(server_options.allow_extended_connect); auto server_adapter = OgHttp2Adapter::Create(server_visitor, server_options); testing::InSequence s; EXPECT_CALL(client_visitor, OnBeforeFrameSent(SETTINGS, 0, 12, 0x0)); EXPECT_CALL(client_visitor, OnFrameSent(SETTINGS, 0, 12, 0x0, 0)); { int result = client_adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = client_visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS})); } EXPECT_CALL(server_visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(server_visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); { int result = server_adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = server_visitor.data(); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS})); } EXPECT_CALL(client_visitor, OnFrameHeader(0, 6, SETTINGS, 0x0)); EXPECT_CALL(client_visitor, OnSettingsStart()); EXPECT_CALL(client_visitor, OnSetting(Http2Setting{ Http2KnownSettingsId::ENABLE_CONNECT_PROTOCOL, 1u})); EXPECT_CALL(client_visitor, OnSettingsEnd()); { const int64_t result = client_adapter->ProcessBytes(server_visitor.data()); EXPECT_EQ(server_visitor.data().size(), static_cast<size_t>(result)); } EXPECT_CALL(server_visitor, OnFrameHeader(0, 12, SETTINGS, 0x0)); EXPECT_CALL(server_visitor, OnSettingsStart()); EXPECT_CALL(server_visitor, OnSetting(Http2Setting{Http2KnownSettingsId::ENABLE_PUSH, 0u})); EXPECT_CALL( server_visitor, OnSetting(Http2Setting{Http2KnownSettingsId::MAX_HEADER_LIST_SIZE, 42u})); EXPECT_CALL(server_visitor, OnSettingsEnd()); { const int64_t result = server_adapter->ProcessBytes(client_visitor.data()); EXPECT_EQ(client_visitor.data().size(), static_cast<size_t>(result)); } } TEST(OgHttp2AdapterTest, AutomaticSettingsAndPingAcks) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence().ClientPreface().Ping(42).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, PING, 0)); EXPECT_CALL(visitor, OnPing(42, false)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(PING, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(PING, 0, _, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::PING})); } TEST(OgHttp2AdapterTest, AutomaticPingAcksDisabled) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; options.auto_ping_ack = false; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence().ClientPreface().Ping(42).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, PING, 0)); EXPECT_CALL(visitor, OnPing(42, false)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); } TEST(OgHttp2AdapterTest, InvalidMaxFrameSizeSetting) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence().ClientPreface({{MAX_FRAME_SIZE, 3u}}).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL( visitor, OnInvalidFrame(0, Http2VisitorInterface::InvalidFrameError::kProtocol)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kInvalidSetting)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, InvalidPushSetting) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence().ClientPreface({{ENABLE_PUSH, 3u}}).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL( visitor, OnInvalidFrame(0, Http2VisitorInterface::InvalidFrameError::kProtocol)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kInvalidSetting)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, InvalidConnectProtocolSetting) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface({{ENABLE_CONNECT_PROTOCOL, 3u}}) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL( visitor, OnInvalidFrame(0, Http2VisitorInterface::InvalidFrameError::kProtocol)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kInvalidSetting)); int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); auto adapter2 = OgHttp2Adapter::Create(visitor, options); const std::string frames2 = TestFrameSequence() .ClientPreface({{ENABLE_CONNECT_PROTOCOL, 1}}) .Settings({{ENABLE_CONNECT_PROTOCOL, 0}}) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{ENABLE_CONNECT_PROTOCOL, 1u})); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL( visitor, OnInvalidFrame(0, Http2VisitorInterface::InvalidFrameError::kProtocol)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kInvalidSetting)); read_result = adapter2->ProcessBytes(frames2); EXPECT_EQ(static_cast<size_t>(read_result), frames2.size()); EXPECT_TRUE(adapter2->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); adapter2->Send(); } TEST(OgHttp2AdapterTest, ClientSetsRemoteMaxStreamOption) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; options.remote_max_concurrent_streams = 3; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers, nullptr, true, nullptr); const int32_t stream_id2 = adapter->SubmitRequest(headers, nullptr, true, nullptr); const int32_t stream_id3 = adapter->SubmitRequest(headers, nullptr, true, nullptr); const int32_t stream_id4 = adapter->SubmitRequest(headers, nullptr, true, nullptr); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id2, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id2, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id3, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id3, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(stream_id1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(stream_id1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(stream_id1)); EXPECT_CALL(visitor, OnHeaderForStream(stream_id1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(stream_id1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(stream_id1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(stream_id1)); EXPECT_CALL(visitor, OnEndStream(stream_id1)); EXPECT_CALL(visitor, OnCloseStream(stream_id1, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); ASSERT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id4, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id4, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); result = adapter->Send(); EXPECT_EQ(0, result); } TEST(OgHttp2AdapterTest, ClientHandles100Headers) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "100"}}, false) .Ping(101) .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "100")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(0, 8, PING, 0)); EXPECT_CALL(visitor, OnPing(101, false)); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(PING, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(PING, 0, _, ACK_FLAG, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::PING})); } TEST(OgHttp2AdapterTest, QueuingWindowUpdateAffectsWindow) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_EQ(adapter->GetReceiveWindowSize(), kInitialFlowControlWindowSize); adapter->SubmitWindowUpdate(0, 10000); EXPECT_EQ(adapter->GetReceiveWindowSize(), kInitialFlowControlWindowSize + 10000); const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 0, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 0, 4, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id), kInitialFlowControlWindowSize); adapter->SubmitWindowUpdate(1, 20000); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id), kInitialFlowControlWindowSize + 20000); } TEST(OgHttp2AdapterTest, AckOfSettingInitialWindowSizeAffectsWindow) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers, nullptr, true, nullptr); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); const std::string initial_frames = TestFrameSequence() .ServerPreface() .SettingsAck() .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0x0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck); int64_t parse_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(parse_result)); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id1), kInitialFlowControlWindowSize); adapter->SubmitSettings({{INITIAL_WINDOW_SIZE, 80000u}}); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id1), kInitialFlowControlWindowSize); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id1), kInitialFlowControlWindowSize); const std::string settings_ack = TestFrameSequence().SettingsAck().Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck); parse_result = adapter->ProcessBytes(settings_ack); EXPECT_EQ(settings_ack.size(), static_cast<size_t>(parse_result)); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id1), 80000); const std::vector<Header> headers2 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}); const int32_t stream_id2 = adapter->SubmitRequest(headers, nullptr, true, nullptr); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id2, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id2, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(stream_id2), 80000); } TEST(OgHttp2AdapterTest, ClientRejects100HeadersWithFin) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "100"}}, false) .Headers(1, {{":status", "100"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "100")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "100")); EXPECT_CALL(visitor, OnInvalidFrame( 1, Http2VisitorInterface::InvalidFrameError::kHttpMessaging)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, 1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ClientRejects100HeadersWithContent) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "100"}}, false) .Data(1, "We needed the final headers before data, whoops") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "100")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ClientRejects100HeadersWithContentLength) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "100"}, {"content-length", "42"}}, false) .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "100")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ClientHandlesResponseWithContentLengthAndPadding) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); const std::vector<Header> headers2 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}); const int32_t stream_id2 = adapter->SubmitRequest(headers2, nullptr, true, nullptr); ASSERT_GT(stream_id2, stream_id1); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id2, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id2, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"content-length", "2"}}, false) .Data(1, "hi", true, 10) .Headers(3, {{":status", "200"}, {"content-length", "24"}}, false) .Data(3, "hi", false, 11) .Data(3, " it's nice", false, 12) .Data(3, " to meet you", true, 13) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "content-length", "2")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 2 + 10, DATA, 0x9)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 2 + 10)); EXPECT_CALL(visitor, OnDataPaddingLength(1, 10)); EXPECT_CALL(visitor, OnDataForStream(1, "hi")); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(3, "content-length", "24")); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnFrameHeader(3, 2 + 11, DATA, 0x8)); EXPECT_CALL(visitor, OnBeginDataForStream(3, 2 + 11)); EXPECT_CALL(visitor, OnDataPaddingLength(3, 11)); EXPECT_CALL(visitor, OnDataForStream(3, "hi")); EXPECT_CALL(visitor, OnFrameHeader(3, 10 + 12, DATA, 0x8)); EXPECT_CALL(visitor, OnBeginDataForStream(3, 10 + 12)); EXPECT_CALL(visitor, OnDataPaddingLength(3, 12)); EXPECT_CALL(visitor, OnDataForStream(3, " it's nice")); EXPECT_CALL(visitor, OnFrameHeader(3, 12 + 13, DATA, 0x9)); EXPECT_CALL(visitor, OnBeginDataForStream(3, 12 + 13)); EXPECT_CALL(visitor, OnDataPaddingLength(3, 13)); EXPECT_CALL(visitor, OnDataForStream(3, " to meet you")); EXPECT_CALL(visitor, OnEndStream(3)); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({ SpdyFrameType::SETTINGS, })); } class ResponseCompleteBeforeRequestTest : public quiche::test::QuicheTestWithParam<std::tuple<bool, bool>> { public: bool HasTrailers() const { return std::get<0>(GetParam()); } bool HasRstStream() const { return std::get<1>(GetParam()); } }; INSTANTIATE_TEST_SUITE_P(TrailersAndRstStreamAllCombinations, ResponseCompleteBeforeRequestTest, testing::Combine(testing::Bool(), testing::Bool())); TEST_P(ResponseCompleteBeforeRequestTest, ClientHandlesResponseBeforeRequestComplete) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); const int32_t stream_id1 = adapter->SubmitRequest(headers1, std::move(body1), false, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); TestFrameSequence response; response.ServerPreface() .Headers(1, {{":status", "200"}, {"content-length", "2"}}, false) .Data(1, "hi", !HasTrailers(), 10); if (HasTrailers()) { response.Headers(1, {{"my-weird-trailer", "has a value"}}, true); } if (HasRstStream()) { response.RstStream(1, Http2ErrorCode::HTTP2_NO_ERROR); } const std::string stream_frames = response.Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "content-length", "2")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 2 + 10, DATA, HasTrailers() ? 0x8 : 0x9)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 2 + 10)); EXPECT_CALL(visitor, OnDataPaddingLength(1, 10)); EXPECT_CALL(visitor, OnDataForStream(1, "hi")); if (HasTrailers()) { EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, "my-weird-trailer", "has a value")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); } EXPECT_CALL(visitor, OnEndStream(1)); if (HasRstStream()) { EXPECT_CALL(visitor, OnFrameHeader(1, _, RST_STREAM, 0)); EXPECT_CALL(visitor, OnRstStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); } const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({ SpdyFrameType::SETTINGS, })); if (!HasRstStream()) { visitor.AppendPayloadForStream(1, "final fragment"); } visitor.SetEndData(1, true); adapter->ResumeStream(1); if (!HasRstStream()) { EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, END_STREAM_FLAG, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); } result = adapter->Send(); EXPECT_EQ(0, result); } TEST(OgHttp2AdapterTest, ClientHandles204WithContent) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); const std::vector<Header> headers2 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}); const int32_t stream_id2 = adapter->SubmitRequest(headers2, nullptr, true, nullptr); ASSERT_GT(stream_id2, stream_id1); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id2, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id2, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "204"}, {"content-length", "2"}}, false) .Data(1, "hi") .Headers(3, {{":status", "204"}}, false) .Data(3, "hi") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "204")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, ":status", "204")); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnFrameHeader(3, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(3, 2)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ClientHandles304WithContent) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "304"}, {"content-length", "2"}}, false) .Data(1, "hi") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "304")); EXPECT_CALL(visitor, OnHeaderForStream(1, "content-length", "2")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 2)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ClientHandles304WithContentLength) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); ASSERT_GT(stream_id, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "304"}, {"content-length", "2"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "304")); EXPECT_CALL(visitor, OnHeaderForStream(1, "content-length", "2")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(OgHttp2AdapterTest, ClientHandlesTrailers) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(1, "This is the response body.") .Headers(1, {{"final-status", "A-OK"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 26, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 26)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the response body.")); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, "final-status", "A-OK")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } class OgHttp2AdapterDataTest : public quiche::test::QuicheTestWithParam<bool> { }; INSTANTIATE_TEST_SUITE_P(BothValues, OgHttp2AdapterDataTest, testing::Bool()); TEST_P(OgHttp2AdapterDataTest, ClientSendsTrailers) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const std::string kBody = "This is an example request body."; visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, false); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); const int32_t stream_id1 = adapter->SubmitRequest( headers1, GetParam() ? nullptr : std::move(body1), false, nullptr); ASSERT_EQ(stream_id1, 1); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id1, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS, SpdyFrameType::DATA})); visitor.Clear(); const std::vector<Header> trailers1 = ToHeaders({{"extra-info", "Trailers are weird but good?"}}); adapter->SubmitTrailer(stream_id1, trailers1); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); result = adapter->Send(); EXPECT_EQ(0, result); data = visitor.data(); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::HEADERS})); } TEST(OgHttp2AdapterTest, ClientRstStreamWhileHandlingHeaders) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(1, "This is the response body.") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")) .WillOnce(testing::DoAll( testing::InvokeWithoutArgs([&adapter]() { adapter->SubmitRst(1, Http2ErrorCode::REFUSED_STREAM); }), testing::Return(Http2VisitorInterface::HEADER_RST_STREAM))); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, stream_id1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, stream_id1, 4, 0x0, static_cast<int>(Http2ErrorCode::REFUSED_STREAM))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ClientConnectionErrorWhileHandlingHeaders) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(1, "This is the response body.") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")) .WillOnce( testing::Return(Http2VisitorInterface::HEADER_CONNECTION_ERROR)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kHeaderError)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_LT(stream_result, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ClientConnectionErrorWhileHandlingHeadersOnly) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")) .WillOnce( testing::Return(Http2VisitorInterface::HEADER_CONNECTION_ERROR)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kHeaderError)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_LT(stream_result, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ClientRejectsHeaders) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(1, "This is the response body.") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kHeaderError)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_LT(stream_result, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ClientHandlesSmallerHpackHeaderTableSetting) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({ {":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"x-i-do-not-like", "green eggs and ham"}, {"x-i-will-not-eat-them", "here or there, in a box, with a fox"}, {"x-like-them-in-a-house", "no"}, {"x-like-them-with-a-mouse", "no"}, }); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); EXPECT_GT(adapter->GetHpackEncoderDynamicTableSize(), 100); const std::string stream_frames = TestFrameSequence().Settings({{HEADER_TABLE_SIZE, 100u}}).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{HEADER_TABLE_SIZE, 100u})); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_EQ(adapter->GetHpackEncoderDynamicTableCapacity(), 100); EXPECT_LE(adapter->GetHpackEncoderDynamicTableSize(), 100); } TEST(OgHttp2AdapterTest, ClientHandlesLargerHpackHeaderTableSetting) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); EXPECT_EQ(adapter->GetHpackEncoderDynamicTableCapacity(), 4096); const std::string stream_frames = TestFrameSequence().Settings({{HEADER_TABLE_SIZE, 40960u}}).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{HEADER_TABLE_SIZE, 40960u})); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_EQ(adapter->GetHpackEncoderDynamicTableCapacity(), 4096); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); EXPECT_EQ(adapter->GetHpackEncoderDynamicTableCapacity(), 40960); } TEST(OgHttp2AdapterTest, ClientSendsHpackHeaderTableSetting) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({ {":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, }); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .SettingsAck() .Headers( 1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}, {"x-i-do-not-like", "green eggs and ham"}, {"x-i-will-not-eat-them", "here or there, in a box, with a fox"}, {"x-like-them-in-a-house", "no"}, {"x-like-them-with-a-mouse", "no"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 1)); EXPECT_CALL(visitor, OnSettingsAck()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(7); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_GT(adapter->GetHpackDecoderSizeLimit(), 100); adapter->SubmitSettings({{HEADER_TABLE_SIZE, 100u}}); EXPECT_GT(adapter->GetHpackDecoderSizeLimit(), 100); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_GT(adapter->GetHpackDecoderSizeLimit(), 100); result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::vector<Header> headers2 = ToHeaders({ {":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}, }); const int32_t stream_id2 = adapter->SubmitRequest(headers2, nullptr, true, nullptr); ASSERT_GT(stream_id2, stream_id1); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id2, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id2, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string response_frames = TestFrameSequence() .Headers(stream_id2, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(stream_id2, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(stream_id2)); EXPECT_CALL(visitor, OnHeaderForStream(stream_id2, _, _)).Times(3); EXPECT_CALL(visitor, OnEndHeadersForStream(stream_id2)); EXPECT_CALL(visitor, OnEndStream(stream_id2)); EXPECT_CALL(visitor, OnCloseStream(stream_id2, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t response_result = adapter->ProcessBytes(response_frames); EXPECT_EQ(response_frames.size(), static_cast<size_t>(response_result)); EXPECT_GT(adapter->GetHpackDecoderSizeLimit(), 100); const std::string settings_ack = TestFrameSequence().SettingsAck().Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 1)); EXPECT_CALL(visitor, OnSettingsAck()); const int64_t ack_result = adapter->ProcessBytes(settings_ack); EXPECT_EQ(settings_ack.size(), static_cast<size_t>(ack_result)); EXPECT_EQ(adapter->GetHpackDecoderSizeLimit(), 100); } TEST(OgHttp2AdapterTest, DISABLED_ClientHandlesInvalidTrailers) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(1, "This is the response body.") .Headers(1, {{":bad-status", "9000"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 26, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 26)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the response body.")); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, stream_id1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, stream_id1, 4, 0x0, 1)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ClientStartsShutdown) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); adapter->SubmitShutdownNotice(); EXPECT_FALSE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(OgHttp2AdapterTest, ClientReceivesGoAway) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); const std::vector<Header> headers2 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}); const int32_t stream_id2 = adapter->SubmitRequest(headers2, nullptr, true, nullptr); ASSERT_GT(stream_id2, stream_id1); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id2, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id2, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS, SpdyFrameType::HEADERS})); visitor.Clear(); adapter->SubmitWindowUpdate(3, 42); const std::string stream_frames = TestFrameSequence() .ServerPreface() .RstStream(1, Http2ErrorCode::ENHANCE_YOUR_CALM) .GoAway(1, Http2ErrorCode::INTERNAL_ERROR, "indigestion") .WindowUpdate(0, 42) .WindowUpdate(1, 42) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, 4, RST_STREAM, 0)); EXPECT_CALL(visitor, OnRstStream(1, Http2ErrorCode::ENHANCE_YOUR_CALM)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::ENHANCE_YOUR_CALM)); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(1, Http2ErrorCode::INTERNAL_ERROR, "")); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::REFUSED_STREAM)); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 42)); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(OgHttp2AdapterTest, ClientReceivesMultipleGoAways) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string initial_frames = TestFrameSequence() .ServerPreface() .GoAway(kMaxStreamId, Http2ErrorCode::INTERNAL_ERROR, "indigestion") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(kMaxStreamId, Http2ErrorCode::INTERNAL_ERROR, "")); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(initial_result)); adapter->SubmitWindowUpdate(1, 42); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 1, 4, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::WINDOW_UPDATE})); visitor.Clear(); const std::string final_frames = TestFrameSequence() .GoAway(0, Http2ErrorCode::INTERNAL_ERROR, "indigestion") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(0, Http2ErrorCode::INTERNAL_ERROR, "")); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::REFUSED_STREAM)); const int64_t final_result = adapter->ProcessBytes(final_frames); EXPECT_EQ(final_frames.size(), static_cast<size_t>(final_result)); EXPECT_FALSE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), testing::IsEmpty()); } TEST(OgHttp2AdapterTest, ClientReceivesMultipleGoAwaysWithIncreasingStreamId) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string frames = TestFrameSequence() .ServerPreface() .GoAway(0, Http2ErrorCode::HTTP2_NO_ERROR, "") .GoAway(0, Http2ErrorCode::ENHANCE_YOUR_CALM, "") .GoAway(1, Http2ErrorCode::INTERNAL_ERROR, "") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(0, Http2ErrorCode::HTTP2_NO_ERROR, "")); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::REFUSED_STREAM)); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(0, Http2ErrorCode::ENHANCE_YOUR_CALM, "")); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL( visitor, OnInvalidFrame(0, Http2VisitorInterface::InvalidFrameError::kProtocol)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kInvalidGoAwayLastStreamId)); const int64_t frames_result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(frames_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ClientReceivesGoAwayWithPendingStreams) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string initial_frames = TestFrameSequence() .ServerPreface({{MAX_CONCURRENT_STREAMS, 1}}) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(initial_result)); const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); const std::vector<Header> headers2 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}); const int32_t stream_id2 = adapter->SubmitRequest(headers2, nullptr, true, nullptr); ASSERT_GT(stream_id2, stream_id1); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .GoAway(kMaxStreamId, Http2ErrorCode::INTERNAL_ERROR, "indigestion") .Settings({{MAX_CONCURRENT_STREAMS, 42u}}) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(kMaxStreamId, Http2ErrorCode::INTERNAL_ERROR, "")); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{MAX_CONCURRENT_STREAMS, 42u})); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::REFUSED_STREAM)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); const std::vector<Header> headers3 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/three"}}); const int32_t stream_id3 = adapter->SubmitRequest(headers3, nullptr, true, nullptr); ASSERT_GT(stream_id3, stream_id2); EXPECT_CALL(visitor, OnCloseStream(5, Http2ErrorCode::REFUSED_STREAM)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), testing::IsEmpty()); EXPECT_FALSE(adapter->want_write()); } TEST(OgHttp2AdapterTest, ClientFailsOnGoAway) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const char* kSentinel1 = "arbitrary pointer 1"; const int32_t stream_id1 = adapter->SubmitRequest( headers1, nullptr, true, const_cast<char*>(kSentinel1)); ASSERT_GT(stream_id1, 0); QUICHE_LOG(INFO) << "Created stream: " << stream_id1; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .GoAway(1, Http2ErrorCode::INTERNAL_ERROR, "indigestion") .Data(1, "This is the response body.") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(1, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(1, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0)); EXPECT_CALL(visitor, OnGoAway(1, Http2ErrorCode::INTERNAL_ERROR, "")) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_LT(stream_result, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ClientRejects101Response) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"upgrade", "new-protocol"}}); const int32_t stream_id1 = adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "101"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(static_cast<int64_t>(stream_frames.size()), stream_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL( visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<uint32_t>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST_P(OgHttp2AdapterDataTest, ClientObeysMaxConcurrentStreams) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string initial_frames = TestFrameSequence() .ServerPreface({{MAX_CONCURRENT_STREAMS, 1}}) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(initial_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string kBody = "This is an example request body."; visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, true); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); const int stream_id = adapter->SubmitRequest( ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), GetParam() ? nullptr : std::move(body1), false, nullptr); ASSERT_EQ(stream_id, 1); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, _, END_STREAM_FLAG, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA})); EXPECT_THAT(visitor.data(), testing::HasSubstr(kBody)); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); const int next_stream_id = adapter->SubmitRequest(ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}), nullptr, true, nullptr); EXPECT_GT(next_stream_id, stream_id); EXPECT_FALSE(adapter->want_write()); const std::string stream_frames = TestFrameSequence() .Headers(stream_id, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(stream_id, "This is the response body.", true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(stream_id, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(stream_id)); EXPECT_CALL(visitor, OnHeaderForStream(stream_id, ":status", "200")); EXPECT_CALL(visitor, OnHeaderForStream(stream_id, "server", "my-fake-server")); EXPECT_CALL(visitor, OnHeaderForStream(stream_id, "date", "Tue, 6 Apr 2021 12:54:01 GMT")); EXPECT_CALL(visitor, OnEndHeadersForStream(stream_id)); EXPECT_CALL(visitor, OnFrameHeader(stream_id, 26, DATA, END_STREAM_FLAG)); EXPECT_CALL(visitor, OnBeginDataForStream(stream_id, 26)); EXPECT_CALL(visitor, OnDataForStream(stream_id, "This is the response body.")); EXPECT_CALL(visitor, OnEndStream(stream_id)); EXPECT_CALL(visitor, OnCloseStream(stream_id, Http2ErrorCode::HTTP2_NO_ERROR)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, next_stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, next_stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); } TEST_P(OgHttp2AdapterDataTest, ClientReceivesInitialWindowSetting) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string initial_frames = TestFrameSequence() .Settings({{INITIAL_WINDOW_SIZE, 80000u}}) .WindowUpdate(0, 65536) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{INITIAL_WINDOW_SIZE, 80000u})); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 65536)); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(initial_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); int64_t result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string kLongBody = std::string(81000, 'c'); visitor.AppendPayloadForStream(1, kLongBody); visitor.SetEndData(1, true); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); const int stream_id = adapter->SubmitRequest( ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), GetParam() ? nullptr : std::move(body1), false, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, 16384, 0x0, 0)).Times(4); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, 14464, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA, SpdyFrameType::DATA, SpdyFrameType::DATA, SpdyFrameType::DATA, SpdyFrameType::DATA})); } TEST_P(OgHttp2AdapterDataTest, ClientReceivesInitialWindowSettingAfterStreamStart) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string initial_frames = TestFrameSequence().ServerPreface().WindowUpdate(0, 65536).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 65536)); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(initial_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); int64_t result = adapter->Send(); EXPECT_EQ(0, result); visitor.Clear(); const std::string kLongBody = std::string(81000, 'c'); visitor.AppendPayloadForStream(1, kLongBody); visitor.SetEndData(1, true); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); const int stream_id = adapter->SubmitRequest( ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), GetParam() ? nullptr : std::move(body1), false, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, 16384, 0x0, 0)).Times(3); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, 16383, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA, SpdyFrameType::DATA, SpdyFrameType::DATA, SpdyFrameType::DATA})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); const std::string settings_frame = TestFrameSequence().Settings({{INITIAL_WINDOW_SIZE, 80000u}}).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{INITIAL_WINDOW_SIZE, 80000u})); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t settings_result = adapter->ProcessBytes(settings_frame); EXPECT_EQ(settings_frame.size(), static_cast<size_t>(settings_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id, 14465, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::DATA})); } TEST(OgHttp2AdapterTest, InvalidInitialWindowSetting) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); const uint32_t kTooLargeInitialWindow = 1u << 31; const std::string initial_frames = TestFrameSequence() .Settings({{INITIAL_WINDOW_SIZE, kTooLargeInitialWindow}}) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnInvalidFrame( 0, Http2VisitorInterface::InvalidFrameError::kFlowControl)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kFlowControlError)); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(initial_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL( visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); int64_t result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view serialized = visitor.data(); EXPECT_THAT(serialized, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); serialized.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(serialized, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); visitor.Clear(); } TEST(OggHttp2AdapterClientTest, InitialWindowSettingCausesOverflow) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); ASSERT_GT(stream_id, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int64_t write_result = adapter->Send(); EXPECT_EQ(0, write_result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const uint32_t kLargeInitialWindow = (1u << 31) - 1; const std::string frames = TestFrameSequence() .ServerPreface() .Headers(stream_id, {{":status", "200"}}, false) .WindowUpdate(stream_id, 65536u) .Settings({{INITIAL_WINDOW_SIZE, kLargeInitialWindow}}) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(stream_id, _, HEADERS, 0x4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(stream_id)); EXPECT_CALL(visitor, OnHeaderForStream(stream_id, ":status", "200")); EXPECT_CALL(visitor, OnEndHeadersForStream(stream_id)); EXPECT_CALL(visitor, OnFrameHeader(stream_id, 4, WINDOW_UPDATE, 0x0)); EXPECT_CALL(visitor, OnWindowUpdate(stream_id, 65536)); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{INITIAL_WINDOW_SIZE, kLargeInitialWindow})); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, stream_id, 4, 0x0)); EXPECT_CALL( visitor, OnFrameSent(RST_STREAM, stream_id, 4, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(stream_id, Http2ErrorCode::HTTP2_NO_ERROR)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, FailureSendingConnectionPreface) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); visitor.set_has_write_error(); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kSendError)); int result = adapter->Send(); EXPECT_LT(result, 0); } TEST(OgHttp2AdapterTest, MaxFrameSizeSettingNotAppliedBeforeAck) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); const uint32_t large_frame_size = kDefaultFramePayloadSizeLimit + 42; adapter->SubmitSettings({{MAX_FRAME_SIZE, large_frame_size}}); const int32_t stream_id = adapter->SubmitRequest( ToHeaders({{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), nullptr, true, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string server_frames = TestFrameSequence() .ServerPreface() .Headers(1, {{":status", "200"}}, false) .Data(1, std::string(large_frame_size, 'a')) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, large_frame_size, DATA, 0x0)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t process_result = adapter->ProcessBytes(server_frames); EXPECT_EQ(server_frames.size(), static_cast<size_t>(process_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::FRAME_SIZE_ERROR))); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, MaxFrameSizeSettingAppliedAfterAck) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); const uint32_t large_frame_size = kDefaultFramePayloadSizeLimit + 42; adapter->SubmitSettings({{MAX_FRAME_SIZE, large_frame_size}}); const int32_t stream_id = adapter->SubmitRequest( ToHeaders({{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), nullptr, true, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string server_frames = TestFrameSequence() .ServerPreface() .SettingsAck() .Headers(1, {{":status", "200"}}, false) .Data(1, std::string(large_frame_size, 'a')) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":status", "200")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, large_frame_size, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, large_frame_size)); EXPECT_CALL(visitor, OnDataForStream(1, _)); const int64_t process_result = adapter->ProcessBytes(server_frames); EXPECT_EQ(server_frames.size(), static_cast<size_t>(process_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); } TEST(OgHttp2AdapterTest, ClientForbidsPushPromise) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); int write_result = adapter->Send(); EXPECT_EQ(0, write_result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); ASSERT_GT(stream_id, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); write_result = adapter->Send(); EXPECT_EQ(0, write_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::vector<Header> push_headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/push"}}); const std::string frames = TestFrameSequence() .ServerPreface() .SettingsAck() .PushPromise(stream_id, 2, push_headers) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck); EXPECT_CALL(visitor, OnFrameHeader(stream_id, _, PUSH_PROMISE, _)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kInvalidPushPromise)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ClientForbidsPushStream) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); int write_result = adapter->Send(); EXPECT_EQ(0, write_result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); ASSERT_GT(stream_id, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); write_result = adapter->Send(); EXPECT_EQ(0, write_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); const std::string frames = TestFrameSequence() .ServerPreface() .SettingsAck() .Headers(2, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck); EXPECT_CALL(visitor, OnFrameHeader(2, _, HEADERS, _)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kInvalidNewStreamId)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ClientReceivesDataOnClosedStream) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); absl::string_view data = visitor.data(); EXPECT_THAT(data, testing::StartsWith(spdy::kHttp2ConnectionHeaderPrefix)); data.remove_prefix(strlen(spdy::kHttp2ConnectionHeaderPrefix)); EXPECT_THAT(data, EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string initial_frames = TestFrameSequence().ServerPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(initial_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS})); visitor.Clear(); int stream_id = adapter->SubmitRequest(ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), nullptr, true, nullptr); EXPECT_GT(stream_id, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); visitor.Clear(); adapter->SubmitRst(stream_id, Http2ErrorCode::CANCEL); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, stream_id, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, stream_id, _, 0x0, static_cast<int>(Http2ErrorCode::CANCEL))); EXPECT_CALL(visitor, OnCloseStream(stream_id, Http2ErrorCode::HTTP2_NO_ERROR)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::RST_STREAM})); visitor.Clear(); const std::string response_frames = TestFrameSequence() .Headers(stream_id, {{":status", "200"}, {"server", "my-fake-server"}, {"date", "Tue, 6 Apr 2021 12:54:01 GMT"}}, false) .Data(stream_id, "This is the response body.", true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(stream_id, _, HEADERS, 0x4)); EXPECT_CALL(visitor, OnFrameHeader(stream_id, _, DATA, END_STREAM_FLAG)); const int64_t response_result = adapter->ProcessBytes(response_frames); EXPECT_EQ(response_frames.size(), static_cast<size_t>(response_result)); EXPECT_FALSE(adapter->want_write()); } TEST_P(OgHttp2AdapterDataTest, ClientEncountersFlowControlBlock) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const std::string kBody = std::string(100 * 1024, 'a'); visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, false); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); const int32_t stream_id1 = adapter->SubmitRequest( headers1, GetParam() ? nullptr : std::move(body1), false, nullptr); ASSERT_GT(stream_id1, 0); const std::vector<Header> headers2 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}); visitor.AppendPayloadForStream(3, kBody); visitor.SetEndData(3, false); auto body2 = std::make_unique<VisitorDataSource>(visitor, 3); const int32_t stream_id2 = adapter->SubmitRequest( headers2, GetParam() ? nullptr : std::move(body2), false, nullptr); ASSERT_EQ(stream_id2, 3); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x4, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id2, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id2, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id1, _, 0x0, 0)).Times(4); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(0, adapter->GetSendWindowSize()); const std::string stream_frames = TestFrameSequence() .ServerPreface() .WindowUpdate(0, 80000) .WindowUpdate(stream_id1, 20000) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 80000)); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(1, 20000)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id2, _, 0x0, 0)) .Times(testing::AtLeast(1)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id1, _, 0x0, 0)) .Times(testing::AtLeast(1)); EXPECT_TRUE(adapter->want_write()); result = adapter->Send(); EXPECT_EQ(0, result); } TEST_P(OgHttp2AdapterDataTest, ClientSendsTrailersAfterFlowControlBlock) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); visitor.AppendPayloadForStream(1, "Really small body."); visitor.SetEndData(1, false); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); const int32_t stream_id1 = adapter->SubmitRequest( headers1, GetParam() ? nullptr : std::move(body1), false, nullptr); ASSERT_GT(stream_id1, 0); const std::vector<Header> headers2 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}); const std::string kBody = std::string(100 * 1024, 'a'); visitor.AppendPayloadForStream(3, kBody); visitor.SetEndData(3, false); auto body2 = std::make_unique<VisitorDataSource>(visitor, 3); const int32_t stream_id2 = adapter->SubmitRequest( headers2, GetParam() ? nullptr : std::move(body2), false, nullptr); ASSERT_GT(stream_id2, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, 0x4, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id2, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id2, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id1, _, 0x0, 0)).Times(1); EXPECT_CALL(visitor, OnFrameSent(DATA, stream_id2, _, 0x0, 0)).Times(4); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_FALSE(adapter->want_write()); EXPECT_EQ(0, adapter->GetSendWindowSize()); const std::vector<Header> trailers1 = ToHeaders({{"extra-info", "Trailers are weird but good?"}}); adapter->SubmitTrailer(stream_id1, trailers1); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); result = adapter->Send(); EXPECT_EQ(0, result); } TEST(OgHttp2AdapterTest, ClientQueuesRequests) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); adapter->Send(); const std::string initial_frames = TestFrameSequence() .ServerPreface({{MAX_CONCURRENT_STREAMS, 2}}) .SettingsAck() .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0x0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{ Http2KnownSettingsId::MAX_CONCURRENT_STREAMS, 2u})); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck()); adapter->ProcessBytes(initial_frames); const std::vector<Header> headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/example/request"}}); std::vector<int32_t> stream_ids; int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); stream_ids.push_back(stream_id); stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); stream_ids.push_back(stream_id); stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); stream_ids.push_back(stream_id); stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); stream_ids.push_back(stream_id); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_ids[0], _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_ids[0], _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_ids[1], _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_ids[1], _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); adapter->Send(); const std::string update_streams = TestFrameSequence().Settings({{MAX_CONCURRENT_STREAMS, 5}}).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0x0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{ Http2KnownSettingsId::MAX_CONCURRENT_STREAMS, 5u})); EXPECT_CALL(visitor, OnSettingsEnd()); adapter->ProcessBytes(update_streams); stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); stream_ids.push_back(stream_id); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_ids[2], _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_ids[2], _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_ids[3], _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_ids[3], _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_ids[4], _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_ids[4], _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); adapter->Send(); } TEST(OgHttp2AdapterTest, ClientAcceptsHeadResponseWithContentLength) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::vector<Header> headers = ToHeaders({{":method", "HEAD"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/"}}); const int32_t stream_id = adapter->SubmitRequest(headers, nullptr, true, nullptr); testing::InSequence s; EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, stream_id, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); adapter->Send(); const std::string initial_frames = TestFrameSequence() .ServerPreface() .SettingsAck() .Headers(stream_id, {{":status", "200"}, {"content-length", "101"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, _, SETTINGS, 0x0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck()); EXPECT_CALL(visitor, OnFrameHeader(stream_id, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(stream_id)); EXPECT_CALL(visitor, OnHeaderForStream).Times(2); EXPECT_CALL(visitor, OnEndHeadersForStream(stream_id)); EXPECT_CALL(visitor, OnEndStream(stream_id)); EXPECT_CALL(visitor, OnCloseStream(stream_id, Http2ErrorCode::HTTP2_NO_ERROR)); adapter->ProcessBytes(initial_frames); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); adapter->Send(); } TEST(OgHttp2AdapterTest, GetSendWindowSize) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const int peer_window = adapter->GetSendWindowSize(); EXPECT_EQ(peer_window, kInitialFlowControlWindowSize); } TEST(OgHttp2AdapterTest, WindowUpdateZeroDelta) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string data_chunk(kDefaultFramePayloadSizeLimit, 'a'); const std::string request = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}}, false) .WindowUpdate(1, 0) .Data(1, "Subsequent frames on stream 1 are not delivered.") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); adapter->ProcessBytes(request); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, _)); adapter->Send(); const std::string window_update = TestFrameSequence().WindowUpdate(0, 0).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kFlowControlError)); adapter->ProcessBytes(window_update); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); adapter->Send(); } TEST(OgHttp2AdapterTest, WindowUpdateCausesWindowOverflow) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string data_chunk(kDefaultFramePayloadSizeLimit, 'a'); const std::string request = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}}, false) .WindowUpdate(1, std::numeric_limits<int>::max()) .Data(1, "Subsequent frames on stream 1 are not delivered.") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); adapter->ProcessBytes(request); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL( visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, _)); adapter->Send(); const std::string window_update = TestFrameSequence() .WindowUpdate(0, std::numeric_limits<int>::max()) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kFlowControlError)); adapter->ProcessBytes(window_update); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL( visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); adapter->Send(); } TEST(OgHttp2AdapterTest, WindowUpdateRaisesFlowControlWindowLimit) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string data_chunk(kDefaultFramePayloadSizeLimit, 'a'); const std::string request = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}}, false) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); adapter->ProcessBytes(request); adapter->SubmitWindowUpdate(0, 2 * kDefaultFramePayloadSizeLimit); adapter->SubmitWindowUpdate(1, 2 * kDefaultFramePayloadSizeLimit); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 0, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 0, 4, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 1, 4, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(kInitialFlowControlWindowSize + 2 * kDefaultFramePayloadSizeLimit, adapter->GetReceiveWindowSize()); EXPECT_EQ(kInitialFlowControlWindowSize + 2 * kDefaultFramePayloadSizeLimit, adapter->GetStreamReceiveWindowSize(1)); const std::string request_body = TestFrameSequence() .Data(1, data_chunk) .Data(1, data_chunk) .Data(1, data_chunk) .Data(1, data_chunk) .Data(1, data_chunk) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)).Times(5); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)).Times(5); EXPECT_CALL(visitor, OnDataForStream(1, _)).Times(5); adapter->ProcessBytes(request_body); EXPECT_EQ(kInitialFlowControlWindowSize - 3 * kDefaultFramePayloadSizeLimit, adapter->GetReceiveWindowSize()); EXPECT_EQ(kInitialFlowControlWindowSize - 3 * kDefaultFramePayloadSizeLimit, adapter->GetStreamReceiveWindowSize(1)); adapter->MarkDataConsumedForStream(1, 4 * kDefaultFramePayloadSizeLimit); EXPECT_GT(adapter->GetReceiveWindowSize(), kInitialFlowControlWindowSize); EXPECT_GT(adapter->GetStreamReceiveWindowSize(1), kInitialFlowControlWindowSize); } TEST(OgHttp2AdapterTest, MarkDataConsumedForNonexistentStream) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Data(1, "Some data on stream 1") .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, _)); adapter->ProcessBytes(frames); adapter->MarkDataConsumedForStream(3, 11); } TEST(OgHttp2AdapterTest, TestSerialize) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_TRUE(adapter->want_read()); EXPECT_FALSE(adapter->want_write()); adapter->SubmitSettings( {{HEADER_TABLE_SIZE, 128}, {MAX_FRAME_SIZE, 128 << 10}}); EXPECT_TRUE(adapter->want_write()); const Http2StreamId accepted_stream = 3; const Http2StreamId rejected_stream = 7; adapter->SubmitPriorityForStream(accepted_stream, 1, 255, true); adapter->SubmitRst(rejected_stream, Http2ErrorCode::CANCEL); adapter->SubmitPing(42); adapter->SubmitGoAway(13, Http2ErrorCode::HTTP2_NO_ERROR, ""); adapter->SubmitWindowUpdate(accepted_stream, 127); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(PRIORITY, accepted_stream, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(PRIORITY, accepted_stream, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, rejected_stream, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, rejected_stream, _, 0x0, 0x8)); EXPECT_CALL(visitor, OnBeforeFrameSent(PING, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(PING, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, accepted_stream, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, accepted_stream, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT( visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::PRIORITY, SpdyFrameType::RST_STREAM, SpdyFrameType::PING, SpdyFrameType::GOAWAY, SpdyFrameType::WINDOW_UPDATE})); EXPECT_FALSE(adapter->want_write()); } TEST(OgHttp2AdapterTest, TestPartialSerialize) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); adapter->SubmitSettings( {{HEADER_TABLE_SIZE, 128}, {MAX_FRAME_SIZE, 128 << 10}}); adapter->SubmitGoAway(13, Http2ErrorCode::HTTP2_NO_ERROR, "And don't come back!"); adapter->SubmitPing(42); EXPECT_TRUE(adapter->want_write()); visitor.set_send_limit(20); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(PING, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(PING, 0, _, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_FALSE(adapter->want_write()); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY, SpdyFrameType::PING})); } TEST(OgHttp2AdapterTest, TestStreamInitialWindowSizeUpdates) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); adapter->SubmitSettings({{INITIAL_WINDOW_SIZE, 80000}}); EXPECT_TRUE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(1), 65535); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(1), 65535); const std::string ack = TestFrameSequence().SettingsAck().Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck()); adapter->ProcessBytes(ack); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(1), 80000); adapter->SubmitSettings({{INITIAL_WINDOW_SIZE, 90000}}); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(1), 80000); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck()); adapter->ProcessBytes(ack); EXPECT_EQ(adapter->GetStreamReceiveWindowSize(1), 90000); } TEST(OgHttp2AdapterTest, ConnectionErrorOnControlFrameSent) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence().ClientPreface().Ping(42).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, _, PING, 0)); EXPECT_CALL(visitor, OnPing(42, false)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)) .WillOnce(testing::Return(-902)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kSendError)); int send_result = adapter->Send(); EXPECT_LT(send_result, 0); EXPECT_FALSE(adapter->want_write()); send_result = adapter->Send(); EXPECT_LT(send_result, 0); } TEST_P(OgHttp2AdapterDataTest, ConnectionErrorOnDataFrameSent) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); visitor.AppendPayloadForStream( 1, "Here is some data, which will lead to a fatal error"); auto body = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(0, submit_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)) .WillOnce(testing::Return(-902)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kSendError)); int send_result = adapter->Send(); EXPECT_LT(send_result, 0); visitor.AppendPayloadForStream( 1, "After the fatal error, data will be sent no more"); EXPECT_FALSE(adapter->want_write()); send_result = adapter->Send(); EXPECT_LT(send_result, 0); } TEST(OgHttp2AdapterTest, ClientSendsContinuation) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 1)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnFrameHeader(1, _, CONTINUATION, 4)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); } TEST_P(OgHttp2AdapterDataTest, RepeatedHeaderNames) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"accept", "text/plain"}, {"accept", "text/html"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnHeaderForStream(1, "accept", "text/plain")); EXPECT_CALL(visitor, OnHeaderForStream(1, "accept", "text/html")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); const std::vector<Header> headers1 = ToHeaders( {{":status", "200"}, {"content-length", "10"}, {"content-length", "10"}}); visitor.AppendPayloadForStream(1, "perfection"); visitor.SetEndData(1, true); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, headers1, GetParam() ? nullptr : std::move(body1), false); ASSERT_EQ(0, submit_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, 10, END_STREAM, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS, SpdyFrameType::DATA})); } TEST_P(OgHttp2AdapterDataTest, ServerRespondsToRequestWithTrailers) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}) .Data(1, "Example data, woohoo.") .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, _)); int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); const std::vector<Header> headers1 = ToHeaders({{":status", "200"}}); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, headers1, GetParam() ? nullptr : std::move(body1), false); ASSERT_EQ(0, submit_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); const std::string more_frames = TestFrameSequence() .Headers(1, {{"extra-info", "Trailers are weird but good?"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, "extra-info", "Trailers are weird but good?")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); result = adapter->ProcessBytes(more_frames); EXPECT_EQ(more_frames.size(), static_cast<size_t>(result)); visitor.SetEndData(1, true); EXPECT_EQ(true, adapter->ResumeStream(1)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, 0, END_STREAM, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::DATA})); } TEST(OgHttp2AdapterTest, ServerReceivesMoreHeaderBytesThanConfigured) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; options.max_header_list_bytes = 42; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"from-douglas-de-fermat", "I have discovered a truly marvelous answer to the life, " "the universe, and everything that the header setting is " "too narrow to contain."}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::COMPRESSION_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ServerVisitorRejectsHeaders) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"header1", "ok"}, {"header2", "rejected"}, {"header3", "not processed"}, {"header4", "not processed"}, {"header5", "not processed"}, {"header6", "not processed"}, {"header7", "not processed"}, {"header8", "not processed"}}, false, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 0x0)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(5); EXPECT_CALL(visitor, OnHeaderForStream(1, "header2", _)) .WillOnce(testing::Return(Http2VisitorInterface::HEADER_RST_STREAM)); int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x1)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x1, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST_P(OgHttp2AdapterDataTest, ServerSubmitsResponseWithDataSourceError) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); visitor.SimulateError(1); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}, {"x-comment", "Sure, sounds good."}}), GetParam() ? nullptr : std::move(body1), false); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::INTERNAL_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); int trailer_result = adapter->SubmitTrailer(1, ToHeaders({{":final-status", "a-ok"}})); ASSERT_LT(trailer_result, 0); EXPECT_FALSE(adapter->want_write()); } TEST(OgHttp2AdapterTest, CompleteRequestWithServerResponse) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Data(1, "This is the response body.", true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 1)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}}), nullptr, true); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); EXPECT_FALSE(adapter->want_write()); } TEST(OgHttp2AdapterTest, IncompleteRequestWithServerResponse) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}}), nullptr, true); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); EXPECT_FALSE(adapter->want_write()); } TEST(OgHttp2AdapterTest, IncompleteRequestWithServerResponseRstStreamEnabled) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; options.rst_stream_no_error_when_incomplete = true; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}}), nullptr, true); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT( visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS, SpdyFrameType::RST_STREAM})); EXPECT_FALSE(adapter->want_write()); } TEST(OgHttp2AdapterTest, ServerHandlesMultipleContentLength) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/1"}, {"content-length", "7"}, {"content-length", "7"}}, false) .Headers(3, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/3"}, {"content-length", "11"}, {"content-length", "13"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/1")); EXPECT_CALL(visitor, OnHeaderForStream(1, "content-length", "7")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":path", "/3")); EXPECT_CALL(visitor, OnHeaderForStream(3, "content-length", "11")); EXPECT_CALL( visitor, OnInvalidFrame(3, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); } TEST_P(OgHttp2AdapterDataTest, ServerSendsInvalidTrailers) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, false); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}, {"x-comment", "Sure, sounds good."}}), GetParam() ? nullptr : std::move(body1), false); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS, SpdyFrameType::DATA})); EXPECT_THAT(visitor.data(), testing::HasSubstr(kBody)); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); int trailer_result = adapter->SubmitTrailer(1, ToHeaders({{":final-status", "a-ok"}})); ASSERT_EQ(trailer_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); } TEST(OgHttp2AdapterTest, ServerHandlesDataWithPadding) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Data(1, "This is the request body.", true, 39) .Headers(3, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 25 + 39, DATA, 0x9)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 25 + 39)); EXPECT_CALL(visitor, OnDataPaddingLength(1, 39)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the request body.")); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnEndStream(3)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<int64_t>(frames.size()), result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); } TEST(OgHttp2AdapterTest, ServerHandlesHostHeader) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":path", "/this/is/request/one"}, {"host", "example.com"}}, true) .Headers(3, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"host", "example.com"}}, true) .Headers(5, {{":method", "POST"}, {":scheme", "https"}, {":authority", "foo.com"}, {":path", "/this/is/request/one"}, {"host", "bar.com"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnEndStream(3)); EXPECT_CALL(visitor, OnFrameHeader(5, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(5)); EXPECT_CALL(visitor, OnHeaderForStream(5, _, _)).Times(4); EXPECT_CALL( visitor, OnInvalidFrame(5, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 5, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 5, 4, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(5, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); visitor.Clear(); } TEST(OgHttp2AdapterTest, ServerHandlesHostHeaderWithLaxValidation) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; options.allow_different_host_and_authority = true; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":path", "/this/is/request/one"}, {"host", "example.com"}}, true) .Headers(3, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"host", "example.com"}}, true) .Headers(5, {{":method", "POST"}, {":scheme", "https"}, {":authority", "foo.com"}, {":path", "/this/is/request/one"}, {"host", "bar.com"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnEndStream(3)); EXPECT_CALL(visitor, OnFrameHeader(5, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(5)); EXPECT_CALL(visitor, OnHeaderForStream(5, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(5)); EXPECT_CALL(visitor, OnEndStream(5)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); visitor.Clear(); } TEST_P(OgHttp2AdapterDataTest, ServerSubmitsTrailersWhileDataDeferred) { OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; for (const bool add_more_body_data : {true, false}) { TestVisitor visitor; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .WindowUpdate(0, 2000) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(1, 2000)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the request body.")); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 2000)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); visitor.Clear(); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}, {"x-comment", "Sure, sounds good."}}), GetParam() ? nullptr : std::move(body1), false); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); if (add_more_body_data) { visitor.AppendPayloadForStream(1, " More body! This is ignored."); } int trailer_result = adapter->SubmitTrailer(1, ToHeaders({{"final-status", "a-ok"}})); ASSERT_EQ(trailer_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS})); EXPECT_FALSE(adapter->want_write()); } } TEST_P(OgHttp2AdapterDataTest, ServerSubmitsTrailersWithFlowControlBlockage) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .WindowUpdate(0, 2000) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 2000)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); visitor.Clear(); EXPECT_EQ(kInitialFlowControlWindowSize, adapter->GetStreamSendWindowSize(1)); const std::string kBody(60000, 'a'); visitor.AppendPayloadForStream(1, kBody); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "200"}, {"x-comment", "Sure, sounds good."}}), GetParam() ? nullptr : std::move(body1), false); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)).Times(4); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA, SpdyFrameType::DATA, SpdyFrameType::DATA, SpdyFrameType::DATA})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); visitor.AppendPayloadForStream(1, std::string(6000, 'b')); EXPECT_LT(adapter->GetStreamSendWindowSize(1), 6000); EXPECT_GT(adapter->GetSendWindowSize(), 6000); adapter->ResumeStream(1); int trailer_result = adapter->SubmitTrailer(1, ToHeaders({{"final-status", "a-ok"}})); ASSERT_EQ(trailer_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::DATA})); visitor.Clear(); EXPECT_EQ(adapter->GetStreamSendWindowSize(1), 0); EXPECT_GT(adapter->GetSendWindowSize(), 0); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(1, 2000)); adapter->ProcessBytes(TestFrameSequence().WindowUpdate(1, 2000).Serialize()); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::DATA, SpdyFrameType::HEADERS})); EXPECT_FALSE(adapter->want_write()); } TEST_P(OgHttp2AdapterDataTest, ServerSubmitsTrailersWithDataEndStream) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}) .Data(1, "Example data, woohoo.") .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, _)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, true); auto body = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(submit_result, 0); const std::vector<Header> trailers = ToHeaders({{"extra-info", "Trailers are weird but good?"}}); submit_result = adapter->SubmitTrailer(1, trailers); ASSERT_EQ(submit_result, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, END_STREAM_FLAG, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::INTERNAL_ERROR)); const int send_result = adapter->Send(); EXPECT_EQ(send_result, 0); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS, SpdyFrameType::DATA})); } TEST_P(OgHttp2AdapterDataTest, ServerSubmitsTrailersWithDataEndStreamAndDeferral) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}) .Data(1, "Example data, woohoo.") .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, _)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); auto body = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(submit_result, 0); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); int send_result = adapter->Send(); EXPECT_EQ(send_result, 0); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS, SpdyFrameType::DATA})); visitor.Clear(); const std::vector<Header> trailers = ToHeaders({{"extra-info", "Trailers are weird but good?"}}); submit_result = adapter->SubmitTrailer(1, trailers); ASSERT_EQ(submit_result, 0); visitor.AppendPayloadForStream(1, kBody); visitor.SetEndData(1, true); adapter->ResumeStream(1); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, END_STREAM_FLAG, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::INTERNAL_ERROR)); send_result = adapter->Send(); EXPECT_EQ(send_result, 0); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::DATA})); } TEST(OgHttp2AdapterTest, ClientDisobeysConnectionFlowControl) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"accept", "some bogus value!"}}, false) .Data(1, std::string(16384, 'a')) .Data(1, std::string(16384, 'a')) .Data(1, std::string(16384, 'a')) .Data(1, std::string(16384, 'a')) .Data(1, std::string(4464, 'a')) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kFlowControlError)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL( visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ClientDisobeysConnectionFlowControlWithOneDataFrame) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const uint32_t window_overflow_bytes = kInitialFlowControlWindowSize + 1; adapter->SubmitSettings({{MAX_FRAME_SIZE, window_overflow_bytes}}); const std::string initial_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); int64_t process_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(process_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string overflow_frames = TestFrameSequence() .SettingsAck() .Data(1, std::string(window_overflow_bytes, 'a')) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck()); EXPECT_CALL(visitor, OnFrameHeader(1, window_overflow_bytes, DATA, 0x0)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kFlowControlError)); process_result = adapter->ProcessBytes(overflow_frames); EXPECT_EQ(overflow_frames.size(), static_cast<size_t>(process_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL( visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ClientDisobeysConnectionFlowControlAcrossReads) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const uint32_t window_overflow_bytes = kInitialFlowControlWindowSize + 1; adapter->SubmitSettings({{MAX_FRAME_SIZE, window_overflow_bytes}}); const std::string initial_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); int64_t process_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(initial_frames.size(), static_cast<size_t>(process_result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string overflow_frames = TestFrameSequence() .SettingsAck() .Data(1, std::string(window_overflow_bytes, 'a')) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck()); EXPECT_CALL(visitor, OnFrameHeader(1, window_overflow_bytes, DATA, 0x0)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kFlowControlError)); const size_t chunk_length = 16384; ASSERT_GE(overflow_frames.size(), chunk_length); process_result = adapter->ProcessBytes(overflow_frames.substr(0, chunk_length)); EXPECT_EQ(chunk_length, static_cast<size_t>(process_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL( visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ClientDisobeysStreamFlowControl) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"accept", "some bogus value!"}}, false) .Serialize(); const std::string more_frames = TestFrameSequence() .Data(1, std::string(16384, 'a')) .Data(1, std::string(16384, 'a')) .Data(1, std::string(16384, 'a')) .Data(1, std::string(16384, 'a')) .Data(1, std::string(4464, 'a')) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); adapter->SubmitWindowUpdate(0, 20000); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 0, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 0, 4, 0x0, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::WINDOW_UPDATE})); visitor.Clear(); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 16384)); EXPECT_CALL(visitor, OnDataForStream(1, _)); EXPECT_CALL(visitor, OnFrameHeader(1, 16384, DATA, 0x0)); result = adapter->ProcessBytes(more_frames); EXPECT_EQ(more_frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL( visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<int>(Http2ErrorCode::FLOW_CONTROL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ServerErrorWhileHandlingHeaders) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"accept", "some bogus value!"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .WindowUpdate(0, 2000) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnHeaderForStream(1, "accept", "some bogus value!")) .WillOnce(testing::Return(Http2VisitorInterface::HEADER_RST_STREAM)); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 2000)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ServerErrorWhileHandlingHeadersDropsFrames) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"accept", "some bogus value!"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .Metadata(1, "This is the request metadata.") .RstStream(1, Http2ErrorCode::CANCEL) .WindowUpdate(0, 2000) .Headers(3, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, false) .Metadata(3, "This is the request metadata.", true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnHeaderForStream(1, "accept", "some bogus value!")) .WillOnce(testing::Return(Http2VisitorInterface::HEADER_RST_STREAM)); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 2000)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnFrameHeader(3, _, kMetadataFrameType, 0)); EXPECT_CALL(visitor, OnBeginMetadataForStream(3, _)); EXPECT_CALL(visitor, OnMetadataForStream(3, "This is the re")) .WillOnce(testing::DoAll(testing::InvokeWithoutArgs([&adapter]() { adapter->SubmitRst( 3, Http2ErrorCode::REFUSED_STREAM); }), testing::Return(true))); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, 4, 0x0, static_cast<int>(Http2ErrorCode::REFUSED_STREAM))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT( visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ServerConnectionErrorWhileHandlingHeaders) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"Accept", "uppercase, oh boy!"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .WindowUpdate(0, 2000) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kHeaderError)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_LT(result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ServerErrorAfterHandlingHeaders) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .WindowUpdate(0, 2000) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_LT(result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ServerRejectsFrameHeader) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Ping(64) .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .WindowUpdate(1, 2000) .Data(1, "This is the request body.") .WindowUpdate(0, 2000) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 8, PING, 0)) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_LT(result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ServerRejectsBeginningOfData) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Data(1, "This is the request body.") .Headers(3, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .RstStream(3, Http2ErrorCode::CANCEL) .Ping(47) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 25, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 25)) .WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_LT(result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ServerReceivesTooLargeHeader) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; options.max_header_list_bytes = 64 * 1024; options.max_header_field_size = 64 * 1024; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string too_large_value = std::string(80 * 1024, 'q'); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"x-toobig", too_large_value}}, true) .Headers(3, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_STREAM_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnFrameHeader(1, _, CONTINUATION, 0)).Times(3); EXPECT_CALL(visitor, OnFrameHeader(1, _, CONTINUATION, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnEndStream(3)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<int64_t>(frames.size()), result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ServerReceivesInvalidAuthority) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "ex|ample.com"}, {":path", "/this/is/request/one"}}, false) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<int64_t>(frames.size()), result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0x0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0x0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, 4, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttpAdapterTest, ServerReceivesGoAway) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .GoAway(0, Http2ErrorCode::HTTP2_NO_ERROR, "") .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(0, _, GOAWAY, 0x0)); EXPECT_CALL(visitor, OnGoAway(0, Http2ErrorCode::HTTP2_NO_ERROR, "")); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<int64_t>(frames.size()), result); const int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), nullptr, true); ASSERT_EQ(0, submit_result); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0x0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0x0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::HEADERS})); } TEST_P(OgHttp2AdapterDataTest, ServerSubmitResponse) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; const char* kSentinel1 = "arbitrary pointer 1"; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)) .WillOnce(testing::InvokeWithoutArgs([&adapter, kSentinel1]() { adapter->SetStreamUserData(1, const_cast<char*>(kSentinel1)); return true; })); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_EQ(1, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); visitor.Clear(); EXPECT_EQ(0, adapter->GetHpackEncoderDynamicTableSize()); EXPECT_FALSE(adapter->want_write()); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "404"}, {"x-comment", "I have no idea what you're talking about."}}), GetParam() ? nullptr : std::move(body1), false); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_EQ(kSentinel1, adapter->GetStreamUserData(1)); adapter->SetStreamUserData(1, nullptr); EXPECT_EQ(nullptr, adapter->GetStreamUserData(1)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x4)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, 0x4, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::HEADERS, SpdyFrameType::DATA})); EXPECT_THAT(visitor.data(), testing::HasSubstr(kBody)); EXPECT_FALSE(adapter->want_write()); EXPECT_LT(adapter->GetStreamSendWindowSize(1), kInitialFlowControlWindowSize); EXPECT_GT(adapter->GetStreamSendWindowSize(1), 0); EXPECT_EQ(adapter->GetStreamSendWindowSize(3), -1); EXPECT_GT(adapter->GetHpackEncoderDynamicTableSize(), 0); } TEST_P(OgHttp2AdapterDataTest, ServerSubmitResponseWithResetFromClient) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), result); EXPECT_EQ(1, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); visitor.Clear(); EXPECT_FALSE(adapter->want_write()); const absl::string_view kBody = "This is an example response body."; visitor.AppendPayloadForStream(1, kBody); auto body1 = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse( 1, ToHeaders({{":status", "404"}, {"x-comment", "I have no idea what you're talking about."}}), GetParam() ? nullptr : std::move(body1), false); EXPECT_EQ(submit_result, 0); EXPECT_TRUE(adapter->want_write()); const std::string reset = TestFrameSequence().RstStream(1, Http2ErrorCode::CANCEL).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(1, 4, RST_STREAM, 0)); EXPECT_CALL(visitor, OnRstStream(1, Http2ErrorCode::CANCEL)); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::CANCEL)); const int64_t reset_result = adapter->ProcessBytes(reset); EXPECT_EQ(reset.size(), static_cast<size_t>(reset_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, _)).Times(0); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, _, _)).Times(0); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, _, _)).Times(0); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), testing::IsEmpty()); } TEST(OgHttp2AdapterTest, ServerRejectsStreamData) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Data(1, "This is the request body.") .Headers(3, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .RstStream(3, Http2ErrorCode::CANCEL) .Ping(47) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, 25, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 25)); EXPECT_CALL(visitor, OnDataForStream(1, _)).WillOnce(testing::Return(false)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kParseError)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_LT(result, 0); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } using OgHttp2AdapterInteractionDataTest = OgHttp2AdapterDataTest; INSTANTIATE_TEST_SUITE_P(BothValues, OgHttp2AdapterInteractionDataTest, testing::Bool()); TEST_P(OgHttp2AdapterInteractionDataTest, ClientServerInteractionTest) { TestVisitor client_visitor; OgHttp2Adapter::Options client_options; client_options.perspective = Perspective::kClient; auto client_adapter = OgHttp2Adapter::Create(client_visitor, client_options); TestVisitor server_visitor; OgHttp2Adapter::Options server_options; server_options.perspective = Perspective::kServer; auto server_adapter = OgHttp2Adapter::Create(server_visitor, server_options); EXPECT_CALL(client_visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(client_visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0x0)); EXPECT_CALL(client_visitor, OnBeforeFrameSent(HEADERS, 1, _, 0x5)); EXPECT_CALL(client_visitor, OnFrameSent(HEADERS, 1, _, 0x5, 0x0)); EXPECT_CALL(client_visitor, OnReadyToSend(_)) .WillRepeatedly( testing::Invoke(server_adapter.get(), &OgHttp2Adapter::ProcessBytes)); EXPECT_CALL(server_visitor, OnReadyToSend(_)) .WillRepeatedly( testing::Invoke(client_adapter.get(), &OgHttp2Adapter::ProcessBytes)); EXPECT_CALL(server_visitor, OnEndHeadersForStream(_)) .WillRepeatedly([&server_adapter](Http2StreamId stream_id) { server_adapter->SubmitResponse( stream_id, ToHeaders({{":status", "200"}}), nullptr, true); server_adapter->Send(); return true; }); EXPECT_CALL(client_visitor, OnEndHeadersForStream(_)) .WillRepeatedly([&client_adapter, &client_visitor](Http2StreamId stream_id) { if (stream_id < 10) { const Http2StreamId new_stream_id = stream_id + 2; client_visitor.AppendPayloadForStream( new_stream_id, "This is an example request body."); client_visitor.SetEndData(new_stream_id, true); auto body = std::make_unique<VisitorDataSource>(client_visitor, new_stream_id); const int created_stream_id = client_adapter->SubmitRequest( ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", absl::StrCat("/this/is/request/", new_stream_id)}}), GetParam() ? nullptr : std::move(body), false, nullptr); EXPECT_EQ(new_stream_id, created_stream_id); client_adapter->Send(); } return true; }); int stream_id = client_adapter->SubmitRequest( ToHeaders({{":method", "POST"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}), nullptr, true, nullptr); EXPECT_EQ(stream_id, 1); client_adapter->Send(); } TEST(OgHttp2AdapterInteractionTest, ClientServerInteractionRepeatedHeaderNames) { TestVisitor client_visitor; OgHttp2Adapter::Options client_options; client_options.perspective = Perspective::kClient; auto client_adapter = OgHttp2Adapter::Create(client_visitor, client_options); const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"accept", "text/plain"}, {"accept", "text/html"}}); const int32_t stream_id1 = client_adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(client_visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(client_visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(client_visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(client_visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int send_result = client_adapter->Send(); EXPECT_EQ(0, send_result); TestVisitor server_visitor; OgHttp2Adapter::Options server_options; server_options.perspective = Perspective::kServer; auto server_adapter = OgHttp2Adapter::Create(server_visitor, server_options); testing::InSequence s; EXPECT_CALL(server_visitor, OnFrameHeader(0, _, SETTINGS, 0)); EXPECT_CALL(server_visitor, OnSettingsStart()); EXPECT_CALL(server_visitor, OnSetting).Times(testing::AnyNumber()); EXPECT_CALL(server_visitor, OnSettingsEnd()); EXPECT_CALL(server_visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(server_visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":scheme", "http")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, "accept", "text/plain")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, "accept", "text/html")); EXPECT_CALL(server_visitor, OnEndHeadersForStream(1)); EXPECT_CALL(server_visitor, OnEndStream(1)); int64_t result = server_adapter->ProcessBytes(client_visitor.data()); EXPECT_EQ(client_visitor.data().size(), static_cast<size_t>(result)); } TEST(OgHttp2AdapterInteractionTest, ClientServerInteractionWithCookies) { TestVisitor client_visitor; OgHttp2Adapter::Options client_options; client_options.perspective = Perspective::kClient; auto client_adapter = OgHttp2Adapter::Create(client_visitor, client_options); const std::vector<Header> headers1 = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"cookie", "a; b=2; c"}, {"cookie", "d=e, f, g; h"}}); const int32_t stream_id1 = client_adapter->SubmitRequest(headers1, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(client_visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(client_visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(client_visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(client_visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); int send_result = client_adapter->Send(); EXPECT_EQ(0, send_result); TestVisitor server_visitor; OgHttp2Adapter::Options server_options; server_options.perspective = Perspective::kServer; auto server_adapter = OgHttp2Adapter::Create(server_visitor, server_options); testing::InSequence s; EXPECT_CALL(server_visitor, OnFrameHeader(0, _, SETTINGS, 0)); EXPECT_CALL(server_visitor, OnSettingsStart()); EXPECT_CALL(server_visitor, OnSetting).Times(testing::AnyNumber()); EXPECT_CALL(server_visitor, OnSettingsEnd()); EXPECT_CALL(server_visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(server_visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":method", "GET")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":scheme", "http")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, ":path", "/this/is/request/one")); EXPECT_CALL(server_visitor, OnHeaderForStream(1, "cookie", "a; b=2; c; d=e, f, g; h")); EXPECT_CALL(server_visitor, OnEndHeadersForStream(1)); EXPECT_CALL(server_visitor, OnEndStream(1)); int64_t result = server_adapter->ProcessBytes(client_visitor.data()); EXPECT_EQ(client_visitor.data().size(), static_cast<size_t>(result)); } TEST(OgHttp2AdapterTest, ServerForbidsNewStreamBelowWatermark) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(3, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Data(3, "This is the request body.") .Headers(1, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":path", "/this/is/request/one")); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnFrameHeader(3, 25, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(3, 25)); EXPECT_CALL(visitor, OnDataForStream(3, "This is the request body.")); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kInvalidNewStreamId)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); EXPECT_EQ(3, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ServerForbidsWindowUpdateOnIdleStream) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); const std::string frames = TestFrameSequence().ClientPreface().WindowUpdate(1, 42).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kWrongFrameSequence)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); EXPECT_EQ(1, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ServerForbidsDataOnIdleStream) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); const std::string frames = TestFrameSequence() .ClientPreface() .Data(1, "Sorry, out of order") .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kWrongFrameSequence)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); EXPECT_EQ(1, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ServerForbidsRstStreamOnIdleStream) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_EQ(0, adapter->GetHighestReceivedStreamId()); const std::string frames = TestFrameSequence() .ClientPreface() .RstStream(1, Http2ErrorCode::ENHANCE_YOUR_CALM) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, RST_STREAM, 0)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kWrongFrameSequence)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); EXPECT_EQ(1, adapter->GetHighestReceivedStreamId()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ServerForbidsNewStreamAboveStreamLimit) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); adapter->SubmitSettings({{MAX_CONCURRENT_STREAMS, 1}}); const std::string initial_frames = TestFrameSequence().ClientPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(static_cast<size_t>(initial_result), initial_frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .SettingsAck() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Headers(3, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL( visitor, OnInvalidFrame(3, Http2VisitorInterface::InvalidFrameError::kProtocol)); EXPECT_CALL(visitor, OnConnectionError( ConnectionError::kExceededMaxConcurrentStreams)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(static_cast<size_t>(stream_result), stream_frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ServerRstStreamsNewStreamAboveStreamLimitBeforeAck) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); adapter->SubmitSettings({{MAX_CONCURRENT_STREAMS, 1}}); const std::string initial_frames = TestFrameSequence().ClientPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(static_cast<size_t>(initial_result), initial_frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Headers(3, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnInvalidFrame( 3, Http2VisitorInterface::InvalidFrameError::kRefusedStream)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(static_cast<size_t>(stream_result), stream_frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::REFUSED_STREAM))); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ServerForbidsProtocolPseudoheaderBeforeAck) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; options.allow_extended_connect = false; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string initial_frames = TestFrameSequence().ClientPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(static_cast<size_t>(initial_result), initial_frames.size()); const std::string stream1_frames = TestFrameSequence() .Headers(1, {{":method", "CONNECT"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {":protocol", "websocket"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(5); EXPECT_CALL(visitor, OnInvalidFrame( 1, Http2VisitorInterface::InvalidFrameError::kHttpMessaging)); int64_t stream_result = adapter->ProcessBytes(stream1_frames); EXPECT_EQ(static_cast<size_t>(stream_result), stream1_frames.size()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); adapter->SubmitSettings({{ENABLE_CONNECT_PROTOCOL, 1}}); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT( visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM, SpdyFrameType::SETTINGS})); visitor.Clear(); const std::string stream3_frames = TestFrameSequence() .Headers(3, {{":method", "CONNECT"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}, {":protocol", "websocket"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnEndStream(3)); stream_result = adapter->ProcessBytes(stream3_frames); EXPECT_EQ(static_cast<size_t>(stream_result), stream3_frames.size()); EXPECT_FALSE(adapter->want_write()); } TEST(OgHttp2AdapterTest, ServerAllowsProtocolPseudoheaderAfterAck) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); adapter->SubmitSettings({{ENABLE_CONNECT_PROTOCOL, 1}}); const std::string initial_frames = TestFrameSequence().ClientPreface().Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(static_cast<size_t>(initial_result), initial_frames.size()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); visitor.Clear(); const std::string stream_frames = TestFrameSequence() .SettingsAck() .Headers(1, {{":method", "CONNECT"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {":protocol", "websocket"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, _, SETTINGS, ACK_FLAG)); EXPECT_CALL(visitor, OnSettingsAck()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(static_cast<size_t>(stream_result), stream_frames.size()); EXPECT_FALSE(adapter->want_write()); } TEST_P(OgHttp2AdapterDataTest, SkipsSendingFramesForRejectedStream) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string initial_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t initial_result = adapter->ProcessBytes(initial_frames); EXPECT_EQ(static_cast<size_t>(initial_result), initial_frames.size()); visitor.AppendPayloadForStream( 1, "Here is some data, which will be completely ignored!"); auto body = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(0, submit_result); auto source = std::make_unique<TestMetadataSource>(ToHeaderBlock(ToHeaders( {{"query-cost", "is too darn high"}, {"secret-sauce", "hollandaise"}}))); adapter->SubmitMetadata(1, 16384u, std::move(source)); adapter->SubmitWindowUpdate(1, 1024); adapter->SubmitRst(1, Http2ErrorCode::INTERNAL_ERROR); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::INTERNAL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttpAdapterServerTest, ServerStartsShutdown) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); adapter->SubmitShutdownNotice(); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); } TEST(OgHttp2AdapterTest, ServerStartsShutdownAfterGoaway) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); EXPECT_FALSE(adapter->want_write()); adapter->SubmitGoAway(1, Http2ErrorCode::HTTP2_NO_ERROR, "and don't come back!"); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, 0)); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); adapter->SubmitShutdownNotice(); EXPECT_FALSE(adapter->want_write()); } TEST(OgHttp2AdapterTest, ConnectionErrorWithBlackholingData) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; options.blackhole_data_on_connection_error = true; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence().ClientPreface().WindowUpdate(1, 42).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kWrongFrameSequence)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(result), frames.size()); const std::string next_frame = TestFrameSequence().Ping(42).Serialize(); const int64_t next_result = adapter->ProcessBytes(next_frame); EXPECT_EQ(static_cast<size_t>(next_result), next_frame.size()); } TEST(OgHttp2AdapterTest, ConnectionErrorWithoutBlackholingData) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; options.blackhole_data_on_connection_error = false; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence().ClientPreface().WindowUpdate(1, 42).Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kWrongFrameSequence)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_LT(result, 0); const std::string next_frame = TestFrameSequence().Ping(42).Serialize(); const int64_t next_result = adapter->ProcessBytes(next_frame); EXPECT_LT(next_result, 0); } TEST_P(OgHttp2AdapterDataTest, ServerDoesNotSendFramesAfterImmediateGoAway) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); adapter->SubmitSettings({{HEADER_TABLE_SIZE, 100u}}); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); visitor.AppendPayloadForStream(1, "This data is doomed to never be written."); auto body = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(0, submit_result); adapter->SubmitWindowUpdate(kConnectionStreamId, 42); adapter->SubmitSettings({}); auto source = std::make_unique<TestMetadataSource>(ToHeaderBlock(ToHeaders( {{"query-cost", "is too darn high"}, {"secret-sauce", "hollandaise"}}))); adapter->SubmitMetadata(1, 16384u, std::move(source)); EXPECT_TRUE(adapter->want_write()); const std::string connection_error_frames = TestFrameSequence().WindowUpdate(3, 42).Serialize(); EXPECT_CALL(visitor, OnFrameHeader(3, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnConnectionError(ConnectionError::kWrongFrameSequence)); const int64_t result = adapter->ProcessBytes(connection_error_frames); EXPECT_EQ(static_cast<size_t>(result), connection_error_frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 6, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 6, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(GOAWAY, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(GOAWAY, 0, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::GOAWAY})); visitor.Clear(); adapter->SubmitPing(42); send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), testing::IsEmpty()); } TEST(OgHttp2AdapterTest, ServerHandlesContentLength) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::string stream_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}, {"content-length", "2"}}) .Data(1, "hi", true) .Headers(3, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/three"}, {"content-length", "nan"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 1)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 2)); EXPECT_CALL(visitor, OnDataForStream(1, "hi")); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL( visitor, OnInvalidFrame(3, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_TRUE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ServerHandlesContentLengthMismatch) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::string stream_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/two"}, {"content-length", "2"}}) .Data(1, "h", true) .Headers(3, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/three"}, {"content-length", "2"}}) .Data(3, "howdy", true) .Headers(5, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/four"}, {"content-length", "2"}}, true) .Headers(7, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/four"}, {"content-length", "2"}}, false) .Data(7, "h", false) .Headers(7, {{"extra-info", "Trailers with content-length mismatch"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 1)); EXPECT_CALL(visitor, OnBeginDataForStream(1, 1)); EXPECT_CALL(visitor, OnDataForStream(1, "h")); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnFrameHeader(3, _, DATA, 1)); EXPECT_CALL(visitor, OnBeginDataForStream(3, 5)); EXPECT_CALL(visitor, OnFrameHeader(5, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(5)); EXPECT_CALL(visitor, OnHeaderForStream(5, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(5)); EXPECT_CALL(visitor, OnInvalidFrame( 5, Http2VisitorInterface::InvalidFrameError::kHttpMessaging)); EXPECT_CALL(visitor, OnFrameHeader(7, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(7)); EXPECT_CALL(visitor, OnHeaderForStream(7, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(7)); EXPECT_CALL(visitor, OnFrameHeader(7, _, DATA, 0)); EXPECT_CALL(visitor, OnBeginDataForStream(7, 1)); EXPECT_CALL(visitor, OnDataForStream(7, "h")); EXPECT_CALL(visitor, OnFrameHeader(7, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(7)); EXPECT_CALL(visitor, OnHeaderForStream(7, _, _)); EXPECT_CALL(visitor, OnEndHeadersForStream(7)); EXPECT_CALL(visitor, OnInvalidFrame( 7, Http2VisitorInterface::InvalidFrameError::kHttpMessaging)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 5, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 5, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(5, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 7, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 7, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(7, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_TRUE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT( visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ServerHandlesAsteriskPathForOptions) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::string stream_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "*"}, {":method", "OPTIONS"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_TRUE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS})); } TEST(OgHttp2AdapterTest, ServerHandlesInvalidPath) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::string stream_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "*"}, {":method", "GET"}}, true) .Headers(3, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "other/non/slash/starter"}, {":method", "GET"}}, true) .Headers(5, {{":scheme", "https"}, {":authority", "example.com"}, {":path", ""}, {":method", "GET"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnInvalidFrame( 1, Http2VisitorInterface::InvalidFrameError::kHttpMessaging)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL(visitor, OnInvalidFrame( 3, Http2VisitorInterface::InvalidFrameError::kHttpMessaging)); EXPECT_CALL(visitor, OnFrameHeader(5, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(5)); EXPECT_CALL(visitor, OnHeaderForStream(5, _, _)).Times(2); EXPECT_CALL( visitor, OnInvalidFrame(5, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 5, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 5, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(5, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_TRUE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT( visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ServerHandlesTeHeader) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::string stream_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"te", "trailers"}}, true) .Headers(3, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"te", "trailers, deflate"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(5); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL( visitor, OnInvalidFrame(3, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_TRUE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ServerHandlesConnectionSpecificHeaders) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); testing::InSequence s; const std::string stream_frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"connection", "keep-alive"}}, true) .Headers(3, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"proxy-connection", "keep-alive"}}, true) .Headers(5, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"keep-alive", "timeout=42"}}, true) .Headers(7, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"transfer-encoding", "chunked"}}, true) .Headers(9, {{":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {":method", "GET"}, {"upgrade", "h2c"}}, true) .Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL( visitor, OnInvalidFrame(1, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, _, _)).Times(4); EXPECT_CALL( visitor, OnInvalidFrame(3, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(5, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(5)); EXPECT_CALL(visitor, OnHeaderForStream(5, _, _)).Times(4); EXPECT_CALL( visitor, OnInvalidFrame(5, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(7, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(7)); EXPECT_CALL(visitor, OnHeaderForStream(7, _, _)).Times(4); EXPECT_CALL( visitor, OnInvalidFrame(7, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); EXPECT_CALL(visitor, OnFrameHeader(9, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(9)); EXPECT_CALL(visitor, OnHeaderForStream(9, _, _)).Times(4); EXPECT_CALL( visitor, OnInvalidFrame(9, Http2VisitorInterface::InvalidFrameError::kHttpHeader)); const int64_t stream_result = adapter->ProcessBytes(stream_frames); EXPECT_EQ(stream_frames.size(), static_cast<size_t>(stream_result)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 1, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 1, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 3, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 3, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(3, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 5, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 5, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(5, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 7, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 7, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(7, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_CALL(visitor, OnBeforeFrameSent(RST_STREAM, 9, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(RST_STREAM, 9, _, 0x0, static_cast<int>(Http2ErrorCode::PROTOCOL_ERROR))); EXPECT_CALL(visitor, OnCloseStream(9, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_TRUE(adapter->want_write()); int result = adapter->Send(); EXPECT_EQ(0, result); EXPECT_THAT( visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM, SpdyFrameType::RST_STREAM})); } TEST(OgHttp2AdapterTest, ServerUsesCustomWindowUpdateStrategy) { TestVisitor visitor; OgHttp2Adapter::Options options; options.should_window_update_fn = [](int64_t , int64_t , int64_t ) { return true; }; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false) .Data(1, "This is the request body.", true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, END_STREAM_FLAG)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)); EXPECT_CALL(visitor, OnDataForStream(1, "This is the request body.")); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<int64_t>(frames.size()), result); adapter->MarkDataConsumedForStream(1, 5); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 1, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 1, 4, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 0, 4, 0x0)); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 0, 4, 0x0, 0)); int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::WINDOW_UPDATE, SpdyFrameType::WINDOW_UPDATE})); } TEST(OgHttp2AdapterTest, ServerConsumesDataWithPadding) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); TestFrameSequence seq = std::move(TestFrameSequence().ClientPreface().Headers( 1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, false)); size_t total_size = 0; while (total_size < 62 * 1024) { seq.Data(1, "a", false, 254); total_size += 255; } const std::string frames = seq.Serialize(); EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(1, _, DATA, 0x8)) .Times(testing::AtLeast(1)); EXPECT_CALL(visitor, OnBeginDataForStream(1, _)).Times(testing::AtLeast(1)); EXPECT_CALL(visitor, OnDataForStream(1, "a")).Times(testing::AtLeast(1)); EXPECT_CALL(visitor, OnDataPaddingLength(1, _)).Times(testing::AtLeast(1)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(result, frames.size()); EXPECT_TRUE(adapter->want_write()); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 1, _, 0x0)).Times(1); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 1, _, 0x0, 0)).Times(1); EXPECT_CALL(visitor, OnBeforeFrameSent(WINDOW_UPDATE, 0, _, 0x0)).Times(1); EXPECT_CALL(visitor, OnFrameSent(WINDOW_UPDATE, 0, _, 0x0, 0)).Times(1); const int send_result = adapter->Send(); EXPECT_EQ(0, send_result); EXPECT_THAT(visitor.data(), EqualsFrames({SpdyFrameType::SETTINGS, SpdyFrameType::SETTINGS, SpdyFrameType::WINDOW_UPDATE, SpdyFrameType::WINDOW_UPDATE})); } TEST(OgHttp2AdapterTest, NoopHeaderValidatorTest) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; options.validate_http_headers = false; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface() .Headers(1, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/1"}, {"content-length", "7"}, {"content-length", "7"}}, false) .Headers(3, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/3"}, {"content-length", "11"}, {"content-length", "13"}}, false) .Headers(5, {{":method", "POST"}, {":scheme", "https"}, {":authority", "foo.com"}, {":path", "/"}, {"host", "bar.com"}}, true) .Headers(7, {{":method", "POST"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {"Accept", "uppercase, oh boy!"}}, false) .Headers(9, {{":method", "POST"}, {":scheme", "https"}, {":authority", "ex|ample.com"}, {":path", "/"}}, false) .Headers(11, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/"}, {"content-length", "nan"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 0, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(1, ":path", "/1")); EXPECT_CALL(visitor, OnHeaderForStream(1, "content-length", "7")); EXPECT_CALL(visitor, OnHeaderForStream(1, "content-length", "7")); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnFrameHeader(3, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(3)); EXPECT_CALL(visitor, OnHeaderForStream(3, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(3, ":path", "/3")); EXPECT_CALL(visitor, OnHeaderForStream(3, "content-length", "11")); EXPECT_CALL(visitor, OnHeaderForStream(3, "content-length", "13")); EXPECT_CALL(visitor, OnEndHeadersForStream(3)); EXPECT_CALL(visitor, OnFrameHeader(5, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(5)); EXPECT_CALL(visitor, OnHeaderForStream(5, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(5, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(5, ":authority", "foo.com")); EXPECT_CALL(visitor, OnHeaderForStream(5, ":path", "/")); EXPECT_CALL(visitor, OnHeaderForStream(5, "host", "bar.com")); EXPECT_CALL(visitor, OnEndHeadersForStream(5)); EXPECT_CALL(visitor, OnEndStream(5)); EXPECT_CALL(visitor, OnFrameHeader(7, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(7)); EXPECT_CALL(visitor, OnHeaderForStream(7, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(7, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(7, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(7, ":path", "/")); EXPECT_CALL(visitor, OnHeaderForStream(7, "Accept", "uppercase, oh boy!")); EXPECT_CALL(visitor, OnEndHeadersForStream(7)); EXPECT_CALL(visitor, OnFrameHeader(9, _, HEADERS, 4)); EXPECT_CALL(visitor, OnBeginHeadersForStream(9)); EXPECT_CALL(visitor, OnHeaderForStream(9, ":method", "POST")); EXPECT_CALL(visitor, OnHeaderForStream(9, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(9, ":authority", "ex|ample.com")); EXPECT_CALL(visitor, OnHeaderForStream(9, ":path", "/")); EXPECT_CALL(visitor, OnEndHeadersForStream(9)); EXPECT_CALL(visitor, OnFrameHeader(11, _, HEADERS, 5)); EXPECT_CALL(visitor, OnBeginHeadersForStream(11)); EXPECT_CALL(visitor, OnHeaderForStream(11, ":method", "GET")); EXPECT_CALL(visitor, OnHeaderForStream(11, ":scheme", "https")); EXPECT_CALL(visitor, OnHeaderForStream(11, ":authority", "example.com")); EXPECT_CALL(visitor, OnHeaderForStream(11, ":path", "/")); EXPECT_CALL(visitor, OnHeaderForStream(11, "content-length", "nan")); EXPECT_CALL(visitor, OnEndHeadersForStream(11)); EXPECT_CALL(visitor, OnEndStream(11)); const int64_t result = adapter->ProcessBytes(frames); EXPECT_EQ(frames.size(), static_cast<size_t>(result)); } TEST_P(OgHttp2AdapterDataTest, NegativeFlowControlStreamResumption) { TestVisitor visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kServer; auto adapter = OgHttp2Adapter::Create(visitor, options); const std::string frames = TestFrameSequence() .ClientPreface({{INITIAL_WINDOW_SIZE, 128u * 1024u}}) .WindowUpdate(0, 1 << 20) .Headers(1, {{":method", "GET"}, {":scheme", "https"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}, true) .Serialize(); testing::InSequence s; EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{Http2KnownSettingsId::INITIAL_WINDOW_SIZE, 128u * 1024u})); EXPECT_CALL(visitor, OnSettingsEnd()); EXPECT_CALL(visitor, OnFrameHeader(0, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(0, 1 << 20)); EXPECT_CALL(visitor, OnFrameHeader(1, _, HEADERS, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnBeginHeadersForStream(1)); EXPECT_CALL(visitor, OnHeaderForStream(1, _, _)).Times(4); EXPECT_CALL(visitor, OnEndHeadersForStream(1)); EXPECT_CALL(visitor, OnEndStream(1)); const int64_t read_result = adapter->ProcessBytes(frames); EXPECT_EQ(static_cast<size_t>(read_result), frames.size()); visitor.AppendPayloadForStream(1, std::string(70000, 'a')); auto body = std::make_unique<VisitorDataSource>(visitor, 1); int submit_result = adapter->SubmitResponse(1, ToHeaders({{":status", "200"}}), GetParam() ? nullptr : std::move(body), false); ASSERT_EQ(0, submit_result); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); EXPECT_CALL(visitor, OnBeforeFrameSent(HEADERS, 1, _, END_HEADERS_FLAG)); EXPECT_CALL(visitor, OnFrameSent(HEADERS, 1, _, END_HEADERS_FLAG, 0)); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)).Times(5); adapter->Send(); EXPECT_FALSE(adapter->want_write()); EXPECT_CALL(visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(visitor, OnSettingsStart()); EXPECT_CALL(visitor, OnSetting(Http2Setting{Http2KnownSettingsId::INITIAL_WINDOW_SIZE, 64u * 1024u})); EXPECT_CALL(visitor, OnSettingsEnd()); adapter->ProcessBytes(TestFrameSequence() .Settings({{INITIAL_WINDOW_SIZE, 64u * 1024u}}) .Serialize()); EXPECT_TRUE(adapter->want_write()); EXPECT_LT(adapter->GetStreamSendWindowSize(1), 0); visitor.AppendPayloadForStream(1, "Stream should be resumed."); adapter->ResumeStream(1); EXPECT_CALL(visitor, OnBeforeFrameSent(SETTINGS, 0, _, ACK_FLAG)); EXPECT_CALL(visitor, OnFrameSent(SETTINGS, 0, _, ACK_FLAG, 0)); adapter->Send(); EXPECT_FALSE(adapter->want_write()); EXPECT_CALL(visitor, OnFrameHeader(1, 4, WINDOW_UPDATE, 0)); EXPECT_CALL(visitor, OnWindowUpdate(1, 10000)); adapter->ProcessBytes(TestFrameSequence().WindowUpdate(1, 10000).Serialize()); EXPECT_TRUE(adapter->want_write()); EXPECT_GT(adapter->GetStreamSendWindowSize(1), 0); EXPECT_CALL(visitor, OnFrameSent(DATA, 1, _, 0x0, 0)); adapter->Send(); } TEST(OgHttp2AdapterTest, SetCookieRoundtrip) { TestVisitor client_visitor; OgHttp2Adapter::Options options; options.perspective = Perspective::kClient; auto client_adapter = OgHttp2Adapter::Create(client_visitor, options); TestVisitor server_visitor; options.perspective = Perspective::kServer; auto server_adapter = OgHttp2Adapter::Create(server_visitor, options); const std::vector<Header> request_headers = ToHeaders({{":method", "GET"}, {":scheme", "http"}, {":authority", "example.com"}, {":path", "/this/is/request/one"}}); const int32_t stream_id1 = client_adapter->SubmitRequest(request_headers, nullptr, true, nullptr); ASSERT_GT(stream_id1, 0); EXPECT_CALL(client_visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(client_visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(client_visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(client_visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_EQ(0, client_adapter->Send()); EXPECT_CALL(server_visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(server_visitor, OnSettingsStart()); EXPECT_CALL(server_visitor, OnSetting(Http2Setting{Http2KnownSettingsId::ENABLE_PUSH, 0u})); EXPECT_CALL(server_visitor, OnSettingsEnd()); EXPECT_CALL(server_visitor, OnFrameHeader(stream_id1, _, HEADERS, 5)); EXPECT_CALL(server_visitor, OnBeginHeadersForStream(stream_id1)); EXPECT_CALL(server_visitor, OnHeaderForStream).Times(4); EXPECT_CALL(server_visitor, OnEndHeadersForStream(stream_id1)); EXPECT_CALL(server_visitor, OnEndStream(stream_id1)); ASSERT_EQ(client_visitor.data().size(), server_adapter->ProcessBytes(client_visitor.data())); const std::vector<Header> response_headers = ToHeaders({{":status", "200"}, {"set-cookie", "chocolate_chip=yummy"}, {"set-cookie", "macadamia_nut=okay"}}); EXPECT_EQ(0, server_adapter->SubmitResponse(stream_id1, response_headers, nullptr, true)); EXPECT_CALL(server_visitor, OnBeforeFrameSent(SETTINGS, 0, _, 0x0)); EXPECT_CALL(server_visitor, OnFrameSent(SETTINGS, 0, _, 0x0, 0)); EXPECT_CALL(server_visitor, OnBeforeFrameSent(SETTINGS, 0, 0, ACK_FLAG)); EXPECT_CALL(server_visitor, OnFrameSent(SETTINGS, 0, 0, ACK_FLAG, 0)); EXPECT_CALL(server_visitor, OnBeforeFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG)); EXPECT_CALL(server_visitor, OnFrameSent(HEADERS, stream_id1, _, END_STREAM_FLAG | END_HEADERS_FLAG, 0)); EXPECT_CALL(server_visitor, OnCloseStream(stream_id1, Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_EQ(0, server_adapter->Send()); EXPECT_CALL(client_visitor, OnFrameHeader(0, 6, SETTINGS, 0)); EXPECT_CALL(client_visitor, OnSettingsStart()); EXPECT_CALL(client_visitor, OnSetting(Http2Setting{ Http2KnownSettingsId::ENABLE_CONNECT_PROTOCOL, 1u})); EXPECT_CALL(client_visitor, OnSettingsEnd()); EXPECT_CALL(client_visitor, OnFrameHeader(0, 0, SETTINGS, ACK_FLAG)); EXPECT_CALL(client_visitor, OnSettingsAck()); EXPECT_CALL(client_visitor, OnFrameHeader(stream_id1, _, HEADERS, 5)); EXPECT_CALL(client_visitor, OnBeginHeadersForStream(stream_id1)); EXPECT_CALL(client_visitor, OnHeaderForStream(stream_id1, ":status", "200")); EXPECT_CALL(client_visitor, OnHeaderForStream(stream_id1, "set-cookie", "chocolate_chip=yummy")); EXPECT_CALL(client_visitor, OnHeaderForStream(stream_id1, "set-cookie", "macadamia_nut=okay")); EXPECT_CALL(client_visitor, OnEndHeadersForStream(stream_id1)); EXPECT_CALL(client_visitor, OnEndStream(stream_id1)); EXPECT_CALL(client_visitor, OnCloseStream(stream_id1, Http2ErrorCode::HTTP2_NO_ERROR)); ASSERT_EQ(server_visitor.data().size(), client_adapter->ProcessBytes(server_visitor.data())); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/adapter/oghttp2_adapter.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/adapter/oghttp2_adapter_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
29a2a2be-c9b2-4451-bd94-deb8b9faf4a1
cpp
tensorflow/tensorflow
primitive_util
third_party/xla/xla/primitive_util.cc
third_party/xla/xla/primitive_util_test.cc
#include "xla/primitive_util.h" #include <cstdint> #include <limits> #include <string> #include "absl/base/optimization.h" #include "absl/container/flat_hash_map.h" #include "absl/strings/ascii.h" #include "absl/strings/string_view.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { namespace primitive_util { int SignificandWidth(PrimitiveType type) { return FloatingPointTypeSwitch<int>( [&](auto constant_type) -> int { return std::numeric_limits<NativeTypeOf<constant_type>>::digits; }, type); } int ExponentWidth(PrimitiveType type) { int total_bit_width = BitWidth(type); int trailing_significand_field_width = SignificandWidth(type) - 1; int kSignBitWidth = 1; return total_bit_width - (trailing_significand_field_width + kSignBitWidth); } int UnderflowExponent(PrimitiveType type) { return FloatingPointTypeSwitch<int>( [&](auto constant_type) -> int { return std::numeric_limits<NativeTypeOf<constant_type>>::min_exponent; }, type); } int OverflowExponent(PrimitiveType type) { return FloatingPointTypeSwitch<int>( [&](auto constant_type) -> int { return std::numeric_limits<NativeTypeOf<constant_type>>::max_exponent; }, type); } int ExponentBias(PrimitiveType type) { return (1 - UnderflowExponent(type)) + 1; } bool HasInfinity(PrimitiveType type) { if (ABSL_PREDICT_TRUE(IsFloatingPointType(type))) { return FloatingPointTypeSwitch<bool>( [&](auto constant_type) -> bool { return std::numeric_limits<NativeTypeOf<constant_type>>::has_infinity; }, type); } return false; } bool HasNegativeZero(PrimitiveType type) { if (ABSL_PREDICT_TRUE(IsFloatingPointType(type))) { return FloatingPointTypeSwitch<bool>( [&](auto constant_type) -> bool { return has_negative_zero_v<NativeTypeOf<constant_type>>; }, type); } return false; } xla::PrimitiveType SignedIntegralTypeForBitWidth(int64_t src_bitwidth) { switch (src_bitwidth) { case 2: return xla::S2; case 4: return xla::S4; case 8: return xla::S8; case 16: return xla::S16; case 32: return xla::S32; case 64: return xla::S64; default: return xla::PRIMITIVE_TYPE_INVALID; } } class PrimitiveTypeNameGenerator { public: PrimitiveTypeNameGenerator() { for (int i = 0; i < PrimitiveType_ARRAYSIZE; i++) { if (i == static_cast<int>(OPAQUE_TYPE)) { lowercase_name_[i] = "opaque"; } else if (PrimitiveType_IsValid(i)) { lowercase_name_[i] = absl::AsciiStrToLower( PrimitiveType_Name(static_cast<PrimitiveType>(i))); } } } const std::string& LowercaseName(PrimitiveType t) { CHECK_LT(t, PrimitiveType_ARRAYSIZE); return lowercase_name_[static_cast<int>(t)]; } private: std::string lowercase_name_[PrimitiveType_ARRAYSIZE]; }; const std::string& LowercasePrimitiveTypeName(PrimitiveType s) { static auto* gen = new PrimitiveTypeNameGenerator(); return gen->LowercaseName(s); } namespace { const absl::flat_hash_map<std::string, PrimitiveType>& GetPrimitiveTypeStringMap() { static absl::flat_hash_map<std::string, PrimitiveType>* name_to_type = [] { static auto* map = new absl::flat_hash_map<std::string, PrimitiveType>; for (int i = 0; i < PrimitiveType_ARRAYSIZE; i++) { if (PrimitiveType_IsValid(i) && i != PRIMITIVE_TYPE_INVALID) { auto value = static_cast<PrimitiveType>(i); (*map)[LowercasePrimitiveTypeName(value)] = value; } } (*map)["opaque"] = OPAQUE_TYPE; return map; }(); return *name_to_type; } } absl::StatusOr<PrimitiveType> StringToPrimitiveType(absl::string_view name) { const auto& map = GetPrimitiveTypeStringMap(); auto found = map.find(name); if (found == map.end()) { return InvalidArgument("Invalid element type string: \"%s\".", name); } return found->second; } bool IsPrimitiveTypeName(absl::string_view name) { const auto& map = GetPrimitiveTypeStringMap(); auto found = map.find(name); return found != map.end(); } } }
#include "xla/primitive_util.h" #include <numeric> #include <string> #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { TEST(PrimitiveUtilTest, StringToPrimitiveType) { auto expect_ok_and_equal = [](const std::string& str, PrimitiveType expected) { TF_ASSERT_OK_AND_ASSIGN(PrimitiveType actual, primitive_util::StringToPrimitiveType(str)); EXPECT_EQ(expected, actual); }; expect_ok_and_equal("f32", F32); expect_ok_and_equal("tuple", TUPLE); expect_ok_and_equal("pred", PRED); expect_ok_and_equal("s32", S32); EXPECT_IS_NOT_OK(primitive_util::StringToPrimitiveType("F32").status()); EXPECT_IS_NOT_OK(primitive_util::StringToPrimitiveType("Pred").status()); EXPECT_IS_NOT_OK(primitive_util::StringToPrimitiveType("preD").status()); } TEST(PrimitiveUtilTest, FloatTypes) { EXPECT_EQ(primitive_util::SignificandWidth(F32), 24); EXPECT_EQ(primitive_util::SignificandWidth(BF16), 8); EXPECT_EQ(primitive_util::ExponentWidth(F32), 8); EXPECT_EQ(primitive_util::ExponentWidth(BF16), 8); EXPECT_EQ(primitive_util::UnderflowExponent(F32), -125); EXPECT_EQ(primitive_util::UnderflowExponent(BF16), -125); EXPECT_EQ(primitive_util::OverflowExponent(F32), 128); EXPECT_EQ(primitive_util::OverflowExponent(BF16), 128); } TEST(PrimitiveUtilTest, CastPreservesValues) { bool expecteds[PrimitiveType_ARRAYSIZE][PrimitiveType_ARRAYSIZE]; expecteds[PRED][PRED] = true; expecteds[PRED][S2] = true; expecteds[PRED][S4] = true; expecteds[PRED][S8] = true; expecteds[PRED][S16] = true; expecteds[PRED][S32] = true; expecteds[PRED][S64] = true; expecteds[PRED][U2] = true; expecteds[PRED][U4] = true; expecteds[PRED][U8] = true; expecteds[PRED][U16] = true; expecteds[PRED][U32] = true; expecteds[PRED][U64] = true; expecteds[PRED][F16] = true; expecteds[PRED][F32] = true; expecteds[PRED][F64] = true; expecteds[PRED][C64] = true; expecteds[PRED][BF16] = true; expecteds[PRED][C128] = true; expecteds[PRED][F8E5M2] = true; expecteds[PRED][F8E4M3] = true; expecteds[PRED][F8E4M3FN] = true; expecteds[PRED][F8E4M3B11FNUZ] = true; expecteds[PRED][F8E5M2FNUZ] = true; expecteds[PRED][F8E4M3FNUZ] = true; expecteds[PRED][F8E3M4] = true; expecteds[S2][PRED] = false; expecteds[S2][S2] = true; expecteds[S2][S4] = true; expecteds[S2][S8] = true; expecteds[S2][S16] = true; expecteds[S2][S32] = true; expecteds[S2][S64] = true; expecteds[S2][U2] = false; expecteds[S2][U4] = false; expecteds[S2][U8] = false; expecteds[S2][U16] = false; expecteds[S2][U32] = false; expecteds[S2][U64] = false; expecteds[S2][F16] = true; expecteds[S2][F32] = true; expecteds[S2][F64] = true; expecteds[S2][C64] = true; expecteds[S2][BF16] = true; expecteds[S2][C128] = true; expecteds[S2][F8E5M2] = true; expecteds[S2][F8E4M3] = true; expecteds[S2][F8E4M3FN] = true; expecteds[S2][F8E4M3B11FNUZ] = true; expecteds[S2][F8E5M2FNUZ] = true; expecteds[S2][F8E4M3FNUZ] = true; expecteds[S2][F8E3M4] = true; expecteds[S4][PRED] = false; expecteds[S4][S2] = false; expecteds[S4][S4] = true; expecteds[S4][S8] = true; expecteds[S4][S16] = true; expecteds[S4][S32] = true; expecteds[S4][S64] = true; expecteds[S4][U2] = false; expecteds[S4][U4] = false; expecteds[S4][U8] = false; expecteds[S4][U16] = false; expecteds[S4][U32] = false; expecteds[S4][U64] = false; expecteds[S4][F16] = true; expecteds[S4][F32] = true; expecteds[S4][F64] = true; expecteds[S4][C64] = true; expecteds[S4][BF16] = true; expecteds[S4][C128] = true; expecteds[S4][F8E5M2] = true; expecteds[S4][F8E4M3] = true; expecteds[S4][F8E4M3FN] = true; expecteds[S4][F8E4M3B11FNUZ] = true; expecteds[S4][F8E5M2FNUZ] = true; expecteds[S4][F8E4M3FNUZ] = true; expecteds[S4][F8E3M4] = true; expecteds[S8][PRED] = false; expecteds[S8][S2] = false; expecteds[S8][S4] = false; expecteds[S8][S8] = true; expecteds[S8][S16] = true; expecteds[S8][S32] = true; expecteds[S8][S64] = true; expecteds[S8][U2] = false; expecteds[S8][U4] = false; expecteds[S8][U8] = false; expecteds[S8][U16] = false; expecteds[S8][U32] = false; expecteds[S8][U64] = false; expecteds[S8][F16] = true; expecteds[S8][F32] = true; expecteds[S8][F64] = true; expecteds[S8][C64] = true; expecteds[S8][BF16] = true; expecteds[S8][C128] = true; expecteds[S8][F8E5M2] = false; expecteds[S8][F8E4M3] = false; expecteds[S8][F8E4M3FN] = false; expecteds[S8][F8E4M3B11FNUZ] = false; expecteds[S8][F8E5M2FNUZ] = false; expecteds[S8][F8E4M3FNUZ] = false; expecteds[S8][F8E3M4] = false; expecteds[S16][PRED] = false; expecteds[S16][S2] = false; expecteds[S16][S4] = false; expecteds[S16][S8] = false; expecteds[S16][S16] = true; expecteds[S16][S32] = true; expecteds[S16][S64] = true; expecteds[S16][U2] = false; expecteds[S16][U4] = false; expecteds[S16][U8] = false; expecteds[S16][U16] = false; expecteds[S16][U32] = false; expecteds[S16][U64] = false; expecteds[S16][F16] = false; expecteds[S16][F32] = true; expecteds[S16][F64] = true; expecteds[S16][C64] = true; expecteds[S16][BF16] = false; expecteds[S16][C128] = true; expecteds[S16][F8E5M2] = false; expecteds[S16][F8E4M3] = false; expecteds[S16][F8E4M3FN] = false; expecteds[S16][F8E4M3B11FNUZ] = false; expecteds[S16][F8E5M2FNUZ] = false; expecteds[S16][F8E4M3FNUZ] = false; expecteds[S16][F8E3M4] = false; expecteds[S32][PRED] = false; expecteds[S32][S2] = false; expecteds[S32][S4] = false; expecteds[S32][S8] = false; expecteds[S32][S16] = false; expecteds[S32][S32] = true; expecteds[S32][S64] = true; expecteds[S32][U2] = false; expecteds[S32][U4] = false; expecteds[S32][U8] = false; expecteds[S32][U16] = false; expecteds[S32][U32] = false; expecteds[S32][U64] = false; expecteds[S32][F16] = false; expecteds[S32][F32] = false; expecteds[S32][F64] = true; expecteds[S32][C64] = false; expecteds[S32][BF16] = false; expecteds[S32][C128] = true; expecteds[S32][F8E5M2] = false; expecteds[S32][F8E4M3] = false; expecteds[S32][F8E4M3FN] = false; expecteds[S32][F8E4M3B11FNUZ] = false; expecteds[S32][F8E5M2FNUZ] = false; expecteds[S32][F8E4M3FNUZ] = false; expecteds[S32][F8E3M4] = false; expecteds[S64][PRED] = false; expecteds[S64][S2] = false; expecteds[S64][S4] = false; expecteds[S64][S8] = false; expecteds[S64][S16] = false; expecteds[S64][S32] = false; expecteds[S64][S64] = true; expecteds[S64][U2] = false; expecteds[S64][U4] = false; expecteds[S64][U8] = false; expecteds[S64][U16] = false; expecteds[S64][U32] = false; expecteds[S64][U64] = false; expecteds[S64][F16] = false; expecteds[S64][F32] = false; expecteds[S64][F64] = false; expecteds[S64][C64] = false; expecteds[S64][BF16] = false; expecteds[S64][C128] = false; expecteds[S64][F8E5M2] = false; expecteds[S64][F8E4M3] = false; expecteds[S64][F8E4M3FN] = false; expecteds[S64][F8E4M3B11FNUZ] = false; expecteds[S64][F8E5M2FNUZ] = false; expecteds[S64][F8E4M3FNUZ] = false; expecteds[S64][F8E3M4] = false; expecteds[U2][PRED] = false; expecteds[U2][S2] = false; expecteds[U2][S4] = true; expecteds[U2][S8] = true; expecteds[U2][S16] = true; expecteds[U2][S32] = true; expecteds[U2][S64] = true; expecteds[U2][U2] = true; expecteds[U2][U4] = true; expecteds[U2][U8] = true; expecteds[U2][U16] = true; expecteds[U2][U32] = true; expecteds[U2][U64] = true; expecteds[U2][F16] = true; expecteds[U2][F32] = true; expecteds[U2][F64] = true; expecteds[U2][C64] = true; expecteds[U2][BF16] = true; expecteds[U2][C128] = true; expecteds[U2][BF16] = true; expecteds[U2][C128] = true; expecteds[U2][F8E5M2] = true; expecteds[U2][F8E4M3] = true; expecteds[U2][F8E4M3FN] = true; expecteds[U2][F8E4M3B11FNUZ] = true; expecteds[U2][F8E5M2FNUZ] = true; expecteds[U2][F8E4M3FNUZ] = true; expecteds[U2][F8E3M4] = true; expecteds[U4][PRED] = false; expecteds[U4][S2] = false; expecteds[U4][S4] = false; expecteds[U4][S8] = true; expecteds[U4][S16] = true; expecteds[U4][S32] = true; expecteds[U4][S64] = true; expecteds[U4][U2] = false; expecteds[U4][U4] = true; expecteds[U4][U8] = true; expecteds[U4][U16] = true; expecteds[U4][U32] = true; expecteds[U4][U64] = true; expecteds[U4][F16] = true; expecteds[U4][F32] = true; expecteds[U4][F64] = true; expecteds[U4][C64] = true; expecteds[U4][BF16] = true; expecteds[U4][C128] = true; expecteds[U4][BF16] = true; expecteds[U4][C128] = true; expecteds[U4][F8E5M2] = false; expecteds[U4][F8E4M3] = true; expecteds[U4][F8E4M3FN] = true; expecteds[U4][F8E4M3B11FNUZ] = true; expecteds[U4][F8E5M2FNUZ] = false; expecteds[U4][F8E4M3FNUZ] = true; expecteds[U4][F8E3M4] = true; expecteds[U8][PRED] = false; expecteds[U8][S2] = false; expecteds[U8][S4] = false; expecteds[U8][S8] = false; expecteds[U8][S16] = true; expecteds[U8][S32] = true; expecteds[U8][S64] = true; expecteds[U8][U2] = false; expecteds[U8][U4] = false; expecteds[U8][U8] = true; expecteds[U8][U16] = true; expecteds[U8][U32] = true; expecteds[U8][U64] = true; expecteds[U8][F16] = true; expecteds[U8][F32] = true; expecteds[U8][F64] = true; expecteds[U8][C64] = true; expecteds[U8][BF16] = true; expecteds[U8][C128] = true; expecteds[U8][BF16] = true; expecteds[U8][C128] = true; expecteds[U8][F8E5M2] = false; expecteds[U8][F8E4M3] = false; expecteds[U8][F8E4M3FN] = false; expecteds[U8][F8E4M3B11FNUZ] = false; expecteds[U8][F8E5M2FNUZ] = false; expecteds[U8][F8E4M3FNUZ] = false; expecteds[U8][F8E3M4] = false; expecteds[U16][PRED] = false; expecteds[U16][S2] = false; expecteds[U16][S4] = false; expecteds[U16][S8] = false; expecteds[U16][S16] = false; expecteds[U16][S32] = true; expecteds[U16][S64] = true; expecteds[U16][U2] = false; expecteds[U16][U4] = false; expecteds[U16][U8] = false; expecteds[U16][U16] = true; expecteds[U16][U32] = true; expecteds[U16][U64] = true; expecteds[U16][F16] = false; expecteds[U16][F32] = true; expecteds[U16][F64] = true; expecteds[U16][C64] = true; expecteds[U16][BF16] = false; expecteds[U16][C128] = true; expecteds[U16][F8E5M2] = false; expecteds[U16][F8E4M3] = false; expecteds[U16][F8E4M3FN] = false; expecteds[U16][F8E4M3B11FNUZ] = false; expecteds[U16][F8E5M2FNUZ] = false; expecteds[U16][F8E4M3FNUZ] = false; expecteds[U16][F8E3M4] = false; expecteds[U32][PRED] = false; expecteds[U32][S2] = false; expecteds[U32][S4] = false; expecteds[U32][S8] = false; expecteds[U32][S16] = false; expecteds[U32][S32] = false; expecteds[U32][S64] = true; expecteds[U32][U2] = false; expecteds[U32][U4] = false; expecteds[U32][U8] = false; expecteds[U32][U16] = false; expecteds[U32][U32] = true; expecteds[U32][U64] = true; expecteds[U32][F16] = false; expecteds[U32][F32] = false; expecteds[U32][F64] = true; expecteds[U32][C64] = false; expecteds[U32][BF16] = false; expecteds[U32][C128] = true; expecteds[U32][F8E5M2] = false; expecteds[U32][F8E4M3] = false; expecteds[U32][F8E4M3FN] = false; expecteds[U32][F8E4M3B11FNUZ] = false; expecteds[U32][F8E5M2FNUZ] = false; expecteds[U32][F8E4M3FNUZ] = false; expecteds[U32][F8E3M4] = false; expecteds[U64][PRED] = false; expecteds[U64][S2] = false; expecteds[U64][S4] = false; expecteds[U64][S8] = false; expecteds[U64][S16] = false; expecteds[U64][S32] = false; expecteds[U64][S64] = false; expecteds[U64][U2] = false; expecteds[U64][U4] = false; expecteds[U64][U8] = false; expecteds[U64][U16] = false; expecteds[U64][U32] = false; expecteds[U64][U64] = true; expecteds[U64][F16] = false; expecteds[U64][F32] = false; expecteds[U64][F64] = false; expecteds[U64][C64] = false; expecteds[U64][BF16] = false; expecteds[U64][C128] = false; expecteds[U64][F8E5M2] = false; expecteds[U64][F8E4M3] = false; expecteds[U64][F8E4M3FN] = false; expecteds[U64][F8E4M3B11FNUZ] = false; expecteds[U64][F8E5M2FNUZ] = false; expecteds[U64][F8E4M3FNUZ] = false; expecteds[U64][F8E3M4] = false; expecteds[F16][PRED] = false; expecteds[F16][S2] = false; expecteds[F16][S4] = false; expecteds[F16][S8] = false; expecteds[F16][S16] = false; expecteds[F16][S32] = false; expecteds[F16][S64] = false; expecteds[F16][U2] = false; expecteds[F16][U4] = false; expecteds[F16][U8] = false; expecteds[F16][U16] = false; expecteds[F16][U32] = false; expecteds[F16][U64] = false; expecteds[F16][F16] = true; expecteds[F16][F32] = true; expecteds[F16][F64] = true; expecteds[F16][C64] = true; expecteds[F16][BF16] = false; expecteds[F16][C128] = true; expecteds[F16][F8E5M2] = false; expecteds[F16][F8E4M3] = false; expecteds[F16][F8E4M3FN] = false; expecteds[F16][F8E4M3B11FNUZ] = false; expecteds[F16][F8E5M2FNUZ] = false; expecteds[F16][F8E4M3FNUZ] = false; expecteds[F16][F8E3M4] = false; expecteds[F32][PRED] = false; expecteds[F32][S2] = false; expecteds[F32][S4] = false; expecteds[F32][S8] = false; expecteds[F32][S16] = false; expecteds[F32][S32] = false; expecteds[F32][S64] = false; expecteds[F32][U2] = false; expecteds[F32][U4] = false; expecteds[F32][U8] = false; expecteds[F32][U16] = false; expecteds[F32][U32] = false; expecteds[F32][U64] = false; expecteds[F32][F16] = false; expecteds[F32][F32] = true; expecteds[F32][F64] = true; expecteds[F32][C64] = true; expecteds[F32][BF16] = false; expecteds[F32][C128] = true; expecteds[F32][F8E5M2] = false; expecteds[F32][F8E4M3] = false; expecteds[F32][F8E4M3FN] = false; expecteds[F32][F8E4M3B11FNUZ] = false; expecteds[F32][F8E5M2FNUZ] = false; expecteds[F32][F8E4M3FNUZ] = false; expecteds[F32][F8E3M4] = false; expecteds[F64][PRED] = false; expecteds[F64][S2] = false; expecteds[F64][S4] = false; expecteds[F64][S8] = false; expecteds[F64][S16] = false; expecteds[F64][S32] = false; expecteds[F64][S64] = false; expecteds[F64][U2] = false; expecteds[F64][U4] = false; expecteds[F64][U8] = false; expecteds[F64][U16] = false; expecteds[F64][U32] = false; expecteds[F64][U64] = false; expecteds[F64][F16] = false; expecteds[F64][F32] = false; expecteds[F64][F64] = true; expecteds[F64][C64] = false; expecteds[F64][BF16] = false; expecteds[F64][C128] = true; expecteds[F64][F8E5M2] = false; expecteds[F64][F8E4M3] = false; expecteds[F64][F8E4M3FN] = false; expecteds[F64][F8E4M3B11FNUZ] = false; expecteds[F64][F8E5M2FNUZ] = false; expecteds[F64][F8E4M3FNUZ] = false; expecteds[F64][F8E3M4] = false; expecteds[C64][PRED] = false; expecteds[C64][S2] = false; expecteds[C64][S4] = false; expecteds[C64][S8] = false; expecteds[C64][S16] = false; expecteds[C64][S32] = false; expecteds[C64][S64] = false; expecteds[C64][U2] = false; expecteds[C64][U4] = false; expecteds[C64][U8] = false; expecteds[C64][U16] = false; expecteds[C64][U32] = false; expecteds[C64][U64] = false; expecteds[C64][F16] = false; expecteds[C64][F32] = false; expecteds[C64][F64] = false; expecteds[C64][C64] = true; expecteds[C64][BF16] = false; expecteds[C64][C128] = true; expecteds[C64][F8E5M2] = false; expecteds[C64][F8E4M3] = false; expecteds[C64][F8E4M3FN] = false; expecteds[C64][F8E4M3B11FNUZ] = false; expecteds[C64][F8E5M2FNUZ] = false; expecteds[C64][F8E4M3FNUZ] = false; expecteds[C64][F8E3M4] = false; expecteds[BF16][PRED] = false; expecteds[BF16][S2] = false; expecteds[BF16][S4] = false; expecteds[BF16][S8] = false; expecteds[BF16][S16] = false; expecteds[BF16][S32] = false; expecteds[BF16][S64] = false; expecteds[BF16][U2] = false; expecteds[BF16][U4] = false; expecteds[BF16][U8] = false; expecteds[BF16][U16] = false; expecteds[BF16][U32] = false; expecteds[BF16][U64] = false; expecteds[BF16][F16] = false; expecteds[BF16][F32] = true; expecteds[BF16][F64] = true; expecteds[BF16][C64] = true; expecteds[BF16][BF16] = true; expecteds[BF16][C128] = true; expecteds[BF16][F8E5M2] = false; expecteds[BF16][F8E4M3] = false; expecteds[BF16][F8E4M3FN] = false; expecteds[BF16][F8E4M3B11FNUZ] = false; expecteds[BF16][F8E5M2FNUZ] = false; expecteds[BF16][F8E4M3FNUZ] = false; expecteds[BF16][F8E3M4] = false; expecteds[C128][PRED] = false; expecteds[C128][S2] = false; expecteds[C128][S4] = false; expecteds[C128][S8] = false; expecteds[C128][S16] = false; expecteds[C128][S32] = false; expecteds[C128][S64] = false; expecteds[C128][U2] = false; expecteds[C128][U4] = false; expecteds[C128][U8] = false; expecteds[C128][U16] = false; expecteds[C128][U32] = false; expecteds[C128][U64] = false; expecteds[C128][F16] = false; expecteds[C128][F32] = false; expecteds[C128][F64] = false; expecteds[C128][C64] = false; expecteds[C128][BF16] = false; expecteds[C128][C128] = true; expecteds[C128][F8E5M2] = false; expecteds[C128][F8E4M3] = false; expecteds[C128][F8E4M3FN] = false; expecteds[C128][F8E4M3B11FNUZ] = false; expecteds[C128][F8E5M2FNUZ] = false; expecteds[C128][F8E4M3FNUZ] = false; expecteds[C128][F8E3M4] = false; expecteds[F8E5M2][PRED] = false; expecteds[F8E5M2][S2] = false; expecteds[F8E5M2][S4] = false; expecteds[F8E5M2][S8] = false; expecteds[F8E5M2][S16] = false; expecteds[F8E5M2][S32] = false; expecteds[F8E5M2][S64] = false; expecteds[F8E5M2][U2] = false; expecteds[F8E5M2][U4] = false; expecteds[F8E5M2][U8] = false; expecteds[F8E5M2][U16] = false; expecteds[F8E5M2][U32] = false; expecteds[F8E5M2][U64] = false; expecteds[F8E5M2][F16] = true; expecteds[F8E5M2][F32] = true; expecteds[F8E5M2][F64] = true; expecteds[F8E5M2][C64] = true; expecteds[F8E5M2][BF16] = true; expecteds[F8E5M2][C128] = true; expecteds[F8E5M2][F8E5M2] = true; expecteds[F8E5M2][F8E4M3] = false; expecteds[F8E5M2][F8E4M3FN] = false; expecteds[F8E5M2][F8E4M3B11FNUZ] = false; expecteds[F8E5M2][F8E5M2FNUZ] = false; expecteds[F8E5M2][F8E4M3FNUZ] = false; expecteds[F8E5M2][F8E3M4] = false; expecteds[F8E4M3][PRED] = false; expecteds[F8E4M3][S2] = false; expecteds[F8E4M3][S4] = false; expecteds[F8E4M3][S8] = false; expecteds[F8E4M3][S16] = false; expecteds[F8E4M3][S32] = false; expecteds[F8E4M3][S64] = false; expecteds[F8E4M3][U2] = false; expecteds[F8E4M3][U4] = false; expecteds[F8E4M3][U8] = false; expecteds[F8E4M3][U16] = false; expecteds[F8E4M3][U32] = false; expecteds[F8E4M3][U64] = false; expecteds[F8E4M3][F16] = true; expecteds[F8E4M3][F32] = true; expecteds[F8E4M3][F64] = true; expecteds[F8E4M3][C64] = true; expecteds[F8E4M3][BF16] = true; expecteds[F8E4M3][C128] = true; expecteds[F8E4M3][F8E5M2] = false; expecteds[F8E4M3][F8E5M2FNUZ] = false; expecteds[F8E4M3][F8E4M3] = true; expecteds[F8E4M3][F8E4M3FN] = false; expecteds[F8E4M3][F8E4M3FNUZ] = false; expecteds[F8E4M3][F8E4M3B11FNUZ] = false; expecteds[F8E4M3][F8E3M4] = false; expecteds[F8E4M3FN][PRED] = false; expecteds[F8E4M3FN][S2] = false; expecteds[F8E4M3FN][S4] = false; expecteds[F8E4M3FN][S8] = false; expecteds[F8E4M3FN][S16] = false; expecteds[F8E4M3FN][S32] = false; expecteds[F8E4M3FN][S64] = false; expecteds[F8E4M3FN][U2] = false; expecteds[F8E4M3FN][U4] = false; expecteds[F8E4M3FN][U8] = false; expecteds[F8E4M3FN][U16] = false; expecteds[F8E4M3FN][U32] = false; expecteds[F8E4M3FN][U64] = false; expecteds[F8E4M3FN][F16] = true; expecteds[F8E4M3FN][F32] = true; expecteds[F8E4M3FN][F64] = true; expecteds[F8E4M3FN][C64] = true; expecteds[F8E4M3FN][BF16] = true; expecteds[F8E4M3FN][C128] = true; expecteds[F8E4M3FN][F8E5M2] = false; expecteds[F8E4M3FN][F8E5M2FNUZ] = false; expecteds[F8E4M3FN][F8E4M3] = false; expecteds[F8E4M3FN][F8E4M3FN] = true; expecteds[F8E4M3FN][F8E4M3FNUZ] = false; expecteds[F8E4M3FN][F8E4M3B11FNUZ] = false; expecteds[F8E4M3FN][F8E3M4] = false; expecteds[F8E4M3B11FNUZ][PRED] = false; expecteds[F8E4M3B11FNUZ][S2] = false; expecteds[F8E4M3B11FNUZ][S4] = false; expecteds[F8E4M3B11FNUZ][S8] = false; expecteds[F8E4M3B11FNUZ][S16] = false; expecteds[F8E4M3B11FNUZ][S32] = false; expecteds[F8E4M3B11FNUZ][S64] = false; expecteds[F8E4M3B11FNUZ][U2] = false; expecteds[F8E4M3B11FNUZ][U4] = false; expecteds[F8E4M3B11FNUZ][U8] = false; expecteds[F8E4M3B11FNUZ][U16] = false; expecteds[F8E4M3B11FNUZ][U32] = false; expecteds[F8E4M3B11FNUZ][U64] = false; expecteds[F8E4M3B11FNUZ][F16] = true; expecteds[F8E4M3B11FNUZ][F32] = true; expecteds[F8E4M3B11FNUZ][F64] = true; expecteds[F8E4M3B11FNUZ][C64] = true; expecteds[F8E4M3B11FNUZ][BF16] = true; expecteds[F8E4M3B11FNUZ][C128] = true; expecteds[F8E4M3B11FNUZ][F8E5M2] = false; expecteds[F8E4M3B11FNUZ][F8E4M3] = false; expecteds[F8E4M3B11FNUZ][F8E4M3FN] = false; expecteds[F8E4M3B11FNUZ][F8E4M3B11FNUZ] = true; expecteds[F8E4M3B11FNUZ][F8E4M3FNUZ] = false; expecteds[F8E4M3B11FNUZ][F8E5M2FNUZ] = false; expecteds[F8E4M3B11FNUZ][F8E3M4] = false; expecteds[F8E5M2FNUZ][PRED] = false; expecteds[F8E5M2FNUZ][S2] = false; expecteds[F8E5M2FNUZ][S4] = false; expecteds[F8E5M2FNUZ][S8] = false; expecteds[F8E5M2FNUZ][S16] = false; expecteds[F8E5M2FNUZ][S32] = false; expecteds[F8E5M2FNUZ][S64] = false; expecteds[F8E5M2FNUZ][U2] = false; expecteds[F8E5M2FNUZ][U4] = false; expecteds[F8E5M2FNUZ][U8] = false; expecteds[F8E5M2FNUZ][U16] = false; expecteds[F8E5M2FNUZ][U32] = false; expecteds[F8E5M2FNUZ][U64] = false; expecteds[F8E5M2FNUZ][F16] = true; expecteds[F8E5M2FNUZ][F32] = true; expecteds[F8E5M2FNUZ][F64] = true; expecteds[F8E5M2FNUZ][C64] = true; expecteds[F8E5M2FNUZ][BF16] = true; expecteds[F8E5M2FNUZ][C128] = true; expecteds[F8E5M2FNUZ][F8E5M2] = false; expecteds[F8E5M2FNUZ][F8E4M3] = false; expecteds[F8E5M2FNUZ][F8E4M3FN] = false; expecteds[F8E5M2FNUZ][F8E4M3B11FNUZ] = false; expecteds[F8E5M2FNUZ][F8E5M2FNUZ] = true; expecteds[F8E5M2FNUZ][F8E4M3FNUZ] = false; expecteds[F8E5M2FNUZ][F8E3M4] = false; expecteds[F8E4M3FNUZ][PRED] = false; expecteds[F8E4M3FNUZ][S2] = false; expecteds[F8E4M3FNUZ][S4] = false; expecteds[F8E4M3FNUZ][S8] = false; expecteds[F8E4M3FNUZ][S16] = false; expecteds[F8E4M3FNUZ][S32] = false; expecteds[F8E4M3FNUZ][S64] = false; expecteds[F8E4M3FNUZ][U2] = false; expecteds[F8E4M3FNUZ][U4] = false; expecteds[F8E4M3FNUZ][U8] = false; expecteds[F8E4M3FNUZ][U16] = false; expecteds[F8E4M3FNUZ][U32] = false; expecteds[F8E4M3FNUZ][U64] = false; expecteds[F8E4M3FNUZ][F16] = true; expecteds[F8E4M3FNUZ][F32] = true; expecteds[F8E4M3FNUZ][F64] = true; expecteds[F8E4M3FNUZ][C64] = true; expecteds[F8E4M3FNUZ][BF16] = true; expecteds[F8E4M3FNUZ][C128] = true; expecteds[F8E4M3FNUZ][F8E5M2] = false; expecteds[F8E4M3FNUZ][F8E4M3] = false; expecteds[F8E4M3FNUZ][F8E4M3FN] = false; expecteds[F8E4M3FNUZ][F8E4M3B11FNUZ] = false; expecteds[F8E4M3FNUZ][F8E5M2FNUZ] = false; expecteds[F8E4M3FNUZ][F8E4M3FNUZ] = true; expecteds[F8E4M3FNUZ][F8E3M4] = false; expecteds[F8E3M4][PRED] = false; expecteds[F8E3M4][S2] = false; expecteds[F8E3M4][S4] = false; expecteds[F8E3M4][S8] = false; expecteds[F8E3M4][S16] = false; expecteds[F8E3M4][S32] = false; expecteds[F8E3M4][S64] = false; expecteds[F8E3M4][U2] = false; expecteds[F8E3M4][U4] = false; expecteds[F8E3M4][U8] = false; expecteds[F8E3M4][U16] = false; expecteds[F8E3M4][U32] = false; expecteds[F8E3M4][U64] = false; expecteds[F8E3M4][F16] = true; expecteds[F8E3M4][F32] = true; expecteds[F8E3M4][F64] = true; expecteds[F8E3M4][C64] = true; expecteds[F8E3M4][BF16] = true; expecteds[F8E3M4][C128] = true; expecteds[F8E3M4][F8E5M2] = false; expecteds[F8E3M4][F8E5M2FNUZ] = false; expecteds[F8E3M4][F8E4M3] = false; expecteds[F8E3M4][F8E4M3FN] = false; expecteds[F8E3M4][F8E4M3FNUZ] = false; expecteds[F8E3M4][F8E4M3B11FNUZ] = false; expecteds[F8E3M4][F8E3M4] = true; for (int from_type_int = PrimitiveType_MIN; from_type_int < PrimitiveType_ARRAYSIZE; ++from_type_int) { auto from_type = static_cast<PrimitiveType>(from_type_int); if (!primitive_util::IsArrayType(from_type)) { continue; } for (int to_type_int = PrimitiveType_MIN; to_type_int < PrimitiveType_ARRAYSIZE; ++to_type_int) { auto to_type = static_cast<PrimitiveType>(to_type_int); if (!primitive_util::IsArrayType(to_type)) { continue; } bool expected = expecteds[from_type][to_type]; bool actual = primitive_util::CastPreservesValues(from_type, to_type); EXPECT_EQ(expected, actual) << primitive_util::LowercasePrimitiveTypeName(from_type) << " -> " << primitive_util::LowercasePrimitiveTypeName(to_type); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/primitive_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/primitive_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
49a4e579-c145-4cc7-ada9-64353d57ef67
cpp
tensorflow/tensorflow
xprof_gpu_cost_analysis
tensorflow/core/profiler/utils/xprof_gpu_cost_analysis.cc
tensorflow/core/profiler/utils/xprof_gpu_cost_analysis_test.cc
#include "tensorflow/core/profiler/utils/xprof_gpu_cost_analysis.h" #include <algorithm> #include <cstdint> #include <memory> #include <vector> #include "absl/status/status.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/primitive_util.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/hlo_cost_analysis.h" namespace tensorflow { namespace profiler { namespace { std::vector<uint32_t> GetInputBitwidths(const xla::HloInstruction& hlo) { std::vector<uint32_t> input_bitwidths; for (const auto& operand : hlo.operands()) { switch (operand->shape().element_type()) { case xla::PRIMITIVE_TYPE_INVALID: case xla::TUPLE: case xla::OPAQUE_TYPE: case xla::TOKEN: break; default: input_bitwidths.push_back( xla::primitive_util::BitWidth(operand->shape().element_type())); } } return input_bitwidths; } } absl::Status XProfGpuCostAnalysis::Postprocess(const xla::HloInstruction* hlo) { if (hlo == nullptr) { return absl::OkStatus(); } uint32_t flop_rate_adjustment = 1; float model_flops = current_properties_[kFlopsKey]; std::vector<uint32_t> input_bitwidths = GetInputBitwidths(*hlo); if (!input_bitwidths.empty()) { int max_input_bitwidth = *std::max_element(input_bitwidths.begin(), input_bitwidths.end()); if (model_flops) { switch (max_input_bitwidth) { case 8: flop_rate_adjustment = 2; break; case 4: flop_rate_adjustment = 4; break; } } } current_properties_[kDeviceFlopsAdjustment] = model_flops - model_flops / flop_rate_adjustment; return xla::gpu::GpuHloCostAnalysis::Postprocess(hlo); } std::unique_ptr<xla::HloCostAnalysis> XProfGpuCostAnalysis::CreateNestedCostAnalysis() { return std::make_unique<XProfGpuCostAnalysis>(options_); } int64_t XProfGpuCostAnalysis::GetDeviceFlopsAdjustment( const xla::HloInstruction& hlo) { return GetPropertyForHlo(hlo, kDeviceFlopsAdjustment, hlo_properties_); } } }
#include "tensorflow/core/profiler/utils/xprof_gpu_cost_analysis.h" #include <cstdint> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace profiler { class XprofGpuHloCostAnalysisTest : public xla::HloTestBase { xla::HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const xla::Shape& shape) { constexpr int64_t kPointerSize = 8; return xla::ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: xla::HloCostAnalysis::Options options_{ ShapeSizeBytesFunction(), {}, {}, true}; XProfGpuCostAnalysis analysis_{options_}; XprofGpuHloCostAnalysisTest() : xla::HloTestBase() {} }; TEST_F(XprofGpuHloCostAnalysisTest, Fp16GemmNoAdjustment) { absl::string_view hlo_string = R"( HloModule r ENTRY e { arg0 = f16[65536,32800] parameter(0) arg1 = f16[32800,32] parameter(1) gemm = (f16[65536,32], s8[0]) custom-call(arg0, arg1), custom_call_target="__cublas$gemm", backend_config="{ \"gemm_backend_config\": { \"alpha_real\":1, \"beta\":0, \"dot_dimension_numbers\":{ \"lhs_contracting_dimensions\":[\"1\"], \"rhs_contracting_dimensions\":[\"0\"], \"lhs_batch_dimensions\":[], \"rhs_batch_dimensions\":[] }, \"alpha_imag\":0, \"precision_config\":{ \"operand_precision\":[\"DEFAULT\",\"DEFAULT\"] }, \"epilogue\":\"DEFAULT\" } }" ROOT get-tuple-element = f16[65536,32] get-tuple-element((f16[65536,32], s8[0]) gemm), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); xla::HloComputation* comp = module->entry_computation(); const xla::HloInstruction* fp16gemm = comp->GetInstructionWithName("gemm"); int64_t gold_flops = 65536LL * 32800 * 32 * 2; EXPECT_EQ(analysis_.flop_count(*fp16gemm), gold_flops); EXPECT_EQ(analysis_.GetDeviceFlopsAdjustment(*fp16gemm), 0); } TEST_F(XprofGpuHloCostAnalysisTest, S8GemmAdjustment) { absl::string_view hlo_string = R"( HloModule r ENTRY e { arg0 = s8[65536,32800] parameter(0) arg1 = s8[32800,32] parameter(1) gemm = (s32[65536,32], s8[0]) custom-call(arg0, arg1), custom_call_target="__cublas$gemm", backend_config="{ \"gemm_backend_config\": { \"alpha_real\":1, \"beta\":0, \"dot_dimension_numbers\":{ \"lhs_contracting_dimensions\":[\"1\"], \"rhs_contracting_dimensions\":[\"0\"], \"lhs_batch_dimensions\":[], \"rhs_batch_dimensions\":[] }, \"alpha_imag\":0, \"precision_config\":{ \"operand_precision\":[\"DEFAULT\",\"DEFAULT\"] }, \"epilogue\":\"DEFAULT\" } }" ROOT get-tuple-element = s32[65536,32] get-tuple-element((s32[65536,32], s8[0]) gemm), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); xla::HloComputation* comp = module->entry_computation(); const xla::HloInstruction* s8gemm = comp->GetInstructionWithName("gemm"); int64_t gold_flops = 65536LL * 32800 * 32 * 2; EXPECT_EQ(analysis_.flop_count(*s8gemm), gold_flops); EXPECT_EQ(analysis_.GetDeviceFlopsAdjustment(*s8gemm), gold_flops / 2); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/xprof_gpu_cost_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/utils/xprof_gpu_cost_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4e3b1365-8dff-460a-9cc1-436efbb0f2a9
cpp
tensorflow/tensorflow
path
third_party/xla/third_party/tsl/tsl/platform/path.cc
third_party/xla/third_party/tsl/tsl/platform/path_test.cc
#include "tsl/platform/path.h" #include <errno.h> #include <fcntl.h> #include <stdlib.h> #include <sys/stat.h> #include <sys/types.h> #if defined(PLATFORM_WINDOWS) #include <windows.h> #else #include <unistd.h> #endif #include <string> #include <vector> #include "absl/algorithm/container.h" #include "tsl/platform/logging.h" #include "tsl/platform/mutex.h" #include "tsl/platform/scanner.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/types.h" namespace tsl { namespace io { namespace internal { namespace { const char kPathSep[] = "/"; } string JoinPathImpl(std::initializer_list<absl::string_view> paths) { string result; for (absl::string_view path : paths) { if (path.empty()) continue; if (result.empty()) { result = string(path); continue; } if (IsAbsolutePath(path)) path = path.substr(1); if (result[result.size() - 1] == kPathSep[0]) { strings::StrAppend(&result, path); } else { strings::StrAppend(&result, kPathSep, path); } } return result; } std::pair<absl::string_view, absl::string_view> SplitPath( absl::string_view uri) { absl::string_view scheme, host, path; ParseURI(uri, &scheme, &host, &path); auto pos = path.rfind('/'); #ifdef PLATFORM_WINDOWS if (pos == StringPiece::npos) pos = path.rfind('\\'); #endif if (pos == absl::string_view::npos) return std::make_pair( absl::string_view(uri.data(), host.end() - uri.begin()), path); if (pos == 0) return std::make_pair( absl::string_view(uri.data(), path.begin() + 1 - uri.begin()), absl::string_view(path.data() + 1, path.size() - 1)); return std::make_pair( absl::string_view(uri.data(), path.begin() + pos - uri.begin()), absl::string_view(path.data() + pos + 1, path.size() - (pos + 1))); } std::pair<absl::string_view, absl::string_view> SplitBasename( absl::string_view path) { path = Basename(path); auto pos = path.rfind('.'); if (pos == absl::string_view::npos) return std::make_pair(path, absl::string_view(path.data() + path.size(), 0)); return std::make_pair( absl::string_view(path.data(), pos), absl::string_view(path.data() + pos + 1, path.size() - (pos + 1))); } } bool IsAbsolutePath(absl::string_view path) { return !path.empty() && path[0] == '/'; } absl::string_view Dirname(absl::string_view path) { return internal::SplitPath(path).first; } absl::string_view Basename(absl::string_view path) { return internal::SplitPath(path).second; } absl::string_view Extension(absl::string_view path) { return internal::SplitBasename(path).second; } absl::string_view BasenamePrefix(absl::string_view path) { return internal::SplitBasename(path).first; } string CleanPath(absl::string_view unclean_path) { string path(unclean_path); const char* src = path.c_str(); string::iterator dst = path.begin(); const bool is_absolute_path = *src == '/'; if (is_absolute_path) { *dst++ = *src++; while (*src == '/') ++src; } string::const_iterator backtrack_limit = dst; while (*src) { bool parsed = false; if (src[0] == '.') { if (src[1] == '/' || !src[1]) { if (*++src) { ++src; } parsed = true; } else if (src[1] == '.' && (src[2] == '/' || !src[2])) { src += 2; if (dst != backtrack_limit) { for (--dst; dst != backtrack_limit && dst[-1] != '/'; --dst) { } } else if (!is_absolute_path) { src -= 2; *dst++ = *src++; *dst++ = *src++; if (*src) { *dst++ = *src; } backtrack_limit = dst; } if (*src) { ++src; } parsed = true; } } if (!parsed) { while (*src && *src != '/') { *dst++ = *src++; } if (*src) { *dst++ = *src++; } } while (*src == '/') { ++src; } } string::difference_type path_length = dst - path.begin(); if (path_length != 0) { if (path_length > 1 && path[path_length - 1] == '/') { --path_length; } path.resize(path_length); } else { path.assign(1, '.'); } return path; } void ParseURI(absl::string_view uri, absl::string_view* scheme, absl::string_view* host, absl::string_view* path) { if (!strings::Scanner(uri) .One(strings::Scanner::LETTER) .Many(strings::Scanner::LETTER_DIGIT_DOT) .StopCapture() .OneLiteral(": .GetResult(&uri, scheme)) { *scheme = absl::string_view(uri.data(), 0); *host = absl::string_view(uri.data(), 0); *path = uri; return; } if (!strings::Scanner(uri).ScanUntil('/').GetResult(&uri, host)) { *host = uri; *path = absl::string_view(); return; } *path = uri; } string CreateURI(absl::string_view scheme, absl::string_view host, absl::string_view path) { if (scheme.empty()) { return string(path); } return strings::StrCat(scheme, ": } int64_t UniqueId() { static mutex mu(LINKER_INITIALIZED); static int64_t id = 0; mutex_lock l(mu); return ++id; } string CommonPathPrefix(absl::Span<const string> paths) { if (paths.empty()) return ""; size_t min_filename_size = absl::c_min_element(paths, [](const string& a, const string& b) { return a.size() < b.size(); })->size(); if (min_filename_size == 0) return ""; size_t common_prefix_size = [&] { for (size_t prefix_size = 0; prefix_size < min_filename_size; prefix_size++) { char c = paths[0][prefix_size]; for (int f = 1; f < paths.size(); f++) { if (paths[f][prefix_size] != c) { return prefix_size; } } } return min_filename_size; }(); size_t rpos = absl::string_view(paths[0]) .substr(0, common_prefix_size) .rfind(internal::kPathSep); return rpos == std::string::npos ? "" : std::string(absl::string_view(paths[0]).substr(0, rpos + 1)); } string GetTempFilename(const string& extension) { #if defined(__ANDROID__) LOG(FATAL) << "GetTempFilename is not implemented in this platform."; #elif defined(PLATFORM_WINDOWS) char temp_dir[_MAX_PATH]; DWORD retval; retval = GetTempPath(_MAX_PATH, temp_dir); if (retval > _MAX_PATH || retval == 0) { LOG(FATAL) << "Cannot get the directory for temporary files."; } char temp_file_name[_MAX_PATH]; retval = GetTempFileName(temp_dir, "", UniqueId(), temp_file_name); if (retval > _MAX_PATH || retval == 0) { LOG(FATAL) << "Cannot get a temporary file in: " << temp_dir; } string full_tmp_file_name(temp_file_name); full_tmp_file_name.append(extension); return full_tmp_file_name; #else for (const char* dir : std::vector<const char*>( {getenv("TEST_TMPDIR"), getenv("TMPDIR"), getenv("TMP"), "/tmp"})) { if (!dir || !dir[0]) { continue; } struct stat statbuf; if (!stat(dir, &statbuf) && S_ISDIR(statbuf.st_mode)) { string tmp_filepath; int fd; if (extension.length()) { tmp_filepath = io::JoinPath( dir, strings::StrCat("tmp_file_tensorflow_", UniqueId(), "_XXXXXX.", extension)); fd = mkstemps(&tmp_filepath[0], extension.length() + 1); } else { tmp_filepath = io::JoinPath( dir, strings::StrCat("tmp_file_tensorflow_", UniqueId(), "_XXXXXX")); fd = mkstemp(&tmp_filepath[0]); } if (fd < 0) { LOG(FATAL) << "Failed to create temp file."; } else { if (close(fd) < 0) { LOG(ERROR) << "close() failed: " << strerror(errno); } return tmp_filepath; } } } LOG(FATAL) << "No temp directory found."; std::abort(); #endif } namespace { bool StartsWithSegment(absl::string_view path, absl::string_view segment) { return absl::StartsWith(path, segment) && (path.size() == segment.size() || path.at(segment.size()) == internal::kPathSep[0]); } } bool GetTestWorkspaceDir(string* dir) { const char* srcdir = getenv("TEST_SRCDIR"); if (srcdir == nullptr) { return false; } const char* workspace = getenv("TEST_WORKSPACE"); if (workspace == nullptr) { return false; } if (dir != nullptr) { *dir = tsl::io::JoinPath(srcdir, workspace); } return true; } bool GetTestUndeclaredOutputsDir(string* dir) { const char* outputs_dir = getenv("TEST_UNDECLARED_OUTPUTS_DIR"); if (outputs_dir == nullptr) { return false; } if (dir != nullptr) { *dir = outputs_dir; } return true; } bool ResolveTestPrefixes(absl::string_view path, string& resolved_path) { constexpr absl::string_view kTestWorkspaceSegment = "TEST_WORKSPACE"; constexpr absl::string_view kOutputDirSegment = "TEST_UNDECLARED_OUTPUTS_DIR"; if (StartsWithSegment(path, kTestWorkspaceSegment)) { if (!GetTestWorkspaceDir(&resolved_path)) { return false; } resolved_path += path.substr(kTestWorkspaceSegment.size()); return true; } else if (StartsWithSegment(path, kOutputDirSegment)) { if (!GetTestUndeclaredOutputsDir(&resolved_path)) { return false; } resolved_path += path.substr(kOutputDirSegment.size()); return true; } else { resolved_path = path; return true; } } [[maybe_unused]] std::string& AppendDotExeIfWindows(std::string& path) { #ifdef PLATFORM_WINDOWS path.append(".exe"); #endif return path; } } }
#include "tsl/platform/path.h" #include <string> #include "tsl/platform/env.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/test.h" namespace tsl { namespace io { TEST(PathTest, JoinPath) { EXPECT_EQ("/foo/bar", JoinPath("/foo", "bar")); EXPECT_EQ("foo/bar", JoinPath("foo", "bar")); EXPECT_EQ("foo/bar", JoinPath("foo", "/bar")); EXPECT_EQ("/foo/bar", JoinPath("/foo", "/bar")); EXPECT_EQ("/bar", JoinPath("", "/bar")); EXPECT_EQ("bar", JoinPath("", "bar")); EXPECT_EQ("/foo", JoinPath("/foo", "")); EXPECT_EQ("/foo/bar/baz/blah/blink/biz", JoinPath("/foo/bar/baz/", "/blah/blink/biz")); EXPECT_EQ("/foo/bar/baz/blah", JoinPath("/foo", "bar", "baz", "blah")); } TEST(PathTest, IsAbsolutePath) { EXPECT_FALSE(IsAbsolutePath("")); EXPECT_FALSE(IsAbsolutePath("../foo")); EXPECT_FALSE(IsAbsolutePath("foo")); EXPECT_FALSE(IsAbsolutePath("./foo")); EXPECT_FALSE(IsAbsolutePath("foo/bar/baz/")); EXPECT_TRUE(IsAbsolutePath("/foo")); EXPECT_TRUE(IsAbsolutePath("/foo/bar/../baz")); } TEST(PathTest, Dirname) { EXPECT_EQ("hdfs: Dirname("hdfs: EXPECT_EQ("/hello", Dirname("/hello/")); EXPECT_EQ("/", Dirname("/hello")); EXPECT_EQ("hello", Dirname("hello/world")); EXPECT_EQ("hello", Dirname("hello/")); EXPECT_EQ("", Dirname("world")); EXPECT_EQ("/", Dirname("/")); EXPECT_EQ("", Dirname("")); } TEST(PathTest, Basename) { EXPECT_EQ("", Basename("/hello/")); EXPECT_EQ("hello", Basename("/hello")); EXPECT_EQ("world", Basename("hello/world")); EXPECT_EQ("", Basename("hello/")); EXPECT_EQ("world", Basename("world")); EXPECT_EQ("", Basename("/")); EXPECT_EQ("", Basename("")); } TEST(PathTest, Extension) { EXPECT_EQ("gif", Extension("foo.gif")); EXPECT_EQ("", Extension("foo.")); EXPECT_EQ("", Extension("")); EXPECT_EQ("", Extension("/")); EXPECT_EQ("", Extension("foo")); EXPECT_EQ("", Extension("foo/")); EXPECT_EQ("gif", Extension("/a/path/to/foo.gif")); EXPECT_EQ("html", Extension("/a/path.bar/to/foo.html")); EXPECT_EQ("", Extension("/a/path.bar/to/foo")); EXPECT_EQ("baz", Extension("/a/path.bar/to/foo.bar.baz")); } TEST(PathTest, CleanPath) { EXPECT_EQ(".", CleanPath("")); EXPECT_EQ("x", CleanPath("x")); EXPECT_EQ("/a/b/c/d", CleanPath("/a/b/c/d")); EXPECT_EQ("/a/b/c/dtrue); tsl::setenv("TEST_WORKSPACE", "my/workspace", true); EXPECT_TRUE(GetTestWorkspaceDir(&dir)); EXPECT_EQ(dir, "/repo/src/my/workspace"); EXPECT_TRUE(GetTestWorkspaceDir(nullptr)); dir = kOriginalValue; tsl::unsetenv("TEST_SRCDIR"); tsl::setenv("TEST_WORKSPACE", "my/workspace", true); EXPECT_FALSE(GetTestWorkspaceDir(&dir)); EXPECT_EQ(dir, kOriginalValue); EXPECT_FALSE(GetTestWorkspaceDir(nullptr)); dir = kOriginalValue; tsl::setenv("TEST_SRCDIR", "/repo/src", true); tsl::unsetenv("TEST_WORKSPACE"); EXPECT_FALSE(GetTestWorkspaceDir(&dir)); EXPECT_EQ(dir, kOriginalValue); EXPECT_FALSE(GetTestWorkspaceDir(nullptr)); dir = kOriginalValue; tsl::unsetenv("TEST_SRCDIR"); tsl::unsetenv("TEST_WORKSPACE"); EXPECT_FALSE(GetTestWorkspaceDir(&dir)); EXPECT_EQ(dir, kOriginalValue); EXPECT_FALSE(GetTestWorkspaceDir(nullptr)); } TEST(PathTest, GetTestUndeclaredOutputsDir) { constexpr absl::string_view kOriginalValue = "original value"; std::string dir; dir = kOriginalValue; tsl::setenv("TEST_UNDECLARED_OUTPUTS_DIR", "/test/outputs", true); EXPECT_TRUE(GetTestUndeclaredOutputsDir(&dir)); EXPECT_EQ(dir, "/test/outputs"); EXPECT_TRUE(GetTestUndeclaredOutputsDir(nullptr)); dir = kOriginalValue; tsl::unsetenv("TEST_UNDECLARED_OUTPUTS_DIR"); EXPECT_FALSE(GetTestUndeclaredOutputsDir(&dir)); EXPECT_EQ(dir, kOriginalValue); EXPECT_FALSE(GetTestUndeclaredOutputsDir(nullptr)); } TEST(PathTest, ResolveTestPrefixesKeepsThePathUnchanged) { constexpr absl::string_view kOriginalValue = "original value"; std::string resolved_path; resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("", resolved_path)); EXPECT_EQ(resolved_path, ""); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("/", resolved_path)); EXPECT_EQ(resolved_path, "/"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("alpha/beta", resolved_path)); EXPECT_EQ(resolved_path, "alpha/beta"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("/alpha/beta", resolved_path)); EXPECT_EQ(resolved_path, "/alpha/beta"); } TEST(PathTest, ResolveTestPrefixesCanResolveTestWorkspace) { constexpr absl::string_view kOriginalValue = "original value"; std::string resolved_path; tsl::setenv("TEST_SRCDIR", "/repo/src", true); tsl::setenv("TEST_WORKSPACE", "my/workspace", true); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("TEST_WORKSPACE", resolved_path)); EXPECT_EQ(resolved_path, "/repo/src/my/workspace"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("TEST_WORKSPACE/", resolved_path)); EXPECT_EQ(resolved_path, "/repo/src/my/workspace/"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("TEST_WORKSPACE/a/b", resolved_path)); EXPECT_EQ(resolved_path, "/repo/src/my/workspace/a/b"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("TEST_WORKSPACEE", resolved_path)); EXPECT_EQ(resolved_path, "TEST_WORKSPACEE"); resolved_path = kOriginalValue; EXPECT_TRUE(ResolveTestPrefixes("/TEST_WORKSPACE", resolved_path)); EXPECT_EQ(resolved_path, "/TEST_WORKSPACE"); } TEST(PathTest, ResolveTestPrefixesCannotResolveTestWorkspace) { constexpr absl::string_view kOriginalValue = "original value"; std::string resolved_path; tsl::unsetenv("TEST_SRCDIR"); tsl::unsetenv("TEST_WORKSPACE"); resolved_path = kOriginalValue; EXPECT_FALSE(ResolveTestPrefixes("TEST_WORKSPACE", resolved_path)); EXPECT_EQ(resolved_path, kOriginalValue); } TEST(PathTest, ResolveTestPrefixesCanResolveTestUndeclaredOutputsDir) { constexpr absl::string_view kOriginalValue = "original value"; std::string resolved_path; tsl::setenv("TEST_UNDECLARED_OUTPUTS_DIR", "/test/outputs", true); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIR", resolved_path)); EXPECT_EQ(resolved_path, "/test/outputs"); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIR/", resolved_path)); EXPECT_EQ(resolved_path, "/test/outputs/"); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIR/a/b", resolved_path)); EXPECT_EQ(resolved_path, "/test/outputs/a/b"); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIRR", resolved_path)); EXPECT_EQ(resolved_path, "TEST_UNDECLARED_OUTPUTS_DIRR"); resolved_path = kOriginalValue; EXPECT_TRUE( ResolveTestPrefixes("/TEST_UNDECLARED_OUTPUTS_DIR", resolved_path)); EXPECT_EQ(resolved_path, "/TEST_UNDECLARED_OUTPUTS_DIR"); } TEST(PathTest, ResolveTestPrefixesCannotResolveTestUndeclaredOutputsDir) { constexpr absl::string_view kOriginalValue = "original value"; std::string resolved_path; tsl::unsetenv("TEST_UNDECLARED_OUTPUTS_DIR"); resolved_path = kOriginalValue; EXPECT_FALSE( ResolveTestPrefixes("TEST_UNDECLARED_OUTPUTS_DIR", resolved_path)); EXPECT_EQ(resolved_path, kOriginalValue); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/path.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/path_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9906f79c-113e-4101-9d0a-a3ebc20508da
cpp
tensorflow/tensorflow
sparse_to_dense_op
tensorflow/compiler/tf2xla/kernels/sparse_to_dense_op.cc
tensorflow/core/kernels/sparse_to_dense_op_test.cc
#include <vector> #include "tensorflow/compiler/tf2xla/lib/scatter.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/value_inference.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/errors.h" namespace tensorflow { namespace { class SparseToDenseOp : public XlaOpKernel { public: explicit SparseToDenseOp(OpKernelConstruction* context) : XlaOpKernel(context) {} void Compile(XlaOpKernelContext* context) override { const TensorShape indices_shape = context->InputShape(0); OP_REQUIRES(context, indices_shape.dims() <= 2, errors::InvalidArgument( "sparse_indices should be a scalar, vector, or matrix, " "got shape ", indices_shape.DebugString())); const int64_t num_elems = indices_shape.dims() > 0 ? indices_shape.dim_size(0) : 1; const int64_t num_dims = indices_shape.dims() > 1 ? indices_shape.dim_size(1) : 1; TensorShape output_shape; OP_REQUIRES_OK(context, context->ConstantInputAsShape( 1, &output_shape, xla::ValueInferenceMode::kUpperBound)); OP_REQUIRES(context, output_shape.dims() == num_dims, errors::InvalidArgument( "output_shape has incorrect number of elements: ", output_shape.num_elements(), " should be: ", num_dims)); const TensorShape sparse_values_shape = context->InputShape(2); const int64_t num_values = sparse_values_shape.num_elements(); OP_REQUIRES( context, sparse_values_shape.dims() == 0 || (sparse_values_shape.dims() == 1 && num_values == num_elems), errors::InvalidArgument("sparse_values has incorrect shape ", sparse_values_shape.DebugString(), ", should be [] or [", num_elems, "]")); const TensorShape default_value_shape = context->InputShape(3); OP_REQUIRES(context, TensorShapeUtils::IsScalar(default_value_shape), errors::InvalidArgument("default_value should be a scalar.")); xla::XlaOp indices = context->Input(0); xla::XlaOp sparse_values = context->Input(2); xla::XlaOp default_value = context->Input(3); if (sparse_values_shape.dims() == 0 && num_elems != 1) { sparse_values = Broadcast(sparse_values, {num_elems}); } xla::XlaBuilder* builder = context->builder(); auto buffer = Broadcast(default_value, output_shape.dim_sizes()); std::vector<bool> dynamic_dims; OP_REQUIRES_OK( context, context->ResolveInputDynamismIntoPredVector(1, &dynamic_dims)); for (int64_t i = 0; i < dynamic_dims.size(); ++i) { if (dynamic_dims[i]) { auto dynamic_dim_size = xla::Slice(context->Input(1), {i}, {i + 1}, {1}); dynamic_dim_size = xla::Reshape(dynamic_dim_size, {}); dynamic_dim_size = xla::ConvertElementType(dynamic_dim_size, xla::S32); buffer = xla::SetDimensionSize(buffer, dynamic_dim_size, i); } } auto result = XlaScatter(buffer, sparse_values, indices, indices_shape.dims() > 1, false, {}, builder); context->SetOutput(0, builder->ReportErrorOrReturn(result)); } }; REGISTER_XLA_OP(Name("SparseToDense").CompileTimeConstantInput("output_shape"), SparseToDenseOp); } }
#include <functional> #include <vector> #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { class SparseToDenseTest : public OpsTestBase { protected: void MakeOp(int dim, DataType index_type, DataType value_type) { TF_ASSERT_OK(NodeDefBuilder("sparsetodense", "SparseToDense") .Input(FakeInput(index_type)) .Input(FakeInput(index_type)) .Input(FakeInput(value_type)) .Input(FakeInput(value_type)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(SparseToDenseTest, OneD_OneValue) { MakeOp(1, DT_INT32, DT_FLOAT); AddInputFromArray<int32>(TensorShape({3}), {1, 3, 4}); AddInputFromArray<int32>(TensorShape({1}), {5}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<float>(TensorShape({}), {-2}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, {5}); test::FillValues<float>(&expected, {-2, 2, -2, 2, 2}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(SparseToDenseTest, OneD_OneValue_int64_double) { MakeOp(1, DT_INT64, DT_DOUBLE); AddInputFromArray<int64_t>(TensorShape({3}), {1, 3, 4}); AddInputFromArray<int64_t>(TensorShape({1}), {5}); AddInputFromArray<double>(TensorShape({}), {2}); AddInputFromArray<double>(TensorShape({}), {-2}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, {5}); test::FillValues<double>(&expected, {-2, 2, -2, 2, 2}); test::ExpectTensorEqual<double>(expected, *GetOutput(0)); } TEST_F(SparseToDenseTest, OneD_MultValues) { MakeOp(1, DT_INT32, DT_FLOAT); AddInputFromArray<int32>({3}, {1, 3, 4}); AddInputFromArray<int32>({1}, {5}); AddInputFromArray<float>({3}, {3, 4, 5}); AddInputFromArray<float>({}, {-2}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, {5}); test::FillValues<float>(&expected, {-2, 3, -2, 4, 5}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(SparseToDenseTest, TwoD_OneValue) { MakeOp(2, DT_INT32, DT_FLOAT); AddInputFromArray<int32>(TensorShape({3, 2}), {0, 1, 0, 2, 2, 3}); AddInputFromArray<int32>(TensorShape({2}), {3, 4}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<float>(TensorShape({}), {-2}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, {3, 4}); expected.flat<float>().setConstant(-2); expected.tensor<float, 2>()(0, 1) = 2; expected.tensor<float, 2>()(0, 2) = 2; expected.tensor<float, 2>()(2, 3) = 2; test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(SparseToDenseTest, TwoD_MultValues) { MakeOp(2, DT_INT32, DT_FLOAT); AddInputFromArray<int32>(TensorShape({3, 2}), {0, 1, 0, 2, 2, 3}); AddInputFromArray<int32>(TensorShape({2}), {3, 4}); AddInputFromArray<float>(TensorShape({3}), {3, 4, 5}); AddInputFromArray<float>(TensorShape({}), {-2}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, {3, 4}); expected.flat<float>().setConstant(-2); expected.tensor<float, 2>()(0, 1) = 3; expected.tensor<float, 2>()(0, 2) = 4; expected.tensor<float, 2>()(2, 3) = 5; test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(SparseToDenseTest, ThreeD_OneValue) { MakeOp(3, DT_INT32, DT_FLOAT); AddInputFromArray<int32>(TensorShape({3, 3}), {0, 1, 1, 0, 2, 0, 2, 3, 1}); AddInputFromArray<int32>(TensorShape({3}), {3, 4, 2}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<float>(TensorShape({}), {-2}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, {3, 4, 2}); expected.flat<float>().setConstant(-2); expected.tensor<float, 3>()(0, 1, 1) = 2; expected.tensor<float, 3>()(0, 2, 0) = 2; expected.tensor<float, 3>()(2, 3, 1) = 2; test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(SparseToDenseTest, ThreeD_MultValues) { MakeOp(3, DT_INT32, DT_FLOAT); AddInputFromArray<int32>(TensorShape({3, 3}), {0, 1, 1, 0, 2, 0, 2, 3, 1}); AddInputFromArray<int32>(TensorShape({3}), {3, 4, 2}); AddInputFromArray<float>(TensorShape({3}), {3, 4, 5}); AddInputFromArray<float>(TensorShape({}), {-2}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, {3, 4, 2}); expected.flat<float>().setConstant(-2); expected.tensor<float, 3>()(0, 1, 1) = 3; expected.tensor<float, 3>()(0, 2, 0) = 4; expected.tensor<float, 3>()(2, 3, 1) = 5; test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } } static void BM_SparseToDense(::testing::benchmark::State& state) { const int NDIM = state.range(0); const int N = state.range(1); const int IndexDim = (NDIM == 1) ? 0 : 1; std::unique_ptr<Device> device( DeviceFactory::NewDevice("CPU", {}, "/job:a/replica:0/task:0")); absl::InlinedVector<TensorValue, 4UL> inputs; Tensor output_shape(DT_INT32, TensorShape({NDIM})); Tensor sparse_indices(DT_INT64, TensorShape({N, NDIM})); Tensor sparse_values(DT_FLOAT, TensorShape({N})); Tensor default_value(DT_FLOAT, TensorShape({})); auto output_shape_t = output_shape.vec<int32>(); for (int d = 0; d < NDIM; ++d) { output_shape_t(d) = (d == IndexDim) ? N : 3; } auto sparse_indices_t = sparse_indices.matrix<int64_t>(); for (int n = 0; n < N; ++n) { for (int d = 0; d < NDIM; ++d) sparse_indices_t(n, d) = (d == IndexDim) ? n : 0; } for (auto* ptr : {&sparse_indices, &output_shape, &sparse_values, &default_value}) { inputs.push_back({nullptr, ptr}); } NodeDef sparse_node_def; TF_CHECK_OK(NodeDefBuilder("sparsetodense", "SparseToDense") .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Finalize(&sparse_node_def)); Status status; std::unique_ptr<OpKernel> op(CreateOpKernel(DEVICE_CPU, device.get(), cpu_allocator(), sparse_node_def, TF_GRAPH_DEF_VERSION, &status)); OpKernelContext::Params params; params.device = device.get(); params.frame_iter = FrameAndIter(0, 0); params.inputs = inputs; params.op_kernel = op.get(); std::vector<AllocatorAttributes> attrs; test::SetOutputAttrs(&params, &attrs); std::unique_ptr<OpKernelContext> sparse_context(new OpKernelContext(&params)); op->Compute(sparse_context.get()); for (auto s : state) { delete sparse_context->release_output(0).tensor; op->Compute(sparse_context.get()); TF_ASSERT_OK(sparse_context->status()); } int64_t bytes_per_iter = static_cast<int64_t>((N + N * NDIM) * sizeof(float)); state.SetBytesProcessed(bytes_per_iter * state.iterations()); } BENCHMARK(BM_SparseToDense) ->ArgPair(1, 10) ->ArgPair(1, 100) ->ArgPair(1, 1000) ->ArgPair(1, 10000) ->ArgPair(2, 10) ->ArgPair(2, 100) ->ArgPair(2, 1000) ->ArgPair(2, 10000) ->ArgPair(3, 10) ->ArgPair(3, 100) ->ArgPair(3, 1000) ->ArgPair(3, 10000) ->ArgPair(5, 10) ->ArgPair(5, 100) ->ArgPair(5, 1000) ->ArgPair(5, 10000); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/sparse_to_dense_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/sparse_to_dense_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fe2c227f-65c5-4a70-b35a-da2c942eea18
cpp
tensorflow/tensorflow
colocation
tensorflow/core/grappler/utils/colocation.cc
tensorflow/core/grappler/utils/colocation_test.cc
#include "tensorflow/core/grappler/utils/colocation.h" #include <cstring> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { namespace { string GetColocationGroupRoot(std::unordered_map<string, string>* map, const string& node_name) { if (map->find(node_name) == map->end()) { map->insert({node_name, node_name}); return node_name; } std::list<string> nodes_to_root; string cur = node_name; while ((*map)[cur] != cur) { nodes_to_root.push_back(cur); cur = (*map)[cur]; } if (!nodes_to_root.empty()) { nodes_to_root.pop_back(); for (const string& node : nodes_to_root) { (*map)[node] = cur; } } return cur; } void MergeColocationGroup(std::unordered_map<string, string>* map, const string& left, const string& right) { if (map->find(left) == map->end() || map->find(right) == map->end()) { return; } if (left != right) { map->at(right) = left; } } } void ReassignColocation(GraphDef* graph) { constexpr char kClassAttr[] = "_class"; constexpr char kColocPrefix[] = "loc:@"; std::unordered_map<string, string> coloc_groups; NodeMap node_map(graph); for (const auto& node : graph->node()) { auto iter = node.attr().find(kClassAttr); if (iter != node.attr().end() && iter->second.has_list()) { for (const auto& str : iter->second.list().s()) { size_t pos = str.find(kColocPrefix); if (pos == 0) { string colocate_node = str.substr(pos + strlen(kColocPrefix)); MergeColocationGroup( &coloc_groups, GetColocationGroupRoot(&coloc_groups, node.name()), GetColocationGroupRoot(&coloc_groups, colocate_node)); } } } } for (const auto& pair : coloc_groups) { if (pair.first != pair.second) { NodeDef* node = node_map.GetNode(pair.first); if (node) { AttrValue new_value; new_value.mutable_list()->add_s( kColocPrefix + GetColocationGroupRoot(&coloc_groups, pair.first)); node->mutable_attr()->erase(kClassAttr); node->mutable_attr()->insert({kClassAttr, new_value}); } } else { NodeDef* node = node_map.GetNode(pair.first); if (node) { node->mutable_attr()->erase(kClassAttr); } } } } } }
#include "tensorflow/core/grappler/utils/colocation.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { class ColocationTest : public ::testing::Test {}; bool VerifyNodeHasColocation(const NodeDef& ndef, const string& coloc) { if (ndef.attr().empty()) { return false; } if (ndef.attr().find("_class") == ndef.attr().end()) { return false; } return ndef.attr().at("_class").list().s(0) == coloc; } TEST(ColocationTest, ReassignColocation_SingleNode) { NodeDef ndef; const Status status = NodeDefBuilder("A", "Const").Attr("_class", {"loc:@B"}).Finalize(&ndef); TF_EXPECT_OK(status); GraphDef gdef = test::function::GDef({ndef}); EXPECT_EQ(1, gdef.node_size()); EXPECT_EQ(1, gdef.node(0).attr_size()); ReassignColocation(&gdef); EXPECT_EQ(1, gdef.node_size()); EXPECT_EQ(0, gdef.node(0).attr_size()); } TEST(ColocationTest, ReassignColocation_MultiNode_SingleGroup) { NodeDef ndef_a, ndef_b, ndef_c, ndef_d, ndef_e; Status status = NodeDefBuilder("A", "Const").Attr("_class", {"loc:@X"}).Finalize(&ndef_a); TF_EXPECT_OK(status); status = NodeDefBuilder("B", "Const").Attr("_class", {"loc:@X"}).Finalize(&ndef_b); TF_EXPECT_OK(status); status = NodeDefBuilder("C", "Const").Attr("_class", {"loc:@X"}).Finalize(&ndef_c); TF_EXPECT_OK(status); status = NodeDefBuilder("D", "Const").Attr("_class", {"loc:@C"}).Finalize(&ndef_d); TF_EXPECT_OK(status); status = NodeDefBuilder("E", "Const").Attr("_class", {"loc:@D"}).Finalize(&ndef_e); TF_EXPECT_OK(status); GraphDef gdef = test::function::GDef({ndef_a, ndef_b, ndef_c, ndef_d, ndef_e}); EXPECT_EQ(5, gdef.node_size()); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(0), "loc:@X")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(1), "loc:@X")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(2), "loc:@X")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(3), "loc:@C")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(4), "loc:@D")); ReassignColocation(&gdef); EXPECT_EQ(5, gdef.node_size()); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(0), "loc:@E")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(1), "loc:@E")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(2), "loc:@E")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(3), "loc:@E")); EXPECT_EQ(0, gdef.node(4).attr_size()); } TEST(ColocationTest, ReassignColocation_MultiNode_MultiGroup) { NodeDef ndef_a, ndef_b, ndef_c, ndef_d, ndef_e, ndef_u, ndef_v; Status status = NodeDefBuilder("A", "Const").Attr("_class", {"loc:@X"}).Finalize(&ndef_a); TF_EXPECT_OK(status); status = NodeDefBuilder("B", "Const").Attr("_class", {"loc:@X"}).Finalize(&ndef_b); TF_EXPECT_OK(status); status = NodeDefBuilder("C", "Const").Attr("_class", {"loc:@X"}).Finalize(&ndef_c); TF_EXPECT_OK(status); status = NodeDefBuilder("D", "Const").Attr("_class", {"loc:@C"}).Finalize(&ndef_d); TF_EXPECT_OK(status); status = NodeDefBuilder("E", "Const").Attr("_class", {"loc:@D"}).Finalize(&ndef_e); TF_EXPECT_OK(status); status = NodeDefBuilder("U", "Const").Attr("_class", {"loc:@W"}).Finalize(&ndef_u); TF_EXPECT_OK(status); status = NodeDefBuilder("V", "Const").Attr("_class", {"loc:@W"}).Finalize(&ndef_v); TF_EXPECT_OK(status); GraphDef gdef = test::function::GDef( {ndef_a, ndef_b, ndef_c, ndef_d, ndef_e, ndef_u, ndef_v}); EXPECT_EQ(7, gdef.node_size()); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(0), "loc:@X")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(1), "loc:@X")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(2), "loc:@X")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(3), "loc:@C")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(4), "loc:@D")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(5), "loc:@W")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(6), "loc:@W")); ReassignColocation(&gdef); EXPECT_EQ(7, gdef.node_size()); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(0), "loc:@E")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(1), "loc:@E")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(2), "loc:@E")); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(3), "loc:@E")); EXPECT_EQ(0, gdef.node(4).attr_size()); EXPECT_TRUE(VerifyNodeHasColocation(gdef.node(5), "loc:@V")); EXPECT_EQ(0, gdef.node(6).attr_size()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/colocation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/colocation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce08a832-4904-4f05-8fe8-fe63853de4ff
cpp
google/tensorstore
elementwise_function
tensorstore/internal/elementwise_function.h
tensorstore/internal/elementwise_function_test.cc
#ifndef TENSORSTORE_UTIL_ELEMENTWISE_FUNCTION_H_ #define TENSORSTORE_UTIL_ELEMENTWISE_FUNCTION_H_ #include <array> #include <cstddef> #include <type_traits> #include <utility> #include "absl/meta/type_traits.h" #include "tensorstore/index.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/internal/void_wrapper.h" #include "tensorstore/util/byte_strided_pointer.h" namespace tensorstore { namespace internal { enum class IterationBufferKind { kContiguous, kStrided, kIndexed, }; constexpr size_t kNumIterationBufferKinds = 3; struct IterationBufferPointer { IterationBufferPointer() = default; explicit IterationBufferPointer(ByteStridedPointer<void> pointer, Index outer_byte_stride, Index inner_byte_stride) : pointer(pointer), outer_byte_stride(outer_byte_stride), inner_byte_stride(inner_byte_stride) {} explicit IterationBufferPointer(ByteStridedPointer<void> pointer, Index byte_offsets_outer_stride, const Index* byte_offsets) : pointer(pointer), byte_offsets_outer_stride(byte_offsets_outer_stride), byte_offsets(byte_offsets) {} ByteStridedPointer<void> pointer; union { Index outer_byte_stride; Index byte_offsets_outer_stride; }; union { Index inner_byte_stride; const Index* byte_offsets; }; void AddElementOffset(IterationBufferKind kind, Index outer_offset, Index inner_offset) { if (kind == IterationBufferKind::kIndexed) { byte_offsets += inner_offset; byte_offsets += wrap_on_overflow::Multiply(byte_offsets_outer_stride, outer_offset); } else { pointer += wrap_on_overflow::Multiply(inner_byte_stride, inner_offset); pointer += wrap_on_overflow::Multiply(outer_byte_stride, outer_offset); } } }; template <IterationBufferKind BufferKind> struct IterationBufferAccessor; template <> struct IterationBufferAccessor<IterationBufferKind::kStrided> { constexpr static IterationBufferKind buffer_kind = IterationBufferKind::kStrided; template <typename Element> static Element* GetPointerAtPosition(IterationBufferPointer ptr, Index outer, Index inner) { return static_cast<Element*>( ptr.pointer + internal::wrap_on_overflow::Multiply(ptr.outer_byte_stride, outer) + internal::wrap_on_overflow::Multiply(ptr.inner_byte_stride, inner)); } }; template <> struct IterationBufferAccessor<IterationBufferKind::kContiguous> { constexpr static IterationBufferKind buffer_kind = IterationBufferKind::kContiguous; template <typename Element> static Element* GetPointerAtPosition(IterationBufferPointer ptr, Index outer, Index inner) { return static_cast<Element*>( ptr.pointer + internal::wrap_on_overflow::Multiply(ptr.outer_byte_stride, outer) + internal::wrap_on_overflow::Multiply( static_cast<Index>(sizeof(Element)), inner)); } }; template <> struct IterationBufferAccessor<IterationBufferKind::kIndexed> { constexpr static IterationBufferKind buffer_kind = IterationBufferKind::kIndexed; template <typename Element> static Element* GetPointerAtPosition(IterationBufferPointer ptr, Index outer, Index inner) { return static_cast<Element*>( ptr.pointer + ptr.byte_offsets[internal::wrap_on_overflow::Multiply( ptr.byte_offsets_outer_stride, outer) + inner]); } }; template <size_t Arity, typename... ExtraArg> class ElementwiseFunction; using IterationBufferShape = std::array<Index, 2>; } namespace internal_elementwise_function { template <typename SequenceType, typename... ExtraArg> struct ElementwiseFunctionPointerHelper; template <size_t I> using IterationBufferPointerHelper = internal::IterationBufferPointer; template <size_t... Is, typename... ExtraArg> struct ElementwiseFunctionPointerHelper<std::index_sequence<Is...>, ExtraArg...> { using type = bool (*)(void*, internal::IterationBufferShape, IterationBufferPointerHelper<Is>..., ExtraArg...); }; template <typename, typename SFINAE, typename...> constexpr inline bool HasApplyContiguous = false; template <typename Func, typename... Element, typename... ExtraArg> constexpr inline bool HasApplyContiguous< Func(Element...), std::void_t<decltype(std::declval<Func>().ApplyContiguous( std::declval<Index>(), std::declval<Element*>()..., std::declval<ExtraArg>()...))>, ExtraArg...> = true; template <typename, typename...> struct SimpleLoopTemplate; template <typename T, typename Func> struct Stateless { static_assert(std::is_empty_v<Func>); using type = Func; using ContextType = T; }; template <typename T> struct StatelessTraits { constexpr static bool is_stateless = false; using type = T; }; template <typename T, typename Func> struct StatelessTraits<Stateless<T, Func>> { constexpr static bool is_stateless = true; using type = Func; }; template <typename Func, typename... Element, typename... ExtraArg> struct SimpleLoopTemplate<Func(Element...), ExtraArg...> { using ElementwiseFunctionType = internal::ElementwiseFunction<sizeof...(Element), ExtraArg...>; template <typename ArrayAccessor> static constexpr auto GetLoopFn() { if constexpr (ArrayAccessor::buffer_kind == internal::IterationBufferKind::kContiguous && HasApplyContiguous<Func(Element...), void, ExtraArg...>) { return &FastLoop<ArrayAccessor>; } else { return &Loop<ArrayAccessor>; } } template <typename ArrayAccessor> static bool FastLoop( void* context, internal::IterationBufferShape shape, internal::FirstType<internal::IterationBufferPointer, Element>... pointer, ExtraArg... extra_arg) { using Traits = StatelessTraits<Func>; using FuncType = typename Traits::type; static_assert(ArrayAccessor::buffer_kind == internal::IterationBufferKind::kContiguous); static_assert( HasApplyContiguous<Func(Element...), void, ExtraArg...>); internal::PossiblyEmptyObjectGetter<FuncType> func_helper; FuncType& func = func_helper.get(static_cast<FuncType*>(context)); for (Index outer = 0; outer < shape[0]; ++outer) { if constexpr (StatelessTraits<Func>::is_stateless) { if (!func.ApplyContiguous( *static_cast<typename Func::ContextType*>(context), shape[1], ArrayAccessor::template GetPointerAtPosition<Element>( pointer, outer, 0)..., extra_arg...)) { return false; } } else { if (!func.ApplyContiguous( shape[1], ArrayAccessor::template GetPointerAtPosition<Element>( pointer, outer, 0)..., extra_arg...)) { return false; } } } return true; } template <typename ArrayAccessor> static bool Loop( void* context, internal::IterationBufferShape shape, internal::FirstType<internal::IterationBufferPointer, Element>... pointer, ExtraArg... extra_arg) { static_assert( !(ArrayAccessor::buffer_kind == internal::IterationBufferKind::kContiguous && HasApplyContiguous<Func(Element...), void, ExtraArg...>)); using Traits = StatelessTraits<Func>; using FuncType = typename Traits::type; internal::PossiblyEmptyObjectGetter<FuncType> func_helper; FuncType& func = func_helper.get(static_cast<FuncType*>(context)); for (Index outer = 0; outer < shape[0]; ++outer) { for (Index inner = 0; inner < shape[1]; ++inner) { if constexpr (StatelessTraits<Func>::is_stateless) { if (!static_cast<bool>(internal::Void::CallAndWrap( func, *static_cast<typename Func::ContextType*>(context), ArrayAccessor::template GetPointerAtPosition<Element>( pointer, outer, inner)..., extra_arg...))) { return false; } } else { if (!static_cast<bool>(internal::Void::CallAndWrap( func, ArrayAccessor::template GetPointerAtPosition<Element>( pointer, outer, inner)..., extra_arg...))) { return false; } } } } return true; } }; } namespace internal { template <size_t Arity, typename... ExtraArg> using SpecializedElementwiseFunctionPointer = typename internal_elementwise_function::ElementwiseFunctionPointerHelper< std::make_index_sequence<Arity>, ExtraArg...>::type; template <size_t Arity, typename... ExtraArg> struct ElementwiseClosure { using Function = ElementwiseFunction<Arity, ExtraArg...>; constexpr static size_t arity = Arity; const Function* function; void* context; }; template <size_t Arity, typename... ExtraArg> class ElementwiseFunction { public: constexpr static size_t arity = Arity; using Closure = ElementwiseClosure<Arity, ExtraArg...>; using SpecializedFunctionPointer = SpecializedElementwiseFunctionPointer<Arity, ExtraArg...>; constexpr ElementwiseFunction() = default; template <typename LoopTemplate, typename = decltype(LoopTemplate::template GetLoopFn< IterationBufferAccessor< IterationBufferKind::kContiguous>>())> constexpr explicit ElementwiseFunction(LoopTemplate) : functions_{ LoopTemplate::template GetLoopFn< IterationBufferAccessor<IterationBufferKind::kContiguous>>(), LoopTemplate::template GetLoopFn< IterationBufferAccessor<IterationBufferKind::kStrided>>(), LoopTemplate::template GetLoopFn< IterationBufferAccessor<IterationBufferKind::kIndexed>>()} {} constexpr SpecializedFunctionPointer operator[]( IterationBufferKind buffer_kind) const { return functions_[static_cast<size_t>(buffer_kind)]; } constexpr SpecializedFunctionPointer& operator[]( IterationBufferKind buffer_kind) { return functions_[static_cast<size_t>(buffer_kind)]; } private: SpecializedFunctionPointer functions_[kNumIterationBufferKinds]; }; template <typename LoopTemplate> struct GetElementwiseFunction { using ElementwiseFunctionType = typename LoopTemplate::ElementwiseFunctionType; constexpr static ElementwiseFunctionType function{LoopTemplate{}}; constexpr operator const ElementwiseFunctionType*() const { return &function; } constexpr operator ElementwiseFunctionType() const { return function; } }; template <typename LoopTemplate> constexpr typename LoopTemplate::ElementwiseFunctionType GetElementwiseFunction<LoopTemplate>::function; template <typename, typename...> struct SimpleElementwiseFunction; template <typename Func, typename... Element, typename... ExtraArg> struct SimpleElementwiseFunction<Func(Element...), ExtraArg...> : public GetElementwiseFunction< internal_elementwise_function::SimpleLoopTemplate< std::remove_reference_t<Func>(Element...), ExtraArg...>> { using ElementwiseFunctionType = internal::ElementwiseFunction<sizeof...(Element), ExtraArg...>; using ClosureType = internal::ElementwiseClosure<sizeof...(Element), ExtraArg...>; constexpr static ClosureType Closure(std::remove_reference_t<Func>* func) { return ClosureType{SimpleElementwiseFunction{}, const_cast<absl::remove_cvref_t<Func>*>(func)}; } template <int&... ExplicitArgumentBarrier, std::enable_if_t< (sizeof...(ExplicitArgumentBarrier) == 0 && std::is_empty<absl::remove_cvref_t<Func>>::value)>* = nullptr> constexpr operator ClosureType() const { return {SimpleElementwiseFunction{}, nullptr}; } }; } namespace internal_elementwise_function { template <size_t Arity, typename... ExtraArg, typename Pointers, size_t... Is> inline bool InvokeElementwiseFunctionImpl( std::index_sequence<Is...>, internal::SpecializedElementwiseFunctionPointer<Arity, ExtraArg...> function, void* context, internal::IterationBufferShape shape, const Pointers& pointers, ExtraArg... extra_arg) { using std::get; return function(context, shape, get<Is>(pointers)..., std::forward<ExtraArg>(extra_arg)...); } } namespace internal { template <size_t Arity, typename... ExtraArg, typename Pointers> inline bool InvokeElementwiseClosure( ElementwiseClosure<Arity, ExtraArg...> closure, IterationBufferKind buffer_kind, internal::IterationBufferShape shape, const Pointers& pointers, internal::type_identity_t<ExtraArg>... extra_arg) { return internal_elementwise_function::InvokeElementwiseFunctionImpl< Arity, ExtraArg...>( std::make_index_sequence<Arity>{}, (*closure.function)[buffer_kind], closure.context, shape, pointers, std::forward<ExtraArg>(extra_arg)...); } template <size_t Arity, typename... ExtraArg, typename Pointers> inline bool InvokeElementwiseFunction( SpecializedElementwiseFunctionPointer<Arity, ExtraArg...> function, void* context, internal::IterationBufferShape shape, const Pointers& pointers, ExtraArg... extra_arg) { return internal_elementwise_function::InvokeElementwiseFunctionImpl< Arity, ExtraArg...>(std::make_index_sequence<Arity>{}, function, context, shape, pointers, std::forward<ExtraArg>(extra_arg)...); } } } #endif
#include "tensorstore/internal/elementwise_function.h" #include <functional> #include <limits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/attributes.h" #include "tensorstore/index.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/util/byte_strided_pointer.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::Index; using ::tensorstore::internal::ElementwiseClosure; using ::tensorstore::internal::ElementwiseFunction; using ::tensorstore::internal::IterationBufferAccessor; using ::tensorstore::internal::IterationBufferKind; using ::tensorstore::internal::IterationBufferPointer; using ::tensorstore::internal::SimpleElementwiseFunction; using ContiguousAccessor = IterationBufferAccessor<IterationBufferKind::kContiguous>; using StridedAccessor = IterationBufferAccessor<IterationBufferKind::kStrided>; using OffsetArrayAccessor = IterationBufferAccessor<IterationBufferKind::kIndexed>; TEST(ContiguousAccessorTest, Basic) { int arr[3] = {1, 2, 3}; IterationBufferPointer ptr{&arr[0], Index(0), Index(0)}; EXPECT_EQ(&arr[0], ContiguousAccessor::GetPointerAtPosition<int>(ptr, 0, 0)); EXPECT_EQ(&arr[1], ContiguousAccessor::GetPointerAtPosition<int>(ptr, 0, 1)); } TEST(ContiguousAccessorTest, WrapOnOverflow) { int arr[3] = {1, 2, 3}; IterationBufferPointer ptr{&arr[0], Index(0), Index(0)}; const Index base_index = std::numeric_limits<Index>::max() - 3; ptr.pointer -= tensorstore::internal::wrap_on_overflow::Multiply( base_index, static_cast<Index>(sizeof(int))); EXPECT_EQ(&arr[0], ContiguousAccessor::GetPointerAtPosition<int>( ptr, 0, base_index + 0)); EXPECT_EQ(&arr[1], ContiguousAccessor::GetPointerAtPosition<int>( ptr, 0, base_index + 1)); } TEST(StridedAccessorTest, Basic) { int arr[3] = {1, 2, 3}; IterationBufferPointer ptr{&arr[0], Index(0), sizeof(int) * 2}; EXPECT_EQ(&arr[0], StridedAccessor::GetPointerAtPosition<int>(ptr, 0, 0)); EXPECT_EQ(&arr[2], StridedAccessor::GetPointerAtPosition<int>(ptr, 0, 1)); } TEST(StridedAccessorTest, WrapOnOverflow) { int arr[3] = {1, 2, 3}; IterationBufferPointer ptr{&arr[0], Index(0), sizeof(int) * 2}; const Index base_index = std::numeric_limits<Index>::max() - 3; ptr.pointer -= tensorstore::internal::wrap_on_overflow::Multiply( base_index, ptr.inner_byte_stride); EXPECT_EQ(&arr[0], StridedAccessor::GetPointerAtPosition<int>(ptr, 0, base_index + 0)); EXPECT_EQ(&arr[2], StridedAccessor::GetPointerAtPosition<int>(ptr, 0, base_index + 1)); } TEST(OffsetArrayAccessorTest, Basic) { int arr[3] = {1, 2, 3}; Index offsets[] = {0, sizeof(int) * 2}; IterationBufferPointer ptr{&arr[0], Index(0), &offsets[0]}; EXPECT_EQ(&arr[0], OffsetArrayAccessor::GetPointerAtPosition<int>(ptr, 0, 0)); EXPECT_EQ(&arr[2], OffsetArrayAccessor::GetPointerAtPosition<int>(ptr, 0, 1)); } TEST(OffsetArrayAccessorTest, WrapOnOverflow) { int arr[3] = {1, 2, 3}; const Index base_index = std::numeric_limits<Index>::max() - 100; Index offsets[] = {base_index + 0, base_index + sizeof(int) * 2}; IterationBufferPointer ptr{&arr[0], Index(0), &offsets[0]}; ptr.pointer -= base_index; EXPECT_EQ(&arr[0], OffsetArrayAccessor::GetPointerAtPosition<int>(ptr, 0, 0)); EXPECT_EQ(&arr[2], OffsetArrayAccessor::GetPointerAtPosition<int>(ptr, 0, 1)); } TEST(SimpleElementwiseFunctionTest, ArityOne) { struct AddOneB { AddOneB() = delete; bool operator()(int* x) const { if (*x > 0) return false; *x += 1; return true; } }; ElementwiseFunction<1> function = SimpleElementwiseFunction<AddOneB(int)>(); std::vector<int> arr{-5, -6, 1, 2}; EXPECT_TRUE(function[IterationBufferKind::kContiguous]( nullptr, {1, 2}, IterationBufferPointer{&arr[0], Index(0), sizeof(int)})); EXPECT_THAT(arr, ::testing::ElementsAre(-4, -5, 1, 2)); EXPECT_FALSE(function[IterationBufferKind::kStrided]( nullptr, {1, 2}, IterationBufferPointer{&arr[0], Index(0), sizeof(int) * 2})); EXPECT_THAT(arr, ::testing::ElementsAre(-3, -5, 1, 2)); Index offsets[] = {sizeof(int), sizeof(int)}; EXPECT_TRUE(function[IterationBufferKind::kIndexed]( nullptr, {1, 2}, IterationBufferPointer{&arr[0], Index(0), &offsets[0]})); EXPECT_THAT(arr, ::testing::ElementsAre(-3, -3, 1, 2)); } TEST(SimpleElementwiseFunctionTest, ArityOneCaptureLessLambda) { [[maybe_unused]] const auto add_one = [](int* x) { if (*x > 0) return false; *x += 1; return true; }; ElementwiseFunction<1> function = SimpleElementwiseFunction<decltype(add_one)(int)>(); std::vector<int> arr{-5, -6, 1, 2}; EXPECT_TRUE(function[IterationBufferKind::kContiguous]( nullptr, {1, 2}, IterationBufferPointer{&arr[0], Index(0), sizeof(int)})); EXPECT_THAT(arr, ::testing::ElementsAre(-4, -5, 1, 2)); } TEST(SimpleElementwiseFunctionTest, NonEmptyArityOne) { struct AddOneC { int value = 0; bool operator()(int* x) { ++value; if (*x > 0) return false; *x += 1; return true; } }; AddOneC add_one; ElementwiseClosure<1> closure = SimpleElementwiseFunction<AddOneC(int)>::Closure(&add_one); EXPECT_EQ(&add_one, closure.context); std::vector<int> arr{-5, -6, 1, 2}; EXPECT_TRUE((*closure.function)[IterationBufferKind::kContiguous]( closure.context, {1, 2}, IterationBufferPointer{&arr[0], Index(0), sizeof(int)})); EXPECT_THAT(arr, ::testing::ElementsAre(-4, -5, 1, 2)); EXPECT_EQ(2, add_one.value); } TEST(SimpleElementwiseFunctionTest, NonEmptyArityOneBind) { struct AddOneD { bool operator()(int* x, int* counter) { ++*counter; if (*x > 0) return false; *x += 1; return true; } }; int counter = 0; auto add_one = std::bind(AddOneD{}, std::placeholders::_1, &counter); ElementwiseClosure<1> closure = SimpleElementwiseFunction<decltype(add_one)(int)>::Closure(&add_one); std::vector<int> arr{-5, -6, 1, 2}; EXPECT_TRUE((*closure.function)[IterationBufferKind::kContiguous]( &add_one, {1, 2}, IterationBufferPointer{&arr[0], Index(0), sizeof(int)})); EXPECT_THAT(arr, ::testing::ElementsAre(-4, -5, 1, 2)); EXPECT_EQ(2, counter); } TEST(SimpleElementwiseFunctionTest, ArityTwo) { struct Convert { bool operator()(int* x, double* y) const { *x = static_cast<int>(*y); return (*x < 0); } }; ElementwiseFunction<2> function = SimpleElementwiseFunction<Convert(int, double)>(); std::vector<int> arr{0, 0, 0, 0}; std::vector<double> arr2{-3.5, -2.5, -1.5, 2.5}; EXPECT_TRUE(function[IterationBufferKind::kContiguous]( nullptr, {1, 2}, IterationBufferPointer{&arr[0], Index(0), sizeof(int)}, IterationBufferPointer{&arr2[0], Index(0), sizeof(double)})); EXPECT_THAT(arr, ::testing::ElementsAre(-3, -2, 0, 0)); EXPECT_TRUE(function[IterationBufferKind::kStrided]( nullptr, {1, 2}, IterationBufferPointer{&arr[0], Index(0), sizeof(int) * 2}, IterationBufferPointer{&arr2[0], Index(0), sizeof(double)})); EXPECT_THAT(arr, ::testing::ElementsAre(-3, -2, -2, 0)); Index offsets[] = {0, sizeof(int), 2 * sizeof(int)}; Index offsets2[] = {sizeof(double), sizeof(double) * 3, 0}; EXPECT_FALSE(function[IterationBufferKind::kIndexed]( nullptr, {1, 3}, IterationBufferPointer{&arr[0], Index(0), &offsets[0]}, IterationBufferPointer{&arr2[0], Index(0), &offsets2[0]})); EXPECT_THAT(arr, ::testing::ElementsAre(-2, 2, -2, 0)); } TEST(SimpleElementwiseFunctionTest, ArityOneExtraArgsIndexReturn) { struct AddOneA { bool operator()(int* x, int* sum) const { if (*x > 0) return false; *sum += *x; *x += 1; return true; } }; ElementwiseFunction<1, int*> function = SimpleElementwiseFunction<AddOneA(int), int*>(); std::vector<int> arr{-5, -6, 1, 2}; { int sum = 0; EXPECT_TRUE(function[IterationBufferKind::kContiguous]( nullptr, {1, 2}, IterationBufferPointer{&arr[0], Index(0), sizeof(int)}, &sum)); EXPECT_EQ(-11, sum); EXPECT_THAT(arr, ::testing::ElementsAre(-4, -5, 1, 2)); } { int sum = 0; EXPECT_FALSE(function[IterationBufferKind::kStrided]( nullptr, {1, 2}, IterationBufferPointer{&arr[0], Index(0), sizeof(int) * 2}, &sum)); EXPECT_THAT(arr, ::testing::ElementsAre(-3, -5, 1, 2)); EXPECT_EQ(-4, sum); } { int sum = 0; Index offsets[] = {sizeof(int), sizeof(int)}; EXPECT_TRUE(function[IterationBufferKind::kIndexed]( nullptr, {1, 2}, IterationBufferPointer{&arr[0], Index(0), &offsets[0]}, &sum)); EXPECT_THAT(arr, ::testing::ElementsAre(-3, -3, 1, 2)); EXPECT_EQ(-9, sum); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/elementwise_function.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/elementwise_function_test.cc
4f887a6430414cd6088e1743555015b10f116d50
de686d71-386c-4413-83f6-6378d7e0f65c
cpp
tensorflow/tensorflow
cpu_client
third_party/xla/xla/pjrt/cpu/cpu_client.cc
third_party/xla/xla/pjrt/cpu/cpu_client_test.cc
#include "xla/pjrt/cpu/cpu_client.h" #define EIGEN_USE_THREADS #include <algorithm> #include <cfenv> #include <cstddef> #include <cstdint> #include <cstring> #include <functional> #include <limits> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/dynamic_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "unsupported/Eigen/CXX11/Tensor" #include "mlir/IR/BuiltinOps.h" #include "xla/array.h" #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/backends/cpu/runtime/thunk_executor.h" #include "xla/client/executable_build_options.h" #include "xla/debug_options_flags.h" #include "xla/executable_run_options.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/pjrt/cpu/abstract_tfrt_cpu_buffer.h" #include "xla/pjrt/cpu/cpu_topology.h" #include "xla/pjrt/cpu/tracked_tfrt_cpu_device_buffer.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/semaphore.h" #include "xla/pjrt/transpose.h" #include "xla/pjrt/utils.h" #include "xla/service/buffer_assignment.h" #include "xla/service/compiler.h" #include "xla/service/computation_placer.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/cpu/cpu_compiler.h" #include "xla/service/cpu/cpu_event.h" #include "xla/service/cpu/cpu_executable.h" #include "xla/service/cpu/cpu_executable_run_options.h" #include "xla/service/cpu/cpu_runtime.h" #include "xla/service/cpu/cpu_xfeed.h" #include "xla/service/cpu/simple_orc_jit.h" #include "xla/service/custom_call_status.h" #include "xla/service/custom_call_status_internal.h" #include "xla/service/dump.h" #include "xla/service/executable.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_module_util.h" #include "xla/service/hlo_value.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/tsl/lib/strings/proto_serialization.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/casts.h" #include "tsl/platform/denormal.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/setround.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/connected_traceme.h" #include "tsl/profiler/lib/context_types.h" #include "tsl/profiler/lib/traceme.h" namespace xla { namespace { absl::StatusOr<std::unique_ptr<TfrtCpuBuffer>> AllocateDestinationBuffer( const Shape& on_device_shape, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events, TfrtCpuDevice* device, TfrtCpuClient* client) { TF_ASSIGN_OR_RETURN( std::unique_ptr<TrackedTfrtCpuDeviceBuffer> tracked_device_buffer, AbstractTfrtCpuBuffer::AllocateTrackedDeviceBuffer( on_device_shape, std::move(definition_events))); return std::make_unique<TfrtCpuBuffer>( on_device_shape, std::move(tracked_device_buffer), client, device, *device->default_memory_space()); } absl::StatusOr<std::unique_ptr<TfrtCpuBuffer>> AllocateDestinationBufferAndAvs( const Shape& shape, absl::InlinedVector<tsl::RCReference<tsl::AsyncValue>, 4>* avs, TfrtCpuDevice* device, TfrtCpuClient* client) { absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events; AbstractTfrtCpuBuffer::AllocateAvsAndEvents(shape, avs, &definition_events); return AllocateDestinationBuffer( shape, std::move(definition_events), tensorflow::down_cast<TfrtCpuDevice*>(device), client); } const char kCpuPlatformName[] = "cpu"; void EnqueueWork(tsl::thread::ThreadPool* pool, absl::AnyInvocable<void()> callee) { pool->Schedule([ptr = new absl::AnyInvocable<void()>(std::move(callee))]() { (*ptr)(); delete ptr; }); } void EnqueueWorkWhenReady( tsl::thread::ThreadPool* pool, absl::Span<const tsl::RCReference<tsl::AsyncValue>> values, absl::AnyInvocable<void()> callee) { RunWhenReady(values, [pool, callee = std::move(callee)]() mutable { EnqueueWork(pool, std::move(callee)); }); } class ThreadPoolAsyncWorkRunner : public AsyncWorkRunner { public: explicit ThreadPoolAsyncWorkRunner(tsl::thread::ThreadPool* pool) : pool_(pool) {} void Schedule(absl::AnyInvocable<void()> work) override { EnqueueWork(pool_, std::move(work)); } void ScheduleWhenReady( absl::Span<const tsl::RCReference<tsl::AsyncValue>> values, absl::AnyInvocable<void()> work) override { EnqueueWorkWhenReady(pool_, values, std::move(work)); } private: tsl::thread::ThreadPool* pool_; }; class TfrtCpuAsyncHostToDeviceTransferManager : public AbstractAsyncHostToHostMemoryTransferManager { public: static absl::StatusOr< std::unique_ptr<TfrtCpuAsyncHostToDeviceTransferManager>> Create(absl::Span<const Shape> shapes, TfrtCpuDevice* device, TfrtCpuClient* client) { absl::InlinedVector<std::unique_ptr<AbstractTfrtCpuBuffer>, 4> buffers; buffers.reserve(shapes.size()); absl::InlinedVector<tsl::RCReference<tsl::AsyncValue>, 4> avs; avs.reserve(shapes.size()); for (const auto& shape : shapes) { if (shape.IsTuple()) { return Unimplemented( "Tuples are not supported by " "TfrtCpuAsyncHostToDeviceTransferManager"); } absl::InlinedVector<tsl::RCReference<tsl::AsyncValue>, 4> local_avs; TF_ASSIGN_OR_RETURN(auto buffer, AllocateDestinationBufferAndAvs( shape, &local_avs, device, client)); CHECK_EQ(local_avs.size(), 1); avs.push_back(std::move(local_avs[0])); buffers.push_back(std::move(buffer)); } absl::InlinedVector<TrackedTfrtCpuDeviceBuffer*, 4> device_buffers; absl::InlinedVector<size_t, 4> buffer_sizes; absl::InlinedVector<int64_t, 4> buffer_transfers_in_flight; absl::InlinedVector<bool, 4> last_transfer_finished; TF_RETURN_IF_ERROR( AbstractAsyncHostToHostMemoryTransferManager:: PopulateAsyncTransferManagerData( buffers, device_buffers, buffer_sizes, buffer_transfers_in_flight, last_transfer_finished)); return absl::WrapUnique(new TfrtCpuAsyncHostToDeviceTransferManager( std::move(avs), std::move(buffers), std::move(device_buffers), std::move(buffer_sizes), std::move(buffer_transfers_in_flight), std::move(last_transfer_finished), client->async_work_runner(), device)); } PjRtDevice* device() const override { return device_; } private: TfrtCpuAsyncHostToDeviceTransferManager( absl::InlinedVector<tsl::RCReference<tsl::AsyncValue>, 4> avs, absl::InlinedVector<std::unique_ptr<AbstractTfrtCpuBuffer>, 4> buffers, absl::InlinedVector<TrackedTfrtCpuDeviceBuffer*, 4> device_buffers, absl::InlinedVector<size_t, 4> buffer_sizes, absl::InlinedVector<int64_t, 4> buffer_transfers_in_flight, absl::InlinedVector<bool, 4> last_transfer_finished, AsyncWorkRunner* async_work_runner, TfrtCpuDevice* device) : AbstractAsyncHostToHostMemoryTransferManager( std::move(avs), std::move(buffers), std::move(device_buffers), std::move(buffer_sizes), std::move(buffer_transfers_in_flight), std::move(last_transfer_finished), async_work_runner), device_(device) {} TfrtCpuDevice* device_; }; } TfrtCpuDeviceDescription::TfrtCpuDeviceDescription(int process_id, int local_device_id) : id_(PackCpuDeviceId(process_id, local_device_id)), process_index_(process_id), local_hardware_id_(local_device_id) { debug_string_ = absl::StrCat("TFRT_CPU_", id_.value()); to_string_ = absl::StrCat("CpuDevice(id=", id_.value(), ")"); } absl::string_view TfrtCpuDeviceDescription::device_kind() const { return kCpuPlatformName; } absl::string_view TfrtCpuDeviceDescription::DebugString() const { return debug_string_; } absl::string_view TfrtCpuDeviceDescription::ToString() const { return to_string_; } TfrtCpuTopologyDescription TfrtCpuTopologyDescription::Create( PjRtPlatformId platform_id, absl::string_view platform_name, absl::string_view platform_version, absl::Span<const std::unique_ptr<TfrtCpuDevice>> devices, absl::Span<const std::string> machine_attributes) { std::vector<CpuTopology::CpuDevice> cpu_devices; cpu_devices.reserve(devices.size()); for (auto& device : devices) { cpu_devices.push_back(CpuTopology::CpuDevice{ device->process_index(), device->local_hardware_id().value()}); } return TfrtCpuTopologyDescription(platform_id, platform_name, platform_version, cpu_devices, machine_attributes); } absl::StatusOr<Layout> TfrtCpuTopologyDescription::GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) const { Shape shape = ShapeUtil::MakeShape(element_type, dims); return LayoutUtil::GetWithDefaultLayout(shape).layout(); } absl::StatusOr<std::string> TfrtCpuTopologyDescription::Serialize() const { std::string result; if (!tsl::SerializeToStringDeterministic(cpu_topology_.ToProto(), &result)) { return absl::InternalError("Failed to serialize cpu_topology"); } return result; } std::vector<std::unique_ptr<const PjRtDeviceDescription>> TfrtCpuTopologyDescription::DeviceDescriptions() const { std::vector<std::unique_ptr<const PjRtDeviceDescription>> devices; devices.reserve(cpu_topology_.number_of_devices()); for (const CpuTopology::CpuDevice& device : cpu_topology_.devices()) { devices.push_back(std::make_unique<TfrtCpuDeviceDescription>( device.process_id, device.local_device_id)); } return devices; } TfrtCpuDevice::TfrtCpuDevice(int process_id, int local_device_id, int max_inflight_computations) : description_(process_id, local_device_id), max_inflight_computations_semaphore_( max_inflight_computations) {} absl::Status TfrtCpuDevice::TransferToInfeed(const LiteralSlice& literal) { return TransferLiteralToInfeedOnCpu(local_hardware_id().value(), literal); } absl::Status TfrtCpuDevice::TransferFromOutfeed( MutableBorrowingLiteral literal) { return TransferLiteralFromOutfeedOnCpu(local_hardware_id().value(), literal); } void TfrtCpuDevice::AttachMemorySpace(PjRtMemorySpace* memory_space) { CHECK(memory_space != nullptr); CHECK(client_ == memory_space->client()) << absl::StrFormat( "Could not attach a TfrtCpuDevice to a PjRtMemorySpace owned by a " "different client, the device's client: %s, the memory space's client: " "%s.", client_->platform_name(), memory_space->client()->platform_name()); memory_spaces_.push_back(memory_space); memory_spaces_by_id_.emplace(memory_space->kind_id(), memory_space); } absl::Span<PjRtMemorySpace* const> TfrtCpuDevice::memory_spaces() const { return memory_spaces_; } absl::StatusOr<PjRtMemorySpace*> TfrtCpuDevice::default_memory_space() const { return memory_space_by_kind_id(UnpinnedHostMemorySpace::kKindId); } absl::StatusOr<PjRtMemorySpace*> TfrtCpuDevice::memory_space_by_kind( absl::string_view memory_space_kind) const { auto it = absl::c_find_if(memory_spaces_, [memory_space_kind](PjRtMemorySpace* ms) { return ms->kind() == memory_space_kind; }); if (it != memory_spaces_.end()) { return *it; } return absl::InternalError( absl::StrCat("No memory space found (kind: ", memory_space_kind, ")")); } absl::StatusOr<PjRtMemorySpace*> TfrtCpuDevice::memory_space_by_kind_id( int id) const { auto it = memory_spaces_by_id_.find(id); if (it == memory_spaces_by_id_.end()) { return absl::InternalError( absl::StrCat("No memory space found (kind_id: ", id, ")")); } return it->second; } static int CpuDeviceCount() { return GetDebugOptionsFromFlags().xla_force_host_platform_device_count(); } absl::StatusOr<std::unique_ptr<PjRtClient>> GetTfrtCpuClient( const CpuClientOptions& options) { int cpu_device_count = options.cpu_device_count.value_or(CpuDeviceCount()); size_t num_threads = std::max(DefaultThreadPoolSize(), cpu_device_count); std::vector<std::unique_ptr<TfrtCpuDevice>> devices; for (int i = 0; i < cpu_device_count; ++i) { auto device = std::make_unique<TfrtCpuDevice>( options.process_id, i, options.max_inflight_computations_per_device); devices.push_back(std::move(device)); } return std::unique_ptr<PjRtClient>(std::make_unique<TfrtCpuClient>( options.process_id, std::move(devices), std::move(options.collectives), num_threads, options.asynchronous)); } static const size_t kMaxIntraOpThreads = 256; static tsl::ThreadOptions GetThreadOptions() { tsl::ThreadOptions thread_options; thread_options.stack_size = 8 * 1024 * 1024; return thread_options; } TfrtCpuClient::TfrtCpuClient( int process_index, std::vector<std::unique_ptr<TfrtCpuDevice>> devices, std::shared_ptr<cpu::CollectivesInterface> collectives, size_t num_threads, bool asynchronous) : process_index_(process_index), owned_devices_(std::move(devices)), computation_placer_(std::make_unique<ComputationPlacer>()), eigen_intraop_pool_(new tsl::thread::ThreadPool( tsl::Env::Default(), GetThreadOptions(), "XLAEigen", std::min(num_threads, kMaxIntraOpThreads))), eigen_intraop_device_( new Eigen::ThreadPoolDevice(eigen_intraop_pool_->AsEigenThreadPool(), eigen_intraop_pool_->NumThreads())), pjrt_client_thread_pool_( new tsl::thread::ThreadPool(tsl::Env::Default(), GetThreadOptions(), "XLATfrtCpuClient", num_threads)), async_work_runner_(std::make_unique<ThreadPoolAsyncWorkRunner>( pjrt_client_thread_pool_.get())), last_collective_launch_event_( tsl::MakeAvailableAsyncValueRef<CpuEvent>()), transpose_cache_(1024), collectives_(std::move(collectives)), topology_(TfrtCpuTopologyDescription::Create( platform_id(), platform_name(), platform_version(), owned_devices_, cpu::DetectMachineAttributes())), asynchronous_(asynchronous) { for (const std::unique_ptr<TfrtCpuDevice>& device : owned_devices_) { devices_.push_back(device.get()); CHECK( id_to_device_.insert({device->global_device_id(), device.get()}).second) << "Duplicate device id: " << device->global_device_id(); device->SetClient(this); if (device->IsAddressable()) { int idx = device->local_hardware_id().value(); if (idx >= addressable_devices_.size()) { addressable_devices_.resize(idx + 1); } CHECK(addressable_devices_[idx] == nullptr) << idx; addressable_devices_[idx] = device.get(); } } for (int idx = 0; idx < addressable_devices_.size(); ++idx) { auto* const device = addressable_devices_[idx]; CHECK(device != nullptr) << idx; const int id = device->id(); auto memory_space = std::make_unique<UnpinnedHostMemorySpace>(id, device); tensorflow::down_cast<TfrtCpuDevice*>(device)->AttachMemorySpace( memory_space.get()); memory_spaces_.push_back(memory_space.get()); owned_memory_spaces_.push_back(std::move(memory_space)); } VLOG(1) << "TfrtCpuClient created."; } TfrtCpuClient::~TfrtCpuClient() { VLOG(1) << "TfrtCpuClient destroyed."; } absl::StatusOr<PjRtDevice*> TfrtCpuClient::LookupDevice( xla::PjRtGlobalDeviceId global_device_id) const { auto it = id_to_device_.find(global_device_id); if (it != id_to_device_.end()) { return it->second; } return InvalidArgument("No matching device found for device_id %d", global_device_id.value()); } absl::StatusOr<PjRtDevice*> TfrtCpuClient::LookupAddressableDevice( PjRtLocalDeviceId local_device_id) const { for (auto* device : addressable_devices_) { if (local_device_id == device->local_device_id()) { return device; } } return InvalidArgument("No matching device found for local_device_id %d", local_device_id.value()); } absl::Span<PjRtMemorySpace* const> TfrtCpuClient::memory_spaces() const { return memory_spaces_; } absl::StatusOr<DeviceAssignment> TfrtCpuClient::GetDefaultDeviceAssignment( int num_replicas, int num_partitions) const { if (num_partitions * num_replicas <= addressable_devices().size()) { xla::DeviceAssignment assignment(num_replicas, num_partitions); for (int i = 0; i < num_replicas; ++i) { for (int j = 0; j < num_partitions; ++j) { assignment(i, j) = addressable_devices().at(i * num_partitions + j)->id(); } } return assignment; } return computation_placer_->AssignDevices(num_replicas, num_partitions); } absl::StatusOr<Layout> TfrtCpuClient::GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) { Shape shape = ShapeUtil::MakeShape(element_type, dims); return LayoutUtil::GetWithDefaultLayout(shape).layout(); } absl::StatusOr<std::unique_ptr<HloCostAnalysis>> TfrtCpuClient::GetHloCostAnalysis() const { return std::make_unique<HloCostAnalysis>(cpu::CpuExecutable::ShapeSizeBytes); } static const InstructionValueSet& GetRootValueSet( const BufferAssignment& assignment, const HloModule& module) { return assignment.dataflow_analysis().GetInstructionValueSet( module.entry_computation()->root_instruction()); } static absl::StatusOr<absl::InlinedVector<BufferAllocation::Index, 4>> FindResultBufferAllocationIndex(const BufferAssignment& assignment, const HloModule& module) { absl::InlinedVector<BufferAllocation::Index, 4> buffer_indices; const InstructionValueSet& root_value_set = GetRootValueSet(assignment, module); const Shape& result_shape = module.result_shape(); if (!result_shape.IsTuple()) { const HloValueSet& sources = root_value_set.element({}); CHECK_EQ(1, sources.values().size()); const HloValue* value_source = sources.values()[0]; HloInstruction* src = value_source->instruction(); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice slice, assignment.GetUniqueSlice(src, value_source->index())); const BufferAllocation::Index buffer_index = slice.index(); buffer_indices.push_back(buffer_index); return {std::move(buffer_indices)}; } buffer_indices.reserve(result_shape.tuple_shapes_size()); for (int i = 0; i < result_shape.tuple_shapes_size(); ++i) { const HloValueSet& sources = root_value_set.element({i}); CHECK_EQ(1, sources.values().size()); const HloValue* value_source = sources.values()[0]; HloInstruction* src = value_source->instruction(); TF_ASSIGN_OR_RETURN(const BufferAllocation::Slice slice, assignment.GetUniqueSlice(src, value_source->index())); const BufferAllocation::Index buffer_index = slice.index(); buffer_indices.push_back(buffer_index); } return {std::move(buffer_indices)}; } absl::StatusOr<std::string> TfrtCpuExecutable::SerializeExecutable() const { cpu::CpuCompiler compiler; TF_ASSIGN_OR_RETURN(std::unique_ptr<AotCompilationResult> aot_result, compiler.Export(cpu_executable_.get())); TF_ASSIGN_OR_RETURN(std::string serialized, aot_result->SerializeAsString()); if (serialized.empty()) { return Internal( "TfrtCpuClient::SerializeExecutable proto serialization failed"); } ExecutableAndOptionsProto proto; *proto.mutable_serialized_executable() = std::move(serialized); TF_ASSIGN_OR_RETURN(*proto.mutable_compile_options(), compile_options_.ToProto()); return proto.SerializeAsString(); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> TfrtCpuClient::DeserializeExecutable(absl::string_view serialized, std::optional<CompileOptions> options) { ExecutableAndOptionsProto proto; if (serialized.size() > std::numeric_limits<int>::max()) { return Internal( "TfrtCpuClient::DeserializeExecutable proto too large (>2GB)"); } if (!proto.ParseFromArray(serialized.data(), serialized.size())) { return Internal( "TfrtCpuClient::DeserializeExecutable proto deserialization failed"); } CompileOptions compile_options; if (options.has_value()) { compile_options = *std::move(options); } else { TF_ASSIGN_OR_RETURN(compile_options, CompileOptions::FromProto(proto.compile_options())); } auto input_options = compile_options; cpu::CpuCompiler compiler; std::string str = std::move(*proto.mutable_serialized_executable()); TF_ASSIGN_OR_RETURN(std::unique_ptr<AotCompilationResult> aot_result, compiler.LoadAotCompilationResult(str)); TF_ASSIGN_OR_RETURN( std::unique_ptr<Executable> executable, aot_result->LoadExecutable(&compiler, nullptr)); int num_replicas; int num_partitions; std::shared_ptr<DeviceAssignment> device_assignment; TF_RETURN_IF_ERROR(ParseDeviceAssignmentCompileOptions( compile_options.compile_portable_executable, &compile_options.executable_build_options, [this](int num_replicas, int num_partitions) { return this->GetDefaultDeviceAssignment(num_replicas, num_partitions); }, &num_replicas, &num_partitions, &device_assignment)); auto cpu_executable_ptr = tensorflow::down_cast<cpu::CpuExecutable*>(executable.get()); TF_ASSIGN_OR_RETURN( const BufferAllocation::Slice result_slice, cpu_executable_ptr->buffer_assignment().GetUniqueTopLevelOutputSlice()); TF_ASSIGN_OR_RETURN( auto result_buffer_indices, FindResultBufferAllocationIndex(cpu_executable_ptr->buffer_assignment(), executable->module())); std::vector<PjRtLoadedExecutable::LogicalDeviceIds> addressable_device_logical_ids; std::vector<PjRtDevice*> addressable_devices; ExecutableBuildOptions& build_options = compile_options.executable_build_options; if (device_assignment != nullptr) { addressable_device_logical_ids.reserve(num_replicas * num_partitions); addressable_devices.reserve(num_replicas * num_partitions); for (int replica = 0; replica < num_replicas; ++replica) { for (int partition = 0; partition < num_partitions; ++partition) { PjRtGlobalDeviceId device_id((*device_assignment)(replica, partition)); if (UnpackCpuProcessIndex(device_id) != process_index()) { VLOG(3) << "Non-local device: " << device_id; continue; } TF_ASSIGN_OR_RETURN(PjRtDevice * device, LookupDevice(device_id)); PjRtLoadedExecutable::LogicalDeviceIds logica_device_ids; logica_device_ids.replica = replica; logica_device_ids.partition = partition; addressable_device_logical_ids.push_back(std::move(logica_device_ids)); addressable_devices.push_back(device); } } if (addressable_devices.empty()) { return InvalidArgument( "Device assignment (%s) does not have any local devices.", device_assignment->ToString()); } if (build_options.device_ordinal() < 0) { build_options.set_device_ordinal( addressable_devices.front()->local_hardware_id().value()); } } auto tfrt_cpu_executable = std::make_unique<TfrtCpuExecutable>( num_replicas, num_partitions, std::move(device_assignment), compile_options.parameter_is_tupled_arguments, std::move(input_options), std::move(executable), result_slice.index(), std::move(result_buffer_indices), std::move(addressable_device_logical_ids), std::move(addressable_devices), this); TF_RETURN_IF_ERROR(tfrt_cpu_executable->SetUpDonation( compile_options.parameter_is_tupled_arguments)); return std::unique_ptr<PjRtLoadedExecutable>(std::move(tfrt_cpu_executable)); } static absl::StatusOr<std::unique_ptr<xla::Executable>> JitCompile( const XlaComputation& computation, const absl::Span<const Shape* const> argument_layouts, const ExecutableBuildOptions& build_options, const ExecutionOptions& execution_options, const xla::Compiler::CompileOptions& compile_options, int num_threads) { TF_ASSIGN_OR_RETURN(ProgramShape program_shape, computation.GetProgramShape()); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModuleConfig> hlo_module_config, CreateModuleConfig(program_shape, argument_layouts, &execution_options, execution_options.num_replicas(), num_threads, nullptr)); const xla::HloModuleProto& hlo_module_proto = computation.proto(); TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> hlo_module, xla::HloModule::CreateFromProto(hlo_module_proto, *hlo_module_config)); VLOG(3) << "Unoptimized HLO module: " << hlo_module->ToString(); static constexpr char kBeforeOptimizationsDumpName[] = "before_optimizations"; DumpHloModuleIfEnabled(*hlo_module, kBeforeOptimizationsDumpName); cpu::CpuCompiler compiler; TF_ASSIGN_OR_RETURN(hlo_module, compiler.RunHloPasses(std::move(hlo_module), nullptr, compile_options)); return compiler.RunBackend(std::move(hlo_module), nullptr, compile_options); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> TfrtCpuClient::Compile( const XlaComputation& computation, CompileOptions options) { tsl::profiler::TraceMe traceme("TfrtCpuClient::Compile (XlaComputation)"); auto input_options = options; ExecutableBuildOptions& build_options = options.executable_build_options; TF_RETURN_IF_ERROR(options.ApplyAllOptionOverrides()); int num_replicas; int num_partitions; std::shared_ptr<DeviceAssignment> device_assignment; TF_RETURN_IF_ERROR(ParseDeviceAssignmentCompileOptions( options.compile_portable_executable, &options.executable_build_options, [this](int num_replicas, int num_partitions) { return this->GetDefaultDeviceAssignment(num_replicas, num_partitions); }, &num_replicas, &num_partitions, &device_assignment)); if (collectives_ == nullptr && device_assignment) { for (int replica = 0; replica < device_assignment->replica_count(); ++replica) { for (int computation = 0; computation < device_assignment->computation_count(); ++computation) { PjRtGlobalDeviceId id((*device_assignment)(replica, computation)); if (UnpackCpuProcessIndex(id) != process_index()) { return InvalidArgument( "Multiprocess computations aren't implemented on the CPU " "backend."); } } } } std::vector<const Shape*> argument_layout_pointers; TF_RETURN_IF_ERROR(DetermineArgumentLayoutsFromCompileOptions( computation, &LayoutUtil::GetWithDefaultLayout, options.argument_layouts, &options.executable_build_options, &argument_layout_pointers)); std::vector<PjRtLoadedExecutable::LogicalDeviceIds> addressable_device_logical_ids; std::vector<PjRtDevice*> addressable_devices; if (device_assignment != nullptr) { addressable_device_logical_ids.reserve(num_replicas * num_partitions); addressable_devices.reserve(num_replicas * num_partitions); for (int replica = 0; replica < num_replicas; ++replica) { for (int partition = 0; partition < num_partitions; ++partition) { PjRtGlobalDeviceId device_id((*device_assignment)(replica, partition)); if (UnpackCpuProcessIndex(device_id) != process_index()) { VLOG(3) << "Non-local device: " << device_id; continue; } TF_ASSIGN_OR_RETURN(PjRtDevice * device, LookupDevice(device_id)); PjRtLoadedExecutable::LogicalDeviceIds logica_device_ids; logica_device_ids.replica = replica; logica_device_ids.partition = partition; addressable_device_logical_ids.push_back(std::move(logica_device_ids)); addressable_devices.push_back(device); } } if (addressable_devices.empty()) { return InvalidArgument( "Device assignment (%s) does not have any local devices.", device_assignment->ToString()); } if (build_options.device_ordinal() < 0) { build_options.set_device_ordinal( addressable_devices.front()->local_hardware_id().value()); } } TF_ASSIGN_OR_RETURN(ProgramShape program_shape, computation.GetProgramShape()); ExecutionOptions execution_options = CreateExecutionOptions(build_options, &program_shape); xla::Compiler::CompileOptions compile_options{ build_options.device_allocator(), build_options.compile_thread_pool(), build_options.layout_canonicalization_callback()}; if (!compile_options.thread_pool) { compile_options.thread_pool = pjrt_client_thread_pool(); } TF_ASSIGN_OR_RETURN( std::unique_ptr<Executable> cpu_executable, JitCompile(computation, argument_layout_pointers, build_options, execution_options, compile_options, eigen_intraop_device()->getPool()->NumThreads())); auto cpu_executable_ptr = tensorflow::down_cast<cpu::CpuExecutable*>(cpu_executable.get()); TF_ASSIGN_OR_RETURN( const BufferAllocation::Slice result_slice, cpu_executable_ptr->buffer_assignment().GetUniqueTopLevelOutputSlice()); TF_ASSIGN_OR_RETURN( auto result_buffer_indices, FindResultBufferAllocationIndex(cpu_executable_ptr->buffer_assignment(), cpu_executable->module())); auto executable = std::make_unique<TfrtCpuExecutable>( num_replicas, num_partitions, std::move(device_assignment), options.parameter_is_tupled_arguments, std::move(input_options), std::move(cpu_executable), result_slice.index(), std::move(result_buffer_indices), std::move(addressable_device_logical_ids), std::move(addressable_devices), this); TF_RETURN_IF_ERROR( executable->SetUpDonation(options.parameter_is_tupled_arguments)); return std::unique_ptr<PjRtLoadedExecutable>(std::move(executable)); } absl::StatusOr<std::unique_ptr<PjRtLoadedExecutable>> TfrtCpuClient::Compile( mlir::ModuleOp module, CompileOptions options) { tsl::profiler::TraceMe traceme("TfrtCpuClient::Compile (mlir::ModuleOp)"); XlaComputation xla_computation; const ExecutableBuildOptions& exec_build_options = options.executable_build_options; TF_RETURN_IF_ERROR(MlirToXlaComputation( module, xla_computation, options.parameter_is_tupled_arguments, false, exec_build_options.use_shardy_partitioner())); return Compile(xla_computation, options); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::CreateViewOfDeviceBuffer( void* device_ptr, const Shape& shape, PjRtDevice* device, std::function<void()> on_delete_callback, std::optional<std::intptr_t> stream) { if (stream) { return Unimplemented( "TfrtCpuClient::CreateViewOfDeviceBuffer does not support `stream` " "argument."); } absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers; size_t byte_size = ShapeUtil::ByteSizeOf(shape); auto non_owning_buffer = tsl::MakeAvailableAsyncValueRef<MaybeOwningCpuMemory>(device_ptr, byte_size); buffers.push_back(std::move(non_owning_buffer)); auto tracked_device_buffer = std::make_unique<TrackedTfrtCpuDeviceBuffer>( false, false, std::move(buffers), tsl::MakeAvailableAsyncValueRef<CpuEvent>(), std::move(on_delete_callback)); return std::unique_ptr<PjRtBuffer>(std::make_unique<TfrtCpuBuffer>( shape, std::move(tracked_device_buffer), this, tensorflow::down_cast<TfrtCpuDevice*>(device), *device->default_memory_space())); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::CreateErrorBuffer( absl::Status error, const Shape& shape, PjRtDevice* device) { if (device->client() != this) { return absl::InvalidArgumentError("Device is not attached to this client"); } return std::make_unique<TfrtCpuBuffer>( shape, std::make_unique<TrackedTfrtCpuDeviceBuffer>( false, true, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4>{}, absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4>{ tsl::AsyncValueRef<CpuEvent>( tsl::MakeErrorAsyncValueRef(std::move(error)))}), this, tensorflow::down_cast<TfrtCpuDevice*>(device), *device->default_memory_space()); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::CreateErrorBuffer( absl::Status error, const Shape& shape, PjRtMemorySpace* memory) { return CreateErrorBuffer(std::move(error), shape, memory->devices()[0]); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::CreateUninitializedBuffer(const Shape& shape, PjRtDevice* device) { tsl::profiler::TraceMe traceme("TfrtCpuClient::CreateUninitializedBuffer"); VLOG(1) << "TfrtCpuClient::CreateUninitializedBuffer: shape: " << shape.DebugString() << " device: " << device->DebugString(); return AllocateDestinationBuffer( shape, {}, tensorflow::down_cast<TfrtCpuDevice*>(device), this); } absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> TfrtCpuClient::CreateBuffersForAsyncHostToDevice(absl::Span<const Shape> shapes, PjRtDevice* device) { auto* tfrt_device = tensorflow::down_cast<TfrtCpuDevice*>(device); return TfrtCpuAsyncHostToDeviceTransferManager::Create(shapes, tfrt_device, this); } absl::StatusOr<std::unique_ptr<PjRtClient::AsyncHostToDeviceTransferManager>> TfrtCpuClient::CreateBuffersForAsyncHostToDevice( absl::Span<const Shape> shapes, PjRtMemorySpace* memory_space) { CHECK_EQ(memory_space->devices().size(), 1); return CreateBuffersForAsyncHostToDevice(shapes, memory_space->devices()[0]); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device) { tsl::profiler::TraceMe traceme("TfrtCpuClient::BufferFromHostBuffer"); Shape shape = ShapeUtil::MakeShape(type, dims); VLOG(2) << "TfrtCpuClient::BufferFromHostBuffer: shape: " << shape.ToString() << " device: " << device->DebugString(); if (!device->IsAddressable()) { return InvalidArgument("Cannot copy array to non-addressable device %s", device->DebugString()); } TF_ASSIGN_OR_RETURN( std::unique_ptr<TrackedTfrtCpuDeviceBuffer> tracked_device_buffer, AbstractTfrtCpuBuffer::BufferFromHostBufferHelper( data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), shape, async_work_runner(), &transpose_mu_, &transpose_cache_)); return std::unique_ptr<PjRtBuffer>(std::make_unique<TfrtCpuBuffer>( shape, std::move(tracked_device_buffer), this, tensorflow::down_cast<TfrtCpuDevice*>(device), *device->default_memory_space())); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtDevice* device, const Layout* device_layout) { if (device_layout != nullptr) { return absl::UnimplementedError(absl::StrCat( "BufferFromHostBuffer with an optional device layout is not " "implemented on platform: ", platform_name())); } return BufferFromHostBuffer(data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), device); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::BufferFromHostBuffer( const void* data, PrimitiveType type, absl::Span<int64_t const> dims, std::optional<absl::Span<int64_t const>> byte_strides, HostBufferSemantics host_buffer_semantics, absl::AnyInvocable<void() &&> on_done_with_host_buffer, PjRtMemorySpace* memory_space, const Layout* device_layout) { CHECK_EQ(memory_space->devices().size(), 1); return BufferFromHostBuffer(data, type, dims, byte_strides, host_buffer_semantics, std::move(on_done_with_host_buffer), memory_space->devices()[0], device_layout); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::BufferFromHostLiteral(const LiteralSlice& literal, PjRtDevice* device) { tsl::profiler::TraceMe traceme("TfrtCpuClient::BufferFromHostLiteral"); VLOG(1) << "TfrtCpuClient::BufferFromHostLiteral: shape: " << literal.shape().DebugString() << " device: " << device->DebugString(); const Shape& shape = literal.shape(); absl::InlinedVector<tsl::RCReference<tsl::AsyncValue>, 4> avs; TF_ASSIGN_OR_RETURN( std::unique_ptr<TfrtCpuBuffer> output_buffer, AllocateDestinationBufferAndAvs( shape, &avs, tensorflow::down_cast<TfrtCpuDevice*>(device), this)); output_buffer->CopyFromLiteral(literal, shape, &avs, async_work_runner()); return std::unique_ptr<PjRtBuffer>(std::move(output_buffer)); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuClient::BufferFromHostLiteral(const LiteralSlice& literal, PjRtMemorySpace* memory_space) { CHECK_EQ(memory_space->devices().size(), 1); return BufferFromHostLiteral(literal, memory_space->devices()[0]); } TfrtCpuBuffer::TfrtCpuBuffer( Shape on_device_shape, std::unique_ptr<TrackedTfrtCpuDeviceBuffer> tracked_device_buffer, TfrtCpuClient* client, TfrtCpuDevice* device, PjRtMemorySpace* memory_space) : AbstractTfrtCpuBuffer(std::move(on_device_shape), std::move(tracked_device_buffer)), client_(client), device_(device), memory_space_(memory_space) {} static std::vector<tsl::RCReference<tsl::AsyncValue>> CopyAsyncValues( absl::Span<const tsl::RCReference<tsl::AsyncValue>> events) { std::vector<tsl::RCReference<tsl::AsyncValue>> avs; avs.reserve(events.size()); for (const auto& ev : events) { avs.push_back(ev.CopyRef()); } return avs; } PjRtFuture<> TfrtCpuBuffer::ToLiteral(MutableLiteralBase* literal) { return ToLiteralHelper(literal, client()->async_work_runner()); } PjRtFuture<> TfrtCpuBuffer::LazyToLiteral( absl::AnyInvocable<absl::StatusOr<MutableLiteralBase*>() &&> generator) { auto buffer = std::move(generator)(); if (!buffer.ok()) { return PjRtFuture<>(buffer.status()); } return ToLiteralHelper(buffer.value(), client()->async_work_runner()); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuBuffer::CopyToDevice( PjRtDevice* dst_device) { tsl::profiler::TraceMe traceme("TfrtCpuBuffer::CopyToDevice"); if (dst_device == device_) { return InvalidArgument( "CopyToDevice cannot accept the same source and destination devices"); } if (dst_device->client() != client_) { return CopyToDeviceAcrossClients(dst_device); } if (!dst_device->IsAddressable()) { return InvalidArgument("Cannot copy array to non-addressable device %s", dst_device->DebugString()); } TF_ASSIGN_OR_RETURN( std::unique_ptr<TrackedTfrtCpuDeviceBuffer> tracked_device_buffer, CopyToDeviceHelper(client()->async_work_runner())); return std::unique_ptr<PjRtBuffer>(std::make_unique<TfrtCpuBuffer>( on_device_shape_, std::move(tracked_device_buffer), client(), tensorflow::down_cast<TfrtCpuDevice*>(dst_device), *dst_device->default_memory_space())); } absl::StatusOr<std::unique_ptr<PjRtBuffer>> TfrtCpuBuffer::CopyToMemorySpace( PjRtMemorySpace* dst_memory_space) { CHECK_EQ(dst_memory_space->devices().size(), 1); return CopyToDevice(dst_memory_space->devices()[0]); } TfrtCpuExecutable::TfrtCpuExecutable( int num_replicas, int num_partitions, std::shared_ptr<DeviceAssignment> device_assignment, bool parameter_is_tupled_arguments, CompileOptions compile_options, std::unique_ptr<Executable> cpu_executable, BufferAllocation::Index result_buffer_index, absl::InlinedVector<BufferAllocation::Index, 4> result_buffer_indices, std::vector<LogicalDeviceIds> addressable_device_logical_ids, std::vector<PjRtDevice*> addressable_devices, TfrtCpuClient* client) : client_(client), num_replicas_(num_replicas), num_partitions_(num_partitions), device_assignment_(std::move(device_assignment)), parameter_is_tupled_arguments_(parameter_is_tupled_arguments), compile_options_(std::move(compile_options)), cpu_executable_(std::move(cpu_executable)), result_buffer_index_(result_buffer_index), result_buffer_indices_(std::move(result_buffer_indices)), addressable_device_logical_ids_( std::move(addressable_device_logical_ids)), addressable_devices_(std::move(addressable_devices)) { auto hlo_cost_analysis = std::make_unique<HloCostAnalysis>(cpu::CpuExecutable::ShapeSizeBytes); CHECK_OK(cpu_executable_->module().entry_computation()->Accept( hlo_cost_analysis.get())); cheap_computation_ = hlo_cost_analysis->flop_count() < 1000; const auto& computation_layout = cpu_executable_->module().entry_computation_layout(); if (computation_layout.parameter_count() == 0) { return; } if (computation_layout.parameter_count() > 1 || !computation_layout.parameter_shape(0).IsTuple()) { input_buffer_sizes_in_bytes_.reserve(computation_layout.parameter_count()); for (int i = 0; i < computation_layout.parameter_count(); ++i) { input_buffer_sizes_in_bytes_.push_back( ShapeUtil::ByteSizeOf(computation_layout.parameter_shape(i))); } } else { input_buffer_sizes_in_bytes_.reserve( computation_layout.parameter_shape(0).tuple_shapes_size()); for (int i = 0; i < computation_layout.parameter_shape(0).tuple_shapes_size(); ++i) { input_buffer_sizes_in_bytes_.push_back(ShapeUtil::ByteSizeOf( computation_layout.parameter_shape(0).tuple_shapes(i))); } } } void TfrtCpuExecutable::Delete() {} bool TfrtCpuExecutable::IsDeleted() { return false; } absl::StatusOr<std::optional<std::string>> TfrtCpuExecutable::Fingerprint() const { return std::optional<std::string>(); } absl::Status TfrtCpuExecutable::SetUpDonation(bool tuple_inputs) { TF_ASSIGN_OR_RETURN(parameters_that_must_be_donated_, ComputeParametersThatMustBeDonated( *cpu_executable_->shared_module(), tuple_inputs)); return absl::OkStatus(); } namespace { struct BufferInfo { tsl::AsyncValueRef<MaybeOwningCpuMemory> buffer; bool owns_buffer; size_t buffer_size; }; struct BufferAlloc { absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> buffers; absl::InlinedVector<size_t, 4> allocation_sizes; void Allocate() { for (int i = 0; i < buffers.size(); ++i) { auto memory = MaybeOwningCpuMemory::Allocate(allocation_sizes[i]); if (!memory.ok()) { buffers[i].SetError(memory.status()); return; } buffers[i].emplace(std::move(*memory)); ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(buffers[i]->data(), allocation_sizes[i]); } } }; struct BufferAllocAndCopy { absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> src_buffers; absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> dst_buffers; absl::InlinedVector<size_t, 4> allocation_sizes; void AllocateAndCopy() { for (int i = 0; i < src_buffers.size(); ++i) { auto memory = MaybeOwningCpuMemory::Allocate(allocation_sizes[i]); if (!memory.ok()) { dst_buffers[i].SetError(memory.status()); return; } dst_buffers[i].emplace(std::move(*memory)); CHECK(src_buffers[i].IsConcrete()); std::memcpy(dst_buffers[i]->data(), src_buffers[i]->data(), allocation_sizes[i]); } } }; } static absl::StatusOr<BufferInfo> MemoryForAllocation( const BufferAllocation& allocation, absl::Span<const cpu::CpuExecutable::ConstantAllocation> constants, absl::Span<std::pair<bool, TrackedTfrtCpuDeviceBuffer*> const> arguments, BufferAlloc& buffer_alloc, BufferAllocAndCopy& buffer_alloc_and_copy) { BufferInfo buffer_info; if (allocation.is_entry_computation_parameter()) { auto [can_donate, arg] = arguments[allocation.parameter_number()]; tsl::AsyncValueRef<MaybeOwningCpuMemory> out = arg->Buffer(allocation.param_shape_index()); CHECK_EQ(allocation.size(), arg->BufferSize(allocation.param_shape_index())) << "Size mismatch on param " << allocation.parameter_number() << " at shape index " << allocation.param_shape_index().ToString(); if ((!can_donate || !arg->owns_buffers()) && !allocation.is_readonly()) { auto copy = tsl::MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); buffer_alloc_and_copy.src_buffers.push_back(std::move(out)); buffer_alloc_and_copy.dst_buffers.push_back(copy); buffer_alloc_and_copy.allocation_sizes.push_back(allocation.size()); buffer_info.buffer = std::move(copy); buffer_info.owns_buffer = true; buffer_info.buffer_size = allocation.size(); return buffer_info; } buffer_info.buffer = std::move(out); buffer_info.owns_buffer = arg->owns_buffers(); buffer_info.buffer_size = arg->BufferSize(allocation.param_shape_index()); return buffer_info; } else if (allocation.is_constant() && allocation.index() < constants.size()) { se::DeviceMemoryBase constant = constants[allocation.index()].AsDeviceMemoryBase(); buffer_info.buffer = tsl::MakeAvailableAsyncValueRef<MaybeOwningCpuMemory>( constant.opaque(), constant.size()); buffer_info.owns_buffer = false; buffer_info.buffer_size = constant.size(); return buffer_info; } else if (allocation.is_constant() || allocation.is_thread_local()) { buffer_info.buffer = tsl::MakeAvailableAsyncValueRef<MaybeOwningCpuMemory>(); buffer_info.owns_buffer = true; buffer_info.buffer_size = 0; return buffer_info; } auto out = tsl::MakeUnconstructedAsyncValueRef<MaybeOwningCpuMemory>(); buffer_alloc.buffers.push_back(out); buffer_alloc.allocation_sizes.push_back(allocation.size()); buffer_info.buffer = std::move(out); buffer_info.owns_buffer = true; buffer_info.buffer_size = allocation.size(); return buffer_info; } static absl::StatusOr<std::vector<BufferInfo>> CreateBufferTable( const BufferAssignment& assignment, absl::Span<const cpu::CpuExecutable::ConstantAllocation> constants, absl::Span<std::pair<bool, TrackedTfrtCpuDeviceBuffer*> const> arguments, BufferAlloc& buffer_alloc, BufferAllocAndCopy& buffer_alloc_and_copy) { std::vector<BufferInfo> buffer_table(assignment.Allocations().size()); for (BufferAllocation::Index i = 0; i < buffer_table.size(); ++i) { const BufferAllocation& allocation = assignment.GetAllocation(i); TF_ASSIGN_OR_RETURN( buffer_table[i], MemoryForAllocation(allocation, constants, arguments, buffer_alloc, buffer_alloc_and_copy)); } return std::move(buffer_table); } static absl::InlinedVector<BufferInfo, 4> CreateResultBufferInfo( absl::Span<const BufferAllocation::Index> buffer_indices, absl::Span<const BufferInfo> buffer_table) { absl::InlinedVector<BufferInfo, 4> output_buffer_info; output_buffer_info.reserve(buffer_indices.size()); for (int i = 0; i < buffer_indices.size(); ++i) { output_buffer_info.push_back(buffer_table[buffer_indices[i]]); } return output_buffer_info; } absl::Status TfrtCpuExecutable::CheckBufferCompatibilities( absl::Span<std::pair<bool, TrackedTfrtCpuDeviceBuffer*> const> input_buffers) const { if (input_buffers.size() != input_buffer_sizes_in_bytes_.size()) { return InvalidArgument( "Execution supplied %lld buffers but compiled program expected %lld " "buffers", input_buffers.size(), input_buffer_sizes_in_bytes_.size()); } for (int i = 0; i < input_buffers.size(); ++i) { const auto& buffer = input_buffers[i].second; if (input_buffer_sizes_in_bytes_[i] != buffer->BufferSizes()[0]) { return InvalidArgument( "Executable expected parameter %d of size %lld but got buffer with " "incompatible size %lld", i, input_buffer_sizes_in_bytes_[i], buffer->BufferSizes()[0]); } } return absl::OkStatus(); } absl::StatusOr<PjRtLoadedExecutable::Result> TfrtCpuExecutable::ExecuteHelper( absl::Span<PjRtBuffer* const> argument_handles, int replica, int partition, const RunId& run_id, const ExecuteOptions& options, tsl::AsyncValueRef<CpuEvent> last_collective_launch_event, bool fill_future, TfrtCpuDevice* device) { tsl::profiler::TraceMe traceme("TfrtCpuExecutable::ExecuteHelper"); std::shared_ptr<DeviceAssignment> device_assignment; if (device == nullptr) { CHECK(device_assignment_ != nullptr); const int64_t device_id = (*device_assignment_)(replica, partition); PjRtGlobalDeviceId global_device_id(device_id); TF_ASSIGN_OR_RETURN(PjRtDevice * pjrt_device, client_->LookupDevice(global_device_id)); device = tensorflow::down_cast<TfrtCpuDevice*>(pjrt_device); device_assignment = device_assignment_; } else { CHECK(device_assignment_ == nullptr); CHECK_EQ(replica, 0); CHECK_EQ(partition, 0); CHECK(addressable_devices_.empty()); device_assignment = std::make_shared<DeviceAssignment>(1, 1); (*device_assignment)(0, 0) = device->id(); } CHECK_EQ(device->process_index(), client_->process_index()); if (options.arguments_are_tupled) { if (!parameter_is_tupled_arguments_) { return InvalidArgument( "Arguments may only be supplied as a tuple when the executable was " "compiled with a single tupled parameter"); } if (argument_handles.size() != 1) { return InvalidArgument( "Option arguments_are_tupled was true but %d buffers were passed to " "execution", argument_handles.size()); } } auto execute_event = tsl::MakeConstructedAsyncValueRef<CpuEvent>(); MarkEventReadyOnExit ready_on_exit(execute_event); absl::InlinedVector<TfrtCpuBuffer::DonationTransaction, 4> donation_transactions; absl::InlinedVector<std::pair<bool, TrackedTfrtCpuDeviceBuffer*>, 4> tracked_buffers; tracked_buffers.reserve(argument_handles.size()); std::vector<tsl::RCReference<tsl::AsyncValue>> input_deps; input_deps.reserve(argument_handles.size()); auto donate_it = parameters_that_must_be_donated_.begin(); absl::flat_hash_map<const void*, std::pair<bool, int>> donation_clashes; donation_clashes.reserve(argument_handles.size()); for (int i = 0; i < argument_handles.size(); ++i) { PjRtBuffer* handle = argument_handles[i]; auto* tfrt_buffer = tensorflow::down_cast<TfrtCpuBuffer*>(handle); if (tfrt_buffer->device() != device) { return InvalidArgument( "Buffer passed to Execute() as argument %d to replica %d is on " "device %s, but replica is assigned to device %s.", i, replica, tfrt_buffer->device()->DebugString(), device->DebugString()); } TrackedTfrtCpuDeviceBuffer* tracked_buffer; auto get_buffer = [&](int i) -> absl::Status { bool must_donate = donate_it != parameters_that_must_be_donated_.end() && *donate_it == i; TF_RETURN_IF_ERROR(TestBufferDonationClashes( tfrt_buffer, donation_clashes, must_donate, i, replica, partition)); if (must_donate) { ++donate_it; absl::StatusOr<TfrtCpuBuffer::DonationTransaction> donation_transaction = tfrt_buffer->AcquireDonation(); if (donation_transaction.ok()) { for (const auto& ev : donation_transaction->device_buffer()->UsageEvents()) { if (!ev.IsAvailable()) { input_deps.push_back(ev.CopyRCRef()); } } tracked_buffer = donation_transaction->device_buffer(); tracked_buffers.emplace_back(true, tracked_buffer); donation_transactions.push_back(std::move(*donation_transaction)); return absl::OkStatus(); } } tracked_buffer = tfrt_buffer->AcquireUsage(execute_event); if (!tracked_buffer) return InvalidArgument( "Invalid buffer passed: buffer has been deleted or donated."); tracked_buffers.emplace_back(false, tracked_buffer); return absl::OkStatus(); }; TF_RETURN_IF_ERROR(get_buffer(i)); const auto& definition_event = tracked_buffer->definition_event(); if (!definition_event.IsAvailable()) { input_deps.push_back(definition_event.CopyRCRef()); } } TF_RETURN_IF_ERROR(CheckBufferCompatibilities(tracked_buffers)); std::unique_ptr<TrackedTfrtCpuDeviceBuffer> tuplized_arg; if (parameter_is_tupled_arguments_ && !options.arguments_are_tupled) { bool owns_buffers = true; absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> leaf_buffers; absl::InlinedVector<size_t, 4> leaf_buffer_sizes; leaf_buffers.reserve(tracked_buffers.size()); leaf_buffer_sizes.reserve(tracked_buffers.size()); for (const auto& tracked_buffer : tracked_buffers) { owns_buffers = owns_buffers && tracked_buffer.second->owns_buffers(); auto span = tracked_buffer.second->Buffers(); leaf_buffers.insert(leaf_buffers.end(), span.begin(), span.end()); auto size_span = tracked_buffer.second->BufferSizes(); leaf_buffer_sizes.insert(leaf_buffer_sizes.end(), size_span.begin(), size_span.end()); } tracked_buffers.clear(); tuplized_arg = std::make_unique<TrackedTfrtCpuDeviceBuffer>( true, owns_buffers, std::move(leaf_buffers), std::move(leaf_buffer_sizes), tsl::MakeConstructedAsyncValueRef<CpuEvent>()); tracked_buffers.emplace_back(false, tuplized_arg.get()); } auto* cpu_executable = tensorflow::down_cast<cpu::CpuExecutable*>(cpu_executable_.get()); BufferAlloc buffer_alloc; BufferAllocAndCopy buffer_alloc_and_copy; TF_ASSIGN_OR_RETURN( std::vector<BufferInfo> buffer_table, CreateBufferTable(cpu_executable->buffer_assignment(), cpu_executable->constants(), tracked_buffers, buffer_alloc, buffer_alloc_and_copy)); auto result_buffers_info = CreateResultBufferInfo(result_buffer_indices_, buffer_table); auto compute_reservation = std::make_unique<Semaphore::ScopedReservation>( device->max_inflight_computations_semaphore().ScopedAcquire(1)); ExecutableRunOptions run_options; run_options.set_run_id(run_id); run_options.set_device_ordinal(device->id()); run_options.set_device_assignment(device_assignment.get()); run_options.set_intra_op_thread_pool(client_->eigen_intraop_device()); auto cpu_run_options = std::make_shared<cpu::CpuExecutableRunOptions>(); cpu_run_options->set_collectives(client_->collectives_.get()); run_options.set_cpu_executable_run_options(cpu_run_options.get()); bool is_a_collective_launch = !!last_collective_launch_event; if (is_a_collective_launch) { input_deps.push_back(std::move(last_collective_launch_event)); } else { auto last_enqueue_event = client_->GetLastEnqueueEvent(); if (!last_enqueue_event.IsAvailable()) { input_deps.push_back(std::move(last_enqueue_event)); } } if (options.context != nullptr) { run_options.set_ffi_execution_context(&options.context->ffi_context()); } bool execute_inline = cheap_computation_ || !client_->asynchronous_; if (options.execution_mode == ExecuteOptions::ExecutionMode::kAsynchronous) { execute_inline = false; } else if (options.execution_mode == ExecuteOptions::ExecutionMode::kSynchronous) { execute_inline = true; } if (input_deps.empty() && execute_inline) { tsl::port::ScopedFlushDenormal flush; tsl::port::ScopedSetRound round(FE_TONEAREST); XlaCustomCallStatus compute_function_status; tsl::AsyncValueRef<cpu::Thunk::ExecuteEvent> thunks_execute_event; buffer_alloc.Allocate(); buffer_alloc_and_copy.AllocateAndCopy(); std::vector<void*> buffer_pointers; buffer_pointers.reserve(buffer_table.size()); for (const auto& buffer_info : buffer_table) { CHECK(buffer_info.buffer.IsAvailable()); if (buffer_info.buffer.IsError()) { return buffer_info.buffer.GetError(); } buffer_pointers.push_back(buffer_info.buffer->data()); } void* result_buffer = buffer_pointers[result_buffer_index_]; if (cpu_executable->has_compute_function()) { cpu_executable->compute_function()(result_buffer, &run_options, nullptr, buffer_pointers.data(), &compute_function_status, nullptr); } else if (cpu_executable->has_thunks()) { absl::InlinedVector<MaybeOwningDeviceMemory, 8> buffer_device_mem; buffer_device_mem.reserve(buffer_table.size()); for (const auto& buffer_info : buffer_table) { buffer_device_mem.emplace_back(se::DeviceMemoryBase( buffer_info.buffer->data(), buffer_info.buffer->size())); } cpu::BufferAllocations allocations(buffer_device_mem); TF_ASSIGN_OR_RETURN( cpu::Thunk::CollectiveExecuteParams collective_params, cpu::Thunk::CollectiveExecuteParams::Create(&run_options)); TF_ASSIGN_OR_RETURN( cpu::Thunk::CustomCallExecuteParams custom_call_execute_params, cpu::Thunk::CustomCallExecuteParams::Create(&run_options)); cpu::Thunk::TaskRunner task_runner = [&run_options](cpu::Thunk::Task task) { run_options.intra_op_thread_pool()->getPool()->Schedule( std::move(task)); }; cpu::Thunk::ExecuteParams execute_params = { &cpu_executable->function_registry(), &allocations, cpu::runtime::GetXfeedManager(run_options.device_ordinal()), run_options.intra_op_thread_pool(), &task_runner, &collective_params, &custom_call_execute_params}; thunks_execute_event = cpu_executable->thunks().Execute(execute_params); tsl::profiler::TraceMe trace( "ThunkExecutor::Execute (wait for completion)"); tsl::BlockUntilReady(thunks_execute_event); } else { return Internal("CpuExecutable has no compute function or thunks."); } for (auto& donation_transaction : donation_transactions) { std::move(donation_transaction).Commit(); } if (cpu_executable->has_compute_function()) { if (auto error_message = xla::CustomCallStatusGetMessage(&compute_function_status)) { return Internal("Generated function failed: %s", *error_message); } } else if (thunks_execute_event.IsError()) { return thunks_execute_event.GetError(); } } else { if (is_a_collective_launch) { client_->SetLastCollectiveLaunchEvent(execute_event.CopyRef()); } else { client_->SetLastEnqueueEvent(execute_event.CopyRef()); } std::vector<tsl::RCReference<tsl::AsyncValue>> input_deps_avs_copy = CopyAsyncValues(input_deps); EnqueueWorkWhenReady( client()->pjrt_client_thread_pool(), input_deps, [cpu_executable, buffer_alloc = std::move(buffer_alloc), buffer_alloc_and_copy = std::move(buffer_alloc_and_copy), result_buffer_index = result_buffer_index_, buffer_table = std::move(buffer_table), run_options = std::move(run_options), cpu_executable_copy = cpu_executable_, device_assignment = std::move(device_assignment), cpu_run_options = std::move(cpu_run_options), compute_reservation = std::move(compute_reservation), tuplized_arg = std::move(tuplized_arg), donation_transactions = std::move(donation_transactions), execute_event = std::move(ready_on_exit).Release(), input_deps_avs = std::move(input_deps_avs_copy), eigen_device = client()->eigen_intraop_device()]() mutable { buffer_alloc.Allocate(); buffer_alloc_and_copy.AllocateAndCopy(); for (const auto& av : input_deps_avs) { if (auto* error = av->GetErrorIfPresent()) { execute_event.SetError(absl::StrCat( "Error dispatching computation: %s", error->message())); return; } } tsl::port::ScopedFlushDenormal flush; tsl::port::ScopedSetRound round(FE_TONEAREST); std::vector<void*> buffer_pointers; buffer_pointers.reserve(buffer_table.size()); for (const auto& buffer_info : buffer_table) { CHECK(buffer_info.buffer.IsAvailable()); if (buffer_info.buffer.IsError()) { execute_event.SetError( absl::StrCat("Error preparing computation: %s", buffer_info.buffer.GetError().message())); return; } buffer_pointers.push_back(buffer_info.buffer->data()); } void* result_buffer = buffer_pointers[result_buffer_index]; absl::Status status; if (cpu_executable->has_compute_function()) { XlaCustomCallStatus compute_function_status; cpu_executable->compute_function()( result_buffer, &run_options, nullptr, buffer_pointers.data(), &compute_function_status, nullptr); if (auto error_message = xla::CustomCallStatusGetMessage(&compute_function_status)) { status = Internal("Generated function failed: %s", *error_message); } } else if (cpu_executable->has_thunks()) { absl::InlinedVector<MaybeOwningDeviceMemory, 8> buffer_device_mem; buffer_device_mem.reserve(buffer_table.size()); for (const auto& buffer_info : buffer_table) { buffer_device_mem.emplace_back(se::DeviceMemoryBase( buffer_info.buffer->data(), buffer_info.buffer->size())); } cpu::BufferAllocations allocations(buffer_device_mem); absl::StatusOr<cpu::Thunk::CollectiveExecuteParams> collective_params = cpu::Thunk::CollectiveExecuteParams::Create(&run_options); absl::StatusOr<cpu::Thunk::CustomCallExecuteParams> custom_call_params = cpu::Thunk::CustomCallExecuteParams::Create(&run_options); cpu::Thunk::TaskRunner task_runner = [&run_options](cpu::Thunk::Task task) { run_options.intra_op_thread_pool()->getPool()->Schedule( std::move(task)); }; if (collective_params.ok()) { cpu::Thunk::ExecuteParams execute_params = { &cpu_executable->function_registry(), &allocations, cpu::runtime::GetXfeedManager(run_options.device_ordinal()), run_options.intra_op_thread_pool(), &task_runner, &*collective_params, &*custom_call_params}; auto thunks_execute_event = cpu_executable->thunks().Execute(execute_params); tsl::profiler::TraceMe trace( "ThunkExecutor::Execute (wait for completion)"); tsl::BlockUntilReady(thunks_execute_event); status = thunks_execute_event.IsError() ? thunks_execute_event.GetError() : absl::OkStatus(); } else { status = collective_params.status(); } } else { status = Internal("CpuExecutable has no compute function or thunks."); } for (auto& donation_transaction : donation_transactions) { std::move(donation_transaction).Commit(); } if (!status.ok()) { execute_event.SetError(std::move(status)); return; } execute_event.SetStateConcrete(); }); } const Shape& result_shape = cpu_executable_->result_shape(); std::vector<std::unique_ptr<PjRtBuffer>> res; if (options.untuple_result && result_shape.IsTuple()) { res.reserve(result_buffers_info.size()); for (int i = 0; i < result_buffers_info.size(); ++i) { absl::InlinedVector<tsl::AsyncValueRef<CpuEvent>, 4> definition_events; definition_events.push_back(execute_event.CopyRef()); auto leaf_tracked_device_buffer = std::make_unique<TrackedTfrtCpuDeviceBuffer>( false, result_buffers_info[i].owns_buffer, absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4>{ std::move(result_buffers_info[i].buffer)}, absl::InlinedVector<size_t, 4>{ result_buffers_info[i].buffer_size}, std::move(definition_events)); auto leaf_buffer = std::make_unique<TfrtCpuBuffer>( result_shape.tuple_shapes(i), std::move(leaf_tracked_device_buffer), client_, device, *device->default_memory_space()); res.push_back(std::move(leaf_buffer)); } } else { bool owns_buffers = true; absl::InlinedVector<tsl::AsyncValueRef<MaybeOwningCpuMemory>, 4> sub_buffers; absl::InlinedVector<size_t, 4> sub_buffer_sizes; sub_buffers.reserve(result_buffers_info.size()); sub_buffer_sizes.reserve(result_buffers_info.size()); for (int i = 0; i < result_buffers_info.size(); ++i) { owns_buffers = owns_buffers && result_buffers_info[i].owns_buffer; sub_buffers.push_back(std::move(result_buffers_info[i].buffer)); sub_buffer_sizes.push_back(result_buffers_info[i].buffer_size); } auto tracked_device_buffer = std::make_unique<TrackedTfrtCpuDeviceBuffer>( result_shape.IsTuple(), owns_buffers, std::move(sub_buffers), std::move(sub_buffer_sizes), execute_event); auto tfrt_output_buffer = std::make_unique<TfrtCpuBuffer>( result_shape, std::move(tracked_device_buffer), client_, device, *device->default_memory_space()); res.push_back(std::move(tfrt_output_buffer)); } std::optional<PjRtFuture<>> future; if (fill_future) { PjRtFuture<>::Promise promise = PjRtFuture<>::CreatePromise(); execute_event.AndThen([promise, event = execute_event.CopyRef()]() mutable { if (auto* error = event.GetErrorIfPresent()) { promise.Set(Internal("Compute error: %s", error->message())); } else { promise.Set(); } }); future = PjRtFuture<>(std::move(promise)); } return Result({std::move(future), std::move(res)}); } static void MaybeDumpHloSnapshot( const HloModule& module, RunId run_id, const std::vector<PjRtBuffer*>& arguments, const std::vector<std::unique_ptr<PjRtBuffer>>& results) { if (!DumpingEnabledForHloModule(module)) { return; } if (!module.config().debug_options().xla_dump_hlo_snapshots()) { return; } xla::HloSnapshot hlo_snapshot; *hlo_snapshot.mutable_hlo()->mutable_hlo_module() = module.ToProto(); for (auto* argument : arguments) { *hlo_snapshot.add_arguments() = (*argument->ToLiteralSync())->ToProto(); } if (results.size() == 1) { *hlo_snapshot.mutable_result() = (*results[0]->ToLiteralSync())->ToProto(); } else { std::vector<Literal> result_literals; result_literals.reserve(results.size()); for (auto& result : results) { result_literals.push_back(std::move(**result->ToLiteralSync())); } *hlo_snapshot.mutable_result() = LiteralUtil::MakeTupleOwned(std::move(result_literals)).ToProto(); } DumpToFileInDir(module, "", absl::StrCat("snapshot.", run_id.ToInt(), ".pb"), hlo_snapshot.SerializeAsString()); } absl::StatusOr<std::vector<std::vector<std::unique_ptr<PjRtBuffer>>>> TfrtCpuExecutable::Execute( absl::Span<const std::vector<PjRtBuffer*>> argument_handles, const ExecuteOptions& options, std::optional<std::vector<PjRtFuture<>>>& returned_futures) { tsl::profiler::TraceMe traceme("TfrtCpuExecutable::Execute"); if (device_assignment_ == nullptr) { return InvalidArgument("Execute expects a non-null device_assignment"); } RunId run_id; tsl::profiler::TraceMeProducer activity("TfrtCpuExecutable::Execute", tsl::profiler::ContextType::kPjRt, run_id.ToInt()); const int num_addressable_devices = addressable_devices_.size(); if (argument_handles.size() != num_addressable_devices) { return InvalidArgument( "Attempted to execute with %d argument lists when local device " "count is %d (total replica count: %d, partition count: %d)", argument_handles.size(), num_addressable_devices, num_replicas(), num_partitions()); } VLOG(1) << "Executing computation " << name() << "; num_replicas=" << num_replicas() << " num_partitions=" << num_partitions() << " num_addressable_devices=" << num_addressable_devices; std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> wrapped_results( num_addressable_devices); if (returned_futures.has_value()) { returned_futures->resize(num_addressable_devices); } if (num_addressable_devices == 1) { const int replica = addressable_device_logical_ids_[0].replica; const int partition = addressable_device_logical_ids_[0].partition; MaybeDumpHloSnapshot(cpu_executable_->module(), run_id, argument_handles[0], {}); auto statusor = ExecuteHelper( argument_handles[0], replica, partition, run_id, options, tsl::AsyncValueRef<CpuEvent>(), returned_futures.has_value()); if (!statusor.ok()) { return std::move(statusor).status(); } wrapped_results[0] = std::move(statusor->buffers); if (returned_futures.has_value()) { (*returned_futures)[0] = std::move(*statusor->future); } MaybeDumpHloSnapshot(cpu_executable_->module(), run_id, argument_handles[0], wrapped_results[0]); } else { tsl::AsyncValueRef<CpuEvent> last_collective_launch_event = client_->GetLastCollectiveLaunchEvent(); absl::Mutex mu; int running = num_addressable_devices; int failed = 0; absl::Status first_failure_status; for (int i = 0; i < num_addressable_devices; ++i) { const int replica = addressable_device_logical_ids_[i].replica; const int partition = addressable_device_logical_ids_[i].partition; auto* thread_pool = client()->pjrt_client_thread_pool(); EnqueueWork(thread_pool, [&, replica, partition, i] { auto statusor = ExecuteHelper(argument_handles[i], replica, partition, run_id, options, last_collective_launch_event.CopyRef(), returned_futures.has_value()); if (statusor.ok()) { wrapped_results[i] = std::move(statusor->buffers); if (returned_futures.has_value()) { (*returned_futures)[i] = std::move(*statusor->future); } } absl::MutexLock lock(&mu); --running; if (!statusor.ok()) { if (failed == 0) { first_failure_status = AppendStatus( std::move(statusor).status(), absl::StrFormat( "while running replica %d and partition %d of a " "replicated computation (other " "replicas may have failed as well).", replica, partition)); } ++failed; } }); } { auto done_running = [&]() { mu.AssertHeld(); return running == 0; }; absl::MutexLock lock(&mu); mu.Await(absl::Condition(&done_running)); } if (!first_failure_status.ok()) return first_failure_status; } VLOG(1) << "Replicated execution complete."; return wrapped_results; } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> TfrtCpuExecutable::ExecuteSharded( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { tsl::profiler::TraceMe traceme("TfrtCpuExecutable::ExecuteSharded"); if (device_assignment_ == nullptr) { return InvalidArgument("ExecuteShard expects a non-null device_assignment"); } for (int i = 0; i < addressable_devices_.size(); ++i) { if (addressable_devices_[i] == device) { VLOG(1) << "ExecuteShard executes computation " << name() << " on assigned replica/partition on device " << device->DebugString(); TF_ASSIGN_OR_RETURN( auto result, ExecuteHelper( argument_handles, addressable_device_logical_ids_[i].replica, addressable_device_logical_ids_[i].partition, RunId(), options, tsl::AsyncValueRef<CpuEvent>(), fill_future)); returned_future = std::move(result.future); return std::move(result.buffers); } } return InvalidArgument( "ExecuteShard attempted to execute on device id %d which is not " "addressable by this client", device->id()); } absl::StatusOr<std::vector<std::unique_ptr<PjRtBuffer>>> TfrtCpuExecutable::ExecutePortable( absl::Span<PjRtBuffer* const> argument_handles, PjRtDevice* device, const ExecuteOptions& options, std::optional<PjRtFuture<>>& returned_future, bool fill_future) { tsl::profiler::TraceMe traceme("TfrtCpuExecutable::ExecutePortable"); if (device_assignment_ != nullptr) { return InvalidArgument("ExecutePortable gets a non-portable executable"); } if (num_replicas() != 1 || num_partitions() != 1) { return InvalidArgument( "ExecutePortable expects a single-core executable but gets " "one with %d replica %d partition", num_replicas(), num_partitions()); } if (device == nullptr) { return InvalidArgument("ExecutePortable expects a device to be specified"); } VLOG(1) << "ExecutePortable executes single-core portable executable " << name(); TF_ASSIGN_OR_RETURN( auto result, ExecuteHelper( argument_handles, 0, 0, RunId(), options, tsl::AsyncValueRef<CpuEvent>(), fill_future, tensorflow::down_cast<TfrtCpuDevice*>(device))); returned_future = std::move(result.future); return std::move(result.buffers); } }
#include "xla/pjrt/cpu/cpu_client.h" #include "xla/service/hlo.pb.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #ifndef _WIN32 #include <unistd.h> #endif #include <algorithm> #include <cstdint> #include <cstring> #include <memory> #include <optional> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/synchronization/notification.h" #include "xla/ffi/ffi.h" #include "xla/ffi/ffi_api.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/host_memory_spaces.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_utils.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::testing::Each; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::IsFalse; using ::tsl::testing::IsOkAndHolds; static absl::Status TestError(ffi::AnyBuffer, ffi::Result<ffi::AnyBuffer>, ffi::Result<ffi::AnyBuffer>) { return absl::InternalError("test error."); } XLA_FFI_DEFINE_HANDLER(kTestError, TestError, ffi::Ffi::Bind() .Arg<ffi::AnyBuffer>() .Ret<ffi::AnyBuffer>() .Ret<ffi::AnyBuffer>() ); XLA_FFI_REGISTER_HANDLER(ffi::GetXlaFfiApi(), "__xla_test$$TestError", "Host", kTestError); TEST(TfrtCpuClientTest, MemorySpace) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(CpuClientOptions())); ASSERT_GE(client->devices().size(), 1); ASSERT_EQ(client->memory_spaces().size(), client->addressable_devices().size()); for (auto* device : client->devices()) { TF_ASSERT_OK_AND_ASSIGN(auto* memory_space, device->default_memory_space()); EXPECT_THAT(device->memory_spaces(), ElementsAre(memory_space)); EXPECT_EQ(memory_space->kind(), UnpinnedHostMemorySpace::kKind); EXPECT_EQ(memory_space->kind_id(), UnpinnedHostMemorySpace::kKindId); EXPECT_THAT(device->memory_space_by_kind(UnpinnedHostMemorySpace::kKind), IsOkAndHolds(memory_space)); } } TEST(TfrtCpuClientTest, DonationWithExecutionError) { static constexpr char kProgram[] = R"( HloModule DonationWithExecutionError, input_output_alias={ {}: (0, {}, must-alias) } ENTRY DonationWithExecutionError() -> f32[2, 2] { %input = f32[2, 2] parameter(0) %custom-call = (f32[2, 2], u8[0]) custom-call(%input), custom_call_target="__xla_test$$TestError", api_version=API_VERSION_TYPED_FFI, output_to_operand_aliasing={{0}: (0, {})} ROOT %result = f32[2, 2] get-tuple-element(%custom-call), index=0 })"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(CpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_executable, client->Compile(xla_computation, {})); std::vector<float> data(4, 0); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto result = pjrt_executable->Execute({{buffer.get()}}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), HasSubstr("test error.")); result = pjrt_executable->Execute({{buffer.get()}}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), HasSubstr("buffer has been deleted or donated.")); } TEST(TfrtCpuClientTest, HloSnapshot) { static constexpr char kProgram[] = R"( HloModule add ENTRY add { x = f32[3,2] parameter(0) y = f32[3,2] parameter(1) ROOT add = f32[3,2] add(x, y) })"; CpuClientOptions cpu_options; cpu_options.cpu_device_count = 1; TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(cpu_options)); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); std::string dir = tsl::testing::TmpDir(); xla::CompileOptions options; auto* debug_opts = options.executable_build_options.mutable_debug_options(); debug_opts->set_xla_dump_to(dir); debug_opts->set_xla_dump_hlo_snapshots(true); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_executable, client->Compile(xla_computation, options)); std::vector<float> data1{1.0, 2.0, 3.0, 4.0, 5.0, 6.0}; std::vector<float> data2{10.0, 20.0, 30.0, 40.0, 50.0, 60.0}; Shape shape = ShapeUtil::MakeShape(F32, {3, 2}); TF_ASSERT_OK_AND_ASSIGN( auto buffer1, client->BufferFromHostBuffer( data1.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); TF_ASSERT_OK_AND_ASSIGN( auto buffer2, client->BufferFromHostBuffer( data2.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto result = pjrt_executable->Execute( {{buffer1.get(), buffer2.get()}}, {}); ASSERT_TRUE(result.ok()); tsl::FileSystem* fs; ASSERT_TRUE(tsl::Env::Default()->GetFileSystemForFile(dir, &fs).ok()); std::vector<std::string> paths; ASSERT_TRUE(fs->GetMatchingPaths(dir + "false, []() {})); TF_ASSERT_OK(transfer_manager->TransferRawDataToSubBuffer( 0, raw_data_view.data(), raw_data_size - 1, 1, true, []() {})); TF_ASSERT_OK_AND_ASSIGN(auto literal, buffer->ToLiteralSync()); ASSERT_EQ(literal->element_count(), 3 * 2); EXPECT_THAT(literal->data<uint32_t>(), Each(0x42424242)); } struct MemsetValue { explicit MemsetValue(float value) : value(value) {} float value; }; static absl::Status MemsetFromValue( ffi::Result<ffi::BufferR1<PrimitiveType::F32>> result, MemsetValue* memset_value) { for (size_t i = 0; i < result->element_count(); ++i) { result->typed_data()[i] = memset_value->value; } return absl::OkStatus(); } XLA_FFI_DEFINE_HANDLER(kMemsetFromValue, MemsetFromValue, ffi::Ffi::Bind() .Ret<ffi::BufferR1<PrimitiveType::F32>>() .Ctx<ffi::UserData<MemsetValue>>()); XLA_FFI_REGISTER_HANDLER(ffi::GetXlaFfiApi(), "MemsetFromValue", "HOST", kMemsetFromValue); TEST(TfrtCpuClientTest, ForwardUserDataToFfiHandler) { static constexpr char const* kProgram = R"( HloModule ffi_handler ENTRY main { ROOT %custom-call = f32[4] custom-call(), custom_call_target="MemsetFromValue", api_version=API_VERSION_TYPED_FFI })"; TF_ASSERT_OK_AND_ASSIGN(auto client, GetTfrtCpuClient(CpuClientOptions())); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto executable, client->Compile(xla_computation, {})); ExecuteContext context; TF_ASSERT_OK(context.ffi_context().Emplace<MemsetValue>(42.0f)); ExecuteOptions opts; opts.context = &context; auto result = executable->Execute({{}}, opts); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::Literal> result_literal, result->at(0).at(0)->ToLiteralSync()); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR1<float>({42.0f, 42.0f, 42.0f, 42.0f}), *result_literal)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/cpu_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/cpu_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
99489848-76b4-4607-b069-058084f822dd
cpp
tensorflow/tensorflow
bhwc_to_phwc4
tensorflow/lite/delegates/gpu/gl/converters/bhwc_to_phwc4.cc
tensorflow/lite/delegates/gpu/gl/converters/bhwc_to_phwc4_test.cc
#include "tensorflow/lite/delegates/gpu/gl/converters/bhwc_to_phwc4.h" #include <algorithm> #include <cstdint> #include <string> #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/common/util.h" #include "tensorflow/lite/delegates/gpu/gl/converters/util.h" #include "tensorflow/lite/delegates/gpu/gl/gl_program.h" #include "tensorflow/lite/delegates/gpu/gl/gl_shader.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { absl::Status ConverterBhwcToPhwc4::Create(ConverterBhwcToPhwc4* converter) { uint3 workgroup_size = uint3(4, 4, 4); std::string shader_source = GetShaderHeader(workgroup_size) + R"( layout(std430) buffer; precision highp float; layout(binding = 0) readonly buffer B0 { float elements[]; } input_data; layout(binding = 1) writeonly buffer B1 { vec4 elements[]; } output_data; uniform ivec4 sizes_; void main() { ivec3 gid = ivec3(gl_GlobalInvocationID.xyz); if (gid.x >= sizes_.x || gid.y >= sizes_.y || gid.z >= sizes_.z) { return; } vec4 v = vec4(0); int dst_channel = gid.z * 4; int index = (gid.y * sizes_.x + gid.x) * sizes_.w + dst_channel; for (int i = 0; i < 4; ++i, ++index, ++dst_channel) { if (dst_channel >= sizes_.w) break; v[i] = input_data.elements[index]; } output_data.elements[(gid.z * sizes_.y + gid.y) * sizes_.x + gid.x] = v; })"; GlShader shader; RETURN_IF_ERROR( GlShader::CompileShader(GL_COMPUTE_SHADER, shader_source, &shader)); GlProgram program; RETURN_IF_ERROR(GlProgram::CreateWithShader(shader, &program)); *converter = ConverterBhwcToPhwc4(std::move(program), workgroup_size); return absl::OkStatus(); } absl::Status ConverterBhwcToPhwc4::Convert(const BHWC& shape, const GlBuffer& source, CommandQueue* command_queue, GlBuffer* destination) { if (source.bytes_size() < BytesForBHWC(shape)) { return absl::InvalidArgumentError( "BhwcToPhwc4: Input data size does not match expected size."); } if (destination->bytes_size() < BytesForPHWC4(shape)) { return absl::InvalidArgumentError( "BhwcToPhwc4: output data size does not match expected size."); } if (shape.b != 1) { return absl::UnimplementedError( "BhwcToPhwc4: Batch size is not equal to 1."); } uint3 workload = uint3(shape.w, shape.h, DivideRoundUp(shape.c, 4)); uint3 num_workgroups = DivideRoundUp(workload, workgroup_size_); RETURN_IF_ERROR(program_.SetParameter( {"sizes_", int4(static_cast<int32_t>(workload.x), static_cast<int32_t>(workload.y), static_cast<int32_t>(workload.z), static_cast<int32_t>(shape.c))})); RETURN_IF_ERROR(source.BindToIndex(0)); RETURN_IF_ERROR(destination->BindToIndex(1)); if (command_queue) { return command_queue->Dispatch(program_, num_workgroups); } return program_.Dispatch(num_workgroups); } } } }
#include "tensorflow/lite/delegates/gpu/gl/converters/bhwc_to_phwc4.h" #include <algorithm> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/lite/delegates/gpu/common/convert.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/gl/egl_environment.h" #include "tensorflow/lite/delegates/gpu/gl/gl_buffer.h" #include "tensorflow/lite/delegates/gpu/gl/portable_gl31.h" namespace tflite { namespace gpu { namespace gl { namespace { inline std::vector<float> GenerateFloats(float multiplier, int size) { std::vector<float> v(size); for (int i = 0; i < size; ++i) { v[i] = multiplier * i * (i % 2 == 0 ? -1 : 1); } return v; } absl::Status RunTest(const BHWC& shape) { std::vector<float> input = GenerateFloats(0.01, shape.DimensionsProduct()); std::vector<float> output(GetElementsSizeForPHWC4(shape), 0); RETURN_IF_ERROR( ConvertToPHWC4(absl::MakeConstSpan(input.data(), input.size()), shape, absl::MakeSpan(output.data(), output.size()))); std::unique_ptr<EglEnvironment> env; RETURN_IF_ERROR(EglEnvironment::NewEglEnvironment(&env)); GlBuffer input_buffer; RETURN_IF_ERROR(CreateReadOnlyShaderStorageBuffer( absl::MakeConstSpan(input.data(), input.size()), &input_buffer)); GlBuffer output_buffer; RETURN_IF_ERROR(CreateReadWriteShaderStorageBuffer<float>( GetElementsSizeForPHWC4(shape), &output_buffer)); ConverterBhwcToPhwc4 converter; RETURN_IF_ERROR(ConverterBhwcToPhwc4::Create(&converter)); RETURN_IF_ERROR( converter.Convert(shape, input_buffer, nullptr, &output_buffer)); std::vector<float> converted_output(output.size(), 0); RETURN_IF_ERROR(output_buffer.Read( absl::MakeSpan(converted_output.data(), converted_output.size()))); if (output != converted_output) { return absl::InternalError("Outputs don't match"); } return absl::OkStatus(); } TEST(HwcToPhwc4, Smoke) { for (int32_t h : {1, 2, 3, 7, 20}) { for (int32_t w : {1, 2, 4, 5, 11}) { for (int32_t c : {1, 2, 4, 5, 8, 9}) { BHWC shape(1, h, w, c); EXPECT_TRUE(RunTest(shape).ok()) << shape.h << " " << shape.w << " " << shape.c; } } } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/converters/bhwc_to_phwc4.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/converters/bhwc_to_phwc4_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b0c69f73-dc57-4fc8-8147-50f1158eaf32
cpp
google/langsvr
session
src/session.cc
src/session_test.cc
#include "langsvr/session.h" #include <string> #include "langsvr/json/builder.h" namespace langsvr { Result<SuccessType> Session::Receive(std::string_view json) { auto json_builder = json::Builder::Create(); auto object = json_builder->Parse(json); if (object != Success) { return object.Failure(); } auto method = object.Get()->Get<json::String>("method"); if (method != Success) { auto id = object.Get()->Get<json::I64>("id"); if (id != Success) { return id.Failure(); } auto handler_it = response_handlers_.find(id.Get()); if (handler_it == response_handlers_.end()) { return Failure{"received response for unknown request with ID " + std::to_string(id.Get())}; } auto handler = std::move(handler_it->second); response_handlers_.erase(handler_it); return handler(*object.Get()); } if (object.Get()->Has("id")) { auto id = object.Get()->Get<json::I64>("id"); if (id != Success) { return id.Failure(); } auto it = request_handlers_.find(method.Get()); if (it == request_handlers_.end()) { return Failure{"no handler registered for request method '" + method.Get() + "'"}; } auto& request_handler = it->second; auto result = request_handler.function(*object.Get(), *json_builder.get()); if (result != Success) { return result.Failure(); } std::array response_members{ json::Builder::Member{"id", json_builder->I64(id.Get())}, result.Get(), }; auto* response = json_builder->Object(response_members); if (auto res = SendJson(response->Json()); res != Success) { return res.Failure(); } if (request_handler.post_send) { request_handler.post_send(); } } else { auto it = notification_handlers_.find(method.Get()); if (it == notification_handlers_.end()) { return Failure{"no handler registered for request method '" + method.Get() + "'"}; } auto& notification_handler = it->second; return notification_handler.function(*object.Get()); } return Success; } Result<SuccessType> Session::SendJson(std::string_view msg) { if (!sender_) [[unlikely]] { return Failure{"no sender set"}; } return sender_(msg); } }
#include "langsvr/lsp/lsp.h" #include "langsvr/session.h" #include <gtest/gtest.h> #include "langsvr/json/builder.h" #include "langsvr/lsp/decode.h" #include "gmock/gmock.h" #include "langsvr/result.h" namespace langsvr { namespace { Result<lsp::InitializeRequest> GetInitializeRequest() { static constexpr std::string_view kJSON = R"({"processId":71875,"clientInfo":{"name":"My Awesome Editor","version":"1.2.3"},"locale":"en-gb","rootPath":"/home/bob/src/langsvr","rootUri":"file: auto b = json::Builder::Create(); auto msg = b->Parse(kJSON); if (msg != Success) { return msg.Failure(); } lsp::InitializeRequest request; if (auto res = lsp::Decode(*msg.Get(), request); res != Success) { return res.Failure(); } return request; } TEST(Session, InitializeRequest_ResultOrFailure) { auto request = GetInitializeRequest(); ASSERT_EQ(request, Success); Session server_session; Session client_session; client_session.SetSender([&](std::string_view msg) { return server_session.Receive(msg); }); server_session.SetSender([&](std::string_view msg) { return client_session.Receive(msg); }); bool handler_called = false; server_session.Register([&](const lsp::InitializeRequest& init) -> Result<lsp::InitializeResult, lsp::InitializeError> { handler_called = true; EXPECT_EQ(request, init); lsp::InitializeResult res; res.capabilities.hover_provider = true; return res; }); auto response_future = client_session.Send(request.Get()); ASSERT_EQ(response_future, Success); EXPECT_TRUE(handler_called); auto response = response_future.Get().get(); ASSERT_EQ(response, Success); lsp::InitializeResult expected; expected.capabilities.hover_provider = true; EXPECT_EQ(response.Get(), expected); } TEST(Session, InitializeRequest_ResultOnly) { auto request = GetInitializeRequest(); ASSERT_EQ(request, Success); Session server_session; Session client_session; client_session.SetSender([&](std::string_view msg) { return server_session.Receive(msg); }); server_session.SetSender([&](std::string_view msg) { return client_session.Receive(msg); }); bool handler_called = false; server_session.Register([&](const lsp::InitializeRequest& init) { handler_called = true; EXPECT_EQ(request, init); lsp::InitializeResult res; res.capabilities.hover_provider = true; return res; }); auto response_future = client_session.Send(request.Get()); ASSERT_EQ(response_future, Success); EXPECT_TRUE(handler_called); auto response = response_future.Get().get(); ASSERT_EQ(response, Success); lsp::InitializeResult expected; expected.capabilities.hover_provider = true; EXPECT_EQ(response.Get(), expected); } TEST(Session, InitializeRequest_FailureOnly) { auto request = GetInitializeRequest(); ASSERT_EQ(request, Success); Session server_session; Session client_session; client_session.SetSender([&](std::string_view msg) { return server_session.Receive(msg); }); server_session.SetSender([&](std::string_view msg) { return client_session.Receive(msg); }); bool handler_called = false; server_session.Register([&](const lsp::InitializeRequest& init) { handler_called = true; EXPECT_EQ(request, init); lsp::InitializeError err; err.retry = true; return err; }); auto response_future = client_session.Send(request.Get()); ASSERT_EQ(response_future, Success); EXPECT_TRUE(handler_called); auto response = response_future.Get().get(); ASSERT_NE(response, Success); lsp::InitializeError expected; expected.retry = true; EXPECT_EQ(response.Failure(), expected); } } }
https://github.com/google/langsvr/blob/303c526231a90049a3e384549720f3fbd453cf66/src/session.cc
https://github.com/google/langsvr/blob/303c526231a90049a3e384549720f3fbd453cf66/src/session_test.cc
303c526231a90049a3e384549720f3fbd453cf66
52ab6f11-3534-46d9-8fc7-1fd3a10cf0e4
cpp
tensorflow/tensorflow
fused_batch_norm_op
tensorflow/core/kernels/fused_batch_norm_op.cc
tensorflow/core/kernels/fused_batch_norm_op_test.cc
#include <array> #include <atomic> #define EIGEN_USE_THREADS #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define EIGEN_USE_GPU #if GOOGLE_CUDA #include "third_party/gpus/cudnn/cudnn.h" #endif #include "tensorflow/core/kernels/conv_2d.h" #include "tensorflow/core/kernels/gpu_utils.h" #include "tensorflow/core/platform/stream_executor.h" #include "tensorflow/core/util/stream_executor_util.h" #endif #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/kernels/cast_op.h" #include "tensorflow/core/kernels/fill_functor.h" #include "tensorflow/core/kernels/fused_batch_norm_op.h" #include "tensorflow/core/kernels/redux_functor.h" #include "tensorflow/core/kernels/transpose_functor.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/util/env_var.h" #include "tensorflow/core/util/tensor_format.h" namespace tensorflow { using CPUDevice = Eigen::ThreadPoolDevice; using GPUDevice = Eigen::GpuDevice; namespace functor { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM using se::DeviceMemory; using se::ScratchAllocator; using se::Stream; using tsl::StatusOr; #endif string ToString(FusedBatchNormActivationMode activation_mode) { switch (activation_mode) { case FusedBatchNormActivationMode::kIdentity: return "Identity"; case FusedBatchNormActivationMode::kRelu: return "Relu"; } } Status ParseActivationMode(OpKernelConstruction* context, FusedBatchNormActivationMode* activation_mode) { string activation_mode_str; TF_RETURN_IF_ERROR(context->GetAttr("activation_mode", &activation_mode_str)); if (activation_mode_str == "Identity") { *activation_mode = FusedBatchNormActivationMode::kIdentity; return absl::OkStatus(); } if (activation_mode_str == "Relu") { *activation_mode = FusedBatchNormActivationMode::kRelu; return absl::OkStatus(); } return errors::InvalidArgument("Unsupported activation mode: ", activation_mode_str); } template <typename Device, typename T, typename U, bool is_training> struct FusedBatchNorm; template <typename Device, typename T, typename U> struct FusedBatchNormGrad; template <typename T, typename U> struct FusedBatchNorm<CPUDevice, T, U, true> { void operator()(OpKernelContext* context, const Tensor& x_input, const Tensor& scale_input, const Tensor& offset_input, const Tensor& running_mean_input, const Tensor& running_variance_input, const Tensor* side_input, U epsilon, U exponential_avg_factor, FusedBatchNormActivationMode activation_mode, Tensor* y_output, Tensor* running_mean_output, Tensor* running_var_output, Tensor* saved_batch_mean_output, Tensor* saved_batch_var_output, TensorFormat tensor_format, bool use_reserved_space) { OP_REQUIRES(context, side_input == nullptr, errors::Internal( "The CPU implementation of FusedBatchNorm does not support " "side input.")); OP_REQUIRES(context, activation_mode == FusedBatchNormActivationMode::kIdentity, errors::Internal("The CPU implementation of FusedBatchNorm " "does not support activations.")); if (use_reserved_space) { Tensor* dummy_reserve_space = nullptr; OP_REQUIRES_OK(context, context->allocate_output(5, {}, &dummy_reserve_space)); dummy_reserve_space->flat<U>()(0) = U(); } if (x_input.shape().num_elements() == 0) { functor::SetNanFunctor<CPUDevice, U> f; f(context->eigen_device<CPUDevice>(), running_mean_output->flat<U>()); f(context->eigen_device<CPUDevice>(), running_var_output->flat<U>()); return; } Tensor transformed_x; Tensor transformed_y; if (tensor_format == FORMAT_NCHW) { const int64_t in_batch = GetTensorDim(x_input, tensor_format, 'N'); const int64_t in_rows = GetTensorDim(x_input, tensor_format, 'H'); const int64_t in_cols = GetTensorDim(x_input, tensor_format, 'W'); const int64_t in_depths = GetTensorDim(x_input, tensor_format, 'C'); TensorShape transformed_x_shape; OP_REQUIRES_OK(context, ShapeFromFormatWithStatus( FORMAT_NHWC, in_batch, in_rows, in_cols, in_depths, &transformed_x_shape)); OP_REQUIRES_OK( context, context->allocate_temp(DataTypeToEnum<T>::value, transformed_x_shape, &transformed_x)); TensorShape transformed_y_shape; OP_REQUIRES_OK(context, ShapeFromFormatWithStatus( FORMAT_NHWC, in_batch, in_rows, in_cols, in_depths, &transformed_y_shape)); OP_REQUIRES_OK( context, context->allocate_temp(DataTypeToEnum<T>::value, transformed_y_shape, &transformed_y)); std::array<int32, 4> perm = {0, 2, 3, 1}; OP_REQUIRES_OK( context, ::tensorflow::DoTranspose(context->eigen_device<CPUDevice>(), x_input, perm, &transformed_x)); } else { transformed_x = x_input; transformed_y = *y_output; } typename TTypes<T, 4>::Tensor x(transformed_x.tensor<T, 4>()); typename TTypes<U>::ConstVec scale(scale_input.vec<U>()); typename TTypes<U>::ConstVec offset(offset_input.vec<U>()); typename TTypes<U>::ConstVec old_mean(running_mean_input.vec<U>()); typename TTypes<U>::ConstVec old_variance(running_variance_input.vec<U>()); typename TTypes<T, 4>::Tensor y(transformed_y.tensor<T, 4>()); typename TTypes<U>::Vec new_mean(running_mean_output->vec<U>()); typename TTypes<U>::Vec new_variance(running_var_output->vec<U>()); typename TTypes<U>::Vec saved_batch_mean(saved_batch_mean_output->vec<U>()); typename TTypes<U>::Vec saved_batch_var(saved_batch_var_output->vec<U>()); const CPUDevice& d = context->eigen_device<CPUDevice>(); const int depth = x.dimension(3); const int size = x.size(); const int rest_size = size / depth; Eigen::DSizes<Eigen::Index, 2> rest_by_depth(rest_size, depth); Eigen::IndexList<Eigen::type2index<1>, Eigen::Index> one_by_depth; one_by_depth.set(1, depth); Eigen::IndexList<Eigen::type2index<0>> reduce_dims; Eigen::IndexList<Eigen::Index, Eigen::type2index<1>> bcast_spec; bcast_spec.set(0, rest_size); auto x_rest_by_depth = x.reshape(rest_by_depth).template cast<U>(); const int rest_size_minus_one = (rest_size > 1) ? (rest_size - 1) : 1; U rest_size_inv = static_cast<U>(1.0f / static_cast<U>(rest_size)); U rest_size_adjust = static_cast<U>(rest_size) / static_cast<U>(rest_size_minus_one); Eigen::Tensor<U, 1, Eigen::RowMajor> batch_mean(depth); Eigen::Tensor<U, 1, Eigen::RowMajor> batch_variance(depth); batch_mean.device(d) = (x_rest_by_depth.sum(reduce_dims) * rest_size_inv); auto x_centered = x_rest_by_depth - batch_mean.reshape(one_by_depth).broadcast(bcast_spec); batch_variance.device(d) = x_centered.square().sum(reduce_dims) * rest_size_inv; auto scaling_factor = ((batch_variance + epsilon).rsqrt() * scale) .eval() .reshape(one_by_depth) .broadcast(bcast_spec); auto x_scaled = x_centered * scaling_factor; auto x_shifted = (x_scaled + offset.reshape(one_by_depth).broadcast(bcast_spec)) .template cast<T>(); y.reshape(rest_by_depth).device(d) = x_shifted; if (exponential_avg_factor == U(1.0)) { saved_batch_var.device(d) = batch_variance; saved_batch_mean.device(d) = batch_mean; new_variance.device(d) = batch_variance * rest_size_adjust; new_mean.device(d) = batch_mean; } else { U one_minus_factor = U(1) - exponential_avg_factor; saved_batch_var.device(d) = batch_variance; saved_batch_mean.device(d) = batch_mean; new_variance.device(d) = one_minus_factor * old_variance + (exponential_avg_factor * rest_size_adjust) * batch_variance; new_mean.device(d) = one_minus_factor * old_mean + exponential_avg_factor * batch_mean; } if (tensor_format == FORMAT_NCHW) { const std::array<int32, 4> perm = {0, 3, 1, 2}; const Status s = ::tensorflow::DoTranspose( context->eigen_device<CPUDevice>(), transformed_y, perm, y_output); if (!s.ok()) { context->SetStatus(errors::InvalidArgument("Transpose failed: ", s)); } } } }; template <typename T, typename U> struct FusedBatchNorm<CPUDevice, T, U, false> { void operator()(OpKernelContext* context, const Tensor& x_input, const Tensor& scale_input, const Tensor& offset_input, const Tensor& estimated_mean_input, const Tensor& estimated_variance_input, const Tensor* side_input, U epsilon, U exponential_avg_factor, FusedBatchNormActivationMode activation_mode, Tensor* y_output, Tensor* batch_mean_output, Tensor* batch_var_output, Tensor* saved_mean_output, Tensor* saved_var_output, TensorFormat tensor_format, bool use_reserved_space) { OP_REQUIRES(context, side_input == nullptr, errors::Internal( "The CPU implementation of FusedBatchNorm does not support " "side input.")); OP_REQUIRES(context, activation_mode == FusedBatchNormActivationMode::kIdentity, errors::Internal("The CPU implementation of FusedBatchNorm " "does not support activations.")); if (use_reserved_space) { Tensor* dummy_reserve_space = nullptr; OP_REQUIRES_OK(context, context->allocate_output(5, {}, &dummy_reserve_space)); dummy_reserve_space->flat<U>()(0) = U(); } if (x_input.shape().num_elements() == 0) { functor::SetNanFunctor<CPUDevice, U> f; f(context->eigen_device<CPUDevice>(), batch_mean_output->flat<U>()); f(context->eigen_device<CPUDevice>(), batch_var_output->flat<U>()); return; } Tensor transformed_x; Tensor transformed_y; if (tensor_format == FORMAT_NCHW) { const int64_t in_batch = GetTensorDim(x_input, tensor_format, 'N'); const int64_t in_rows = GetTensorDim(x_input, tensor_format, 'H'); const int64_t in_cols = GetTensorDim(x_input, tensor_format, 'W'); const int64_t in_depths = GetTensorDim(x_input, tensor_format, 'C'); TensorShape transformed_x_shape; OP_REQUIRES_OK(context, ShapeFromFormatWithStatus( FORMAT_NHWC, in_batch, in_rows, in_cols, in_depths, &transformed_x_shape)); OP_REQUIRES_OK( context, context->allocate_temp(DataTypeToEnum<T>::value, transformed_x_shape, &transformed_x)); TensorShape transformed_y_shape; OP_REQUIRES_OK(context, ShapeFromFormatWithStatus( FORMAT_NHWC, in_batch, in_rows, in_cols, in_depths, &transformed_y_shape)); OP_REQUIRES_OK( context, context->allocate_temp(DataTypeToEnum<T>::value, transformed_y_shape, &transformed_y)); std::array<int32, 4> perm = {0, 2, 3, 1}; OP_REQUIRES_OK( context, ::tensorflow::DoTranspose(context->eigen_device<CPUDevice>(), x_input, perm, &transformed_x)); } else { transformed_x = x_input; transformed_y = *y_output; } typename TTypes<T, 4>::Tensor x(transformed_x.tensor<T, 4>()); typename TTypes<U>::ConstVec scale(scale_input.vec<U>()); typename TTypes<U>::ConstVec offset(offset_input.vec<U>()); typename TTypes<U>::ConstVec estimated_mean(estimated_mean_input.vec<U>()); typename TTypes<U>::ConstVec estimated_variance( estimated_variance_input.vec<U>()); typename TTypes<T, 4>::Tensor y(transformed_y.tensor<T, 4>()); typename TTypes<U>::Vec batch_mean(batch_mean_output->vec<U>()); typename TTypes<U>::Vec batch_variance(batch_var_output->vec<U>()); const CPUDevice& d = context->eigen_device<CPUDevice>(); const int depth = x.dimension(3); OP_REQUIRES( context, depth != 0, errors::Internal("The 4th element in the input shape cannot be 0.")); const int size = x.size(); const int rest_size = size / depth; Eigen::DSizes<Eigen::Index, 2> rest_by_depth(rest_size, depth); Eigen::IndexList<Eigen::type2index<1>, Eigen::Index> one_by_depth; one_by_depth.set(1, depth); Eigen::IndexList<Eigen::Index, Eigen::type2index<1>> bcast_spec; bcast_spec.set(0, rest_size); auto x_rest_by_depth = x.reshape(rest_by_depth).template cast<U>(); auto x_centered = x_rest_by_depth - estimated_mean.reshape(one_by_depth).broadcast(bcast_spec); auto scaling_factor = ((estimated_variance + epsilon).rsqrt() * scale) .eval() .reshape(one_by_depth) .broadcast(bcast_spec); auto x_scaled = x_centered * scaling_factor; auto x_shifted = (x_scaled + offset.reshape(one_by_depth).broadcast(bcast_spec)) .template cast<T>(); y.reshape(rest_by_depth).device(d) = x_shifted; batch_mean.device(d) = estimated_mean; batch_variance.device(d) = estimated_variance; if (tensor_format == FORMAT_NCHW) { const std::array<int32, 4> perm = {0, 3, 1, 2}; const Status s = ::tensorflow::DoTranspose( context->eigen_device<CPUDevice>(), transformed_y, perm, y_output); if (!s.ok()) { context->SetStatus(errors::InvalidArgument("Transpose failed: ", s)); } } } }; template <typename T, typename U> struct FusedBatchNormGrad<CPUDevice, T, U> { void operator()(OpKernelContext* context, const Tensor& y_backprop_input, const Tensor& x_input, const Tensor& scale_input, const Tensor* offset_input, const Tensor& mean_input, const Tensor& variance_input, const Tensor* y_input, U epsilon, FusedBatchNormActivationMode activation_mode, Tensor* x_backprop_output, Tensor* scale_backprop_output, Tensor* offset_backprop_output, Tensor* side_input_backprop_output, bool use_reserved_space, TensorFormat tensor_format) { OP_REQUIRES(context, y_input == nullptr && activation_mode == FusedBatchNormActivationMode::kIdentity, errors::Internal( "The CPU implementation of FusedBatchNormGrad does not " "support activations.")); OP_REQUIRES(context, side_input_backprop_output == nullptr, errors::Internal("The CPU implementation of FusedBatchNormGrad " "does not support side input.")); Tensor transformed_y_backprop_input; Tensor transformed_x_input; Tensor transformed_x_backprop_output; if (tensor_format == FORMAT_NCHW) { const int64_t in_batch = GetTensorDim(x_input, tensor_format, 'N'); const int64_t in_rows = GetTensorDim(x_input, tensor_format, 'H'); const int64_t in_cols = GetTensorDim(x_input, tensor_format, 'W'); const int64_t in_depths = GetTensorDim(x_input, tensor_format, 'C'); TensorShape transformed_y_backprop_input_shape; OP_REQUIRES_OK(context, ShapeFromFormatWithStatus( FORMAT_NHWC, in_batch, in_rows, in_cols, in_depths, &transformed_y_backprop_input_shape)); OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::value, transformed_y_backprop_input_shape, &transformed_y_backprop_input)); TensorShape transformed_x_input_shape; OP_REQUIRES_OK(context, ShapeFromFormatWithStatus( FORMAT_NHWC, in_batch, in_rows, in_cols, in_depths, &transformed_x_input_shape)); OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::value, transformed_x_input_shape, &transformed_x_input)); TensorShape transformed_x_backprop_output_shape; OP_REQUIRES_OK(context, ShapeFromFormatWithStatus( FORMAT_NHWC, in_batch, in_rows, in_cols, in_depths, &transformed_x_backprop_output_shape)); OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::value, transformed_x_backprop_output_shape, &transformed_x_backprop_output)); std::array<int32, 4> perm = {0, 2, 3, 1}; OP_REQUIRES_OK( context, ::tensorflow::DoTranspose(context->eigen_device<CPUDevice>(), y_backprop_input, perm, &transformed_y_backprop_input)); OP_REQUIRES_OK(context, ::tensorflow::DoTranspose( context->eigen_device<CPUDevice>(), x_input, perm, &transformed_x_input)); } else { transformed_y_backprop_input = y_backprop_input; transformed_x_input = x_input; transformed_x_backprop_output = *x_backprop_output; } typename TTypes<T, 4>::Tensor y_backprop( transformed_y_backprop_input.tensor<T, 4>()); typename TTypes<T, 4>::Tensor x(transformed_x_input.tensor<T, 4>()); typename TTypes<U>::ConstVec scale(scale_input.vec<U>()); typename TTypes<U>::ConstVec mean(mean_input.vec<U>()); typename TTypes<U>::ConstVec variance(variance_input.vec<U>()); typename TTypes<T, 4>::Tensor x_backprop( transformed_x_backprop_output.tensor<T, 4>()); typename TTypes<U>::Vec offset_backprop(offset_backprop_output->vec<U>()); const CPUDevice& d = context->eigen_device<CPUDevice>(); const int depth = x.dimension(3); const int size = x.size(); const int rest_size = size / depth; Eigen::DSizes<Eigen::Index, 2> rest_by_depth(rest_size, depth); Eigen::IndexList<Eigen::type2index<1>, Eigen::Index> one_by_depth; one_by_depth.set(1, depth); Eigen::IndexList<Eigen::Index, Eigen::type2index<1>> bcast_spec; bcast_spec.set(0, rest_size); auto x_rest_by_depth = x.reshape(rest_by_depth).template cast<U>(); U rest_size_inv = static_cast<U>(1.0f / static_cast<U>(rest_size)); using ScalarSum = Eigen::internal::scalar_sum_op<U>; const functor::ReduceOuterDimensions<T, U, U, ScalarSum> redux_sum_t; const functor::ReduceOuterDimensions<U, U, U, ScalarSum> redux_sum_u; auto scratch_dtype = DataTypeToEnum<U>::value; Tensor scratch_one_by_depth; OP_REQUIRES_OK(context, context->allocate_temp(scratch_dtype, {depth}, &scratch_one_by_depth)); Tensor scratch_rest_by_depth; if (std::is_same<T, U>::value) { OP_REQUIRES(context, scratch_rest_by_depth.CopyFrom(transformed_x_backprop_output, {rest_size, depth}), errors::Internal("Failed to copy a tensor")); } else { OP_REQUIRES_OK(context, context->allocate_temp(scratch_dtype, {rest_size, depth}, &scratch_rest_by_depth)); } typename TTypes<U, 2>::Tensor scratch_tensor( scratch_rest_by_depth.tensor<U, 2>()); typename TTypes<U>::Vec scratch_vector(scratch_one_by_depth.vec<U>()); auto x_mean_rest_by_depth = mean.reshape(one_by_depth).broadcast(bcast_spec); auto x_centered = (x_rest_by_depth - x_mean_rest_by_depth); auto coef0_one_by_depth = (variance.reshape(one_by_depth) + epsilon).rsqrt(); auto coef0_rest_by_depth = coef0_one_by_depth.broadcast(bcast_spec); auto x_scaled = x_centered * coef0_rest_by_depth; auto y_backprop_rest_by_depth = y_backprop.reshape(rest_by_depth).template cast<U>(); scratch_tensor.device(d) = y_backprop_rest_by_depth * x_scaled; redux_sum_u(d, rest_by_depth, scratch_rest_by_depth, scale_backprop_output); redux_sum_t(d, rest_by_depth, transformed_y_backprop_input, offset_backprop_output); auto y_backprop_sum = offset_backprop; auto y_backprop_sum_one_by_depth = y_backprop_sum.reshape(one_by_depth); auto y_backprop_mean_one_by_depth = y_backprop_sum_one_by_depth * rest_size_inv; auto y_backprop_mean_rest_by_depth = y_backprop_mean_one_by_depth.broadcast(bcast_spec); auto y_backprop_centered = y_backprop_rest_by_depth - y_backprop_mean_rest_by_depth; scratch_tensor.device(d) = y_backprop_rest_by_depth * x_centered; redux_sum_u(d, rest_by_depth, scratch_rest_by_depth, &scratch_one_by_depth); auto y_backprop_centered_mean = scratch_vector.reshape(one_by_depth) / static_cast<U>(rest_size); auto coef1 = (scale.reshape(one_by_depth) * coef0_one_by_depth) .broadcast(bcast_spec); auto coef2 = (coef0_one_by_depth.square() * y_backprop_centered_mean) .broadcast(bcast_spec); x_backprop.reshape(rest_by_depth).device(d) = (coef1 * (y_backprop_centered - x_centered * coef2)).template cast<T>(); if (tensor_format == FORMAT_NCHW) { std::array<int32, 4> perm = {0, 3, 1, 2}; OP_REQUIRES_OK( context, ::tensorflow::DoTranspose(context->eigen_device<CPUDevice>(), transformed_x_backprop_output, perm, x_backprop_output)); } } }; template <typename T, typename U> struct FusedBatchNormFreezeGrad<CPUDevice, T, U> { void operator()(OpKernelContext* context, const Tensor& y_backprop_input, const Tensor& x_input, const Tensor& scale_input, const Tensor& pop_mean_input, const Tensor& pop_variance_input, U epsilon, Tensor* x_backprop_output, Tensor* scale_backprop_output, Tensor* offset_backprop_output) { typename TTypes<T, 4>::ConstTensor y_backprop( y_backprop_input.tensor<T, 4>()); typename TTypes<T, 4>::ConstTensor input(x_input.tensor<T, 4>()); typename TTypes<U>::ConstVec scale(scale_input.vec<U>()); typename TTypes<U>::ConstVec pop_mean(pop_mean_input.vec<U>()); typename TTypes<U>::ConstVec pop_var(pop_variance_input.vec<U>()); typename TTypes<T, 4>::Tensor x_backprop(x_backprop_output->tensor<T, 4>()); typename TTypes<U>::Vec scale_backprop(scale_backprop_output->vec<U>()); const int depth = pop_mean.dimension(0); const int rest_size = input.size() / depth; const CPUDevice& d = context->eigen_device<CPUDevice>(); Tensor scratch1_vec, scratch2_vec; OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<U>::value, {depth}, &scratch1_vec)); OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<U>::value, {depth}, &scratch2_vec)); Tensor scratch3_tensor; if (std::is_same<T, U>::value) { OP_REQUIRES( context, scratch3_tensor.CopyFrom(*x_backprop_output, {rest_size, depth}), errors::Internal("Failed to copy a tensor")); } else { OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<U>::value, {rest_size, depth}, &scratch3_tensor)); } typename TTypes<U>::Vec scratch1(scratch1_vec.vec<U>()); typename TTypes<U>::Vec scratch2(scratch2_vec.vec<U>()); typename TTypes<U, 2>::Tensor scratch3(scratch3_tensor.tensor<U, 2>()); Eigen::DSizes<Eigen::Index, 2> rest_by_depth(rest_size, depth); Eigen::IndexList<Eigen::type2index<1>, Eigen::Index> one_by_depth; one_by_depth.set(1, depth); Eigen::IndexList<Eigen::Index, Eigen::type2index<1>> rest_by_one; rest_by_one.set(0, rest_size); using ScalarSum = Eigen::internal::scalar_sum_op<U>; const functor::ReduceOuterDimensions<T, U, U, ScalarSum> redux_sum_t; const functor::ReduceOuterDimensions<U, U, U, ScalarSum> redux_sum_u; auto y_backprop_rest_by_depth = y_backprop.reshape(rest_by_depth).template cast<U>(); auto input_rest_by_depth = input.reshape(rest_by_depth).template cast<U>(); redux_sum_t(d, rest_by_depth, y_backprop_input, offset_backprop_output); scratch1 = (pop_var + pop_var.constant(epsilon)).rsqrt(); scratch3.device(d) = y_backprop_rest_by_depth * (input_rest_by_depth - pop_mean.reshape(one_by_depth).broadcast(rest_by_one)); redux_sum_u(d, rest_by_depth, scratch3_tensor, &scratch2_vec); x_backprop.reshape(rest_by_depth).device(d) = (y_backprop_rest_by_depth * ((scratch1.reshape(one_by_depth) * scale.reshape(one_by_depth)) .broadcast(rest_by_one))) .template cast<T>(); scale_backprop = scratch2 * scratch1; } }; #if !GOOGLE_CUDA namespace { bool BatchnormSpatialPersistentEnabled() { return false; } } #endif #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM namespace { se::dnn::ActivationMode AsDnnActivationMode( const FusedBatchNormActivationMode activation_mode) { switch (activation_mode) { case FusedBatchNormActivationMode::kIdentity: return se::dnn::ActivationMode::kNone; case FusedBatchNormActivationMode::kRelu: return se::dnn::ActivationMode::kRelu; } } #if GOOGLE_CUDA bool BatchnormSpatialPersistentEnabled() { #if CUDNN_VERSION >= 7402 static bool is_enabled = [] { bool is_enabled = false; TF_CHECK_OK(tensorflow::ReadBoolFromEnvVar( "TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT", false, &is_enabled)); return is_enabled; }(); return is_enabled; #else return false; #endif } #endif } template <typename U, typename T> DeviceMemory<U> CastDeviceMemory(Tensor* tensor) { return DeviceMemory<U>::MakeFromByteSize( tensor->template flat<T>().data(), tensor->template flat<T>().size() * sizeof(T)); } template <typename T> class CudnnBatchNormAllocatorInTemp : public ScratchAllocator { public: ~CudnnBatchNormAllocatorInTemp() override = default; explicit CudnnBatchNormAllocatorInTemp(OpKernelContext* context) : context_(context) {} int64_t GetMemoryLimitInBytes() override { return std::numeric_limits<int64_t>::max(); } StatusOr<DeviceMemory<uint8>> AllocateBytes(int64_t byte_size) override { Tensor temporary_memory; const DataType tf_data_type = DataTypeToEnum<T>::v(); int64_t allocate_count = Eigen::divup(byte_size, static_cast<int64_t>(sizeof(T))); Status allocation_status(context_->allocate_temp( tf_data_type, TensorShape({allocate_count}), &temporary_memory)); if (!allocation_status.ok()) { return allocation_status; } allocated_tensors_.push_back(temporary_memory); total_byte_size_ += byte_size; return DeviceMemory<uint8>::MakeFromByteSize( temporary_memory.template flat<T>().data(), temporary_memory.template flat<T>().size() * sizeof(T)); } int64_t TotalByteSize() const { return total_byte_size_; } Tensor get_allocated_tensor(int index) const { return allocated_tensors_[index]; } private: int64_t total_byte_size_ = 0; OpKernelContext* context_; std::vector<Tensor> allocated_tensors_; }; template <typename T> class CudnnBatchNormAllocatorInOutput : public ScratchAllocator { public: ~CudnnBatchNormAllocatorInOutput() override { if (!output_allocated) { Tensor* dummy_reserve_space = nullptr; OP_REQUIRES_OK(context_, context_->allocate_output(output_index_, {}, &dummy_reserve_space)); } } CudnnBatchNormAllocatorInOutput(OpKernelContext* context, int output_index) : context_(context), output_index_(output_index) {} int64_t GetMemoryLimitInBytes() override { return std::numeric_limits<int64_t>::max(); } StatusOr<DeviceMemory<uint8>> AllocateBytes(int64_t byte_size) override { output_allocated = true; DCHECK(total_byte_size_ == 0) << "Reserve space allocator can only be called once"; int64_t allocate_count = Eigen::divup(byte_size, static_cast<int64_t>(sizeof(T))); Tensor* temporary_memory = nullptr; Status allocation_status(context_->allocate_output( output_index_, TensorShape({allocate_count}), &temporary_memory)); if (!allocation_status.ok()) { return allocation_status; } total_byte_size_ += byte_size; auto memory_uint8 = DeviceMemory<uint8>::MakeFromByteSize( temporary_memory->template flat<T>().data(), temporary_memory->template flat<T>().size() * sizeof(T)); return StatusOr<DeviceMemory<uint8>>(memory_uint8); } int64_t TotalByteSize() { return total_byte_size_; } private: int64_t total_byte_size_ = 0; OpKernelContext* context_; int output_index_; bool output_allocated = false; }; template <typename T, typename U, bool is_training> struct FusedBatchNormImplGPU { void operator()(OpKernelContext* context, const Tensor& x, const Tensor& scale, const Tensor& offset, const Tensor& estimated_mean, const Tensor& estimated_variance, const Tensor* side_input, U epsilon, U exponential_avg_factor, FusedBatchNormActivationMode activation_mode, Tensor* y, Tensor* batch_mean, Tensor* batch_var, Tensor* saved_mean, Tensor* saved_inv_var, TensorFormat tensor_format, bool use_reserved_space) { auto* stream = context->op_device_context()->stream(); OP_REQUIRES(context, stream, errors::Internal("No GPU stream available")); const int64_t batch_size = GetTensorDim(x, tensor_format, 'N'); const int64_t channels = GetTensorDim(x, tensor_format, 'C'); const int64_t height = GetTensorDim(x, tensor_format, 'H'); const int64_t width = GetTensorDim(x, tensor_format, 'W'); #if GOOGLE_CUDA const bool fast_nhwc_batch_norm = !is_training || (BatchnormSpatialPersistentEnabled() && (DataTypeToEnum<T>::value == DT_HALF || DataTypeToEnum<T>::value == DT_BFLOAT16) && use_reserved_space); #else const bool fast_nhwc_batch_norm = false; #endif TensorFormat compute_format = fast_nhwc_batch_norm && tensor_format == FORMAT_NHWC ? FORMAT_NHWC : FORMAT_NCHW; VLOG(2) << "FusedBatchNorm:" << " batch_size: " << batch_size << " channels: " << channels << " height: " << height << " width:" << width << " x shape: " << x.shape().DebugString() << " scale shape: " << scale.shape().DebugString() << " offset shape: " << offset.shape().DebugString() << " activation mode: " << ToString(activation_mode) << " tensor format: " << ToString(tensor_format) << " compute format: " << ToString(compute_format); auto maybe_make_dummy_output = [context, use_reserved_space]() -> Status { if (use_reserved_space) { Tensor* dummy_reserve_space = nullptr; return context->allocate_output(5, {}, &dummy_reserve_space); } return OkStatus(); }; if (x.shape().num_elements() == 0) { OP_REQUIRES_OK(context, maybe_make_dummy_output()); functor::SetNanFunctor<GPUDevice, U> f; f(context->eigen_device<GPUDevice>(), batch_mean->flat<U>()); f(context->eigen_device<GPUDevice>(), batch_var->flat<U>()); return; } const bool has_side_input = side_input != nullptr; const bool has_activation = activation_mode != FusedBatchNormActivationMode::kIdentity; if (!is_training && (has_side_input || has_activation)) { OP_REQUIRES_OK(context, maybe_make_dummy_output()); FusedBatchNormInferenceFunctor<GPUDevice, T, U> inference_functor; if (has_side_input) { inference_functor(context, tensor_format, x.tensor<T, 4>(), scale.vec<U>(), offset.vec<U>(), estimated_mean.vec<U>(), estimated_variance.vec<U>(), side_input->tensor<T, 4>(), epsilon, activation_mode, y->tensor<T, 4>()); } else { typename TTypes<T, 4>::ConstTensor empty_tensor(nullptr, 0, 0, 0, 0); inference_functor(context, tensor_format, x.tensor<T, 4>(), scale.vec<U>(), offset.vec<U>(), estimated_mean.vec<U>(), estimated_variance.vec<U>(), empty_tensor, epsilon, activation_mode, y->tensor<T, 4>()); } return; } Tensor x_maybe_transformed = x; Tensor x_transformed; Tensor y_transformed; se::DeviceMemory<T> y_ptr; if (tensor_format == compute_format) { y_ptr = StreamExecutorUtil::AsDeviceMemory<T>(*y); } else if (tensor_format == FORMAT_NHWC && compute_format == FORMAT_NCHW) { TensorShape x_transformed_shape; OP_REQUIRES_OK(context, ShapeFromFormatWithStatus( compute_format, batch_size, height, width, channels, &x_transformed_shape)); OP_REQUIRES_OK( context, context->allocate_temp(DataTypeToEnum<T>::value, x_transformed_shape, &x_transformed)); functor::NHWCToNCHW<GPUDevice, T, 4>()( context->eigen_device<GPUDevice>(), const_cast<const Tensor&>(x_maybe_transformed).tensor<T, 4>(), x_transformed.tensor<T, 4>()); x_maybe_transformed = x_transformed; TensorShape y_transformed_shape; OP_REQUIRES_OK(context, ShapeFromFormatWithStatus( compute_format, batch_size, height, width, channels, &y_transformed_shape)); OP_REQUIRES_OK( context, context->allocate_temp(DataTypeToEnum<T>::value, y_transformed_shape, &y_transformed)); y_ptr = StreamExecutorUtil::AsDeviceMemory<T>(y_transformed); } else { context->SetStatus(errors::Internal( "Unsupported tensor format: ", ToString(tensor_format), " and compute format: ", ToString(compute_format))); return; } const se::dnn::DataLayout data_layout = compute_format == FORMAT_NHWC ? se::dnn::DataLayout::kBatchYXDepth : se::dnn::DataLayout::kBatchDepthYX; se::dnn::BatchDescriptor x_desc; x_desc.set_count(batch_size) .set_feature_map_count(channels) .set_height(height) .set_width(width) .set_layout(data_layout); se::dnn::BatchDescriptor scale_offset_desc; scale_offset_desc.set_count(1) .set_feature_map_count(channels) .set_height(1) .set_width(1) .set_layout(se::dnn::DataLayout::kBatchDepthYX); auto x_ptr = StreamExecutorUtil::AsDeviceMemory<T>(x_maybe_transformed); auto scale_ptr = StreamExecutorUtil::AsDeviceMemory<U>(scale); auto offset_ptr = StreamExecutorUtil::AsDeviceMemory<U>(offset); auto estimated_mean_ptr = StreamExecutorUtil::AsDeviceMemory<U>(estimated_mean); auto estimated_variance_ptr = StreamExecutorUtil::AsDeviceMemory<U>(estimated_variance); auto side_input_ptr = side_input != nullptr ? StreamExecutorUtil::AsDeviceMemory<T>(*side_input) : se::DeviceMemory<T>(); auto batch_mean_ptr = StreamExecutorUtil::AsDeviceMemory<U>(*batch_mean); auto batch_var_ptr = StreamExecutorUtil::AsDeviceMemory<U>(*batch_var); auto saved_mean_ptr = StreamExecutorUtil::AsDeviceMemory<U>(*saved_mean); auto saved_inv_var_ptr = StreamExecutorUtil::AsDeviceMemory<U>(*saved_inv_var); std::unique_ptr<functor::CudnnBatchNormAllocatorInOutput<U>> reserve_space_allocator; std::unique_ptr<functor::CudnnBatchNormAllocatorInTemp<uint8>> workspace_allocator; if (use_reserved_space) { reserve_space_allocator.reset( new functor::CudnnBatchNormAllocatorInOutput<U>(context, 5)); workspace_allocator.reset( new functor::CudnnBatchNormAllocatorInTemp<uint8>(context)); } if (!batch_mean->SharesBufferWith(estimated_mean) && exponential_avg_factor != 1.0f) { OP_REQUIRES_OK( context, stream->MemcpyD2D(&batch_mean_ptr, estimated_mean_ptr, estimated_mean.NumElements() * sizeof(U))); } if (!batch_var->SharesBufferWith(estimated_variance) && exponential_avg_factor != 1.0f) { OP_REQUIRES_OK( context, stream->MemcpyD2D(&batch_var_ptr, estimated_variance_ptr, estimated_variance.NumElements() * sizeof(U))); } auto dnn = stream->parent()->AsDnn(); if (dnn == nullptr) { context->SetStatus(absl::InternalError("No DNN support for stream")); return; } bool cudnn_launch_status = dnn->DoBatchNormalizationForward( stream, x_ptr, scale_ptr, offset_ptr, estimated_mean_ptr, estimated_variance_ptr, side_input_ptr, x_desc, scale_offset_desc, static_cast<double>(epsilon), static_cast<double>(exponential_avg_factor), AsDnnActivationMode(activation_mode), &y_ptr, &batch_mean_ptr, &batch_var_ptr, &saved_mean_ptr, &saved_inv_var_ptr, is_training, reserve_space_allocator.get(), workspace_allocator.get()); if (!cudnn_launch_status) { context->SetStatus( errors::Internal("cuDNN launch failure : input shape (", x.shape().DebugString(), ")")); return; } if (tensor_format == FORMAT_NHWC && compute_format == FORMAT_NCHW) { functor::NCHWToNHWC<GPUDevice, T, 4>()( context->eigen_device<GPUDevice>(), const_cast<const Tensor&>(y_transformed).tensor<T, 4>(), y->tensor<T, 4>()); } } }; template <typename T, typename U, bool is_training> struct FusedBatchNorm<GPUDevice, T, U, is_training> { void operator()(OpKernelContext* context, const Tensor& x, const Tensor& scale, const Tensor& offset, const Tensor& estimated_mean, const Tensor& estimated_variance, const Tensor* side_input, U epsilon, U exponential_avg_factor, FusedBatchNormActivationMode activation_mode, Tensor* y, Tensor* batch_mean, Tensor* batch_var, Tensor* saved_mean, Tensor* saved_inv_var, TensorFormat tensor_format, bool use_reserved_space) { FusedBatchNormImplGPU<T, U, is_training>()( context, x, scale, offset, estimated_mean, estimated_variance, side_input, epsilon, exponential_avg_factor, activation_mode, y, batch_mean, batch_var, saved_mean, saved_inv_var, tensor_format, use_reserved_space); } }; template <bool is_training> struct FusedBatchNorm<GPUDevice, Eigen::bfloat16, float, is_training> { void operator()(OpKernelContext* context, const Tensor& x, const Tensor& scale, const Tensor& offset, const Tensor& estimated_mean, const Tensor& estimated_variance, const Tensor* side_input, float epsilon, float exponential_avg_factor, FusedBatchNormActivationMode activation_mode, Tensor* y, Tensor* batch_mean, Tensor* batch_var, Tensor* saved_mean, Tensor* saved_inv_var, TensorFormat tensor_format, bool use_reserved_space) { auto* stream = context->op_device_context()->stream(); const bool cast_to_float = !IsBF16SupportedInOps(stream); if (cast_to_float) { Tensor casted_x = x; Tensor casted_side_input; Tensor casted_y = *y; const GPUDevice& device = context->eigen_device<GPUDevice>(); functor::CastFunctor<GPUDevice, float, Eigen::bfloat16> cast; OP_REQUIRES_OK(context, context->allocate_temp(DT_FLOAT, x.shape(), &casted_x)); cast(device, casted_x.template flat<float>(), x.template flat<Eigen::bfloat16>()); if (side_input != nullptr) { OP_REQUIRES_OK(context, context->allocate_temp(DT_FLOAT, side_input->shape(), &casted_side_input)); cast(device, casted_side_input.template flat<float>(), side_input->template flat<Eigen::bfloat16>()); } OP_REQUIRES_OK(context, context->allocate_temp(DT_FLOAT, y->shape(), &casted_y)); FusedBatchNormImplGPU<float, float, is_training>()( context, casted_x, scale, offset, estimated_mean, estimated_variance, (side_input != nullptr) ? &casted_side_input : nullptr, epsilon, exponential_avg_factor, activation_mode, &casted_y, batch_mean, batch_var, saved_mean, saved_inv_var, tensor_format, use_reserved_space); functor::CastFunctor<GPUDevice, Eigen::bfloat16, float> cast_back; const Tensor& casted_y_const = casted_y; cast_back(device, y->template flat<Eigen::bfloat16>(), casted_y_const.template flat<float>()); return; } FusedBatchNormImplGPU<Eigen::bfloat16, float, is_training>()( context, x, scale, offset, estimated_mean, estimated_variance, side_input, epsilon, exponential_avg_factor, activation_mode, y, batch_mean, batch_var, saved_mean, saved_inv_var, tensor_format, use_reserved_space); } }; template <typename T, typename U> struct FusedBatchNormGradImplGPU { void operator()(OpKernelContext* context, const Tensor& y_backprop, const Tensor& x, const Tensor& scale, const Tensor* offset, const Tensor& mean, const Tensor& inv_variance, const Tensor* y, U epsilon, FusedBatchNormActivationMode activation_mode, Tensor* x_backprop, Tensor* scale_backprop, Tensor* offset_backprop, Tensor* side_input_backprop, bool use_reserved_space, TensorFormat tensor_format) { auto* stream = context->op_device_context()->stream(); OP_REQUIRES(context, stream, errors::Internal("No GPU stream available")); const int64_t batch_size = GetTensorDim(x, tensor_format, 'N'); const int64_t channels = GetTensorDim(x, tensor_format, 'C'); const int64_t height = GetTensorDim(x, tensor_format, 'H'); const int64_t width = GetTensorDim(x, tensor_format, 'W'); #if GOOGLE_CUDA const bool fast_nhwc_batch_norm = BatchnormSpatialPersistentEnabled() && (DataTypeToEnum<T>::value == DT_HALF || DataTypeToEnum<T>::value == DT_BFLOAT16) && use_reserved_space; #else const bool fast_nhwc_batch_norm = false; #endif TensorFormat compute_format = fast_nhwc_batch_norm && tensor_format == FORMAT_NHWC ? FORMAT_NHWC : FORMAT_NCHW; VLOG(2) << "FusedBatchNormGrad:" << " batch_size: " << batch_size << " channels: " << channels << " height: " << height << " width: " << width << " y_backprop shape: " << y_backprop.shape().DebugString() << " x shape: " << x.shape().DebugString() << " scale shape: " << scale.shape().DebugString() << " activation mode: " << ToString(activation_mode) << " tensor format: " << ToString(tensor_format) << " compute format: " << ToString(compute_format); Tensor y_backprop_maybe_transformed = y_backprop; Tensor x_maybe_transformed = x; Tensor y_backprop_transformed; Tensor x_transformed; Tensor x_backprop_transformed; se::DeviceMemory<T> x_backprop_ptr; if (tensor_format == compute_format) { x_backprop_ptr = StreamExecutorUtil::AsDeviceMemory<T>(*x_backprop); } else if (tensor_format == FORMAT_NHWC && compute_format == FORMAT_NCHW) { TensorShape y_backprop_transformed_shape; OP_REQUIRES_OK(context, ShapeFromFormatWithStatus( FORMAT_NCHW, batch_size, height, width, channels, &y_backprop_transformed_shape)); OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::value, y_backprop_transformed_shape, &y_backprop_transformed)); functor::NHWCToNCHW<GPUDevice, T, 4>()( context->eigen_device<GPUDevice>(), const_cast<const Tensor&>(y_backprop_maybe_transformed) .tensor<T, 4>(), y_backprop_transformed.tensor<T, 4>()); y_backprop_maybe_transformed = y_backprop_transformed; TensorShape x_transformed_shape; OP_REQUIRES_OK(context, ShapeFromFormatWithStatus(FORMAT_NCHW, batch_size, height, width, channels, &x_transformed_shape)); OP_REQUIRES_OK( context, context->allocate_temp(DataTypeToEnum<T>::value, x_transformed_shape, &x_transformed)); functor::NHWCToNCHW<GPUDevice, T, 4>()( context->eigen_device<GPUDevice>(), const_cast<const Tensor&>(x_maybe_transformed).tensor<T, 4>(), x_transformed.tensor<T, 4>()); x_maybe_transformed = x_transformed; TensorShape x_backprop_transformed_shape; OP_REQUIRES_OK(context, ShapeFromFormatWithStatus( FORMAT_NCHW, batch_size, height, width, channels, &x_backprop_transformed_shape)); OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::value, x_backprop_transformed_shape, &x_backprop_transformed)); x_backprop_ptr = StreamExecutorUtil::AsDeviceMemory<T>(x_backprop_transformed); } else { context->SetStatus(errors::Internal( "Unsupported tensor format: ", ToString(tensor_format), " and compute format: ", ToString(compute_format))); return; } const se::dnn::DataLayout data_layout = compute_format == FORMAT_NHWC ? se::dnn::DataLayout::kBatchYXDepth : se::dnn::DataLayout::kBatchDepthYX; se::dnn::BatchDescriptor x_desc; x_desc.set_count(batch_size) .set_feature_map_count(channels) .set_height(height) .set_width(width) .set_layout(data_layout); se::dnn::BatchDescriptor scale_offset_desc; scale_offset_desc.set_count(1) .set_feature_map_count(channels) .set_height(1) .set_width(1) .set_layout(se::dnn::DataLayout::kBatchDepthYX); auto y_backprop_ptr = StreamExecutorUtil::AsDeviceMemory<T>(y_backprop_maybe_transformed); auto x_ptr = StreamExecutorUtil::AsDeviceMemory<T>(x_maybe_transformed); auto scale_ptr = StreamExecutorUtil::AsDeviceMemory<U>(scale); auto offset_ptr = offset != nullptr ? StreamExecutorUtil::AsDeviceMemory<U>(*offset) : se::DeviceMemory<U>(); auto mean_ptr = StreamExecutorUtil::AsDeviceMemory<U>(mean); auto inv_variance_ptr = StreamExecutorUtil::AsDeviceMemory<U>(inv_variance); auto y_ptr = y != nullptr ? StreamExecutorUtil::AsDeviceMemory<T>(*y) : se::DeviceMemory<T>(); auto scale_backprop_ptr = StreamExecutorUtil::AsDeviceMemory<U>(*scale_backprop); auto offset_backprop_ptr = StreamExecutorUtil::AsDeviceMemory<U>(*offset_backprop); auto side_input_backprop_ptr = side_input_backprop != nullptr ? StreamExecutorUtil::AsDeviceMemory<T>(*side_input_backprop) : se::DeviceMemory<T>(); std::unique_ptr<functor::CudnnBatchNormAllocatorInTemp<uint8>> workspace_allocator; DeviceMemory<uint8>* reserve_space_data_ptr = nullptr; DeviceMemory<uint8> reserve_space_data; #if CUDNN_VERSION >= 7402 if (use_reserved_space) { const Tensor& reserve_space = context->input(5); workspace_allocator.reset( new functor::CudnnBatchNormAllocatorInTemp<uint8>(context)); if (reserve_space.dims() != 0) { reserve_space_data = functor::CastDeviceMemory<uint8, U>( const_cast<Tensor*>(&reserve_space)); reserve_space_data_ptr = &reserve_space_data; } } #endif auto dnn = stream->parent()->AsDnn(); if (dnn == nullptr) { context->SetStatus(absl::InternalError("No DNN support for stream")); return; } bool cudnn_launch_status = dnn->DoBatchNormalizationBackward( stream, y_backprop_ptr, x_ptr, scale_ptr, offset_ptr, mean_ptr, inv_variance_ptr, y_ptr, x_desc, scale_offset_desc, static_cast<double>(epsilon), AsDnnActivationMode(activation_mode), &x_backprop_ptr, &scale_backprop_ptr, &offset_backprop_ptr, &side_input_backprop_ptr, reserve_space_data_ptr, workspace_allocator.get()); if (!cudnn_launch_status) { context->SetStatus( errors::Internal("cuDNN launch failure : input shape (", x.shape().DebugString(), ")")); } if (tensor_format == FORMAT_NHWC && compute_format == FORMAT_NCHW) { functor::NCHWToNHWC<GPUDevice, T, 4>()( context->eigen_device<GPUDevice>(), const_cast<const Tensor&>(x_backprop_transformed).tensor<T, 4>(), x_backprop->tensor<T, 4>()); } } }; template <typename T, typename U> struct FusedBatchNormGrad<GPUDevice, T, U> { void operator()(OpKernelContext* context, const Tensor& y_backprop, const Tensor& x, const Tensor& scale, const Tensor* offset, const Tensor& mean, const Tensor& inv_variance, const Tensor* y, U epsilon, FusedBatchNormActivationMode activation_mode, Tensor* x_backprop, Tensor* scale_backprop, Tensor* offset_backprop, Tensor* side_input_backprop, bool use_reserved_space, TensorFormat tensor_format) { FusedBatchNormGradImplGPU<T, U>()( context, y_backprop, x, scale, offset, mean, inv_variance, y, epsilon, activation_mode, x_backprop, scale_backprop, offset_backprop, side_input_backprop, use_reserved_space, tensor_format); } }; template <> struct FusedBatchNormGrad<GPUDevice, Eigen::bfloat16, float> { void operator()(OpKernelContext* context, const Tensor& y_backprop, const Tensor& x, const Tensor& scale, const Tensor* offset, const Tensor& mean, const Tensor& inv_variance, const Tensor* y, float epsilon, FusedBatchNormActivationMode activation_mode, Tensor* x_backprop, Tensor* scale_backprop, Tensor* offset_backprop, Tensor* side_input_backprop, bool use_reserved_space, TensorFormat tensor_format) { auto* stream = context->op_device_context()->stream(); const bool cast_to_float = !IsBF16SupportedInOps(stream); if (cast_to_float) { Tensor casted_y_backprop = y_backprop; Tensor casted_x = x; Tensor casted_y; Tensor casted_x_backprop = *x_backprop; Tensor casted_side_input_backprop; const GPUDevice& device = context->eigen_device<GPUDevice>(); functor::CastFunctor<GPUDevice, float, Eigen::bfloat16> cast; OP_REQUIRES_OK(context, context->allocate_temp(DT_FLOAT, y_backprop.shape(), &casted_y_backprop)); cast(device, casted_y_backprop.template flat<float>(), y_backprop.template flat<Eigen::bfloat16>()); OP_REQUIRES_OK(context, context->allocate_temp(DT_FLOAT, x.shape(), &casted_x)); cast(device, casted_x.template flat<float>(), x.template flat<Eigen::bfloat16>()); if (y != nullptr) { OP_REQUIRES_OK(context, context->allocate_temp(DT_FLOAT, y->shape(), &casted_y)); cast(device, casted_y.template flat<float>(), y->template flat<Eigen::bfloat16>()); } OP_REQUIRES_OK(context, context->allocate_temp(DT_FLOAT, x_backprop->shape(), &casted_x_backprop)); if (side_input_backprop != nullptr) { OP_REQUIRES_OK(context, context->allocate_temp( DT_FLOAT, side_input_backprop->shape(), &casted_side_input_backprop)); } FusedBatchNormGradImplGPU<float, float>()( context, casted_y_backprop, casted_x, scale, offset, mean, inv_variance, (y != nullptr) ? &casted_y : nullptr, epsilon, activation_mode, &casted_x_backprop, scale_backprop, offset_backprop, (side_input_backprop != nullptr) ? &casted_side_input_backprop : nullptr, use_reserved_space, tensor_format); functor::CastFunctor<GPUDevice, Eigen::bfloat16, float> cast_back; const Tensor& casted_x_backprop_const = casted_x_backprop; cast_back(device, x_backprop->template flat<Eigen::bfloat16>(), casted_x_backprop_const.template flat<float>()); if (side_input_backprop != nullptr) { const Tensor& casted_side_input_backprop_const = casted_side_input_backprop; cast_back(device, side_input_backprop->template flat<Eigen::bfloat16>(), casted_side_input_backprop_const.template flat<float>()); } return; } FusedBatchNormGradImplGPU<Eigen::bfloat16, float>()( context, y_backprop, x, scale, offset, mean, inv_variance, y, epsilon, activation_mode, x_backprop, scale_backprop, offset_backprop, side_input_backprop, use_reserved_space, tensor_format); } }; #define DECLARE_GPU_SPEC(T, U) \ template <> \ void FusedBatchNormFreezeGrad<GPUDevice, T, U>::operator()( \ OpKernelContext* context, const Tensor& y_backprop_input, \ const Tensor& x_input, const Tensor& scale_input, \ const Tensor& mean_input, const Tensor& variance_input, U epsilon, \ Tensor* x_backprop_output, Tensor* scale_backprop_output, \ Tensor* offset_backprop_output); \ extern template struct FusedBatchNormFreezeGrad<GPUDevice, T, U>; \ template <> \ void FusedBatchNormInferenceFunctor<GPUDevice, T, U>::operator()( \ OpKernelContext* context, TensorFormat tensor_format, \ typename TTypes<T, 4>::ConstTensor in, \ typename TTypes<U>::ConstVec scale, typename TTypes<U>::ConstVec offset, \ typename TTypes<U>::ConstVec estimated_mean, \ typename TTypes<U>::ConstVec estimated_variance, \ typename TTypes<T, 4>::ConstTensor side_input, U epsilon, \ FusedBatchNormActivationMode activation_mode, \ typename TTypes<T, 4>::Tensor out); \ extern template struct FusedBatchNormInferenceFunctor<GPUDevice, T, U>; DECLARE_GPU_SPEC(float, float); DECLARE_GPU_SPEC(Eigen::half, float); DECLARE_GPU_SPEC(Eigen::bfloat16, float); #undef DECLARE_GPU_SPEC #endif } template <typename Device, typename T, typename U> class FusedBatchNormOpBase : public OpKernel { using FbnActivationMode = functor::FusedBatchNormActivationMode; protected: explicit FusedBatchNormOpBase(OpKernelConstruction* context, bool is_batch_norm_ex = false) : OpKernel(context) { float epsilon; OP_REQUIRES_OK(context, context->GetAttr("epsilon", &epsilon)); epsilon_ = U(epsilon); float exponential_avg_factor; OP_REQUIRES_OK(context, context->GetAttr("exponential_avg_factor", &exponential_avg_factor)); exponential_avg_factor_ = U(exponential_avg_factor); string tensor_format; OP_REQUIRES_OK(context, context->GetAttr("data_format", &tensor_format)); OP_REQUIRES(context, FormatFromString(tensor_format, &tensor_format_), errors::InvalidArgument("Invalid data format")); OP_REQUIRES_OK(context, context->GetAttr("is_training", &is_training_)); if (!is_batch_norm_ex) { has_side_input_ = false; activation_mode_ = FbnActivationMode::kIdentity; } else { OP_REQUIRES_OK(context, ParseActivationMode(context, &activation_mode_)); int num_side_inputs; OP_REQUIRES_OK(context, context->GetAttr("num_side_inputs", &num_side_inputs)); OP_REQUIRES(context, num_side_inputs >= 0 && num_side_inputs <= 1, errors::InvalidArgument( "FusedBatchNorm accepts at most one side input.")); has_side_input_ = (num_side_inputs == 1); if (has_side_input_ && is_training_) { OP_REQUIRES( context, activation_mode_ != FbnActivationMode::kIdentity, errors::InvalidArgument("Identity activation is not supported with " "non-empty side input")); } } if (activation_mode_ != FbnActivationMode::kIdentity && is_training_) { OP_REQUIRES(context, DataTypeToEnum<T>::value == DT_HALF, errors::InvalidArgument("FusedBatchNorm with activation " "supports only DT_HALF data type.")); OP_REQUIRES(context, tensor_format_ == FORMAT_NHWC, errors::InvalidArgument("FusedBatchNorm with activation " "supports only NHWC tensor format.")); OP_REQUIRES(context, functor::BatchnormSpatialPersistentEnabled(), errors::InvalidArgument( "FusedBatchNorm with activation must run with cuDNN " "spatial persistence mode enabled.")); } } virtual void ComputeWithReservedSpace(OpKernelContext* context, bool use_reserved_space) { Tensor x = context->input(0); const Tensor& scale = context->input(1); const Tensor& offset = context->input(2); const Tensor& estimated_mean = context->input(3); const Tensor& estimated_variance = context->input(4); const Tensor* side_input = has_side_input_ ? &context->input(5) : nullptr; OP_REQUIRES(context, x.dims() == 4 || x.dims() == 5, errors::InvalidArgument("input must be 4 or 5-dimensional", x.shape().DebugString())); OP_REQUIRES(context, scale.dims() == 1, errors::InvalidArgument("scale must be 1-dimensional", scale.shape().DebugString())); OP_REQUIRES(context, offset.dims() == 1, errors::InvalidArgument("offset must be 1-dimensional", offset.shape().DebugString())); OP_REQUIRES(context, estimated_mean.dims() == 1, errors::InvalidArgument("estimated_mean must be 1-dimensional", estimated_mean.shape().DebugString())); OP_REQUIRES( context, estimated_variance.dims() == 1, errors::InvalidArgument("estimated_variance must be 1-dimensional", estimated_variance.shape().DebugString())); bool use_reshape = (x.dims() == 5); auto x_shape = x.shape(); TensorShape dest_shape; if (use_reshape) { const int64_t in_batch = GetTensorDim(x, tensor_format_, 'N'); int64_t in_planes = GetTensorDim(x, tensor_format_, '0'); int64_t in_rows = GetTensorDim(x, tensor_format_, '1'); int64_t in_cols = GetTensorDim(x, tensor_format_, '2'); const int64_t in_depth = GetTensorDim(x, tensor_format_, 'C'); OP_REQUIRES_OK(context, ShapeFromFormatWithStatus(tensor_format_, in_batch, {{in_planes, in_rows * in_cols}}, in_depth, &dest_shape)); OP_REQUIRES(context, x.CopyFrom(x, dest_shape), errors::InvalidArgument("Error during tensor copy.")); } const auto num_channels = GetTensorDim(x, tensor_format_, 'C'); OP_REQUIRES( context, scale.NumElements() == num_channels, errors::InvalidArgument("scale must have the same number of elements " "as the channels of x, got ", scale.NumElements(), " and ", num_channels)); OP_REQUIRES( context, offset.NumElements() == num_channels, errors::InvalidArgument("offset must have the same number of elements " "as the channels of x, got ", offset.NumElements(), " and ", num_channels)); if (!is_training_ || exponential_avg_factor_ != 1.) { std::string prefix_msg = is_training_ ? "When exponential_avg_factor != 1" : "When is_training=false"; OP_REQUIRES(context, estimated_mean.NumElements() == num_channels, errors::InvalidArgument( prefix_msg, ", mean must have the same number " "of elements as the channels of x, got ", estimated_mean.NumElements(), " and ", num_channels)); OP_REQUIRES(context, estimated_variance.NumElements() == num_channels, errors::InvalidArgument( prefix_msg, ", variance must have the same " "number of elements as the channels of x, got ", estimated_variance.NumElements(), " and ", num_channels)); } if (has_side_input_) { OP_REQUIRES(context, side_input->shape() == x.shape(), errors::InvalidArgument( "side_input shape must be equal to input shape: ", side_input->shape().DebugString(), " != ", x.shape().DebugString())); } if (activation_mode_ != FbnActivationMode::kIdentity) { OP_REQUIRES( context, !is_training_ || num_channels % 4 == 0, errors::InvalidArgument("FusedBatchNorm with activation requires " "channel dimension to be a multiple of 4.")); } Tensor* y = nullptr; auto alloc_shape = use_reshape ? dest_shape : x_shape; OP_REQUIRES_OK(context, context->forward_input_or_allocate_output( {0}, 0, alloc_shape, &y)); Tensor* batch_mean = nullptr; OP_REQUIRES_OK(context, context->forward_input_or_allocate_output( {3}, 1, scale.shape(), &batch_mean)); Tensor* batch_var = nullptr; OP_REQUIRES_OK(context, context->forward_input_or_allocate_output( {4}, 2, scale.shape(), &batch_var)); Tensor* saved_mean = nullptr; OP_REQUIRES_OK(context, context->allocate_output(3, scale.shape(), &saved_mean)); Tensor* saved_maybe_inv_var = nullptr; OP_REQUIRES_OK(context, context->allocate_output(4, scale.shape(), &saved_maybe_inv_var)); if (is_training_) { functor::FusedBatchNorm<Device, T, U, true>()( context, x, scale, offset, estimated_mean, estimated_variance, side_input, epsilon_, exponential_avg_factor_, activation_mode_, y, batch_mean, batch_var, saved_mean, saved_maybe_inv_var, tensor_format_, use_reserved_space); } else { functor::FusedBatchNorm<Device, T, U, false>()( context, x, scale, offset, estimated_mean, estimated_variance, side_input, epsilon_, exponential_avg_factor_, activation_mode_, y, batch_mean, batch_var, saved_mean, saved_maybe_inv_var, tensor_format_, use_reserved_space); } if (use_reshape) { OP_REQUIRES(context, y->CopyFrom(*y, x_shape), errors::InvalidArgument("Error during tensor copy.")); } } private: U epsilon_; U exponential_avg_factor_; TensorFormat tensor_format_; bool is_training_; bool has_side_input_; FbnActivationMode activation_mode_; }; template <typename Device, typename T, typename U> class FusedBatchNormOp : public FusedBatchNormOpBase<Device, T, U> { public: explicit FusedBatchNormOp(OpKernelConstruction* context) : FusedBatchNormOpBase<Device, T, U>(context) {} void Compute(OpKernelContext* context) override { FusedBatchNormOpBase<Device, T, U>::ComputeWithReservedSpace(context, false); } }; template <typename Device, typename T, typename U> class FusedBatchNormOpV3 : public FusedBatchNormOpBase<Device, T, U> { public: explicit FusedBatchNormOpV3(OpKernelConstruction* context) : FusedBatchNormOpBase<Device, T, U>(context) {} void Compute(OpKernelContext* context) override { FusedBatchNormOpBase<Device, T, U>::ComputeWithReservedSpace(context, true); } }; template <typename Device, typename T, typename U> class FusedBatchNormOpEx : public FusedBatchNormOpBase<Device, T, U> { static constexpr bool kWithSideInputAndActivation = true; public: explicit FusedBatchNormOpEx(OpKernelConstruction* context) : FusedBatchNormOpBase<Device, T, U>(context, kWithSideInputAndActivation) {} void Compute(OpKernelContext* context) override { FusedBatchNormOpBase<Device, T, U>::ComputeWithReservedSpace(context, true); } }; template <typename Device, typename T, typename U> class FusedBatchNormGradOpBase : public OpKernel { using FbnActivationMode = functor::FusedBatchNormActivationMode; protected: explicit FusedBatchNormGradOpBase(OpKernelConstruction* context, bool is_batch_norm_grad_ex = false) : OpKernel(context) { float epsilon; OP_REQUIRES_OK(context, context->GetAttr("epsilon", &epsilon)); epsilon_ = U(epsilon); string tensor_format; OP_REQUIRES_OK(context, context->GetAttr("data_format", &tensor_format)); OP_REQUIRES(context, FormatFromString(tensor_format, &tensor_format_), errors::InvalidArgument("Invalid data format")); OP_REQUIRES_OK(context, context->GetAttr("is_training", &is_training_)); if (!is_batch_norm_grad_ex) { has_side_input_ = false; activation_mode_ = FbnActivationMode::kIdentity; } else { OP_REQUIRES_OK(context, ParseActivationMode(context, &activation_mode_)); int num_side_inputs; OP_REQUIRES_OK(context, context->GetAttr("num_side_inputs", &num_side_inputs)); OP_REQUIRES(context, num_side_inputs >= 0 && num_side_inputs <= 1, errors::InvalidArgument( "FusedBatchNormGrad accepts at most one side input.")); has_side_input_ = (num_side_inputs == 1); if (has_side_input_ && is_training_) { OP_REQUIRES( context, activation_mode_ != FbnActivationMode::kIdentity, errors::InvalidArgument("Identity activation is not supported with " "non-empty side input")); } } if (activation_mode_ != FbnActivationMode::kIdentity && is_training_) { OP_REQUIRES(context, DataTypeToEnum<T>::value == DT_HALF, errors::InvalidArgument("FusedBatchNormGrad with activation " "supports only DT_HALF data type.")); OP_REQUIRES(context, tensor_format_ == FORMAT_NHWC, errors::InvalidArgument("FusedBatchNormGrad with activation " "supports only NHWC tensor format.")); OP_REQUIRES(context, functor::BatchnormSpatialPersistentEnabled(), errors::InvalidArgument( "FusedBatchNormGrad with activation must run with cuDNN " "spatial persistence mode enabled.")); } } virtual void ComputeWithReservedSpace(OpKernelContext* context, bool use_reserved_space) { Tensor y_backprop = context->input(0); Tensor x = context->input(1); const Tensor& scale = context->input(2); const Tensor& saved_mean_or_pop_mean = context->input(3); const Tensor& saved_maybe_inv_var_or_pop_var = context->input(4); bool use_activation = activation_mode_ != FbnActivationMode::kIdentity; const Tensor* offset = use_activation ? &context->input(6) : nullptr; const Tensor* y = use_activation ? &context->input(7) : nullptr; OP_REQUIRES(context, y_backprop.dims() == 4 || y_backprop.dims() == 5, errors::InvalidArgument("input must be 4 or 5-dimensional", y_backprop.shape().DebugString())); OP_REQUIRES(context, x.dims() == 4 || x.dims() == 5, errors::InvalidArgument("input must be 4 or 5-dimensional", x.shape().DebugString())); OP_REQUIRES(context, scale.dims() == 1, errors::InvalidArgument("scale must be 1-dimensional", scale.shape().DebugString())); OP_REQUIRES( context, saved_mean_or_pop_mean.dims() == 1, errors::InvalidArgument("saved mean must be 1-dimensional", saved_mean_or_pop_mean.shape().DebugString())); OP_REQUIRES(context, saved_maybe_inv_var_or_pop_var.dims() == 1, errors::InvalidArgument( "saved variance must be 1-dimensional", saved_maybe_inv_var_or_pop_var.shape().DebugString())); OP_REQUIRES( context, x.shape() == y_backprop.shape(), errors::InvalidArgument( "x and y_backprop must have same shape, but x has shape ", x.shape(), " and y_backprop has shape ", y_backprop.shape())); if (use_activation) { OP_REQUIRES( context, x.dim_size(3) % 4 == 0, errors::InvalidArgument("FusedBatchNormGrad with activation requires " "channel dimension to be a multiple of 4.")); OP_REQUIRES(context, offset->dims() == 1, errors::InvalidArgument("offset must be 1-dimensional", offset->shape().DebugString())); } bool use_reshape = (x.dims() == 5); auto x_shape = x.shape(); TensorShape dest_shape; if (use_reshape) { const int64_t in_batch = GetTensorDim(x, tensor_format_, 'N'); int64_t in_planes = GetTensorDim(x, tensor_format_, '0'); int64_t in_rows = GetTensorDim(x, tensor_format_, '1'); int64_t in_cols = GetTensorDim(x, tensor_format_, '2'); const int64_t in_depth = GetTensorDim(x, tensor_format_, 'C'); OP_REQUIRES_OK(context, ShapeFromFormatWithStatus(tensor_format_, in_batch, {{in_planes, in_rows * in_cols}}, in_depth, &dest_shape)); OP_REQUIRES(context, x.CopyFrom(x, dest_shape), errors::InvalidArgument("Error during tensor copy.")); OP_REQUIRES(context, y_backprop.CopyFrom(y_backprop, dest_shape), errors::InvalidArgument("Error during tensor copy.")); } const auto num_channels = GetTensorDim(x, tensor_format_, 'C'); OP_REQUIRES( context, scale.NumElements() == num_channels, errors::InvalidArgument("scale must have the same number of elements " "as the channels of x, got ", scale.NumElements(), " and ", num_channels)); OP_REQUIRES( context, saved_mean_or_pop_mean.NumElements() == num_channels, errors::InvalidArgument("reserve_space_1 must have the same number of " "elements as the channels of x, got ", saved_mean_or_pop_mean.NumElements(), " and ", num_channels)); OP_REQUIRES( context, saved_maybe_inv_var_or_pop_var.NumElements() == num_channels, errors::InvalidArgument("reserve_space_2 must have the same number of " "elements as the channels of x, got ", saved_maybe_inv_var_or_pop_var.NumElements(), " and ", num_channels)); Tensor* x_backprop = nullptr; auto alloc_shape = use_reshape ? dest_shape : x_shape; OP_REQUIRES_OK(context, context->allocate_output(0, alloc_shape, &x_backprop)); const TensorShape& scale_offset_shape = scale.shape(); Tensor* scale_backprop = nullptr; OP_REQUIRES_OK(context, context->allocate_output(1, scale_offset_shape, &scale_backprop)); Tensor* offset_backprop = nullptr; OP_REQUIRES_OK(context, context->allocate_output(2, scale_offset_shape, &offset_backprop)); Tensor* placeholder_1 = nullptr; OP_REQUIRES_OK( context, context->allocate_output(3, TensorShape({0}), &placeholder_1)); Tensor* placeholder_2 = nullptr; OP_REQUIRES_OK( context, context->allocate_output(4, TensorShape({0}), &placeholder_2)); Tensor* side_input_backprop = nullptr; if (has_side_input_) { OP_REQUIRES_OK(context, context->allocate_output(5, alloc_shape, &side_input_backprop)); } if (x.shape().num_elements() == 0) { functor::SetZeroFunctor<Device, U> f; f(context->eigen_device<Device>(), scale_backprop->flat<U>()); f(context->eigen_device<Device>(), offset_backprop->flat<U>()); return; } if (is_training_) { functor::FusedBatchNormGrad<Device, T, U>()( context, y_backprop, x, scale, offset, saved_mean_or_pop_mean, saved_maybe_inv_var_or_pop_var, y, epsilon_, activation_mode_, x_backprop, scale_backprop, offset_backprop, side_input_backprop, use_reserved_space, tensor_format_); } else { OP_REQUIRES( context, activation_mode_ == FbnActivationMode::kIdentity && !has_side_input_, errors::InvalidArgument( "FusedBatchNormGrad with activation is only supported " "when is_training=True.")); OP_REQUIRES(context, tensor_format_ == FORMAT_NHWC, errors::InvalidArgument( "The implementation of " "FusedBatchNormGrad with is_training=False only support " "NHWC tensor format for now.")); functor::FusedBatchNormFreezeGrad<Device, T, U>()( context, y_backprop, x, scale, saved_mean_or_pop_mean, saved_maybe_inv_var_or_pop_var, epsilon_, x_backprop, scale_backprop, offset_backprop); } if (use_reshape) { OP_REQUIRES(context, x_backprop->CopyFrom(*x_backprop, x_shape), errors::InvalidArgument("Error during tensor copy.")); } } private: U epsilon_; TensorFormat tensor_format_; bool is_training_; bool has_side_input_; FbnActivationMode activation_mode_; }; template <typename Device, typename T, typename U> class FusedBatchNormGradOp : public FusedBatchNormGradOpBase<Device, T, U> { public: explicit FusedBatchNormGradOp(OpKernelConstruction* context) : FusedBatchNormGradOpBase<Device, T, U>(context) {} void Compute(OpKernelContext* context) override { FusedBatchNormGradOpBase<Device, T, U>::ComputeWithReservedSpace(context, false); } }; template <typename Device, typename T, typename U> class FusedBatchNormGradOpV3 : public FusedBatchNormGradOpBase<Device, T, U> { public: explicit FusedBatchNormGradOpV3(OpKernelConstruction* context) : FusedBatchNormGradOpBase<Device, T, U>(context) {} void Compute(OpKernelContext* context) override { FusedBatchNormGradOpBase<Device, T, U>::ComputeWithReservedSpace(context, true); } }; template <typename Device, typename T, typename U> class FusedBatchNormGradOpEx : public FusedBatchNormGradOpBase<Device, T, U> { static constexpr bool kWithSideInputAndActivation = true; public: explicit FusedBatchNormGradOpEx(OpKernelConstruction* context) : FusedBatchNormGradOpBase<Device, T, U>(context, kWithSideInputAndActivation) {} void Compute(OpKernelContext* context) override { FusedBatchNormGradOpBase<Device, T, U>::ComputeWithReservedSpace(context, true); } }; REGISTER_KERNEL_BUILDER( Name("FusedBatchNorm").Device(DEVICE_CPU).TypeConstraint<float>("T"), FusedBatchNormOp<CPUDevice, float, float>); REGISTER_KERNEL_BUILDER( Name("FusedBatchNormGrad").Device(DEVICE_CPU).TypeConstraint<float>("T"), FusedBatchNormGradOp<CPUDevice, float, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormV2") .Device(DEVICE_CPU) .TypeConstraint<float>("T") .TypeConstraint<float>("U"), FusedBatchNormOp<CPUDevice, float, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormGradV2") .Device(DEVICE_CPU) .TypeConstraint<float>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOp<CPUDevice, float, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormV2") .Device(DEVICE_CPU) .TypeConstraint<Eigen::half>("T") .TypeConstraint<float>("U"), FusedBatchNormOp<CPUDevice, Eigen::half, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormGradV2") .Device(DEVICE_CPU) .TypeConstraint<Eigen::half>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOp<CPUDevice, Eigen::half, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormV2") .Device(DEVICE_CPU) .TypeConstraint<bfloat16>("T") .TypeConstraint<float>("U"), FusedBatchNormOp<CPUDevice, bfloat16, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormGradV2") .Device(DEVICE_CPU) .TypeConstraint<bfloat16>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOp<CPUDevice, bfloat16, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormV3") .Device(DEVICE_CPU) .TypeConstraint<float>("T") .TypeConstraint<float>("U"), FusedBatchNormOpV3<CPUDevice, float, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormGradV3") .Device(DEVICE_CPU) .TypeConstraint<float>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOpV3<CPUDevice, float, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormV3") .Device(DEVICE_CPU) .TypeConstraint<Eigen::half>("T") .TypeConstraint<float>("U"), FusedBatchNormOpV3<CPUDevice, Eigen::half, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormGradV3") .Device(DEVICE_CPU) .TypeConstraint<Eigen::half>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOpV3<CPUDevice, Eigen::half, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormV3") .Device(DEVICE_CPU) .TypeConstraint<bfloat16>("T") .TypeConstraint<float>("U"), FusedBatchNormOpV3<CPUDevice, bfloat16, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormGradV3") .Device(DEVICE_CPU) .TypeConstraint<bfloat16>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOpV3<CPUDevice, bfloat16, float>); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM REGISTER_KERNEL_BUILDER( Name("FusedBatchNorm").Device(DEVICE_GPU).TypeConstraint<float>("T"), FusedBatchNormOp<GPUDevice, float, float>); REGISTER_KERNEL_BUILDER( Name("FusedBatchNormGrad").Device(DEVICE_GPU).TypeConstraint<float>("T"), FusedBatchNormGradOp<GPUDevice, float, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormV2") .Device(DEVICE_GPU) .TypeConstraint<float>("T") .TypeConstraint<float>("U"), FusedBatchNormOp<GPUDevice, float, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormGradV2") .Device(DEVICE_GPU) .TypeConstraint<float>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOp<GPUDevice, float, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormV2") .Device(DEVICE_GPU) .TypeConstraint<Eigen::half>("T") .TypeConstraint<float>("U"), FusedBatchNormOp<GPUDevice, Eigen::half, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormV2") .Device(DEVICE_GPU) .TypeConstraint<Eigen::bfloat16>("T") .TypeConstraint<float>("U"), FusedBatchNormOp<GPUDevice, Eigen::bfloat16, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormGradV2") .Device(DEVICE_GPU) .TypeConstraint<Eigen::half>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOp<GPUDevice, Eigen::half, float>); REGISTER_KERNEL_BUILDER( Name("FusedBatchNormGradV2") .Device(DEVICE_GPU) .TypeConstraint<Eigen::bfloat16>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOp<GPUDevice, Eigen::bfloat16, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormV3") .Device(DEVICE_GPU) .TypeConstraint<float>("T") .TypeConstraint<float>("U"), FusedBatchNormOpV3<GPUDevice, float, float>); REGISTER_KERNEL_BUILDER(Name("_FusedBatchNormEx") .Device(DEVICE_GPU) .TypeConstraint<float>("T") .TypeConstraint<float>("U"), FusedBatchNormOpEx<GPUDevice, float, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormGradV3") .Device(DEVICE_GPU) .TypeConstraint<float>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOpV3<GPUDevice, float, float>); REGISTER_KERNEL_BUILDER(Name("_FusedBatchNormGradEx") .Device(DEVICE_GPU) .TypeConstraint<float>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOpEx<GPUDevice, float, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormV3") .Device(DEVICE_GPU) .TypeConstraint<Eigen::half>("T") .TypeConstraint<float>("U"), FusedBatchNormOpV3<GPUDevice, Eigen::half, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormV3") .Device(DEVICE_GPU) .TypeConstraint<Eigen::bfloat16>("T") .TypeConstraint<float>("U"), FusedBatchNormOpV3<GPUDevice, Eigen::bfloat16, float>); REGISTER_KERNEL_BUILDER(Name("_FusedBatchNormEx") .Device(DEVICE_GPU) .TypeConstraint<Eigen::half>("T") .TypeConstraint<float>("U"), FusedBatchNormOpEx<GPUDevice, Eigen::half, float>); REGISTER_KERNEL_BUILDER(Name("_FusedBatchNormEx") .Device(DEVICE_GPU) .TypeConstraint<Eigen::bfloat16>("T") .TypeConstraint<float>("U"), FusedBatchNormOpEx<GPUDevice, Eigen::bfloat16, float>); REGISTER_KERNEL_BUILDER(Name("FusedBatchNormGradV3") .Device(DEVICE_GPU) .TypeConstraint<Eigen::half>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOpV3<GPUDevice, Eigen::half, float>); REGISTER_KERNEL_BUILDER( Name("FusedBatchNormGradV3") .Device(DEVICE_GPU) .TypeConstraint<Eigen::bfloat16>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOpV3<GPUDevice, Eigen::bfloat16, float>); REGISTER_KERNEL_BUILDER(Name("_FusedBatchNormGradEx") .Device(DEVICE_GPU) .TypeConstraint<Eigen::half>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOpEx<GPUDevice, Eigen::half, float>); REGISTER_KERNEL_BUILDER( Name("_FusedBatchNormGradEx") .Device(DEVICE_GPU) .TypeConstraint<Eigen::bfloat16>("T") .TypeConstraint<float>("U"), FusedBatchNormGradOpEx<GPUDevice, Eigen::bfloat16, float>); #endif }
#include <vector> #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { class FusedBatchNormOpTest : public OpsTestBase {}; TEST_F(FusedBatchNormOpTest, Training) { TF_EXPECT_OK(NodeDefBuilder("batch_norm_op", "FusedBatchNorm") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("exponential_avg_factor", 1.0) .Attr("epsilon", 0.001) .Attr("is_training", true) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddInputFromArray<float>(TensorShape({1, 1, 6, 2}), {5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15}); AddInputFromArray<float>(TensorShape({2}), {4.0, 4.0}); AddInputFromArray<float>(TensorShape({2}), {2.0, 2.0}); AddInputFromArray<float>(TensorShape({0}), {}); AddInputFromArray<float>(TensorShape({0}), {}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 1, 6, 2})); test::FillValues<float>(&expected, {-3.86, -3.86, -1.51, -1.51, 0.83, 0.83, 3.17, 3.17, 5.51, 5.51, 7.86, 7.86}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 0.01); Tensor expected_mean(allocator(), DT_FLOAT, TensorShape({2})); test::FillValues<float>(&expected_mean, {10, 10}); test::ExpectTensorNear<float>(expected_mean, *GetOutput(1), 0.01); Tensor expected_variance(allocator(), DT_FLOAT, TensorShape({2})); test::FillValues<float>(&expected_variance, {14.00, 14.00}); test::ExpectTensorNear<float>(expected_variance, *GetOutput(2), 0.01); } TEST_F(FusedBatchNormOpTest, TrainingRunningMean) { TF_EXPECT_OK(NodeDefBuilder("batch_norm_op", "FusedBatchNorm") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("exponential_avg_factor", 0.5) .Attr("epsilon", 0.001) .Attr("is_training", true) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddInputFromArray<float>(TensorShape({1, 1, 6, 2}), {5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15}); AddInputFromArray<float>(TensorShape({2}), {4.0, 4.0}); AddInputFromArray<float>(TensorShape({2}), {2.0, 2.0}); AddInputFromArray<float>(TensorShape({2}), {6.0, 6.0}); AddInputFromArray<float>(TensorShape({2}), {16.0, 16.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 1, 6, 2})); test::FillValues<float>(&expected, {-3.86, -3.86, -1.51, -1.51, 0.83, 0.83, 3.17, 3.17, 5.51, 5.51, 7.86, 7.86}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 0.01); Tensor expected_mean(allocator(), DT_FLOAT, TensorShape({2})); test::FillValues<float>(&expected_mean, {8, 8}); test::ExpectTensorNear<float>(expected_mean, *GetOutput(1), 0.01); Tensor expected_variance(allocator(), DT_FLOAT, TensorShape({2})); test::FillValues<float>(&expected_variance, {15.00, 15.00}); test::ExpectTensorNear<float>(expected_variance, *GetOutput(2), 0.01); } TEST_F(FusedBatchNormOpTest, Inference) { TF_EXPECT_OK(NodeDefBuilder("batch_norm_op", "FusedBatchNorm") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("epsilon", 0.001) .Attr("is_training", false) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddInputFromArray<float>(TensorShape({1, 1, 6, 2}), {5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15}); AddInputFromArray<float>(TensorShape({2}), {4.0, 4.0}); AddInputFromArray<float>(TensorShape({2}), {2.0, 2.0}); AddInputFromArray<float>(TensorShape({2}), {10, 10}); AddInputFromArray<float>(TensorShape({2}), {11.67f, 11.67f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 1, 6, 2})); test::FillValues<float>(&expected, {-3.86, -3.86, -1.51, -1.51, 0.83, 0.83, 3.17, 3.17, 5.51, 5.51, 7.86, 7.86}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 0.01); } TEST_F(FusedBatchNormOpTest, InferenceIgnoreAvgFactor) { TF_EXPECT_OK(NodeDefBuilder("batch_norm_op", "FusedBatchNorm") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("exponential_avg_factor", 0.5) .Attr("epsilon", 0.001) .Attr("is_training", false) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddInputFromArray<float>(TensorShape({1, 1, 6, 2}), {5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15}); AddInputFromArray<float>(TensorShape({2}), {4.0, 4.0}); AddInputFromArray<float>(TensorShape({2}), {2.0, 2.0}); AddInputFromArray<float>(TensorShape({2}), {10, 10}); AddInputFromArray<float>(TensorShape({2}), {11.67f, 11.67f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 1, 6, 2})); test::FillValues<float>(&expected, {-3.86, -3.86, -1.51, -1.51, 0.83, 0.83, 3.17, 3.17, 5.51, 5.51, 7.86, 7.86}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 0.01); } TEST_F(FusedBatchNormOpTest, EmptyInput) { TF_EXPECT_OK(NodeDefBuilder("batch_norm_op", "FusedBatchNorm") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("epsilon", 0.001) .Attr("is_training", true) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddInputFromArray<float>(TensorShape({1, 1, 0, 0}), {}); AddInputFromArray<float>(TensorShape({0}), {}); AddInputFromArray<float>(TensorShape({0}), {}); AddInputFromArray<float>(TensorShape({0}), {}); AddInputFromArray<float>(TensorShape({0}), {}); TF_ASSERT_OK(RunOpKernel()); EXPECT_EQ(GetOutput(0)->shape(), TensorShape({1, 1, 0, 0})); } class FusedBatchNormGradOpTest : public OpsTestBase {}; TEST_F(FusedBatchNormGradOpTest, Simple) { TF_EXPECT_OK(NodeDefBuilder("batch_norm_grad_op", "FusedBatchNormGrad") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("epsilon", 0.001) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); AddInputFromArray<float>(TensorShape({1, 1, 6, 2}), {2, 2, 9, 9, -4, -4, 5, 5, 8, 8, 7, 7}); AddInputFromArray<float>(TensorShape({1, 1, 6, 2}), {1, 1, 7, 7, 4, 4, -3, -3, -11, -11, 13, 13}); AddInputFromArray<float>(TensorShape({2}), {4, 4}); AddInputFromArray<float>(TensorShape({2}), {1.833f, 1.833f}); AddInputFromArray<float>(TensorShape({2}), {57.472f, 57.472f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected_x(allocator(), DT_FLOAT, TensorShape({1, 1, 6, 2})); test::FillValues<float>(&expected_x, {-1.34, -1.34, 2.47, 2.47, -4.44, -4.44, 0.17, 0.17, 1.60, 1.60, 1.53, 1.53}); test::ExpectTensorNear<float>(expected_x, *GetOutput(0), 0.01); Tensor expected_scale(allocator(), DT_FLOAT, TensorShape({2})); test::FillValues<float>(&expected_scale, {-1.6488, -1.6488}); test::ExpectTensorNear<float>(expected_scale, *GetOutput(1), 0.01); Tensor expected_offset(allocator(), DT_FLOAT, TensorShape({2})); test::FillValues<float>(&expected_offset, {27, 27}); test::ExpectTensorNear<float>(expected_offset, *GetOutput(2), 0.01); } using fp32 = float; using fp16 = Eigen::half; using bf16 = bfloat16; template <typename T> static Graph* FusedBatchNormInference(int n, int h, int w, int c, bool is_training, TensorFormat data_format) { Graph* g = new Graph(OpRegistry::Global()); DataType dtype = DataTypeToEnum<T>::value; Tensor x_t(dtype, data_format == FORMAT_NHWC ? TensorShape({n, h, w, c}) : TensorShape({n, c, h, w})); x_t.flat<T>().setRandom(); Tensor other_t(DT_FLOAT, TensorShape({c})); other_t.flat<float>().setRandom(); Tensor empty_t(DT_FLOAT, TensorShape({0})); Node* x = test::graph::Constant(g, x_t, "x"); Node* other = test::graph::Constant(g, other_t, "other"); Node* empty = test::graph::Constant(g, empty_t, "empty"); Node* fused_batch_norm; TF_CHECK_OK(NodeBuilder(g->NewName("fused_batch_norm"), "FusedBatchNormV3") .Input(x) .Input(other) .Input(other) .Input(is_training ? empty : other) .Input(is_training ? empty : other) .Attr("T", dtype) .Attr("U", DT_FLOAT) .Attr("epsilon", 0.001) .Attr("is_training", is_training) .Attr("data_format", ToString(data_format)) .Finalize(g, &fused_batch_norm)); return g; } template <typename T> static Graph* FusedBatchNormGrad(int n, int h, int w, int c, bool is_training, TensorFormat data_format) { Graph* g = new Graph(OpRegistry::Global()); DataType dtype = DataTypeToEnum<T>::value; TensorShape shape = data_format == FORMAT_NHWC ? TensorShape({n, h, w, c}) : TensorShape({n, c, h, w}); Tensor y_backprop_t(dtype, shape); y_backprop_t.flat<T>().setRandom(); Tensor x_t(dtype, shape); x_t.flat<T>().setRandom(); Tensor other_t(DT_FLOAT, TensorShape({c})); other_t.flat<float>().setRandom(); Node* y_backprop = test::graph::Constant(g, y_backprop_t, "y_backprop"); Node* x = test::graph::Constant(g, x_t, "x"); Node* other = test::graph::Constant(g, other_t, "other"); Node* fused_batch_norm; TF_CHECK_OK( NodeBuilder(g->NewName("fused_batch_norm_grad"), "FusedBatchNormGradV3") .Input(y_backprop) .Input(x) .Input(other) .Input(other) .Input(other) .Input(other) .Attr("T", dtype) .Attr("U", DT_FLOAT) .Attr("epsilon", 0.001) .Attr("is_training", is_training) .Attr("data_format", ToString(data_format)) .Finalize(g, &fused_batch_norm)); return g; } #define BM_NAME(NAME, N, H, W, C, T, IT, FORMAT, DEVICE) \ BM_##NAME##_##N##_##H##_##W##_##C##_##IT##_##FORMAT##_##T##_##DEVICE #define BM_FusedBatchNorm(N, H, W, C, T, IS_TRAINING, FORMAT, DEVICE) \ static void BM_NAME(FusedBatchNorm, N, H, W, C, T, IS_TRAINING, FORMAT, DEVICE)(::testing::benchmark::State & state) { \ test::Benchmark( \ #DEVICE, \ FusedBatchNormInference<T>(N, H, W, C, IS_TRAINING, FORMAT_##FORMAT), \ false) \ .Run(state); \ state.SetItemsProcessed(state.iterations() * N * H * W * C); \ } \ BENCHMARK( \ BM_NAME(FusedBatchNorm, N, H, W, C, T, IS_TRAINING, FORMAT, DEVICE)) \ ->UseRealTime(); BM_FusedBatchNorm(64, 14, 14, 256, fp32, false, NHWC, cpu); BM_FusedBatchNorm(64, 14, 14, 256, fp16, false, NHWC, cpu); BM_FusedBatchNorm(64, 14, 14, 256, bf16, false, NHWC, cpu); BM_FusedBatchNorm(64, 14, 14, 256, fp32, true, NHWC, cpu); BM_FusedBatchNorm(64, 14, 14, 256, fp16, true, NHWC, cpu); BM_FusedBatchNorm(64, 14, 14, 256, bf16, true, NHWC, cpu); #ifdef GOOGLE_CUDA BM_FusedBatchNorm(64, 14, 14, 256, fp32, false, NHWC, gpu); BM_FusedBatchNorm(64, 14, 14, 256, fp16, false, NHWC, gpu); BM_FusedBatchNorm(64, 14, 14, 256, fp32, false, NCHW, gpu); BM_FusedBatchNorm(64, 14, 14, 256, fp16, false, NCHW, gpu); BM_FusedBatchNorm(64, 14, 14, 256, fp32, true, NHWC, gpu); BM_FusedBatchNorm(64, 14, 14, 256, fp16, true, NHWC, gpu); BM_FusedBatchNorm(64, 14, 14, 256, fp32, true, NCHW, gpu); BM_FusedBatchNorm(64, 14, 14, 256, fp16, true, NCHW, gpu); #endif #define BM_FusedBatchNormGrad(N, H, W, C, T, IS_TRAINING, FORMAT, DEVICE) \ static void BM_NAME(FusedBatchNormGrad, N, H, W, C, T, IS_TRAINING, FORMAT, \ DEVICE)(::testing::benchmark::State & state) { \ test::Benchmark( \ #DEVICE, \ FusedBatchNormGrad<T>(N, H, W, C, IS_TRAINING, FORMAT_##FORMAT), \ false) \ .Run(state); \ state.SetItemsProcessed(state.iterations() * N * H * W * C); \ } \ BENCHMARK( \ BM_NAME(FusedBatchNormGrad, N, H, W, C, T, IS_TRAINING, FORMAT, DEVICE)) \ ->UseRealTime(); #define BM_FusedBatchNormGradResnetShapes(T, IS_TRAINING, FORMAT, DEVICE) \ BM_FusedBatchNormGrad(64, 56, 56, 64, T, IS_TRAINING, FORMAT, DEVICE); \ BM_FusedBatchNormGrad(64, 56, 56, 128, T, IS_TRAINING, FORMAT, DEVICE); \ BM_FusedBatchNormGrad(64, 56, 56, 256, T, IS_TRAINING, FORMAT, DEVICE); \ \ BM_FusedBatchNormGrad(64, 28, 28, 128, T, IS_TRAINING, FORMAT, DEVICE); \ BM_FusedBatchNormGrad(64, 28, 28, 256, T, IS_TRAINING, FORMAT, DEVICE); \ BM_FusedBatchNormGrad(64, 28, 28, 512, T, IS_TRAINING, FORMAT, DEVICE); \ \ BM_FusedBatchNormGrad(64, 14, 14, 128, T, IS_TRAINING, FORMAT, DEVICE); \ BM_FusedBatchNormGrad(64, 14, 14, 256, T, IS_TRAINING, FORMAT, DEVICE); \ BM_FusedBatchNormGrad(64, 14, 14, 1024, T, IS_TRAINING, FORMAT, DEVICE) BM_FusedBatchNormGradResnetShapes(fp32, true, NHWC, cpu); BM_FusedBatchNormGradResnetShapes(fp32, false, NHWC, cpu); BM_FusedBatchNormGradResnetShapes(bf16, true, NHWC, cpu); BM_FusedBatchNormGradResnetShapes(bf16, false, NHWC, cpu); #ifdef GOOGLE_CUDA BM_FusedBatchNormGradResnetShapes(fp32, true, NHWC, gpu); BM_FusedBatchNormGradResnetShapes(fp16, true, NHWC, gpu); BM_FusedBatchNormGradResnetShapes(fp32, true, NCHW, gpu); BM_FusedBatchNormGradResnetShapes(fp16, true, NCHW, gpu); BM_FusedBatchNormGradResnetShapes(fp32, false, NHWC, gpu); BM_FusedBatchNormGradResnetShapes(fp16, false, NHWC, gpu); #endif }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/fused_batch_norm_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/fused_batch_norm_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b67db28c-e40b-4668-92e4-3270dc801d78
cpp
tensorflow/tensorflow
graph_transform_wrapper
tensorflow/core/transforms/graph_transform_wrapper.cc
tensorflow/core/transforms/graph_transform_wrapper_test.cc
#include "tensorflow/core/transforms/graph_transform_wrapper.h" #include <initializer_list> #include "absl/memory/memory.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Pass/PassManager.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/ir/importexport/graphdef_export.h" #include "tensorflow/core/ir/importexport/graphdef_import.h" #include "tensorflow/core/platform/statusor.h" namespace mlir { namespace tfg { tensorflow::Status RunTransformOnGraph( tensorflow::Graph* graph, const std::initializer_list< llvm::function_ref<std::unique_ptr<mlir::Pass>()>>& passes, const tensorflow::GraphDebugInfo& debug_info) { MLIRContext context(MLIRContext::Threading::DISABLED); TF_ASSIGN_OR_RETURN(OwningOpRef<ModuleOp> module, ImportGraphAndFunctionsToMlir(&context, debug_info, *graph, graph->flib_def())); PassManager pm((*module)->getName(), mlir::PassManager::Nesting::Explicit); for (auto& pass : passes) pm.addPass(pass()); mlir::StatusScopedDiagnosticHandler error_handler(&context); if (failed(pm.run(*module))) return error_handler.Combine( tensorflow::errors::InvalidArgument("MLIR Graph Optimizer failed: ")); tensorflow::GraphDef graphdef; TF_RETURN_WITH_CONTEXT_IF_ERROR(ConvertToGraphDef(*module, &graphdef), "when exporting MLIR module to GraphDef"); graph->Clear(); graph->mutable_flib_def()->Clear(); tensorflow::GraphConstructorOptions opts; return ConvertGraphDefToGraph(opts, graphdef, graph); } } }
#include "tensorflow/core/transforms/graph_transform_wrapper.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_def_builder_util.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace { struct TestPass : public PassWrapper<TestPass, OperationPass<ModuleOp>> { MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPass) TestPass() = default; StringRef getArgument() const final { return "test"; } void runOnOperation() override { Operation* del; getOperation()->walk([&](Operation* op) { if (op->getName().getStringRef() != "tfg.TestInput") return; del = *op->getResult(0).getUsers().begin(); }); del->erase(); } }; } } REGISTER_OP("TestInput").Output("a: float").Output("b: float"); REGISTER_OP("TestRelu").Input("i: float").Output("o: float"); REGISTER_OP("NoOp"); TEST(GraphTransformWrapper, ReplacedGraph) { tensorflow::Graph graph(tensorflow::OpRegistry::Global()); { tensorflow::GraphDefBuilder b( tensorflow::GraphDefBuilder::kFailImmediately); tensorflow::Node* input = tensorflow::ops::SourceOp("TestInput", b.opts().WithName("in")); tensorflow::ops::UnaryOp("TestRelu", tensorflow::ops::NodeOut(input, 0), b.opts().WithName("n1")); tensorflow::ops::UnaryOp("TestRelu", tensorflow::ops::NodeOut(input, 1), b.opts().WithName("n2")); TF_EXPECT_OK(tensorflow::GraphDefBuilderToGraph(b, &graph)); } mlir::MLIRContext context; context.getOrLoadDialect<mlir::tfg::TFGraphDialect>(); auto create_pass = [&]() { return std::make_unique<mlir::TestPass>(); }; TF_QCHECK_OK(mlir::tfg::RunTransformOnGraph(&graph, {create_pass})); EXPECT_EQ(4, graph.num_nodes()); EXPECT_TRUE( absl::StrContains(graph.ToGraphDefDebug().ShortDebugString(), "\"n2\"")); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/transforms/graph_transform_wrapper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/transforms/graph_transform_wrapper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
43526799-73a2-492f-aa82-ab1df36fdb29
cpp
google/tensorstore
result
tensorstore/serialization/result.h
tensorstore/serialization/result_test.cc
#ifndef TENSORSTORE_SERIALIZATION_RESULT_H_ #define TENSORSTORE_SERIALIZATION_RESULT_H_ #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/status.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace serialization { template <typename T> struct Serializer<Result<T>> { [[nodiscard]] static bool Encode(EncodeSink& sink, const Result<T>& value) { return serialization::Encode(sink, value.ok()) && (value.ok() ? serialization::Encode(sink, *value) : serialization::Encode(sink, value.status())); } [[nodiscard]] static bool Decode(DecodeSource& source, Result<T>& value) { bool has_value; if (!serialization::Decode(source, has_value)) return false; if (has_value) { return serialization::Decode(source, value.emplace()); } else { absl::Status status; if (!ErrorStatusSerializer::Decode(source, status)) return false; value = std::move(status); return true; } } }; } } #endif
#include "tensorstore/serialization/result.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/result.h" namespace { using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(ResultTest, OkRoundTrip) { TestSerializationRoundTrip(tensorstore::Result<int>(3)); TestSerializationRoundTrip(tensorstore::Result<int>(4)); } TEST(StatusTest, ErrorRoundTrip) { TestSerializationRoundTrip( tensorstore::Result<int>(absl::InternalError("abc"))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/serialization/result.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/serialization/result_test.cc
4f887a6430414cd6088e1743555015b10f116d50
4a03d074-abd5-4eff-b24a-ddc438954def
cpp
tensorflow/tensorflow
context_map
third_party/xla/xla/stream_executor/gpu/context_map.h
third_party/xla/xla/stream_executor/gpu/context_map_test.cc
#ifndef XLA_STREAM_EXECUTOR_GPU_CONTEXT_MAP_H_ #define XLA_STREAM_EXECUTOR_GPU_CONTEXT_MAP_H_ #include <memory> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/synchronization/mutex.h" namespace stream_executor::gpu { template <class GpuContext, class ContextType> class ContextMap { public: explicit ContextMap(absl::AnyInvocable<int(void* ptr)> find_device_ordinal) : find_device_ordinal_(std::move(find_device_ordinal)) {} bool Has(GpuContext context) { absl::ReaderMutexLock lock(&mutex_); return gpu_context_to_context_type_map_.find(context) != gpu_context_to_context_type_map_.end(); } ContextType* Add(GpuContext context, int device_ordinal) { CHECK_NE(context, nullptr); absl::MutexLock lock(&mutex_); auto insert_result = gpu_context_to_context_type_map_.insert( std::make_pair(context, nullptr)); auto it = insert_result.first; if (insert_result.second) { it->second = std::make_unique<ContextType>(context, device_ordinal); ordinal_to_type_map_[device_ordinal].push_back(context); } return it->second.get(); } void Remove(GpuContext context) { absl::MutexLock lock(&mutex_); CHECK_NE(context, nullptr); auto it = gpu_context_to_context_type_map_.find(context); CHECK(it != gpu_context_to_context_type_map_.end()) << context; gpu_context_to_context_type_map_.erase(it); for (auto p : ordinal_to_type_map_) { auto it2 = std::find(p.second.begin(), p.second.end(), context); if (it2 != p.second.end()) { p.second.erase(it2); if (p.second.empty()) { ordinal_to_type_map_.erase(p.first); } break; } } } GpuContext GetAnyContext(void* ptr) { absl::ReaderMutexLock lock(&mutex_); int device_ordinal = find_device_ordinal_(ptr); CHECK_EQ(ordinal_to_type_map_.count(device_ordinal), 1); CHECK(!ordinal_to_type_map_.at(device_ordinal).empty()) << "Need at least one context."; return ordinal_to_type_map_.at(device_ordinal)[0]; } private: absl::Mutex mutex_; absl::flat_hash_map<GpuContext, std::unique_ptr<ContextType>> gpu_context_to_context_type_map_ ABSL_GUARDED_BY(mutex_); absl::flat_hash_map<int, std::vector<GpuContext>> ordinal_to_type_map_ ABSL_GUARDED_BY(mutex_); absl::AnyInvocable<int(void* ptr)> find_device_ordinal_; }; } #endif
#include "xla/stream_executor/gpu/context_map.h" #include "tsl/platform/test.h" namespace stream_executor::gpu { namespace { class TestContext { public: TestContext(void *context, int device_ordinal) : context_(context), device_ordinal_(device_ordinal) {} void *context() const { return context_; } int device_ordinal() const { return device_ordinal_; } private: void *context_; int device_ordinal_; }; TEST(ContextMapTest, AddRemoveAndHasWorks) { int device_ordinal = 1; void *context = &device_ordinal; auto ordinal_finder = [device_ordinal](void *ptr) { return device_ordinal; }; ContextMap<void *, TestContext> map(ordinal_finder); auto *test_context = map.Add(context, device_ordinal); EXPECT_EQ(test_context->context(), context); EXPECT_EQ(test_context->device_ordinal(), device_ordinal); EXPECT_TRUE(map.Has(context)); map.Remove(context); EXPECT_FALSE(map.Has(context)); } TEST(ContextMapTest, AddTwiceReturnsSameContext) { void *context = reinterpret_cast<void *>(2); constexpr int device_ordinal = 1; auto ordinal_finder = [](void *ptr) { return device_ordinal; }; ContextMap<void *, TestContext> map(ordinal_finder); auto *test_context1 = map.Add(context, device_ordinal); auto *test_context2 = map.Add(context, device_ordinal); EXPECT_EQ(test_context1, test_context2); } TEST(ContextMapTest, GetAnyContextReturnsCorrectContext) { void *context1 = reinterpret_cast<void *>(2); void *context2 = reinterpret_cast<void *>(3); constexpr int device_ordinal1 = 1; constexpr int device_ordinal2 = 2; auto ordinal_finder = [](void *ptr) { static int calls = 0; ++calls; if (calls <= 1) { return device_ordinal1; } else { return device_ordinal2; } }; ContextMap<void *, TestContext> map(ordinal_finder); auto *test_context1 = map.Add(context1, device_ordinal1); auto *test_context2 = map.Add(context2, device_ordinal2); EXPECT_NE(test_context1, test_context2); auto first_context = map.GetAnyContext(context1); EXPECT_EQ(first_context, context1); auto second_context = map.GetAnyContext(context2); EXPECT_EQ(second_context, context2); } TEST(ContextMapTest, GetAnyContextShouldDieWithBadInput) { void *context1 = reinterpret_cast<void *>(2); void *context2 = reinterpret_cast<void *>(3); constexpr int device_ordinal1 = 1; constexpr int device_ordinal2 = 2; auto ordinal_finder = [](void *ptr) { static int calls = 0; ++calls; if (calls <= 1) { return device_ordinal1; } else { return device_ordinal2; } }; ContextMap<void *, TestContext> map(ordinal_finder); auto *test_context1 = map.Add(context1, device_ordinal1); auto *test_context2 = map.Add(context2, device_ordinal2); EXPECT_NE(test_context1, test_context2); auto first_context = map.GetAnyContext(context1); EXPECT_EQ(first_context, context1); auto second_context = map.GetAnyContext(context2); EXPECT_EQ(second_context, context2); map.Remove(context2); EXPECT_DEATH(map.GetAnyContext(context2), "Check failed"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/gpu/context_map.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/gpu/context_map_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e3460a20-4301-4749-99c9-483fa6ad0a48
cpp
tensorflow/tensorflow
master
tensorflow/core/distributed_runtime/master.cc
tensorflow/core/distributed_runtime/master_test.cc
#include "tensorflow/core/distributed_runtime/master.h" #include <memory> #include <unordered_set> #include <vector> #include "xla/tsl/protobuf/rpc_options.pb.h" #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/distributed_runtime/remote_device.h" #include "tensorflow/core/distributed_runtime/worker_cache.h" #include "tensorflow/core/distributed_runtime/worker_interface.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/regexp.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/cluster.pb.h" #include "tensorflow/core/protobuf/master.pb.h" #include "tensorflow/core/protobuf/worker.pb.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace { constexpr char kGrpcPrefixRegex[] = "^grpc.*: } Master::Master(MasterEnv* env, double session_gc_seconds) : env_(env), last_1000_steps_(1000), step_count_(0), session_gc_seconds_(session_gc_seconds), recent_request_ids_(10000, env_->experimental_num_shards) { CHECK(!env->local_devices.empty()); DCHECK_GT(env_->experimental_num_shards, 0); if (session_gc_seconds_ > 0.0) { gc_thread_ = env_->env->StartThread(ThreadOptions(), "TF_master_GC", [this]() { GC(); }); } else { gc_thread_ = nullptr; } } Master::~Master() { if (gc_thread_) { mutex_lock l(mu_); shutdown_ = true; shutdown_cv_.notify_all(); delete gc_thread_; } } void Master::GC() { Env* env = Env::Default(); while (true) { mutex_lock l(mu_); const int kTimeoutMilliseconds = 10 * 1000; WaitForMilliseconds(&l, &shutdown_cv_, kTimeoutMilliseconds); if (shutdown_) { break; } std::vector<string> handles; const int64_t num_micros = static_cast<int64_t>(session_gc_seconds_ * 1000000); for (const auto& entry : sessions_) { int64_t lat = entry.second->last_access_time_usec(); if (static_cast<int64_t>(env->NowMicros()) - lat > num_micros) { handles.push_back(entry.first); auto* sess = entry.second; SchedClosure([this, sess]() { LOG(WARNING) << "GC session " << sess->handle() << " after " << session_gc_seconds_ << " seconds. " << "Note that if you are starting multiple replicas " << "on a staggered delay, session_gc_seconds may need " << "to be raised."; sess->GarbageCollect(); }); } } for (const auto& handle : handles) sessions_.erase(handle); } } MasterSession* Master::FindMasterSession(const string& handle) { MasterSession* session = nullptr; { mutex_lock l(mu_); session = gtl::FindPtrOrNull(sessions_, handle); if (session != nullptr) { session->Ref(); } } return session; } class DeviceFinder { public: static Status GetRemoteDevices( const protobuf::RepeatedPtrField<string>& device_filters, MasterEnv* env, WorkerCacheInterface* worker_cache, std::vector<std::unique_ptr<Device>>* out_remote) { DeviceFinder finder(device_filters, env, worker_cache); finder.Start(); TF_RETURN_IF_ERROR(finder.Wait()); finder.GetRemoteDevices(env->local_devices, out_remote); return absl::OkStatus(); } static void GetRemoteWorkers( const protobuf::RepeatedPtrField<string>& device_filters, MasterEnv* env, WorkerCacheInterface* worker_cache, std::vector<string>* workers) { DeviceFinder finder(device_filters, env, worker_cache); *workers = finder.targets_; } private: explicit DeviceFinder( const protobuf::RepeatedPtrField<string>& device_filters, MasterEnv* env, WorkerCacheInterface* worker_cache) : env_(env), worker_cache_(worker_cache) { CHECK(worker_cache) << "Worker cache was null!"; auto process_filter = [this](const string& filter) { DeviceNameUtils::ParsedName parsed; if (DeviceNameUtils::ParseFullName(filter, &parsed)) { filters_.push_back(parsed); } else { LOG(FATAL) << "Skipping invalid filter: " << filter; } }; for (const string& filter : device_filters) { process_filter(filter); } if (filters_.empty()) { std::vector<string> workers; worker_cache->ListWorkers(&workers); std::swap(workers, targets_); } else { CHECK_GT(env_->local_devices.size(), 0) << "No local devices provided."; const string& local_device_name = env_->local_devices[0]->name(); DeviceNameUtils::ParsedName local_parsed_name; CHECK(DeviceNameUtils::ParseFullName(local_device_name, &local_parsed_name)); bool all_filters_have_job = true; std::unordered_set<string> filter_job_names({local_parsed_name.job}); for (const DeviceNameUtils::ParsedName& filter : filters_) { all_filters_have_job = all_filters_have_job && filter.has_job; if (filter.has_job) { filter_job_names.insert(filter.job); } } std::vector<string> workers; if (all_filters_have_job) { for (const string& job_name : filter_job_names) { VLOG(2) << "Selectively listing workers in job: " << job_name; std::vector<string> workers_in_job; worker_cache->ListWorkersInJob(job_name, &workers_in_job); workers.insert(workers.end(), workers_in_job.begin(), workers_in_job.end()); } } else { VLOG(2) << "Listing workers in all jobs because some device " << "filter has no job specified. Filters were:"; if (device_filters.empty()) { VLOG(2) << "- <NO FILTERS>"; } else { for (const string& filter : device_filters) { VLOG(2) << "- " << filter; } } worker_cache->ListWorkers(&workers); } for (const string& name : workers) { if (MatchFilters(name) || DeviceNameUtils::IsSameAddressSpace(name, local_device_name)) { targets_.push_back(name); } } } seen_targets_.assign(targets_.size(), false); } ~DeviceFinder() { for (Device* dev : found_) delete dev; } void Start() { LOG(INFO) << "Scanning workers for devices: " << targets_.size() << " total workers"; { mutex_lock l(mu_); num_pending_ = targets_.size(); if (num_pending_ == 0) { pending_zero_.notify_all(); } } for (size_t i = 0; i < targets_.size(); ++i) { NewRemoteDevices( env_->env, worker_cache_, targets_[i], [this, i](const Status& s, std::vector<Device*>* devices) { WhenFound(i, s, devices); }); } } const int32 kLoggingPeriodMs = 10 * 1000; Status Wait() { mutex_lock l(mu_); while (num_pending_ != 0) { pending_zero_.wait_for(l, std::chrono::milliseconds(kLoggingPeriodMs)); if (num_pending_ != 0) { for (size_t i = 0; i < targets_.size(); ++i) { if (!seen_targets_[i]) { LOG(INFO) << "CreateSession still waiting for response from worker: " << targets_[i]; } } } } return status_; } void GetRemoteDevices(const std::vector<Device*>& local, std::vector<std::unique_ptr<Device>>* remote) { std::unordered_set<string> names(local.size()); for (Device* dev : local) names.insert(dev->name()); mutex_lock l(mu_); for (Device* dev : found_) { const string& name = dev->name(); if (names.insert(name).second && MatchFilters(name)) { remote->push_back(std::unique_ptr<Device>(dev)); } else { delete dev; } } found_.clear(); } typedef DeviceFinder ME; const MasterEnv* env_; WorkerCacheInterface* worker_cache_; std::vector<DeviceNameUtils::ParsedName> filters_; mutex mu_; int num_pending_ TF_GUARDED_BY(mu_); condition_variable pending_zero_; std::vector<Device*> found_ TF_GUARDED_BY(mu_); std::vector<string> targets_; std::vector<bool> seen_targets_ TF_GUARDED_BY(mu_); Status status_; void WhenFound(int target_index, const Status& s, std::vector<Device*>* devices) { mutex_lock l(mu_); seen_targets_[target_index] = true; if (!s.ok()) { LOG(ERROR) << "CreateSession failed because worker " << targets_[target_index] << " returned error: " << s; status_.Update(s); } else { found_.insert(found_.end(), devices->begin(), devices->end()); devices->clear(); } --num_pending_; if (num_pending_ == 0) { pending_zero_.notify_all(); } } bool Intersects(const DeviceNameUtils::ParsedName& x, const DeviceNameUtils::ParsedName& y) { return (!x.has_job || !y.has_job || x.job == y.job) && (!x.has_replica || !y.has_replica || x.replica == y.replica) && (!x.has_task || !y.has_task || x.task == y.task) && (!x.has_type || !y.has_type || x.type == y.type) && (!x.has_id || !y.has_id || x.id == y.id); } bool MatchFilters(const string& name) { if (filters_.empty()) return true; DeviceNameUtils::ParsedName x; if (DeviceNameUtils::ParseFullName(name, &x)) { for (const auto& filter : filters_) { if (Intersects(x, filter)) return true; } } return false; } DeviceFinder(const DeviceFinder&) = delete; void operator=(const DeviceFinder&) = delete; }; void Master::CreateSession(const CreateSessionRequest* req, CreateSessionResponse* resp, MyClosure done) { SchedClosure([this, req, resp, done]() { Status status; WorkerCacheFactoryOptions worker_cache_factory_options; auto call_done = gtl::MakeCleanup([&status, &done] { done(status); }); status = ValidateExternalGraphDefSyntax(req->graph_def()); if (!status.ok()) return; WorkerCacheInterface* worker_cache = nullptr; std::unique_ptr<WorkerCacheInterface> worker_cache_ptr; std::unique_ptr<DeviceSet> device_set; std::unique_ptr<std::vector<std::unique_ptr<Device>>> remote_devices( new std::vector<std::unique_ptr<Device>>()); const ClusterDef& cluster_def = req->config().cluster_def(); if (!cluster_def.job().empty()) { worker_cache_factory_options.cluster_def = cluster_def; string normalized_string(req->target()); RE2::Replace(&normalized_string, kGrpcPrefixRegex, ""); for (auto&& job : cluster_def.job()) { for (auto&& task : job.tasks()) { if (task.second == normalized_string) { if (!worker_cache_factory_options.job_name.empty()) { status = errors::InvalidArgument( "Found multiple matching tasks that correspond to " "to the master. Master target: '", req->target(), "'. ClusterDef: ", cluster_def.ShortDebugString()); LOG(ERROR) << status; return; } if (env_->local_devices[0]->parsed_name().job == job.name() && env_->local_devices[0]->parsed_name().task == task.first) { status = errors::InvalidArgument( "The ClusterSpec names the job and task index to be the same " "names that were provided when the server booted. This is " "currently not allowed. Job: ", job.name(), ", task index: ", task.first); return; } worker_cache_factory_options.job_name = job.name(); worker_cache_factory_options.task_index = task.first; } } } worker_cache_factory_options.rpc_options = req->config().rpc_options(); status = env_->worker_cache_factory(worker_cache_factory_options, &worker_cache); if (!status.ok()) return; worker_cache_ptr = std::unique_ptr<WorkerCacheInterface>(worker_cache); status = DeviceFinder::GetRemoteDevices(req->config().device_filters(), env_, worker_cache, remote_devices.get()); if (!status.ok()) return; device_set = std::make_unique<DeviceSet>(); for (auto&& d : *remote_devices) { device_set->AddDevice(d.get()); DeviceNameUtils::ParsedName name = d->parsed_name(); if (name.job == worker_cache_factory_options.job_name && name.task == worker_cache_factory_options.task_index && name.type == "CPU" && name.id == 0) { device_set->set_client_device(d.get()); } } } else { worker_cache = env_->worker_cache; status = DeviceFinder::GetRemoteDevices(req->config().device_filters(), env_, worker_cache, remote_devices.get()); if (!status.ok()) return; device_set = std::make_unique<DeviceSet>(); for (auto&& d : *remote_devices) { device_set->AddDevice(d.get()); } int num_local_devices = 0; for (Device* d : env_->local_devices) { device_set->AddDevice(d); if (num_local_devices == 0) { device_set->set_client_device(d); } num_local_devices++; } } CHECK(device_set->client_device()) << "No client device found. Missing " << "CPU:0 device?"; SessionOptions options; options.target = req->target(); options.config = req->config(); options.config.mutable_experimental() ->set_disable_optimize_for_static_graph(true); std::vector<string> filtered_worker_list; DeviceFinder::GetRemoteWorkers(req->config().device_filters(), env_, worker_cache, &filtered_worker_list); MasterSession* session = env_->master_session_factory( options, env_, std::move(remote_devices), std::move(worker_cache_ptr), std::move(device_set), std::move(filtered_worker_list)); GraphDef* gdef = const_cast<CreateSessionRequest*>(req)->mutable_graph_def(); status = session->Create(std::move(*gdef), cluster_def); if (!status.ok()) { session->Close().IgnoreError(); session->Unref(); return; } resp->set_session_handle(session->handle()); { mutex_lock l(mu_); CHECK(sessions_.insert({session->handle(), session}).second); } }); } void Master::ExtendSession(const ExtendSessionRequest* req, ExtendSessionResponse* resp, MyClosure done) { auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::Aborted("Session ", req->session_handle(), " is not found.")); return; } SchedClosure([session, req, resp, done]() { Status status = ValidateExternalGraphDefSyntax(req->graph_def()); if (status.ok()) { status = session->Extend(req, resp); } session->Unref(); done(status); }); } void Master::PartialRunSetup(const PartialRunSetupRequest* req, PartialRunSetupResponse* resp, MyClosure done) { Status s = recent_request_ids_.TrackUnique(req->request_id(), "PartialRunSetup (Master)", *req); if (!s.ok()) { done(s); return; } auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::Aborted("Session ", req->session_handle(), " is not found.")); return; } SchedClosure([session, req, resp, done]() { Status s = session->PartialRunSetup(req, resp); session->Unref(); done(s); }); } void Master::RunStep(CallOptions* opts, const RunStepRequestWrapper* req, MutableRunStepResponseWrapper* resp, MyClosure done) { Status s = recent_request_ids_.TrackUnique(req->request_id(), "RunStep (Master)", req); if (!s.ok()) { done(s); return; } auto start_time = env_->env->NowMicros(); auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::Aborted("Session ", req->session_handle(), " is not found.")); return; } SchedClosure([this, start_time, session, opts, req, resp, done]() { Status status = session->Run(opts, *req, resp); session->Unref(); uint64 done_time = env_->env->NowMicros(); done(status); mutex_lock l(mu_); last_1000_steps_.AddValue((done_time - start_time) / 1e9); ++step_count_; }); } void Master::CloseSession(const CloseSessionRequest* req, CloseSessionResponse* resp, MyClosure done) { MasterSession* session = nullptr; { mu_.lock(); auto iter = sessions_.find(req->session_handle()); if (iter == sessions_.end()) { mu_.unlock(); done(errors::Aborted( "Session ", req->session_handle(), " is not found. Possibly, this master has restarted.")); return; } session = iter->second; sessions_.erase(iter); mu_.unlock(); } SchedClosure([session, done]() { Status s = session->Close(); session->Unref(); done(s); }); } void Master::ListDevices(const ListDevicesRequest* req, ListDevicesResponse* resp, MyClosure done) { SchedClosure([this, req, resp, done]() { if (!req->session_handle().empty()) { auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::InvalidArgument( "Session ", req->session_handle(), " is not found. Possibly, this master has restarted.")); return; } core::ScopedUnref ref(session); Status s = session->ListDevices(resp); done(s); return; } std::vector<std::unique_ptr<Device>> remote_devices; Status s = DeviceFinder::GetRemoteDevices({}, env_, env_->worker_cache, &remote_devices); if (s.ok()) { for (Device* dev : env_->local_devices) { *(resp->add_local_device()) = dev->attributes(); } for (auto&& dev : remote_devices) { *(resp->add_remote_device()) = dev->attributes(); } } done(s); }); } void Master::CleanupWorkers(const ResetRequest& reset) { std::vector<string> worker_names; DeviceFinder::GetRemoteWorkers(reset.device_filters(), env_, env_->worker_cache, &worker_names); if (!worker_names.empty()) { const int num_workers = worker_names.size(); std::vector<Notification> n(num_workers); CleanupAllRequest req; (*req.mutable_container()) = reset.container(); std::vector<CleanupAllResponse> resp(num_workers); int c = 0; for (int i = 0; i < num_workers; ++i) { const string& worker_name = worker_names[i]; auto worker = env_->worker_cache->GetOrCreateWorker(worker_name); if (worker) { worker->CleanupAllAsync( &req, &resp[i], [this, &n, worker_name, worker, c](Status s) { if (!s.ok()) { LOG(ERROR) << "Worker CleanupAll failed: " << s; } env_->worker_cache->ReleaseWorker(worker_name, worker); n[c].Notify(); }); } else { n[c].Notify(); } ++c; } for (size_t i = 0; i < n.size(); ++i) { n[i].WaitForNotification(); } } } void Master::Reset(const ResetRequest* req, ResetResponse* resp, MyClosure done) { std::vector<MasterSession*> sessions_to_close; { mutex_lock l(mu_); for (const auto& entry : sessions_) { sessions_to_close.push_back(entry.second); } sessions_.clear(); } CleanupWorkers(*req); SchedClosure([sessions_to_close, done]() { Status s; for (MasterSession* session : sessions_to_close) { s.Update(session->Close()); session->Unref(); } done(s); }); } void Master::MakeCallable(const MakeCallableRequest* req, MakeCallableResponse* resp, MyClosure done) { Status s = recent_request_ids_.TrackUnique(req->request_id(), "MakeCallable (Master)", *req); if (!s.ok()) { done(s); return; } auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::Aborted("Session ", req->session_handle(), " is not found.")); return; } SchedClosure([session, req, resp, done = std::move(done)]() { Status s = session->MakeCallable(*req, resp); session->Unref(); done(s); }); } void Master::RunCallable(CallOptions* opts, const RunCallableRequest* req, RunCallableResponse* resp, MyClosure done) { Status s = recent_request_ids_.TrackUnique(req->request_id(), "RunCallable (Master)", *req); if (!s.ok()) { done(s); return; } auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::Aborted("Session ", req->session_handle(), " is not found.")); return; } SchedClosure([session, opts, req, resp, done = std::move(done)]() { Status s = session->RunCallable(opts, *req, resp); session->Unref(); done(s); }); } void Master::ReleaseCallable(const ReleaseCallableRequest* req, ReleaseCallableResponse* resp, MyClosure done) { auto session = FindMasterSession(req->session_handle()); if (session == nullptr) { done(errors::Aborted("Session ", req->session_handle(), " is not found.")); return; } SchedClosure([session, req, resp, done = std::move(done)]() { Status s = session->ReleaseCallable(*req, resp); session->Unref(); done(s); }); } }
#include "tensorflow/core/distributed_runtime/master.h" #include <map> #include <memory> #include "grpcpp/grpcpp.h" #include "Eigen/Core" #include "tensorflow/core/distributed_runtime/rpc/grpc_channel.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_master_service_impl.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_testlib.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/master.pb.h" namespace tensorflow { class MasterTest : public ::testing::Test { protected: MasterTest() { std::vector<string> targets; SessionOptions options; (*options.config.mutable_device_count())["CPU"] = 1; (*options.config.mutable_device_count())["GPU"] = 0; TF_CHECK_OK(test::TestCluster::MakeTestCluster( test::TestClusterConfig().Options(options).Jobs( {test::TestJob{"localhost", 2}}), &cluster_)); SharedGrpcChannelPtr channel_ptr; TF_CHECK_OK(NewHostPortGrpcChannel( cluster_->targets()[0], &options.config.rpc_options(), &channel_ptr)); master_ = grpc::MasterService::NewStub(channel_ptr); } std::unique_ptr<test::TestCluster> cluster_; std::unique_ptr<grpc::MasterService::Stub> master_; Status CreateSession(const GraphDef& def, string* handle, int64_t* initial_version) { ::grpc::ClientContext ctx; CreateSessionRequest req; *(req.mutable_graph_def()) = def; req.mutable_config()->set_placement_period(1); CreateSessionResponse resp; const Status s = FromGrpcStatus(master_->CreateSession(&ctx, req, &resp)); if (s.ok()) { *handle = resp.session_handle(); *initial_version = resp.graph_version(); } return s; } Status ExtendSession(const string& handle, const GraphDef& def, int64_t current_version, int64_t* new_version) { ::grpc::ClientContext ctx; ExtendSessionRequest req; req.set_session_handle(handle); *(req.mutable_graph_def()) = def; req.set_current_graph_version(current_version); ExtendSessionResponse resp; const Status s = FromGrpcStatus(master_->ExtendSession(&ctx, req, &resp)); if (s.ok()) { *new_version = resp.new_graph_version(); } return s; } Status RunStep(const string& handle, const std::vector<std::pair<string, const Tensor*> >& feed, const std::map<string, Tensor*>& fetch) { ::grpc::ClientContext ctx; RunStepRequest req; req.set_session_handle(handle); for (const auto& p : feed) { const string& feed_name = p.first; const Tensor* feed_tensor = p.second; auto f = req.add_feed(); f->set_name(feed_name); feed_tensor->AsProtoTensorContent(f->mutable_tensor()); } for (const auto& p : fetch) { const string& fetch_name = p.first; req.add_fetch(fetch_name); } RunStepResponse resp; const Status s = FromGrpcStatus(master_->RunStep(&ctx, req, &resp)); if (s.ok()) { for (const auto& fetch_resp : resp.tensor()) { auto it = fetch.find(fetch_resp.name()); CHECK(it != fetch.end()); CHECK(it->second->FromProto(fetch_resp.tensor())); } } return s; } Status CloseSession(const string& handle) { ::grpc::ClientContext ctx; CloseSessionRequest req; req.set_session_handle(handle); CloseSessionResponse resp; return FromGrpcStatus(master_->CloseSession(&ctx, req, &resp)); } Status Reset() { ::grpc::ClientContext ctx; ResetRequest req; ResetResponse resp; return FromGrpcStatus(master_->Reset(&ctx, req, &resp)); } }; TEST_F(MasterTest, CreateClose) { GraphDef def; string handle; int64_t initial_version; TF_ASSERT_OK(CreateSession(def, &handle, &initial_version)); EXPECT_TRUE(errors::IsAborted(CloseSession("randombits"))); EXPECT_TRUE(CloseSession(handle).ok()); } TEST_F(MasterTest, ListDevices) { ::grpc::ClientContext ctx; ListDevicesRequest req; ListDevicesResponse resp; const Status s = FromGrpcStatus(master_->ListDevices(&ctx, req, &resp)); TF_EXPECT_OK(s); EXPECT_EQ(1, resp.local_device_size()); EXPECT_EQ("CPU", resp.local_device(0).device_type()); } TEST_F(MasterTest, Reset) { GraphDef def; string s1, s2; int64_t initial_version1, initial_version2; TF_ASSERT_OK(CreateSession(def, &s1, &initial_version1)); TF_ASSERT_OK(CreateSession(def, &s2, &initial_version2)); EXPECT_TRUE(Reset().ok()); EXPECT_TRUE(errors::IsAborted(CloseSession(s1))); EXPECT_TRUE(errors::IsAborted(CloseSession(s2))); } TEST_F(MasterTest, Extend) { GraphDef def_0; string handle; int64_t initial_version; TF_ASSERT_OK(CreateSession(def_0, &handle, &initial_version)); Tensor A_expected(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&A_expected, {3.0, 2.0, -1.0, 0.0}); Tensor x_expected(DT_FLOAT, TensorShape({2, 1})); test::FillValues<float>(&x_expected, {2.0, 2.0}); Graph graph_1(OpRegistry::Global()); test::graph::Constant(&graph_1, A_expected, "A"); GraphDef def_1; test::graph::ToGraphDef(&graph_1, &def_1); int64_t version_1; TF_ASSERT_OK(ExtendSession(handle, def_1, initial_version, &version_1)); EXPECT_GT(version_1, initial_version); Tensor A(DT_FLOAT, TensorShape({2, 2})); TF_ASSERT_OK(RunStep(handle, {}, {{"A:0", &A}})); test::ExpectTensorEqual<float>(A, A_expected); Graph graph_2(OpRegistry::Global()); test::graph::Constant(&graph_2, x_expected, "x"); GraphDef def_2; test::graph::ToGraphDef(&graph_2, &def_2); int64_t version_2; EXPECT_TRUE(errors::IsAborted( ExtendSession("randombits", def_2, version_1, &version_2))); TF_ASSERT_OK(ExtendSession(handle, def_2, version_1, &version_2)); EXPECT_GT(version_2, version_1); Tensor x(DT_FLOAT, TensorShape({2, 1})); TF_ASSERT_OK(RunStep(handle, {}, {{"A:0", &A}, {"x:0", &x}})); test::ExpectTensorEqual<float>(A, A_expected); test::ExpectTensorEqual<float>(x, x_expected); TF_ASSERT_OK(CloseSession(handle)); } TEST_F(MasterTest, ExtendUpdateStatefulFails) { GraphDef def_0; string handle; int64_t initial_version; TF_ASSERT_OK(CreateSession(def_0, &handle, &initial_version)); Graph graph_1(OpRegistry::Global()); test::graph::Var(&graph_1, DT_FLOAT, TensorShape({512})); GraphDef def_1; test::graph::ToGraphDef(&graph_1, &def_1); int64_t version_1, version_2; TF_ASSERT_OK(ExtendSession(handle, def_1, initial_version, &version_1)); EXPECT_GT(version_1, initial_version); EXPECT_TRUE(errors::IsInvalidArgument( ExtendSession(handle, def_1, version_1, &version_2))); TF_ASSERT_OK(CloseSession(handle)); } TEST_F(MasterTest, ExtendTwiceFails) { GraphDef def_0; string handle; int64_t initial_version; TF_ASSERT_OK(CreateSession(def_0, &handle, &initial_version)); Graph graph_1(OpRegistry::Global()); test::graph::Var(&graph_1, DT_FLOAT, TensorShape({512})); GraphDef def_1; test::graph::ToGraphDef(&graph_1, &def_1); int64_t version_1; TF_ASSERT_OK(ExtendSession(handle, def_1, initial_version, &version_1)); EXPECT_GT(version_1, initial_version); EXPECT_TRUE(errors::IsAborted( ExtendSession(handle, def_1, initial_version, &version_1))); TF_ASSERT_OK(CloseSession(handle)); } TEST_F(MasterTest, ConcurrentExtendOnlyOneSucceeds) { GraphDef def_0; string handle; int64_t initial_version; TF_ASSERT_OK(CreateSession(def_0, &handle, &initial_version)); Graph graph_1(OpRegistry::Global()); test::graph::Var(&graph_1, DT_FLOAT, TensorShape({512})); GraphDef def_1; test::graph::ToGraphDef(&graph_1, &def_1); Notification n; mutex mu; int succeeded = 0; int failed = 0; auto extend_fn = [this, handle, def_1, initial_version, &n, &mu, &succeeded, &failed]() { n.WaitForNotification(); int64_t new_version; Status s = ExtendSession(handle, def_1, initial_version, &new_version); EXPECT_TRUE(s.ok() || errors::IsAborted(s)); { mutex_lock l(mu); if (s.ok()) { ++succeeded; } else { ++failed; } } }; { thread::ThreadPool thread_pool(Env::Default(), "extend_pool", 100); for (int i = 0; i < 100; ++i) { thread_pool.Schedule(extend_fn); } n.Notify(); } EXPECT_EQ(failed, 99); EXPECT_EQ(succeeded, 1); TF_ASSERT_OK(CloseSession(handle)); } TEST_F(MasterTest, ConcurrentExtendAndRun) { Graph graph_0(OpRegistry::Global()); Tensor a_tensor(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&a_tensor, {3, 2, -1, 0}); test::graph::Constant(&graph_0, a_tensor, "A"); GraphDef def_0; test::graph::ToGraphDef(&graph_0, &def_0); string handle; int64_t initial_version; TF_ASSERT_OK(CreateSession(def_0, &handle, &initial_version)); Graph graph_1(OpRegistry::Global()); Tensor b_tensor(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&b_tensor, {1, 0, 0, 1}); test::graph::Constant(&graph_1, b_tensor, "B"); GraphDef def_1; test::graph::ToGraphDef(&graph_1, &def_1); Notification extend_done; Notification extend_can_start; auto get_a_fn = [this, handle, &extend_done]() { Tensor A(DT_FLOAT, TensorShape({2, 2})); while (!extend_done.HasBeenNotified()) { TF_ASSERT_OK(RunStep(handle, {}, {{"A:0", &A}})); } TF_ASSERT_OK(RunStep(handle, {}, {{"A:0", &A}})); }; auto get_a_and_b_fn = [this, handle, &extend_done, &extend_can_start]() { Tensor A(DT_FLOAT, TensorShape({2, 2})); Tensor B(DT_FLOAT, TensorShape({2, 2})); EXPECT_TRUE( errors::IsNotFound(RunStep(handle, {}, {{"A:0", &A}, {"B:0", &B}}))); extend_can_start.Notify(); while (!extend_done.HasBeenNotified()) { Status s = RunStep(handle, {}, {{"A:0", &A}, {"B:0", &B}}); EXPECT_TRUE(errors::IsNotFound(s) || s.ok()); } TF_ASSERT_OK(RunStep(handle, {}, {{"A:0", &A}, {"B:0", &B}})); }; auto extend_fn = [this, handle, def_1, initial_version, &extend_done, &extend_can_start]() { extend_can_start.WaitForNotification(); int64_t version_1; TF_ASSERT_OK(ExtendSession(handle, def_1, initial_version, &version_1)); extend_done.Notify(); }; { thread::ThreadPool thread_pool(Env::Default(), "extend_pool", 3); thread_pool.Schedule(get_a_fn); thread_pool.Schedule(get_a_and_b_fn); thread_pool.Schedule(extend_fn); } TF_ASSERT_OK(CloseSession(handle)); } TEST_F(MasterTest, EigenProblem) { Graph graph(OpRegistry::Global()); Tensor a_tensor(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&a_tensor, {3, 2, -1, 0}); Node* a_node = test::graph::Constant(&graph, a_tensor); Tensor x_tensor(DT_FLOAT, TensorShape({2, 1})); test::FillValues<float>(&x_tensor, {0, 0}); Node* x_node = test::graph::Constant(&graph, x_tensor); Node* y_node = test::graph::Matmul(&graph, a_node, x_node, false, false); GraphDef def; test::graph::ToGraphDef(&graph, &def); string handle; int64_t initial_version; TF_CHECK_OK(CreateSession(def, &handle, &initial_version)); const Eigen::array<Eigen::DenseIndex, 1> sum_along_dim{0}; const Eigen::array<Eigen::DenseIndex, 2> matrix_transpose{1, 0}; Tensor x(DT_FLOAT, TensorShape({2, 1})); Tensor y(DT_FLOAT, TensorShape({2, 1})); Eigen::Tensor<float, 1, Eigen::RowMajor> y_square_sum; Eigen::Tensor<float, 2, Eigen::RowMajor> y_normalized(2, 1); y_normalized.setRandom(); Eigen::Tensor<float, 1, Eigen::RowMajor> error_square_sum; float lambda; bool converged = false; while (!converged) { auto x_matrix = x.matrix<float>(); x_matrix = y_normalized; TF_EXPECT_OK( RunStep(handle, {{x_node->name(), &x}}, {{y_node->name() + ":0", &y}})); auto y_matrix = y.matrix<float>(); { lambda = y_matrix(0, 0) / x_matrix(0, 0); y_square_sum = y.matrix<float>().square().sum(sum_along_dim); const float norm = static_cast<float>(sqrt(y_square_sum(0))); y_normalized = y_matrix * (1 / norm); error_square_sum = (x_matrix - y_normalized).square().sum(sum_along_dim); VLOG(1) << "x = [" << x_matrix.shuffle(matrix_transpose) << "] y = [" << y_matrix.shuffle(matrix_transpose) << "] lambda = " << lambda; converged = sqrt(error_square_sum(0)) < 1e-10; } } EXPECT_NEAR(lambda, 2.0, 0.01); TF_EXPECT_OK(CloseSession(handle)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/master.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/master_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f4bef952-252d-42c3-bf1d-7f04f232b2ad
cpp
tensorflow/tensorflow
lower_function_call_op
tensorflow/core/common_runtime/lower_function_call_op.cc
tensorflow/core/common_runtime/lower_function_call_op_test.cc
#include "tensorflow/core/common_runtime/lower_function_call_op.h" #include <utility> #include "absl/algorithm/container.h" #include "absl/types/span.h" #include "tensorflow/core/common_runtime/function_def_utils.h" #include "tensorflow/core/common_runtime/inline_function_utils.h" #include "tensorflow/core/common_runtime/lower_function_call_inline_policy.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/refcount.h" namespace tensorflow { using KeepCallerNode = InlineFunctionBodyOptions::KeepCallerNode; using OutputControlSrc = InlineFunctionBodyOptions::OutputControlSource; Status RewriteFunctionCallNode(Node* n, Graph* g, const FunctionLibraryDefinition& flib_def, bool keep_caller_fetchable) { VLOG(2) << "Lower function call node: " << SummarizeNode(*n); InlineFunctionBodyOptions inline_options; inline_options.keep_caller_node = keep_caller_fetchable ? KeepCallerNode::kFetchable : KeepCallerNode::kTargetable; FunctionCallInlinePolicy policy = GetFunctionCallInlinePolicy(n); if (policy == FunctionCallInlinePolicy::kMultiDevicePlacer) { inline_options.output_control_src = OutputControlSrc::kControlOutputs; inline_options.inlined_function_body_placer = InlinedFunctionBodyPlacer::MultiDevice(); } else if (policy == FunctionCallInlinePolicy::kSingleDevicePlacer) { inline_options.output_control_src = OutputControlSrc::kDataOutputs; inline_options.inlined_function_body_placer = InlinedFunctionBodyPlacer::SingleDevice(); } else { return errors::InvalidArgument("Unsupported function inlining policy"); } core::RefCountPtr<FunctionRecord> fdef; if (n->IsPartitionedCall()) { NameAttrList func; TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "f", &func)); fdef = flib_def.FindRecord(func.name()); } else if (n->type_string() == FunctionLibraryDefinition::kGradientOp) { VLOG(2) << "Skip SymbolicGradient lowering"; return absl::OkStatus(); } else { fdef = flib_def.FindRecord(n->type_string()); } if (fdef == nullptr) { return errors::Internal("Can't find a function: node=", SummarizeNode(*n)); } std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR( FunctionDefToBodyHelper(std::move(fdef), n->attrs(), &flib_def, &fbody)); if (flags::Global().enable_function_pruning_before_inlining.value()) { VLOG(2) << "Pruning enabled before inlining"; PruneFunctionBody( fbody->record->fdef(), fbody->graph, absl::Span<Node*>(fbody->arg_nodes.data(), fbody->arg_nodes.size())); } else { VLOG(2) << "Pruning disabled before inlining"; } Status can_inline_function_call = ValidateInlining(n, fbody.get(), inline_options); if (can_inline_function_call.ok()) { TF_RETURN_IF_ERROR( InlineFunctionBody(flib_def, g, n, fbody.get(), inline_options)); } else { VLOG(2) << "Failed to inline function call node: " << can_inline_function_call.message(); } return absl::OkStatus(); } }
#include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/lower_functional_ops.h" #include "tensorflow/core/config/flag_defs.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { AttrValue FuncAttr(const string& name) { AttrValue attr; attr.mutable_func()->set_name(name); return attr; } AttrValue FuncAttr(const string& name, const DataType type) { AttrValue attr; attr.mutable_func()->set_name(name); (*attr.mutable_func()->mutable_attr())["T"].set_type(type); return attr; } SessionOptions SessionOptionsWithInlining() { SessionOptions session_options; session_options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_do_function_inlining(true); return session_options; } Status Rewrite(std::unique_ptr<Graph>* graph) { FunctionLibraryDefinition flib_def((*graph)->flib_def()); GraphOptimizationPassOptions opt_options; SessionOptions session_options = SessionOptionsWithInlining(); opt_options.session_options = &session_options; opt_options.graph = graph; opt_options.flib_def = &flib_def; LowerFunctionalOpsPass pass; return pass.Run(opt_options); } TEST(LowerFunctionCallTest, InlineFunctionCall) { using FDH = FunctionDefHelper; std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = FDH::Create("AddAndMul", {"i: int32"}, {"o: int32"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_INT32}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_INT32}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto a = ops::Placeholder(root.WithOpName("A"), DT_INT32); Node* function_call; std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(a.node())}); TF_ASSERT_OK(NodeBuilder("F", "PartitionedCall", &root.graph()->flib_def()) .Input(inputs) .Attr("Tin", {DT_INT32}) .Attr("Tout", {DT_INT32}) .Attr("f", FuncAttr("AddAndMul")) .Finalize(root.graph(), &function_call)); TF_ASSERT_OK(root.DoShapeInference(function_call)); auto b = ops::Identity(root.WithOpName("B"), Output(function_call, 0)); root.graph()->AddControlEdge(function_call, b.node()); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); int partitioned_call_count = 0; int add_count = 0; int mul_count = 0; for (const auto* op : graph->op_nodes()) { if (op->IsPartitionedCall()) partitioned_call_count++; if (op->type_string() == "Add") add_count++; if (op->type_string() == "Mul") mul_count++; } ASSERT_EQ(partitioned_call_count, 0); ASSERT_EQ(add_count, 1); ASSERT_EQ(mul_count, 1); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(a.node()), Input::Initializer(10)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(b)}, &out_tensors)); EXPECT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 100); } } TEST(LowerFunctionCallTest, InlineFunctionCallAfterPruning) { flags::Global().enable_function_pruning_before_inlining.reset(true); using FDH = FunctionDefHelper; std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = FDH::Create( "AddAndMul", {"i: int32", "j: int32", "k: int32", "r: resource"}, {"o: int32"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_INT32}}}, {{"div"}, "FloorDiv", {"i", "i"}, {{"T", DT_INT32}}}, {{"gather"}, "ResourceGather", {"r", "i"}, {{"Tindices", DT_INT32}, {"dtype", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_INT32}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto x = ops::Placeholder(root.WithOpName("X"), DT_INT32); auto y = ops::Placeholder(root.WithOpName("Y"), DT_INT32); auto z = ops::Placeholder(root.WithOpName("Z"), DT_INT32); auto r = ops::Placeholder(root.WithOpName("R"), DT_RESOURCE); Node* function_call; std::vector<NodeBuilder::NodeOut> inputs( {NodeBuilder::NodeOut(x.node()), NodeBuilder::NodeOut(y.node()), NodeBuilder::NodeOut(z.node()), NodeBuilder::NodeOut(r.node())}); TF_ASSERT_OK(NodeBuilder("F", "PartitionedCall", &root.graph()->flib_def()) .Input(inputs) .Attr("Tin", {DT_INT32, DT_INT32, DT_INT32, DT_RESOURCE}) .Attr("Tout", {DT_INT32}) .Attr("f", FuncAttr("AddAndMul")) .Finalize(root.graph(), &function_call)); TF_ASSERT_OK(root.DoShapeInference(function_call)); auto b = ops::Identity(root.WithOpName("B"), Output(function_call, 0)); root.graph()->AddControlEdge(function_call, b.node()); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); int partitioned_call_count = 0; int add_count = 0; int mul_count = 0; int floor_div_count = 0; int resource_gather_count = 0; for (const auto* op : graph->op_nodes()) { if (op->IsPartitionedCall()) partitioned_call_count++; if (op->type_string() == "Add") add_count++; if (op->type_string() == "Mul") mul_count++; if (op->type_string() == "FloorDiv") floor_div_count++; if (op->type_string() == "ResourceGather") resource_gather_count++; } ASSERT_EQ(partitioned_call_count, 0); ASSERT_EQ(add_count, 1); ASSERT_EQ(mul_count, 1); ASSERT_EQ(floor_div_count, 0); ASSERT_EQ(resource_gather_count, 0); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(x.node()), Input::Initializer(10)); std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, {Output(b)}, &out_tensors)); EXPECT_EQ(out_tensors.size(), 1); EXPECT_EQ(out_tensors[0].scalar<int>()(), 100); } flags::Global().enable_function_pruning_before_inlining.reset(false); } TEST(LowerFunctionCallTest, DoNotInlineTpuOrXlaFunctions) { std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); FunctionDef tpu_func = test::function::XTimesTwo(); tpu_func.mutable_signature()->set_name("TpuXTimesTwo"); (*tpu_func.mutable_attr())["_tpu_replicate"].set_b(true); FunctionDef xla_func = test::function::XTimesTwo(); xla_func.mutable_signature()->set_name("XlaXTimesTwo"); (*xla_func.mutable_attr())["_xla_compile_id"].set_s("cluster_0"); FunctionDefLibrary f_lib_proto; *(f_lib_proto.add_function()) = test::function::XTimesTwo(); Scope root = Scope::NewRootScope().ExitOnError(); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(f_lib_proto)); auto a = ops::Placeholder(root.WithOpName("A"), DT_INT32); std::vector<NodeBuilder::NodeOut> inputs({NodeBuilder::NodeOut(a.node())}); Node* tpu_call; TF_ASSERT_OK(NodeBuilder("B", "PartitionedCall", &root.graph()->flib_def()) .Input(inputs) .Attr("Tin", {DT_INT32}) .Attr("Tout", {DT_INT32}) .Attr("f", FuncAttr("XTimesTwo", DT_INT32)) .Attr("_tpu_replicate", "cluster") .Finalize(root.graph(), &tpu_call)); Node* xla_call; TF_ASSERT_OK(NodeBuilder("C", "PartitionedCall", &root.graph()->flib_def()) .Input(inputs) .Attr("Tin", {DT_INT32}) .Attr("Tout", {DT_INT32}) .Attr("f", FuncAttr("XTimesTwo", DT_INT32)) .Attr("_xla_compile_id", "cluster") .Finalize(root.graph(), &xla_call)); TF_ASSERT_OK(root.DoShapeInference(tpu_call)); TF_ASSERT_OK(root.DoShapeInference(xla_call)); TF_ASSERT_OK(root.ToGraph(graph.get())); TF_ASSERT_OK(Rewrite(&graph)); int partitioned_call_count = 0; for (const auto* op : graph->op_nodes()) { if (op->IsPartitionedCall()) partitioned_call_count++; } ASSERT_EQ(partitioned_call_count, 2); ClientSession session(root, SessionOptionsWithInlining()); { ClientSession::FeedType feeds; feeds.emplace(Output(a.node()), Input::Initializer(10)); std::vector<Tensor> out_tensors; TF_ASSERT_OK( session.Run(feeds, {Output(tpu_call), Output(xla_call)}, &out_tensors)); EXPECT_EQ(out_tensors.size(), 2); EXPECT_EQ(out_tensors[0].scalar<int>()(), 20); EXPECT_EQ(out_tensors[1].scalar<int>()(), 20); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/lower_function_call_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/lower_function_call_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
83794754-4a41-4ddb-9315-284eacde22be
cpp
google/tensorstore
json_change_map
tensorstore/driver/json/json_change_map.cc
tensorstore/driver/json/json_change_map_test.cc
#include "tensorstore/driver/json/json_change_map.h" #include <string> #include <string_view> #include <utility> #include "absl/container/btree_map.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_pointer.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_json_driver { Result<::nlohmann::json> JsonChangeMap::Apply( const ::nlohmann::json& existing, std::string_view sub_value_pointer) const { Map::const_iterator changes_it = map_.lower_bound(sub_value_pointer), changes_end = map_.end(); if (changes_it != changes_end && changes_it->first == sub_value_pointer) { TENSORSTORE_RETURN_IF_ERROR( json_pointer::Dereference(existing, sub_value_pointer, json_pointer::kSimulateCreate), internal::ConvertInvalidArgumentToFailedPrecondition(_)); return {std::in_place, changes_it->second}; } if (changes_it != map_.begin()) { auto prev_it = std::prev(changes_it); if (json_pointer::Compare(prev_it->first, sub_value_pointer) == json_pointer::kContains) { TENSORSTORE_ASSIGN_OR_RETURN( auto* modified_value, json_pointer::Dereference( prev_it->second, sub_value_pointer.substr(prev_it->first.size()), json_pointer::kMustExist)); TENSORSTORE_RETURN_IF_ERROR( json_pointer::Dereference(existing, prev_it->first, json_pointer::kSimulateCreate), internal::ConvertInvalidArgumentToFailedPrecondition(_)); return {std::in_place, *modified_value}; } } ::nlohmann::json new_value; { TENSORSTORE_ASSIGN_OR_RETURN( const ::nlohmann::json* restricted_existing, json_pointer::Dereference(existing, sub_value_pointer, json_pointer::kSimulateCreate)); if (restricted_existing) { new_value = *restricted_existing; } else { new_value = ::nlohmann::json(::nlohmann::json::value_t::discarded); } } for (; changes_it != changes_end && json_pointer::Compare(changes_it->first, sub_value_pointer) == json_pointer::kContainedIn; ++changes_it) { TENSORSTORE_RETURN_IF_ERROR( json_pointer::Replace(new_value, std::string_view(changes_it->first) .substr(sub_value_pointer.size()), changes_it->second), internal::ConvertInvalidArgumentToFailedPrecondition(_)); } return new_value; } bool JsonChangeMap::CanApplyUnconditionally( std::string_view sub_value_pointer) const { Map::const_iterator changes_it; if (sub_value_pointer.empty()) { changes_it = map_.begin(); } else { changes_it = map_.lower_bound(sub_value_pointer); } if (changes_it != map_.end()) { if (changes_it->first == sub_value_pointer) { return true; } } if (changes_it != map_.begin()) { auto prev_it = std::prev(changes_it); return json_pointer::Compare(prev_it->first, sub_value_pointer) == json_pointer::kContains; } return false; } absl::Status JsonChangeMap::AddChange(std::string_view sub_value_pointer, ::nlohmann::json sub_value) { auto it = map_.lower_bound(sub_value_pointer); if (it != map_.end()) { auto compare_result = json_pointer::Compare(sub_value_pointer, it->first); assert(compare_result <= json_pointer::kEqual); if (compare_result == json_pointer::kEqual) { it->second = std::move(sub_value); return absl::OkStatus(); } while (compare_result == json_pointer::kContains) { it = map_.erase(it); if (it == map_.end()) break; compare_result = json_pointer::Compare(sub_value_pointer, it->first); } } if (it != map_.begin()) { auto prev_it = std::prev(it); if (json_pointer::Compare(prev_it->first, sub_value_pointer) == json_pointer::kContains) { return json_pointer::Replace( prev_it->second, sub_value_pointer.substr(prev_it->first.size()), std::move(sub_value)); } } map_.try_emplace(it, std::string(sub_value_pointer), std::move(sub_value)); return absl::OkStatus(); } } }
#include "tensorstore/driver/json/json_change_map.h" #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_json_driver::JsonChangeMap; using ::testing::ElementsAre; using ::testing::Optional; using ::testing::Pair; TEST(JsonChangeMapTest, AddChangeValid) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/c", 42)); EXPECT_THAT(changes.underlying_map(), ElementsAre(Pair("/a/b/c", MatchesJson(42)))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/a", false)); EXPECT_THAT(changes.underlying_map(), ElementsAre(Pair("/a/b/a", MatchesJson(false)), Pair("/a/b/c", MatchesJson(42)))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/a", true)); EXPECT_THAT(changes.underlying_map(), ElementsAre(Pair("/a/b/a", MatchesJson(true)), Pair("/a/b/c", MatchesJson(42)))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", {{"d", "xyz"}})); EXPECT_THAT( changes.underlying_map(), ElementsAre(Pair("/a/b", MatchesJson(::nlohmann::json{{"d", "xyz"}})))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/c", 42)); EXPECT_THAT(changes.underlying_map(), ElementsAre(Pair("/a/b", MatchesJson(::nlohmann::json{ {"d", "xyz"}, {"c", 42}})))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/a", false)); EXPECT_THAT( changes.underlying_map(), ElementsAre(Pair("/a/b", MatchesJson(::nlohmann::json{ {"d", "xyz"}, {"c", 42}, {"a", false}})))); } TEST(JsonChangeMapTest, AddChangeValidIndependent) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/c", 42)); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/e", "xx")); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/a", "yy")); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/a", false)); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", {{"d", "xyz"}})); EXPECT_THAT( changes.underlying_map(), ElementsAre(Pair("/a/a", MatchesJson("yy")), Pair("/a/b", MatchesJson(::nlohmann::json{{"d", "xyz"}})), Pair("/a/e", MatchesJson("xx")))); } TEST(JsonChangeMapTest, AddChangeInvalid) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", 42)); EXPECT_THAT(changes.AddChange("/a/b", 43), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyEmptyChangeMap) { JsonChangeMap changes; EXPECT_THAT(changes.Apply({{"x", "y"}, {"z", "w"}}), Optional(MatchesJson(::nlohmann::json{{"x", "y"}, {"z", "w"}}))); EXPECT_THAT(changes.Apply({{"x", "y"}, {"z", "w"}}, "/x"), Optional(MatchesJson(::nlohmann::json("y")))); } TEST(JsonChangeMapTest, ApplyContainingChangeMap1) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("", {{"a", {{"b", {{"c", 42}}}}}})); EXPECT_THAT(changes.Apply("old", "/a/b/c"), Optional(MatchesJson(42))); } TEST(JsonChangeMapTest, ApplyInvalidContainingChangeMap) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", {{"b", {{"c", 42}}}})); EXPECT_THAT(changes.Apply(false, "/a/b/c"), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyChangeMapPriorNonContaining) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", 10)); EXPECT_THAT(changes.Apply({{"b", 42}}, "/b"), Optional(MatchesJson(42))); } TEST(JsonChangeMapTest, ApplyContainingChangeMap2) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", {{"b", {{"c", 42}}}})); EXPECT_THAT(changes.Apply({{"e", "f"}}, "/a/b/c"), Optional(MatchesJson(42))); } TEST(JsonChangeMapTest, ApplyChangeMap) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", {{"b", {{"c", 42}}}})); TENSORSTORE_EXPECT_OK(changes.AddChange("/e", 42)); EXPECT_THAT(changes.Apply({{"x", "y"}, {"e", "f"}}), Optional(MatchesJson(::nlohmann::json{ {"a", {{"b", {{"c", 42}}}}}, {"e", 42}, {"x", "y"}}))); } TEST(JsonChangeMapTest, ApplyInvalidChangeMap1) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/e", 42)); EXPECT_THAT(changes.Apply(42), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyInvalidChangeMap2) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/4", 42)); EXPECT_THAT(changes.Apply({1, 2, 3}), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyRequestInvalidJsonPointer) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", 42)); EXPECT_THAT(changes.Apply(false, "/a"), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyRequestInvalidJsonPointerNoChanges) { JsonChangeMap changes; EXPECT_THAT(changes.Apply(false, "/a"), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyRequestNewMember) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", 42)); EXPECT_THAT(changes.Apply(::nlohmann::json::object_t{}, "/a"), Optional(MatchesJson(::nlohmann::json{{"b", 42}}))); } TEST(JsonChangeMapTest, ApplyIncompatibleChangeExactRequest) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", 42)); EXPECT_THAT(changes.Apply(false, "/a"), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, AddIncompatibleChanges) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("", 42)); EXPECT_THAT(changes.AddChange("/a", 50), MatchesStatus(absl::StatusCode::kFailedPrecondition, "JSON Pointer reference \"/a\" cannot be applied " "to number value: 42")); } TEST(JsonChangeMapTest, CanApplyUnconditionally) { JsonChangeMap changes; EXPECT_FALSE(changes.CanApplyUnconditionally("")); EXPECT_FALSE(changes.CanApplyUnconditionally("/a/b/c")); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", {{"c", 42}})); EXPECT_TRUE(changes.CanApplyUnconditionally("/a/b/c")); EXPECT_TRUE(changes.CanApplyUnconditionally("/a/b")); EXPECT_TRUE(changes.CanApplyUnconditionally("/a/b/d")); EXPECT_FALSE(changes.CanApplyUnconditionally("/a")); EXPECT_FALSE(changes.CanApplyUnconditionally("/a/x")); EXPECT_FALSE(changes.CanApplyUnconditionally("")); TENSORSTORE_EXPECT_OK(changes.AddChange("", {{"a", false}})); EXPECT_TRUE(changes.CanApplyUnconditionally("")); EXPECT_TRUE(changes.CanApplyUnconditionally("/a")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/json/json_change_map.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/json/json_change_map_test.cc
4f887a6430414cd6088e1743555015b10f116d50
46a3c061-5a2a-484e-80e6-f9a69d4d72b6
cpp
tensorflow/tensorflow
split_utils
tensorflow/core/data/split_utils.cc
tensorflow/core/data/split_utils_test.cc
#include "tensorflow/core/data/split_utils.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/mutex.h" #include "tsl/platform/types.h" namespace tensorflow { namespace data { namespace { constexpr char kNumToSkip[] = "num_to_skip"; constexpr char kSplitProvider[] = "split_provider"; constexpr char kSlash[] = "/"; constexpr char kIndex[] = "index"; } IndexSplitProvider::IndexSplitProvider(int64_t n) : i_(0), n_(n) { VLOG(3) << "Created index split provider with " << n << " splits."; } absl::Status IndexSplitProvider::GetNext(Tensor* split, bool* end_of_splits) { tsl::mutex_lock l(mu_); if (i_ >= n_) { *end_of_splits = true; return absl::OkStatus(); } *end_of_splits = false; *split = Tensor(DT_INT64, TensorShape{}); split->scalar<int64_t>()() = i_++; return absl::OkStatus(); } absl::Status IndexSplitProvider::Reset() { tsl::mutex_lock l(mu_); i_ = 0; return absl::OkStatus(); } absl::Status IndexSplitProvider::Save( std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) { tsl::mutex_lock l(mu_); return writer->WriteScalar(full_name(kIndex), i_); } absl::Status IndexSplitProvider::Restore( std::function<std::string(std::string)> full_name, IteratorStateReader* reader) { tsl::mutex_lock l(mu_); return reader->ReadScalar(full_name(kIndex), &i_); } int64_t IndexSplitProvider::Cardinality() const { if (n_ == tsl::kint64max) { return kInfiniteCardinality; } return n_; } ShardingSplitProvider::ShardingSplitProvider( int64_t num_shards, int64_t shard_index, std::shared_ptr<SplitProvider> split_provider) : num_shards_(num_shards), shard_index_(shard_index), split_provider_(split_provider), num_to_skip_(shard_index_) {} absl::Status ShardingSplitProvider::GetNext(Tensor* split, bool* end_of_splits) { tsl::mutex_lock l(mu_); while (num_to_skip_ > 0) { TF_RETURN_IF_ERROR(split_provider_->GetNext(split, end_of_splits)); if (*end_of_splits) { return absl::OkStatus(); } num_to_skip_--; } num_to_skip_ = num_shards_ - 1; TF_RETURN_IF_ERROR(split_provider_->GetNext(split, end_of_splits)); return absl::OkStatus(); } absl::Status ShardingSplitProvider::Reset() { tsl::mutex_lock l(mu_); TF_RETURN_IF_ERROR(split_provider_->Reset()); num_to_skip_ = shard_index_; return absl::OkStatus(); } absl::Status ShardingSplitProvider::Save( std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) { tsl::mutex_lock l(mu_); TF_RETURN_IF_ERROR(split_provider_->Save( [&](const std::string& key) { return full_name(absl::StrCat(kSplitProvider, kSlash, key)); }, writer)); return writer->WriteScalar(full_name(kNumToSkip), num_to_skip_); } absl::Status ShardingSplitProvider::Restore( std::function<std::string(std::string)> full_name, IteratorStateReader* reader) { tsl::mutex_lock l(mu_); TF_RETURN_IF_ERROR(split_provider_->Restore( [&](const std::string& key) { return full_name(absl::StrCat(kSplitProvider, kSlash, key)); }, reader)); TF_RETURN_IF_ERROR(reader->ReadScalar(full_name(kNumToSkip), &num_to_skip_)); return absl::OkStatus(); } absl::StatusOr<std::shared_ptr<SplitProvider>> GetSingleSplitProvider( IteratorContext* ctx, const DatasetBase* dataset) { if (ctx->split_providers().size() != 1) { return absl::FailedPreconditionError( absl::StrCat("Failed to get single split provider for dataset ", dataset->DebugString(), ". Found ", ctx->split_providers().size(), " split providers")); } return ctx->split_providers()[0]; } absl::StatusOr<std::vector<std::unique_ptr<SplitProvider>>> GetSplitProviders( const DatasetBase* dataset) { std::vector<std::unique_ptr<SplitProvider>> result; std::vector<const DatasetBase*> inputs; TF_RETURN_IF_ERROR(dataset->InputDatasets(&inputs)); for (const auto& input : inputs) { std::vector<std::unique_ptr<SplitProvider>> providers; TF_RETURN_IF_ERROR(input->MakeSplitProviders(&providers)); for (auto& provider : providers) { result.push_back(std::move(provider)); } } return result; } absl::StatusOr<std::vector<IteratorContext>> CreateInputIteratorContexts( IteratorContext* ctx, const DatasetBase* dataset) { std::vector<const DatasetBase*> inputs; TF_RETURN_IF_ERROR(dataset->InputDatasets(&inputs)); std::vector<IteratorContext> result; if (ctx->split_providers().empty()) { for (int i = 0; i < inputs.size(); ++i) { result.emplace_back(ctx); } return result; } int64_t num_sources = 0; for (size_t i = 0; i < inputs.size(); ++i) { if (inputs[i]->num_sources() < 0) { return absl::FailedPreconditionError(absl::StrCat( "Failed to determine the number of sources for dataset of type ", inputs[i]->type_string())); } num_sources += inputs[i]->num_sources(); } if (num_sources != ctx->split_providers().size()) { return absl::FailedPreconditionError(absl::StrCat( "Attempted to feed ", ctx->split_providers().size(), " split providers into a dataset with ", num_sources, " sources")); } int64_t split_provider_index = 0; for (size_t i = 0; i < inputs.size(); ++i) { IteratorContext::Params params(ctx); params.split_providers.clear(); for (int j = 0; j < inputs[i]->num_sources(); ++j) { params.split_providers.push_back( ctx->split_providers()[split_provider_index + j]); } split_provider_index += inputs[i]->num_sources(); result.emplace_back(std::move(params)); } return result; } } }
#include "tensorflow/core/data/split_utils.h" #include <memory> #include <string> #include <vector> #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { std::string full_name(const std::string& name) { return FullName("test", name); } Status SaveAndRestore(SplitProvider* split_provider) { VariantTensorDataWriter writer; TF_RETURN_IF_ERROR(split_provider->Save(full_name, &writer)); std::vector<const VariantTensorData*> variants; writer.GetData(&variants); VariantTensorDataReader reader(variants); TF_RETURN_IF_ERROR(split_provider->Restore(full_name, &reader)); return absl::OkStatus(); } Status CheckOutput(SplitProvider* split_provider, std::vector<Tensor> expected) { int64_t next = 0; bool end_of_splits = false; while (!end_of_splits) { Tensor split; TF_RETURN_IF_ERROR(split_provider->GetNext(&split, &end_of_splits)); if (!end_of_splits) { test::ExpectEqual(split, expected[next++]); } } EXPECT_EQ(next, expected.size()); return absl::OkStatus(); } TEST(IndexSplitProviderTest, Empty) { IndexSplitProvider split_provider(0); TF_EXPECT_OK(CheckOutput(&split_provider, CreateTensors<int64_t>(TensorShape({}), {}))); } TEST(IndexSplitProviderTest, One) { IndexSplitProvider split_provider(1); TF_EXPECT_OK(CheckOutput(&split_provider, CreateTensors<int64_t>(TensorShape({}), {{0}}))); } TEST(IndexSplitProviderTest, Three) { IndexSplitProvider split_provider(3); TF_EXPECT_OK( CheckOutput(&split_provider, CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}}))); } TEST(IndexSplitProviderTest, SaveAndRestore) { IndexSplitProvider split_provider(4); std::vector<Tensor> expected = CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}, {3}}); for (int i = 0; i < expected.size(); ++i) { TF_ASSERT_OK(SaveAndRestore(&split_provider)); Tensor split; bool end_of_splits = true; TF_ASSERT_OK(split_provider.GetNext(&split, &end_of_splits)); EXPECT_FALSE(end_of_splits); test::ExpectEqual(split, expected[i]); } TF_ASSERT_OK(SaveAndRestore(&split_provider)); Tensor split; bool end_of_splits = false; TF_ASSERT_OK(split_provider.GetNext(&split, &end_of_splits)); EXPECT_TRUE(end_of_splits); } TEST(ShardingSplitProviderTest, TwoWayShardZero) { auto base = std::make_shared<IndexSplitProvider>(4); ShardingSplitProvider split_provider(2, 0, base); TF_EXPECT_OK(CheckOutput( &split_provider, CreateTensors<int64_t>(TensorShape({}), {{0}, {2}}))); } TEST(ShardingSplitProviderTest, TwoWayShardOne) { auto base = std::make_shared<IndexSplitProvider>(4); ShardingSplitProvider split_provider(2, 1, base); TF_EXPECT_OK(CheckOutput( &split_provider, CreateTensors<int64_t>(TensorShape({}), {{1}, {3}}))); } TEST(ShardingSplitProviderTest, ThreeWayShardOne) { auto base = std::make_shared<IndexSplitProvider>(6); ShardingSplitProvider split_provider(3, 1, base); TF_EXPECT_OK(CheckOutput( &split_provider, CreateTensors<int64_t>(TensorShape({}), {{1}, {4}}))); } TEST(ShardingSplitProviderTest, Empty) { auto base = std::make_shared<IndexSplitProvider>(1); ShardingSplitProvider split_provider(2, 1, base); TF_EXPECT_OK(CheckOutput(&split_provider, CreateTensors<int64_t>(TensorShape({}), {}))); } TEST(ShardingSplitProviderTest, SaveAndRestore) { auto base = std::make_shared<IndexSplitProvider>(6); std::vector<Tensor> expected = CreateTensors<int64_t>(TensorShape({}), {{1}, {4}}); ShardingSplitProvider split_provider(3, 1, base); for (int i = 0; i < expected.size(); ++i) { TF_ASSERT_OK(SaveAndRestore(&split_provider)); Tensor split; bool end_of_splits = true; TF_ASSERT_OK(split_provider.GetNext(&split, &end_of_splits)); EXPECT_FALSE(end_of_splits); test::ExpectEqual(split, expected[i]); } TF_ASSERT_OK(SaveAndRestore(&split_provider)); Tensor split; bool end_of_splits = false; TF_ASSERT_OK(split_provider.GetNext(&split, &end_of_splits)); EXPECT_TRUE(end_of_splits); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/split_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/split_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
28d9d3a2-ed77-490f-a92c-b11cef165408
cpp
google/libaddressinput
address_field
cpp/src/address_field.cc
cpp/test/address_field_test.cc
#include <libaddressinput/address_field.h> #include <cstddef> #include <ostream> #include "util/size.h" using i18n::addressinput::AddressField; using i18n::addressinput::COUNTRY; using i18n::addressinput::RECIPIENT; using i18n::addressinput::size; std::ostream& operator<<(std::ostream& o, AddressField field) { static const char* const kFieldNames[] = { "COUNTRY", "ADMIN_AREA", "LOCALITY", "DEPENDENT_LOCALITY", "SORTING_CODE", "POSTAL_CODE", "STREET_ADDRESS", "ORGANIZATION", "RECIPIENT", }; static_assert(COUNTRY == 0, "bad_base"); static_assert(RECIPIENT == size(kFieldNames) - 1, "bad_length"); if (field < 0 || static_cast<size_t>(field) >= size(kFieldNames)) { o << "[INVALID ENUM VALUE " << static_cast<int>(field) << "]"; } else { o << kFieldNames[field]; } return o; }
#include <libaddressinput/address_field.h> #include <sstream> #include <gtest/gtest.h> namespace { using i18n::addressinput::SORTING_CODE; TEST(AddressFieldTest, ValidEnumValue) { std::ostringstream oss; oss << SORTING_CODE; EXPECT_EQ("SORTING_CODE", oss.str()); } }
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/src/address_field.cc
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/test/address_field_test.cc
2610f7b1043d6784ada41392fc9392d1ea09ea07
a8876eb4-6b08-4e2c-954c-ccf51ebc946e
cpp
tensorflow/tensorflow
topk_splitter
third_party/xla/xla/service/gpu/transforms/topk_splitter.cc
third_party/xla/xla/service/gpu/transforms/topk_splitter_test.cc
#include "xla/service/gpu/transforms/topk_splitter.h" #include <algorithm> #include <cmath> #include <cstddef> #include <cstdint> #include <string> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { constexpr size_t kRequiredAlignment = 1024; constexpr size_t kMaximumBatchSize = 1024; class TopkSplitterVisitor : public DfsHloRewriteVisitor { public: explicit TopkSplitterVisitor(size_t split_threshold) : split_threshold_(split_threshold) {} absl::Status HandleCustomCall(HloInstruction* inst) override { HloCustomCallInstruction* topk = DynCast<HloCustomCallInstruction>(inst); if (topk == nullptr || topk->custom_call_target() != "TopK") { return absl::OkStatus(); } HloComputation* comp = inst->parent(); Shape data_shape = topk->operand(0)->shape(); bool has_batch = data_shape.dimensions_size() == 2; if (has_batch && data_shape.dimensions(0) != 1) { return absl::OkStatus(); } size_t n = data_shape.dimensions(has_batch ? 1 : 0); int64_t k = topk->shape().tuple_shapes(0).dimensions(has_batch ? 1 : 0); if (k > sqrt(n)) { return absl::OkStatus(); } if (n % kRequiredAlignment != 0) { return absl::OkStatus(); } if (n < split_threshold_) return absl::OkStatus(); int new_batch = std::min(absl::bit_floor(n / split_threshold_), kMaximumBatchSize); int new_n = n / new_batch; Shape split_input_shape = ShapeUtil::MakeShape(data_shape.element_type(), {new_batch, new_n}); TF_ASSIGN_OR_RETURN( HloInstruction * reshaped, MakeReshapeHlo(split_input_shape, topk->mutable_operand(0))); Shape batch_topk_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(data_shape.element_type(), {new_batch, k}), ShapeUtil::MakeShape(S32, {new_batch, k})}); HloInstruction* batch_topk = comp->AddInstruction(HloInstruction::CreateCustomCall( batch_topk_shape, {reshaped}, topk->to_apply(), "TopK", "")); TF_ASSIGN_OR_RETURN(HloInstruction * indices, MakeGetTupleElementHlo(batch_topk, 1)); TF_ASSIGN_OR_RETURN(HloInstruction * values, MakeGetTupleElementHlo(batch_topk, 0)); Shape iota_shape = ShapeUtil::MakeShape(S32, {new_batch}); TF_ASSIGN_OR_RETURN( HloInstruction * fix, MakeBinaryHlo( HloOpcode::kMultiply, MakeIotaHlo(comp, iota_shape, 0), MakeBroadcastHlo(MakeR0ConstantHlo<int32_t>(comp, new_n), {}, iota_shape))); TF_ASSIGN_OR_RETURN( indices, MakeBinaryHlo(HloOpcode::kAdd, indices, MakeBroadcastHlo(fix, {0}, indices->shape()))); Shape linear_index_shape = ShapeUtil::MakeShape(S32, {k * new_batch}); Shape linear_shape = ShapeUtil::ChangeElementType( linear_index_shape, data_shape.element_type()); Shape linear_sort_shape = ShapeUtil::MakeTupleShape({linear_shape, linear_index_shape}); HloInstruction* aggregated_sort = comp->AddInstruction(HloInstruction::CreateSort( linear_sort_shape, 0, {*MakeReshapeHlo(linear_shape, values), *MakeReshapeHlo(linear_index_shape, indices)}, topk->to_apply(), true)); auto slice_tuple = [&](HloInstruction* sort, const size_t index) { return *MakeReshapeHlo( topk->shape().tuple_shapes(index), *MakeSliceHlo(*MakeGetTupleElementHlo(sort, index), {0}, {k}, {1})); }; return ReplaceInstruction(topk, comp->AddInstruction(HloInstruction::CreateTuple({ slice_tuple(aggregated_sort, 0), slice_tuple(aggregated_sort, 1), }))); } private: size_t split_threshold_; }; } absl::StatusOr<bool> TopKSplitter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { return TopkSplitterVisitor(split_threshold_) .RunOnModule(module, execution_threads); } } }
#include "xla/service/gpu/transforms/topk_splitter.h" #include <stdint.h> #include <cstddef> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_dce.h" #include "xla/service/pattern_matcher.h" #include "xla/service/topk_rewriter.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace m = ::xla::match; namespace xla { namespace gpu { namespace { using ::tsl::testing::IsOkAndHolds; using TopkSplitterTest = HloTestBase; constexpr absl::string_view kComparator = R"( %compare { %p.1.lhs.40628 = s32[] parameter(2) %p.1.rhs.40629 = s32[] parameter(3) %constant.40630 = pred[] constant(true) %broadcast.40631 = pred[] broadcast(pred[] %constant.40630), dimensions={} %p.0.lhs.40626 = f32[] parameter(0) %p.0.rhs.40627 = f32[] parameter(1) %compare.40632 = pred[] compare(f32[] %p.0.lhs.40626, f32[] %p.0.rhs.40627), direction=GT, type=TOTALORDER ROOT %select.40633 = pred[] select(pred[] %broadcast.40631, pred[] %compare.40632, pred[] %broadcast.40631) })"; TEST_F(TopkSplitterTest, SplitsTopK) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %arg.1 = f32[1,1073741824] parameter(0) ROOT %cc.2 = (f32[1,5], s32[1,5]) custom-call(%arg.1), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(RunHloPass(TopKSplitter(), module.get()), IsOkAndHolds(true)); auto first_topk = m::CustomCall(m::Reshape(m::Parameter(0))); auto slice_result = [&](auto input, size_t i) { return m::Reshape(m::Slice(m::GetTupleElement(input, i))); }; auto index_correction = m::Broadcast(m::Multiply(m::Iota(), m::Broadcast(m::Constant()))); auto sorted = m::Sort( m::Reshape(m::GetTupleElement(first_topk, 0)), m::Reshape(m::Add(m::GetTupleElement(first_topk, 1), index_correction))); EXPECT_TRUE( Match(module->entry_computation()->root_instruction(), m::Tuple(slice_result(sorted, 0), slice_result(sorted, 1)))); } TEST_F(TopkSplitterTest, SplitsTopKNoBatchDimension) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %arg.1 = f32[1073741824] parameter(0) ROOT %cc.2 = (f32[5], s32[5]) custom-call(%arg.1), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(RunHloPass(TopKSplitter(), module.get()), IsOkAndHolds(true)); auto first_topk = m::CustomCall(m::Reshape(m::Parameter(0))); auto slice_result = [&](auto input, size_t i) { return m::Reshape(m::Slice(m::GetTupleElement(input, i))); }; auto index_correction = m::Broadcast(m::Multiply(m::Iota(), m::Broadcast(m::Constant()))); auto sorted = m::Sort( m::Reshape(m::GetTupleElement(first_topk, 0)), m::Reshape(m::Add(m::GetTupleElement(first_topk, 1), index_correction))); EXPECT_TRUE( Match(module->entry_computation()->root_instruction(), m::Tuple(slice_result(sorted, 0), slice_result(sorted, 1)))); } TEST_F(TopkSplitterTest, SplitFailsUnderThreshold) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %arg.1 = f32[1,524288] parameter(0) ROOT %cc.2 = (f32[1,5], s32[1,5]) custom-call(%arg.1), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT( RunHloPass(TopKSplitter(1048576), module.get()), IsOkAndHolds(false)); } TEST_F(TopkSplitterTest, SplitFailsUnaligned) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %arg.1 = f32[1,524289] parameter(0) ROOT %cc.2 = (f32[1,5], s32[1,5]) custom-call(%arg.1), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(RunHloPass(TopKSplitter(1024), module.get()), IsOkAndHolds(false)); } TEST_F(TopkSplitterTest, SplitFailsLargeK) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %arg.1 = f32[1,524288] parameter(0) ROOT %cc.2 = (f32[1,1024], s32[1,1024]) custom-call(%arg.1), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(RunHloPass(TopKSplitter(1024), module.get()), IsOkAndHolds(false)); } TEST_F(TopkSplitterTest, Equivalent) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %arg.1 = f32[1,16384] parameter(0) ROOT %cc.2 = (f32[1,5], s32[1,5]) custom-call(%arg.1), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(TopkDecomposer().Run(module.get()), IsOkAndHolds(true)); auto round_trip = [](HloModule* module) { EXPECT_THAT(TopkRewriter([](const HloSortInstruction*, int64_t) { return true; }).Run(module), IsOkAndHolds(true)); EXPECT_THAT(TopKSplitter(1024).Run(module), IsOkAndHolds(true)); EXPECT_THAT(TopkDecomposer().Run(module), IsOkAndHolds(true)); EXPECT_TRUE(HloDCE().Run(module).status().ok()); }; EXPECT_TRUE(RunAndCompare(std::move(module), std::nullopt, round_trip)); } TEST_F(TopkSplitterTest, StableSorts) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %constant.1 = f32[] constant(42) %broadcast.2= f32[1,16384] broadcast(f32[] %constant.1), dimensions={} ROOT %cc.3 = (f32[1,5], s32[1,5]) custom-call(%broadcast.2), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(TopkDecomposer().Run(module.get()), IsOkAndHolds(true)); auto round_trip = [](HloModule* module) { EXPECT_THAT(TopkRewriter([](const HloSortInstruction*, int64_t) { return true; }).Run(module), IsOkAndHolds(true)); EXPECT_THAT(TopKSplitter(1024).Run(module), IsOkAndHolds(true)); EXPECT_THAT(TopkDecomposer().Run(module), IsOkAndHolds(true)); EXPECT_TRUE(HloDCE().Run(module).status().ok()); }; EXPECT_TRUE(RunAndCompare(std::move(module), std::nullopt, round_trip)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/topk_splitter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/topk_splitter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
99e0ea1b-a681-4414-8060-f0272fd44c2a
cpp
abseil/abseil-cpp
extension
absl/strings/internal/str_format/extension.cc
absl/strings/internal/str_format/extension_test.cc
#include "absl/strings/internal/str_format/extension.h" #include <errno.h> #include <algorithm> #include <string> namespace absl { ABSL_NAMESPACE_BEGIN namespace str_format_internal { std::string FlagsToString(Flags v) { std::string s; s.append(FlagsContains(v, Flags::kLeft) ? "-" : ""); s.append(FlagsContains(v, Flags::kShowPos) ? "+" : ""); s.append(FlagsContains(v, Flags::kSignCol) ? " " : ""); s.append(FlagsContains(v, Flags::kAlt) ? "#" : ""); s.append(FlagsContains(v, Flags::kZero) ? "0" : ""); return s; } #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL #define ABSL_INTERNAL_X_VAL(id) \ constexpr absl::FormatConversionChar FormatConversionCharInternal::id; ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_X_VAL, ) #undef ABSL_INTERNAL_X_VAL constexpr absl::FormatConversionChar FormatConversionCharInternal::kNone; #define ABSL_INTERNAL_CHAR_SET_CASE(c) \ constexpr FormatConversionCharSet FormatConversionCharSetInternal::c; ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_CHAR_SET_CASE, ) #undef ABSL_INTERNAL_CHAR_SET_CASE constexpr FormatConversionCharSet FormatConversionCharSetInternal::kStar; constexpr FormatConversionCharSet FormatConversionCharSetInternal::kIntegral; constexpr FormatConversionCharSet FormatConversionCharSetInternal::kFloating; constexpr FormatConversionCharSet FormatConversionCharSetInternal::kNumeric; constexpr FormatConversionCharSet FormatConversionCharSetInternal::kPointer; #endif bool FormatSinkImpl::PutPaddedString(string_view value, int width, int precision, bool left) { size_t space_remaining = 0; if (width >= 0) space_remaining = static_cast<size_t>(width); size_t n = value.size(); if (precision >= 0) n = std::min(n, static_cast<size_t>(precision)); string_view shown(value.data(), n); space_remaining = Excess(shown.size(), space_remaining); if (!left) Append(space_remaining, ' '); Append(shown); if (left) Append(space_remaining, ' '); return true; } } ABSL_NAMESPACE_END }
#include "absl/strings/internal/str_format/extension.h" #include <random> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" namespace my_namespace { class UserDefinedType { public: UserDefinedType() = default; void Append(absl::string_view str) { value_.append(str.data(), str.size()); } const std::string& Value() const { return value_; } friend void AbslFormatFlush(UserDefinedType* x, absl::string_view str) { x->Append(str); } private: std::string value_; }; } namespace { std::string MakeRandomString(size_t len) { std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> dis('a', 'z'); std::string s(len, '0'); for (char& c : s) { c = dis(gen); } return s; } TEST(FormatExtensionTest, SinkAppendSubstring) { for (size_t chunk_size : {1, 10, 100, 1000, 10000}) { std::string expected, actual; absl::str_format_internal::FormatSinkImpl sink(&actual); for (size_t chunks = 0; chunks < 10; ++chunks) { std::string rand = MakeRandomString(chunk_size); expected += rand; sink.Append(rand); } sink.Flush(); EXPECT_EQ(actual, expected); } } TEST(FormatExtensionTest, SinkAppendChars) { for (size_t chunk_size : {1, 10, 100, 1000, 10000}) { std::string expected, actual; absl::str_format_internal::FormatSinkImpl sink(&actual); for (size_t chunks = 0; chunks < 10; ++chunks) { std::string rand = MakeRandomString(1); expected.append(chunk_size, rand[0]); sink.Append(chunk_size, rand[0]); } sink.Flush(); EXPECT_EQ(actual, expected); } } TEST(FormatExtensionTest, VerifyEnumEquality) { #define X_VAL(id) \ EXPECT_EQ(absl::FormatConversionChar::id, \ absl::str_format_internal::FormatConversionCharInternal::id); ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(X_VAL, ); #undef X_VAL #define X_VAL(id) \ EXPECT_EQ(absl::FormatConversionCharSet::id, \ absl::str_format_internal::FormatConversionCharSetInternal::id); ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(X_VAL, ); #undef X_VAL } TEST(FormatExtensionTest, SetConversionChar) { absl::str_format_internal::FormatConversionSpecImpl spec; EXPECT_EQ(spec.conversion_char(), absl::str_format_internal::FormatConversionCharInternal::kNone); spec.set_conversion_char( absl::str_format_internal::FormatConversionCharInternal::d); EXPECT_EQ(spec.conversion_char(), absl::str_format_internal::FormatConversionCharInternal::d); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/str_format/extension.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/str_format/extension_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
703e8d85-24a9-416f-9372-b1a016d13026
cpp
tensorflow/tensorflow
parallel_filter_dataset_op
tensorflow/core/kernels/data/parallel_filter_dataset_op.cc
tensorflow/core/kernels/data/parallel_filter_dataset_op_test.cc
#include "tensorflow/core/kernels/data/parallel_filter_dataset_op.h" #include <deque> #include <utility> #include "absl/status/status.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/input_colocation_exemption_registry.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/profiler/lib/traceme_encode.h" namespace tensorflow { namespace data { constexpr const char* const ParallelFilterDatasetOp::kDatasetType; constexpr const char* const ParallelFilterDatasetOp::kInputDataset; constexpr const char* const ParallelFilterDatasetOp::kOtherArguments; constexpr const char* const ParallelFilterDatasetOp::kNumParallelCalls; constexpr const char* const ParallelFilterDatasetOp::kPredicate; constexpr const char* const ParallelFilterDatasetOp::kDeterministic; constexpr const char* const ParallelFilterDatasetOp::kTarguments; constexpr const char* const ParallelFilterDatasetOp::kOutputTypes; constexpr const char* const ParallelFilterDatasetOp::kOutputShapes; constexpr char kComponent[] = "component"; constexpr char kReturnValues[] = "return_values"; constexpr char kPredicateValues[] = "predicate_values"; constexpr char kInvocationResults[] = "invocation_results"; constexpr char kSize[] = "size"; constexpr char kEndOfInput[] = "end_of_input"; constexpr char kErrorCode[] = "code"; constexpr char kErrorMessage[] = "error_message"; class ParallelFilterDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, const DatasetBase* input, int64_t num_parallel_calls, DeterminismPolicy deterministic, std::unique_ptr<CapturedFunction> captured_func) : DatasetBase(DatasetContext(ctx)), input_(input), num_parallel_calls_(num_parallel_calls), deterministic_(deterministic), captured_func_(std::move(captured_func)) { input_->Ref(); } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix)}); } const DataTypeVector& output_dtypes() const override { return input_->output_dtypes(); } const std::vector<PartialTensorShape>& output_shapes() const override { return input_->output_shapes(); } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { TF_RETURN_IF_ERROR(captured_func_->CheckExternalState()); return input_->CheckExternalState(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); std::vector<Node*> other_arguments; DataTypeVector other_arguments_types; TF_RETURN_IF_ERROR(captured_func_->AddToGraph(ctx, b, &other_arguments, &other_arguments_types)); Node* num_parallel_calls = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(static_cast<int32>(num_parallel_calls_), &num_parallel_calls)); AttrValue deterministic_attr; b->BuildAttrValue(deterministic_.String(), &deterministic_attr); AttrValue predicate_attr; b->BuildAttrValue(captured_func_->func(), &predicate_attr); AttrValue other_arguments_types_attr; b->BuildAttrValue(other_arguments_types, &other_arguments_types_attr); TF_RETURN_IF_ERROR( b->AddDataset(this, {{0, input_graph_node}}, {{1, other_arguments}}, {{kDeterministic, deterministic_attr}, {kPredicate, predicate_attr}, {kTarguments, other_arguments_types_attr}}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params), mu_(std::make_shared<mutex>()), cond_var_(std::make_shared<condition_variable>()), num_parallel_calls_(std::make_shared<model::SharedState>( params.dataset->num_parallel_calls_, mu_, cond_var_)), deterministic_(params.dataset->deterministic_.IsDeterministic() || params.dataset->deterministic_.IsDefault()), autotune_(params.dataset->num_parallel_calls_ == model::kAutotune) {} ~Iterator() override { CancelThreads(true); input_impl_.reset(); if (deregister_fn_) deregister_fn_(); } Status Initialize(IteratorContext* ctx) override { mutex_lock l(*mu_); interleave_depth_ = ctx->interleave_depth(); if (num_parallel_calls_->value == model::kAutotune) { num_parallel_calls_->value = GetAutotuneDefaultParallelism(ctx); } cancellation_manager_ = std::make_unique<CancellationManager>(); TF_RETURN_IF_ERROR(RegisterCancellationCallback( ctx->cancellation_manager(), [this]() { CancelThreads(false); }, &deregister_fn_)); IteratorContext::Params params(ctx); params.cancellation_manager = cancellation_manager_.get(); TF_RETURN_IF_ERROR(dataset()->input_->MakeIterator( IteratorContext(params), this, prefix(), &input_impl_)); return dataset()->captured_func_->Instantiate( ctx, &instantiated_captured_func_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { std::shared_ptr<InvocationResult> result; { mutex_lock l(*mu_); EnsureThreadsStarted(ctx); while (ShouldWait(ctx, &result)) { RecordStop(ctx); cond_var_->wait(l); RecordStart(ctx); } if (cancelled_) { return errors::Cancelled("Iterator was cancelled"); } } tsl::profiler::TraceMe traceme([&] { return tsl::profiler::TraceMeEncode("ParallelFilterConsume", {{"element_id", result->uid}}); }); return ProcessResult(ctx, result, out_tensors, end_of_sequence); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeAsyncUnknownRatioNode( std::move(args), {model::MakeParameter("parallelism", num_parallel_calls_, 1, ctx->runner_threadpool_size())}); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { TF_RETURN_IF_ERROR(ctx->HandleCheckExternalStateStatus( dataset()->captured_func_->CheckExternalState())); mutex_lock l(*mu_); while (num_calls_ > 0) { cond_var_->wait(l); } if (num_calls_ != 0) { return errors::FailedPrecondition( "Unexpected outstanding calls encountered."); } TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); TF_RETURN_IF_ERROR( writer->WriteScalar(absl::StrCat(prefix(), "::", kInvocationResults), kSize, invocation_results_.size())); for (size_t i = 0; i < invocation_results_.size(); i++) { const auto& result = *(invocation_results_[i]); std::string element_prefix = absl::StrCat(prefix(), "::", kInvocationResults, "::", i); TF_RETURN_IF_ERROR( WriteStatusLocked(writer, element_prefix, result.status)); TF_RETURN_IF_ERROR(WriteComponentsLocked( writer, absl::StrCat(element_prefix, "::", kReturnValues), result.return_values)); TF_RETURN_IF_ERROR(WriteComponentsLocked( writer, absl::StrCat(element_prefix, "::", kPredicateValues), result.predicate_values)); if (result.end_of_input) { TF_RETURN_IF_ERROR( writer->WriteScalar(element_prefix, kEndOfInput, "")); } } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(*mu_); TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); int64_t invocation_results_size; TF_RETURN_IF_ERROR( reader->ReadScalar(absl::StrCat(prefix(), "::", kInvocationResults), kSize, &invocation_results_size)); DCHECK(invocation_results_.empty()); for (size_t i = 0; i < invocation_results_size; i++) { invocation_results_.push_back(std::make_shared<InvocationResult>()); auto& result = *invocation_results_.back(); std::string element_prefix = absl::StrCat(prefix(), "::", kInvocationResults, "::", i); TF_RETURN_IF_ERROR( ReadStatusLocked(reader, element_prefix, &result.status)); TF_RETURN_IF_ERROR(ReadComponentsLocked( ctx, reader, absl::StrCat(element_prefix, "::", kReturnValues), &result.return_values)); TF_RETURN_IF_ERROR(ReadComponentsLocked( ctx, reader, absl::StrCat(element_prefix, "::", kPredicateValues), &result.predicate_values)); result.end_of_input = reader->Contains(element_prefix, kEndOfInput); RecordBufferEnqueue(ctx, result.return_values); result.notification.Notify(); } return absl::OkStatus(); } TraceMeMetadata GetTraceMeMetadata() const override { int64_t parallelism = -1; if (mu_->try_lock()) { parallelism = num_parallel_calls_->value; mu_->unlock(); } data::TraceMeMetadata result; result.push_back( std::make_pair("autotune", autotune_ ? "true" : "false")); result.push_back( std::make_pair("deterministic", deterministic_ ? "true" : "false")); result.push_back(std::make_pair( "parallelism", parallelism == -1 ? kTraceInfoUnavailable : strings::Printf("%lld", static_cast<long long>(parallelism)))); result.push_back(std::make_pair( "interleave_depth", strings::Printf("%lld", static_cast<long long>(interleave_depth_)))); return result; } private: struct InvocationResult { InvocationResult() : uid(tensorflow::EnvTime::NowNanos()) {} Notification notification; Status status; std::vector<Tensor> return_values; std::vector<Tensor> predicate_values; bool end_of_input = false; const int64_t uid; }; void CancelThreads(bool wait) TF_LOCKS_EXCLUDED(mu_) { cancellation_manager_->StartCancel(); mutex_lock l(*mu_); cancelled_ = true; cond_var_->notify_all(); while (wait && num_calls_ > 0) { cond_var_->wait(l); } } void EnsureThreadsStarted(IteratorContext* ctx) TF_EXCLUSIVE_LOCKS_REQUIRED(*mu_) { if (!runner_thread_) { auto ctx_copy = std::make_shared<IteratorContext>(*ctx); runner_thread_ = ctx->StartThread( "tf_data_parallel_filter", std::bind(&Iterator::RunnerThread, this, ctx_copy)); } } void CallCompleted(const std::shared_ptr<IteratorContext>& ctx, const std::shared_ptr<InvocationResult>& result) TF_LOCKS_EXCLUDED(*mu_) { mutex_lock l(*mu_); num_calls_--; result->notification.Notify(); cond_var_->notify_all(); } void CallFunction(const std::shared_ptr<IteratorContext>& ctx, const std::shared_ptr<InvocationResult>& result) TF_LOCKS_EXCLUDED(*mu_) { tsl::profiler::TraceMe traceme([&] { return tsl::profiler::TraceMeEncode("ParallelFilterProduce", {{"element_id", result->uid}}); }); std::vector<Tensor> input_element; result->status = input_impl_->GetNext(ctx.get(), &input_element, &result->end_of_input); if (result->end_of_input || !result->status.ok()) { CallCompleted(ctx, result); return; } result->return_values = input_element; auto done = [this, ctx, result](Status status) { result->status.Update(status); if (status.ok() && (result->predicate_values.size() != 1 || result->predicate_values[0].dtype() != DT_BOOL || result->predicate_values[0].NumElements() != 1)) { result->status.Update(errors::InvalidArgument( "Filter predicate `predicate` must return a scalar bool.")); } RecordBufferEnqueue(ctx.get(), result->return_values); CallCompleted(ctx, result); }; if (dataset()->captured_func_->use_inter_op_parallelism()) { instantiated_captured_func_->RunAsync( ctx.get(), std::move(input_element), &result->predicate_values, std::move(done), model_node()); } else { auto fn = std::bind( [this, ctx, result](std::vector<Tensor> input_element) { return instantiated_captured_func_->Run( ctx.get(), std::move(input_element), &result->predicate_values, model_node()); }, std::move(input_element)); (*ctx->runner())( [this, ctx, fn = std::move(fn), done = std::move(done)]() { Status s; if (IsRecording(ctx.get())) { s = fn(); } else { RecordStart(ctx.get()); s = fn(); RecordStop(ctx.get()); } done(s); }); } } Status ProcessResult(IteratorContext* ctx, const std::shared_ptr<InvocationResult>& result, std::vector<Tensor>* out_tensors, bool* end_of_sequence) TF_LOCKS_EXCLUDED(*mu_) { if (!result->end_of_input && result->status.ok()) { *out_tensors = std::move(result->return_values); *end_of_sequence = false; return absl::OkStatus(); } if (errors::IsOutOfRange(result->status)) { return errors::InvalidArgument( "Function invocation produced OutOfRangeError: ", result->status.message()); } *end_of_sequence = result->end_of_input; return result->status; } void RunnerThread(const std::shared_ptr<IteratorContext>& ctx) TF_LOCKS_EXCLUDED(*mu_) { RecordStart(ctx.get()); auto cleanup = gtl::MakeCleanup([this, ctx] { RecordStop(ctx.get()); }); std::vector<std::shared_ptr<InvocationResult>> new_calls; { tf_shared_lock l(*mu_); new_calls.reserve(num_parallel_calls_->value); } auto busy = [this]() TF_EXCLUSIVE_LOCKS_REQUIRED(*mu_) -> bool { int64_t num_parallel_calls = num_parallel_calls_->value; return num_calls_ >= num_parallel_calls || invocation_results_.size() >= num_parallel_calls; }; while (true) { { mutex_lock l(*mu_); while (!cancelled_ && busy()) { RecordStop(ctx.get()); cond_var_->wait(l); RecordStart(ctx.get()); } if (cancelled_) { return; } while (!busy()) { invocation_results_.push_back(std::make_shared<InvocationResult>()); new_calls.push_back(invocation_results_.back()); num_calls_++; } cond_var_->notify_all(); } for (const auto& call : new_calls) { CallFunction(ctx, call); } new_calls.clear(); } } bool ShouldWait(IteratorContext* ctx, std::shared_ptr<InvocationResult>* result) TF_EXCLUSIVE_LOCKS_REQUIRED(*mu_) { if (cancelled_) { return false; } auto PredicateReady = [](const InvocationResult* result) -> bool { return result->status.ok() && !result->end_of_input; }; auto GetPredicateValue = [](const InvocationResult* result) -> bool { return result->predicate_values[0].scalar<bool>()(); }; while (!invocation_results_.empty() && invocation_results_.front()->notification.HasBeenNotified() && PredicateReady(invocation_results_.front().get()) && !GetPredicateValue(invocation_results_.front().get())) { RecordBufferDequeue(ctx, invocation_results_.front()->return_values); invocation_results_.pop_front(); cond_var_->notify_all(); } if (!deterministic_) { for (auto it = invocation_results_.begin(); it != invocation_results_.end(); ++it) { if ((*it)->notification.HasBeenNotified() && (it == invocation_results_.begin() || (PredicateReady(it->get()) && GetPredicateValue(it->get())))) { std::swap(*result, *it); invocation_results_.erase(it); cond_var_->notify_all(); return false; } } } else { if (!invocation_results_.empty() && invocation_results_.front()->notification.HasBeenNotified()) { std::swap(*result, invocation_results_.front()); invocation_results_.pop_front(); if (!(*result)->end_of_input) { RecordBufferDequeue(ctx, (*result)->return_values); } cond_var_->notify_all(); return false; } } return true; } Status WriteComponentsLocked(IteratorStateWriter* writer, const std::string& prefix, const std::vector<Tensor>& values) TF_EXCLUSIVE_LOCKS_REQUIRED(*mu_) { TF_RETURN_IF_ERROR(writer->WriteScalar(prefix, kSize, values.size())); for (size_t j = 0; j < values.size(); j++) { TF_RETURN_IF_ERROR(writer->WriteTensor( prefix, absl::StrCat(kComponent, "[", j, "]"), values[j])); } return absl::OkStatus(); } Status ReadComponentsLocked(IteratorContext* ctx, IteratorStateReader* reader, const std::string& prefix, std::vector<Tensor>* values) TF_EXCLUSIVE_LOCKS_REQUIRED(*mu_) { int64_t size; TF_RETURN_IF_ERROR(reader->ReadScalar(prefix, kSize, &size)); size_t num_return_values = static_cast<size_t>(size); if (num_return_values != size) { return errors::InvalidArgument(prefix, ",", kSize, ": ", size, " is not a valid value of type size_t."); } values->reserve(num_return_values); for (size_t j = 0; j < num_return_values; j++) { values->emplace_back(); TF_RETURN_IF_ERROR(reader->ReadTensor( ctx->flr(), prefix, absl::StrCat(kComponent, "[", j, "]"), &values->back())); } return absl::OkStatus(); } Status WriteStatusLocked(IteratorStateWriter* writer, const std::string& key, const Status& status) TF_EXCLUSIVE_LOCKS_REQUIRED(*mu_) { TF_RETURN_IF_ERROR(writer->WriteScalar( key, kErrorCode, static_cast<int64_t>(status.code()))); if (!status.ok()) { TF_RETURN_IF_ERROR(writer->WriteScalar(key, kErrorMessage, std::string(status.message()))); } return absl::OkStatus(); } Status ReadStatusLocked(IteratorStateReader* reader, const std::string& key, Status* status) TF_EXCLUSIVE_LOCKS_REQUIRED(*mu_) { int64_t code_int; TF_RETURN_IF_ERROR(reader->ReadScalar(key, kErrorCode, &code_int)); absl::StatusCode code = static_cast<absl::StatusCode>(code_int); if (code != absl::StatusCode::kOk) { tstring error_message; TF_RETURN_IF_ERROR( reader->ReadScalar(key, kErrorMessage, &error_message)); *status = Status(code, error_message); } else { *status = absl::OkStatus(); } return absl::OkStatus(); } const std::shared_ptr<mutex> mu_; const std::shared_ptr<condition_variable> cond_var_; const std::shared_ptr<model::SharedState> num_parallel_calls_; const bool deterministic_; const bool autotune_; int64_t num_calls_ TF_GUARDED_BY(*mu_) = 0; std::unique_ptr<CancellationManager> cancellation_manager_; std::unique_ptr<InstantiatedCapturedFunction> instantiated_captured_func_; std::unique_ptr<IteratorBase> input_impl_; std::deque<std::shared_ptr<InvocationResult>> invocation_results_ TF_GUARDED_BY(*mu_); bool cancelled_ TF_GUARDED_BY(*mu_) = false; std::function<void()> deregister_fn_; int64 interleave_depth_ = -1; std::unique_ptr<Thread> runner_thread_ TF_GUARDED_BY(*mu_); }; const DatasetBase* const input_; const int64_t num_parallel_calls_; const DeterminismPolicy deterministic_; const std::unique_ptr<CapturedFunction> captured_func_; }; ParallelFilterDatasetOp::ParallelFilterDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) { OP_REQUIRES_OK(ctx, FunctionMetadata::Create(ctx, kPredicate, {}, &func_metadata_)); OP_REQUIRES(ctx, func_metadata_->short_circuit_info().indices.size() <= 1, errors::InvalidArgument( "predicate function has more than one return value.")); std::string deterministic; OP_REQUIRES_OK(ctx, ctx->GetAttr(kDeterministic, &deterministic)); OP_REQUIRES_OK(ctx, DeterminismPolicy::FromString(deterministic, &deterministic_)); } void ParallelFilterDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { int64_t num_parallel_calls; OP_REQUIRES_OK( ctx, ParseScalarArgument(ctx, kNumParallelCalls, &num_parallel_calls)); std::unique_ptr<CapturedFunction> captured_func; OP_REQUIRES_OK(ctx, CapturedFunction::Create(ctx, func_metadata_, kOtherArguments, &captured_func)); if (num_parallel_calls == model::kAutotune) { metrics::RecordTFDataAutotune(kDatasetType); } *output = new Dataset(ctx, input, num_parallel_calls, deterministic_, std::move(captured_func)); } namespace { REGISTER_KERNEL_BUILDER(Name("ParallelFilterDataset").Device(DEVICE_CPU), ParallelFilterDatasetOp); REGISTER_INPUT_COLOCATION_EXEMPTION("ParallelFilterDataset"); } } }
#include "tensorflow/core/kernels/data/parallel_filter_dataset_op.h" #include <string> #include <utility> #include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "parallel_map_dataset"; class ParallelFilterDatasetParams : public DatasetParams { public: template <typename T> ParallelFilterDatasetParams( T input_dataset_params, std::vector<Tensor> other_arguments, int num_parallel_calls, const std::string& deterministic, FunctionDefHelper::AttrValueWrapper pred_func, std::vector<FunctionDef> func_lib, DataTypeVector type_arguments, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), other_arguments_(std::move(other_arguments)), num_parallel_calls_(num_parallel_calls), deterministic_(deterministic), pred_func_(std::move(pred_func)), func_lib_(std::move(func_lib)), type_arguments_(std::move(type_arguments)) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { auto input_tensors = other_arguments_; input_tensors.emplace_back( CreateTensor<int64_t>(TensorShape({}), {num_parallel_calls_})); return input_tensors; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->reserve(input_dataset_params_.size() + other_arguments_.size()); input_names->emplace_back(ParallelFilterDatasetOp::kInputDataset); for (int i = 0; i < other_arguments_.size(); ++i) { input_names->emplace_back( absl::StrCat(ParallelFilterDatasetOp::kOtherArguments, "_", i)); } input_names->emplace_back(ParallelFilterDatasetOp::kNumParallelCalls); return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { *attr_vector = { {"predicate", pred_func_}, {"Targuments", type_arguments_}, {"output_shapes", output_shapes_}, {"output_types", output_dtypes_}, {"deterministic", deterministic_}, {"metadata", ""}}; return absl::OkStatus(); } string dataset_type() const override { return ParallelFilterDatasetOp::kDatasetType; } std::vector<FunctionDef> func_lib() const override { return func_lib_; } private: std::vector<Tensor> other_arguments_; int num_parallel_calls_; std::string deterministic_; FunctionDefHelper::AttrValueWrapper pred_func_; std::vector<FunctionDef> func_lib_; DataTypeVector type_arguments_; }; class ParallelFilterDatasetOpTest : public DatasetOpsTestBase {}; ParallelFilterDatasetParams ParallelFilterDatasetParams1() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{9, 1}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return ParallelFilterDatasetParams( std::move(tensor_slice_dataset_params), {}, 1, DeterminismPolicy::kDeterministic, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelFilterDatasetParams ParallelFilterDatasetParams2() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{9, 1}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return ParallelFilterDatasetParams( std::move(tensor_slice_dataset_params), {}, 1, DeterminismPolicy::kNondeterministic, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelFilterDatasetParams ParallelFilterDatasetParams3() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{9, 1}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return ParallelFilterDatasetParams( std::move(tensor_slice_dataset_params), {}, 2, DeterminismPolicy::kDeterministic, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelFilterDatasetParams ParallelFilterDatasetParams4() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{9, 1}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return ParallelFilterDatasetParams( std::move(tensor_slice_dataset_params), {}, 4, DeterminismPolicy::kDeterministic, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelFilterDatasetParams ParallelFilterDatasetParams5() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{9, 1}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return ParallelFilterDatasetParams( std::move(tensor_slice_dataset_params), {}, 4, DeterminismPolicy::kNondeterministic, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelFilterDatasetParams ParallelFilterDatasetParams6() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{9, 1}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return ParallelFilterDatasetParams( std::move(tensor_slice_dataset_params), {}, model::kAutotune, DeterminismPolicy::kDeterministic, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelFilterDatasetParams InputHasNoElementParams() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{0}, {})}, "tensor_slice_dataset"); return ParallelFilterDatasetParams( std::move(tensor_slice_dataset_params), {}, 1, DeterminismPolicy::kDeterministic, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } ParallelFilterDatasetParams InvalidPredFuncFilterDatasetParams1() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return ParallelFilterDatasetParams( std::move(tensor_slice_dataset_params), {}, 1, DeterminismPolicy::kDeterministic, FunctionDefHelper::FunctionRef("GetUnique", {{"T", DT_INT64}, {"out_idx", DT_INT32}}), {test::function::Unique()}, {}, {DT_INT64}, {PartialTensorShape({3, 1})}, kNodeName); } ParallelFilterDatasetParams InvalidPredFuncFilterDatasetParams2() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return ParallelFilterDatasetParams( std::move(tensor_slice_dataset_params), {}, 1, DeterminismPolicy::kDeterministic, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({3, 1})}, kNodeName); } ParallelFilterDatasetParams InvalidPredFuncFilterDatasetParams3() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{9}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return ParallelFilterDatasetParams( std::move(tensor_slice_dataset_params), {}, 1, DeterminismPolicy::kDeterministic, FunctionDefHelper::FunctionRef("NonZero", {{"T", DT_INT64}}), {test::function::NonZero()}, {}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } std::vector<GetNextTestCase<ParallelFilterDatasetParams>> GetNextTestCases() { return {{ParallelFilterDatasetParams1(), CreateTensors<int64_t>(TensorShape({1}), {{0}, {0}, {0}})}, {ParallelFilterDatasetParams2(), CreateTensors<int64_t>(TensorShape({1}), {{0}, {0}, {0}})}, {ParallelFilterDatasetParams3(), CreateTensors<int64_t>(TensorShape({1}), {{0}, {0}, {0}})}, {ParallelFilterDatasetParams4(), CreateTensors<int64_t>(TensorShape({1}), {{0}, {0}, {0}})}, {ParallelFilterDatasetParams5(), CreateTensors<int64_t>(TensorShape({1}), {{0}, {0}, {0}})}, {ParallelFilterDatasetParams6(), CreateTensors<int64_t>(TensorShape({1}), {{0}, {0}, {0}})}, {InputHasNoElementParams(), {}}}; } ITERATOR_GET_NEXT_TEST_P(ParallelFilterDatasetOpTest, ParallelFilterDatasetParams, GetNextTestCases()) TEST_F(ParallelFilterDatasetOpTest, DatasetNodeName) { auto dataset_params = ParallelFilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(ParallelFilterDatasetOpTest, DatasetTypeString) { auto dataset_params = ParallelFilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(ParallelFilterDatasetOp::kDatasetType))); } TEST_F(ParallelFilterDatasetOpTest, DatasetOutputDtypes) { auto dataset_params = ParallelFilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes({DT_INT64})); } std::vector<DatasetOutputShapesTestCase<ParallelFilterDatasetParams>> DatasetOutputShapesTestCases() { return {{ParallelFilterDatasetParams1(), {PartialTensorShape({1})}}, {InputHasNoElementParams(), {PartialTensorShape({})}}}; } DATASET_OUTPUT_SHAPES_TEST_P(ParallelFilterDatasetOpTest, ParallelFilterDatasetParams, DatasetOutputShapesTestCases()) std::vector<CardinalityTestCase<ParallelFilterDatasetParams>> CardinalityTestCases() { return {{ParallelFilterDatasetParams1(), kUnknownCardinality}, {InputHasNoElementParams(), kUnknownCardinality}}; } DATASET_CARDINALITY_TEST_P(ParallelFilterDatasetOpTest, ParallelFilterDatasetParams, CardinalityTestCases()) TEST_F(ParallelFilterDatasetOpTest, IteratorOutputDtypes) { auto dataset_params = ParallelFilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes({DT_INT64})); } std::vector<IteratorOutputShapesTestCase<ParallelFilterDatasetParams>> IteratorOutputShapesTestCases() { return {{ParallelFilterDatasetParams1(), {PartialTensorShape({1})}}, {InputHasNoElementParams(), {PartialTensorShape({})}}}; } ITERATOR_OUTPUT_SHAPES_TEST_P(ParallelFilterDatasetOpTest, ParallelFilterDatasetParams, IteratorOutputShapesTestCases()) TEST_F(ParallelFilterDatasetOpTest, IteratorPrefix) { auto dataset_params = ParallelFilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix( name_utils::IteratorPrefix(ParallelFilterDatasetOp::kDatasetType, dataset_params.iterator_prefix()))); } std::vector<IteratorSaveAndRestoreTestCase<ParallelFilterDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{ParallelFilterDatasetParams1(), {0, 2, 6}, CreateTensors<int64_t>(TensorShape({1}), {{0}, {0}, {0}})}, {InputHasNoElementParams(), {0, 2, 6}, {}}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(ParallelFilterDatasetOpTest, ParallelFilterDatasetParams, IteratorSaveAndRestoreTestCases()) class ParameterizedInvalidPredicateFuncTest : public ParallelFilterDatasetOpTest, public ::testing::WithParamInterface<ParallelFilterDatasetParams> {}; TEST_P(ParameterizedInvalidPredicateFuncTest, InvalidPredicateFunc) { auto dataset_params = GetParam(); TF_ASSERT_OK(Initialize(dataset_params)); bool end_of_sequence = false; std::vector<Tensor> out_tensors; EXPECT_EQ( iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence) .code(), absl::StatusCode::kInvalidArgument); EXPECT_TRUE(out_tensors.empty()); } INSTANTIATE_TEST_SUITE_P( ParallelFilterDatasetOpTest, ParameterizedInvalidPredicateFuncTest, ::testing::ValuesIn({InvalidPredFuncFilterDatasetParams1(), InvalidPredFuncFilterDatasetParams2(), InvalidPredFuncFilterDatasetParams3()})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/parallel_filter_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/parallel_filter_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
983decde-fe7b-4ef5-bfc6-14c31e95fc7b
cpp
tensorflow/tensorflow
pjrt_c_api_gpu
third_party/xla/xla/pjrt/c/pjrt_c_api_gpu.cc
third_party/xla/xla/pjrt/c/pjrt_c_api_gpu_test.cc
#include "xla/pjrt/c/pjrt_c_api_gpu.h" #include "absl/base/call_once.h" #include "absl/log/initialize.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_gpu_internal.h" #include "tsl/platform/platform.h" const PJRT_Api* GetPjrtApi() { #ifndef PLATFORM_GOOGLE static absl::once_flag once; absl::call_once(once, []() { absl::InitializeLog(); }); #endif return pjrt::gpu_plugin::GetGpuPjrtApi(); }
#include "xla/pjrt/c/pjrt_c_api_gpu.h" #include <cstdint> #include <functional> #include <memory> #include <numeric> #include <string> #include <thread> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/client/client_library.h" #include "xla/ffi/api/ffi.h" #include "xla/ffi/execution_context.h" #include "xla/ffi/ffi_api.h" #include "xla/ffi/type_id_registry.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_ffi_extension.h" #include "xla/pjrt/c/pjrt_c_api_gpu_extension.h" #include "xla/pjrt/c/pjrt_c_api_gpu_internal.h" #include "xla/pjrt/c/pjrt_c_api_helpers.h" #include "xla/pjrt/c/pjrt_c_api_test.h" #include "xla/pjrt/c/pjrt_c_api_test_base.h" #include "xla/pjrt/c/pjrt_c_api_wrapper_impl.h" #include "xla/pjrt/distributed/in_memory_key_value_store.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_future.h" #include "xla/service/custom_call_target_registry.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/tests/literal_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace pjrt { namespace { #ifdef TENSORFLOW_USE_ROCM const bool kUnused = (RegisterPjRtCApiTestFactory([]() { return GetPjrtApi(); }, "rocm"), true); #else const bool kUnused = (RegisterPjRtCApiTestFactory([]() { return GetPjrtApi(); }, "cuda"), true); #endif class PjrtCApiGpuTest : public PjrtCApiTestBase { public: PjrtCApiGpuTest() : PjrtCApiTestBase(GetPjrtApi()) {} }; TEST_F(PjrtCApiGpuTest, CreateViewOfDeviceBuffer) { auto [buffer, buffer_future] = create_buffer(); TF_CHECK_OK(buffer_future.Await()); PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args device_buffer_ptr_args; device_buffer_ptr_args.struct_size = PJRT_Buffer_OpaqueDeviceMemoryDataPointer_Args_STRUCT_SIZE; device_buffer_ptr_args.extension_start = nullptr; device_buffer_ptr_args.buffer = buffer.get(); PJRT_Error* device_buffer_ptr_error = api_->PJRT_Buffer_OpaqueDeviceMemoryDataPointer(&device_buffer_ptr_args); ASSERT_EQ(device_buffer_ptr_error, nullptr); PJRT_Buffer_Device_Args device_args = PJRT_Buffer_Device_Args{ PJRT_Buffer_Device_Args_STRUCT_SIZE, nullptr, buffer.get(), }; PJRT_Error* device_error = api_->PJRT_Buffer_Device(&device_args); ASSERT_EQ(device_error, nullptr); PJRT_Client_CreateViewOfDeviceBuffer_Args create_view_args; create_view_args.struct_size = PJRT_Client_CreateViewOfDeviceBuffer_Args_STRUCT_SIZE; create_view_args.extension_start = nullptr; create_view_args.client = client_; create_view_args.device_buffer_ptr = device_buffer_ptr_args.device_memory_ptr; xla::Shape shape = xla::ShapeUtil::MakeShape(xla::S32, {4}); create_view_args.dims = shape.dimensions().data(); create_view_args.num_dims = shape.dimensions().size(); create_view_args.element_type = pjrt::ConvertToPjRtBufferType(shape.element_type()); pjrt::BufferMemoryLayoutData c_layout_data; TF_ASSERT_OK_AND_ASSIGN( c_layout_data, pjrt::ConvertToBufferMemoryLayoutData(shape.layout())); create_view_args.layout = &(c_layout_data.c_layout); create_view_args.device = device_args.device; std::function<void()> on_delete_callback = []() mutable {}; create_view_args.on_delete_callback_arg = new std::function(on_delete_callback); create_view_args.on_delete_callback = [](void* device_buffer_ptr, void* user_arg) { auto c_func = reinterpret_cast<std::function<void()>*>(user_arg); (*c_func)(); delete c_func; }; create_view_args.stream = reinterpret_cast<intptr_t>(nullptr); PJRT_Error* error = api_->PJRT_Client_CreateViewOfDeviceBuffer(&create_view_args); ASSERT_EQ(error, nullptr); std::unique_ptr<PJRT_Buffer, ::pjrt::PJRT_BufferDeleter> view_buffer( create_view_args.buffer, ::pjrt::MakeBufferDeleter(api_)); PJRT_Buffer_ToHostBuffer_Args to_host_args; to_host_args.struct_size = PJRT_Buffer_ToHostBuffer_Args_STRUCT_SIZE; to_host_args.extension_start = nullptr; to_host_args.src = view_buffer.get(); xla::Shape host_shape = xla::ShapeUtil::MakeShape(xla::F32, {4}); auto literal = std::make_shared<xla::Literal>(host_shape); to_host_args.host_layout = nullptr; to_host_args.dst = literal->untyped_data(); to_host_args.dst_size = xla::ShapeUtil::ByteSizeOfElements(host_shape); to_host_args.event = nullptr; PJRT_Error* to_host_error = api_->PJRT_Buffer_ToHostBuffer(&to_host_args); ASSERT_EQ(to_host_error, nullptr); xla::PjRtFuture<> transfer_to_host = ::pjrt::ConvertCEventToCppFuture(to_host_args.event, api_); TF_CHECK_OK(transfer_to_host.Await()); ASSERT_EQ(literal->data<float>().size(), 4); std::vector<float> float_data(4); std::iota(float_data.begin(), float_data.end(), 41.0f); EXPECT_TRUE(xla::LiteralTestUtil::Equal( xla::LiteralUtil::CreateR1<float>(float_data), *literal)); } TEST_F(PjrtCApiGpuTest, CreateAndDestroyExecuteContext) { PJRT_ExecuteContext_Create_Args create_arg; create_arg.struct_size = PJRT_ExecuteContext_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.context = nullptr; EXPECT_EQ(api_->PJRT_ExecuteContext_Create(&create_arg), nullptr); EXPECT_NE(create_arg.context, nullptr); const PJRT_FFI_Extension* ffi_extension = pjrt::FindExtension<PJRT_FFI_Extension>( api_, PJRT_Extension_Type::PJRT_Extension_Type_FFI); ASSERT_NE(ffi_extension, nullptr); std::string string_data = "string_data"; PJRT_FFI_UserData_Add_Args add_args; add_args.struct_size = PJRT_FFI_UserData_Add_Args_STRUCT_SIZE; add_args.extension_start = nullptr; add_args.user_data.type_id = 42; add_args.user_data.data = &string_data; add_args.user_data.deleter = nullptr; add_args.context = create_arg.context; EXPECT_EQ(ffi_extension->user_data_add(&add_args), nullptr); TF_ASSERT_OK_AND_ASSIGN( auto lookup_user_data, create_arg.context->execute_context->ffi_context().Lookup( xla::ffi::TypeIdRegistry::TypeId(42))); EXPECT_EQ(lookup_user_data, &string_data); PJRT_ExecuteContext_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Error_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.context = create_arg.context; api_->PJRT_ExecuteContext_Destroy(&destroy_args); } absl::StatusOr<PJRT_Client_Create_Args> BuildCreateArg( ::pjrt::PJRT_KeyValueCallbackData* kv_callback_data, std::vector<PJRT_NamedValue>& c_options) { PJRT_Client_Create_Args args; args.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.create_options = c_options.data(); args.num_options = c_options.size(); args.kv_get_callback = kv_callback_data->c_kv_get; args.kv_get_user_arg = &kv_callback_data->kv_get_c_func; args.kv_put_callback = kv_callback_data->c_kv_put; args.kv_put_user_arg = &kv_callback_data->kv_put_c_func; args.client = nullptr; return args; } TEST(PjrtCApiGpuKVStoreTest, CreateClientWithKVCallback) { auto api = GetPjrtApi(); auto kv_store = std::make_shared<xla::InMemoryKeyValueStore>(); std::shared_ptr<::pjrt::PJRT_KeyValueCallbackData> kv_callback_data = ::pjrt::ConvertToCKeyValueCallbacks(kv_store); xla::ClientLibrary::DestroyLocalInstances(); int num_nodes = 2; std::vector<std::thread> threads; for (int i = 0; i < num_nodes; i++) { threads.emplace_back([api, i, num_nodes, kv_callback_data = kv_callback_data, kv_store = kv_store] { absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"num_nodes", static_cast<int64_t>(num_nodes)}, {"node_id", static_cast<int64_t>(i)}, {"visible_devices", std::vector<int64_t>({0})}}; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); TF_ASSERT_OK_AND_ASSIGN( PJRT_Client_Create_Args create_arg, BuildCreateArg(kv_callback_data.get(), c_options)); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_EQ(error, nullptr) << error->status.message(); PJRT_Client_Devices_Args device_args; device_args.struct_size = PJRT_Client_Devices_Args_STRUCT_SIZE; device_args.extension_start = nullptr; device_args.client = create_arg.client; PJRT_Error* device_error = api->PJRT_Client_Devices(&device_args); EXPECT_EQ(device_error, nullptr); EXPECT_EQ(device_args.num_devices, 2); PJRT_Client_AddressableDevices_Args addressable_device_args; addressable_device_args.struct_size = PJRT_Client_AddressableDevices_Args_STRUCT_SIZE; addressable_device_args.extension_start = nullptr; addressable_device_args.client = create_arg.client; PJRT_Error* addressable_device_error = api->PJRT_Client_AddressableDevices(&addressable_device_args); EXPECT_EQ(addressable_device_error, nullptr); EXPECT_EQ(addressable_device_args.num_addressable_devices, 1); PJRT_Client_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Client_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.client = create_arg.client; PJRT_Error* destroy_error = api->PJRT_Client_Destroy(&destroy_args); CHECK_EQ(destroy_error, nullptr); }); } for (auto& t : threads) { t.join(); } } TEST(PjrtCApiGpuAllocatorTest, ValidOptionsParsing) { auto api = GetPjrtApi(); std::vector<std::string> allocator_options = {"default", "platform", "bfc", "cuda_async"}; for (const std::string& allocator_option : allocator_options) { #ifdef TENSORFLOW_USE_ROCM if (allocator_option == "cuda_async") { VLOG(1) << "cuda_async allocator not available on ROCm!"; continue; } #endif absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"allocator", allocator_option}, {"visible_devices", xla::PjRtValueType(std::vector<int64_t>{0, 1})}, }; if (allocator_option == "bfc" || allocator_option == "cuda_async") { options["memory_fraction"] = 0.5f; } if (allocator_option == "cuda_async") { options["preallocate"] = true; } TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_Client_Create_Args create_arg; create_arg.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.client = nullptr; create_arg.create_options = c_options.data(); create_arg.num_options = c_options.size(); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_EQ(error, nullptr) << error->status.message(); PJRT_Client_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Client_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.client = create_arg.client; PJRT_Error* destroy_error = api->PJRT_Client_Destroy(&destroy_args); CHECK_EQ(destroy_error, nullptr); } } TEST(PjrtCApiGpuAllocatorTest, InvalidAllocatorOptionsParsing) { auto api = GetPjrtApi(); absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"allocator", static_cast<std::string>("invalid_allocator")}, {"memory_fraction", 0.5f}, {"preallocate", true}, }; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_Client_Create_Args create_arg; create_arg.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.client = nullptr; create_arg.create_options = c_options.data(); create_arg.num_options = c_options.size(); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_NE(error, nullptr); EXPECT_THAT(error->status, ::tsl::testing::StatusIs( absl::StatusCode::kUnimplemented, "Allocator invalid_allocator not supported for PJRT GPU " "plugin. Supported allocator options are: 'default', " "'platform', 'bfc' and 'cuda_async'.")); PJRT_Error_Destroy_Args error_destroy_args; error_destroy_args.struct_size = PJRT_Error_Destroy_Args_STRUCT_SIZE; error_destroy_args.extension_start = nullptr; error_destroy_args.error = error; api->PJRT_Error_Destroy(&error_destroy_args); } TEST(PjrtCApiPlatformNameTest, AvailablePlatformName) { auto api = GetPjrtApi(); std::string expected_platform_name_for_cuda = "cuda"; std::string expected_platform_name_for_rocm = "rocm"; absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"platform_name", static_cast<std::string>("gpu")}, {"allocator", static_cast<std::string>("default")}, {"visible_devices", xla::PjRtValueType(std::vector<int64_t>{0, 1})}, }; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_Client_Create_Args create_arg; create_arg.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.client = nullptr; create_arg.create_options = c_options.data(); create_arg.num_options = c_options.size(); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_EQ(error, nullptr) << error->status.message(); PJRT_Client_PlatformName_Args platform_name_args; platform_name_args.struct_size = PJRT_Client_PlatformName_Args_STRUCT_SIZE; platform_name_args.extension_start = nullptr; platform_name_args.client = create_arg.client; PJRT_Error* platform_name_error = api->PJRT_Client_PlatformName(&platform_name_args); EXPECT_EQ(platform_name_error, nullptr); #if TENSORFLOW_USE_ROCM EXPECT_EQ(platform_name_args.platform_name, expected_platform_name_for_rocm); #else EXPECT_EQ(platform_name_args.platform_name, expected_platform_name_for_cuda); #endif PJRT_Client_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_Client_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.client = create_arg.client; PJRT_Error* destroy_error = api->PJRT_Client_Destroy(&destroy_args); CHECK_EQ(destroy_error, nullptr); } TEST(PjrtCApiPlatformNameTest, UnavailablePlatformName) { auto api = GetPjrtApi(); absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"platform_name", static_cast<std::string>("invalid_platform_name")}, {"allocator", static_cast<std::string>("default")}, {"visible_devices", xla::PjRtValueType(std::vector<int64_t>{0, 1})}, }; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_Client_Create_Args create_arg; create_arg.struct_size = PJRT_Client_Create_Args_STRUCT_SIZE; create_arg.extension_start = nullptr; create_arg.client = nullptr; create_arg.create_options = c_options.data(); create_arg.num_options = c_options.size(); PJRT_Error* error = api->PJRT_Client_Create(&create_arg); EXPECT_NE(error, nullptr); EXPECT_THAT(error->status, ::tsl::testing::StatusIs( absl::StatusCode::kNotFound, testing::StartsWith("Could not find registered platform with " "name: \"invalid_platform_name\". " "Available platform names are:"))); PJRT_Error_Destroy_Args error_destroy_args; error_destroy_args.struct_size = PJRT_Error_Destroy_Args_STRUCT_SIZE; error_destroy_args.extension_start = nullptr; error_destroy_args.error = error; api->PJRT_Error_Destroy(&error_destroy_args); } TEST(PJRTGpuDeviceTopologyTest, CreateGpuTopology) { auto pjrt_api = gpu_plugin::GetGpuPjrtApi(); PJRT_TopologyDescription_Create_Args args; args.struct_size = PJRT_TopologyDescription_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = nullptr; args.num_options = 0; args.create_options = nullptr; PJRT_Error* error = pjrt_api->PJRT_TopologyDescription_Create(&args); EXPECT_EQ(error, nullptr) << error->status.message(); auto pjrt_topology = reinterpret_cast<const PJRT_TopologyDescription*>(args.topology); ASSERT_NE(pjrt_topology, nullptr); #ifdef TENSORFLOW_USE_ROCM EXPECT_EQ(pjrt_topology->topology->platform_id(), xla::RocmId()); EXPECT_EQ(pjrt_topology->topology->platform_name(), xla::RocmName()); #else EXPECT_EQ(pjrt_topology->topology->platform_id(), xla::CudaId()); EXPECT_EQ(pjrt_topology->topology->platform_name(), xla::CudaName()); #endif PJRT_TopologyDescription_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_TopologyDescription_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.topology = const_cast<PJRT_TopologyDescription*>(pjrt_topology); PJRT_Error* destroy_error = pjrt_api->PJRT_TopologyDescription_Destroy(&destroy_args); EXPECT_EQ(destroy_error, nullptr) << destroy_error->status.message(); } constexpr char const* kTargetConfigString = R"(gpu_device_info { threads_per_block_limit: 1024 threads_per_warp: 32 shared_memory_per_block: 49152 shared_memory_per_core: 98304 threads_per_core_limit: 2048 core_count: 80 fpus_per_core: 64 block_dim_limit_x: 2147483647 block_dim_limit_y: 65535 block_dim_limit_z: 65535 memory_bandwidth: 898048000000 l2_cache_size: 6291456 clock_rate_ghz: 1.53 device_memory_size: 34072559616 shared_memory_per_block_optin: 98304 cuda_compute_capability { major: 7 } registers_per_core_limit: 65536 registers_per_block_limit: 65536 } platform_name: "CUDA" dnn_version_info { major: 9 minor: 3 } device_description_str: "Tesla V100-SXM2-32GB" )"; TEST(PJRTGpuDeviceTopologyTest, CreateExplicitGpuTopologyAndTargetConfig) { auto pjrt_api = gpu_plugin::GetGpuPjrtApi(); absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"topology", static_cast<std::string>("16 x 2 x 4")}, {"target_config", static_cast<std::string>(kTargetConfigString)}}; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_TopologyDescription_Create_Args args; args.struct_size = PJRT_TopologyDescription_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = nullptr; args.num_options = c_options.size(); args.create_options = c_options.data(); PJRT_Error* error = pjrt_api->PJRT_TopologyDescription_Create(&args); EXPECT_EQ(error, nullptr) << error->status.message(); auto pjrt_topology = reinterpret_cast<const PJRT_TopologyDescription*>(args.topology); ASSERT_NE(pjrt_topology, nullptr); EXPECT_EQ(pjrt_topology->topology->platform_id(), xla::CudaId()); EXPECT_EQ(pjrt_topology->topology->platform_name(), xla::CudaName()); EXPECT_EQ(pjrt_topology->topology->ProcessCount().value(), 16 * 2); EXPECT_EQ(pjrt_topology->topology->DeviceDescriptions().size(), 16 * 2 * 4); EXPECT_EQ(pjrt_topology->topology->DeviceDescriptions()[0]->device_kind(), "Tesla V100-SXM2-32GB"); PJRT_TopologyDescription_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_TopologyDescription_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.topology = const_cast<PJRT_TopologyDescription*>(pjrt_topology); PJRT_Error* destroy_error = pjrt_api->PJRT_TopologyDescription_Destroy(&destroy_args); EXPECT_EQ(destroy_error, nullptr) << destroy_error->status.message(); } TEST(PJRTGpuDeviceTopologyTest, CreateExplicitGpuTopology) { auto pjrt_api = gpu_plugin::GetGpuPjrtApi(); absl::flat_hash_map<std::string, xla::PjRtValueType> options = { {"topology", static_cast<std::string>("16 x 2 x 4")}}; TF_ASSERT_OK_AND_ASSIGN(std::vector<PJRT_NamedValue> c_options, ::pjrt::ConvertToPjRtNamedValueList(options)); PJRT_TopologyDescription_Create_Args args; args.struct_size = PJRT_TopologyDescription_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.topology = nullptr; args.num_options = c_options.size(); args.create_options = c_options.data(); PJRT_Error* error = pjrt_api->PJRT_TopologyDescription_Create(&args); EXPECT_EQ(error, nullptr) << error->status.message(); auto pjrt_topology = reinterpret_cast<const PJRT_TopologyDescription*>(args.topology); ASSERT_NE(pjrt_topology, nullptr); EXPECT_EQ(pjrt_topology->topology->ProcessCount().value(), 16 * 2); EXPECT_EQ(pjrt_topology->topology->DeviceDescriptions().size(), 16 * 2 * 4); PJRT_TopologyDescription_Destroy_Args destroy_args; destroy_args.struct_size = PJRT_TopologyDescription_Destroy_Args_STRUCT_SIZE; destroy_args.extension_start = nullptr; destroy_args.topology = const_cast<PJRT_TopologyDescription*>(pjrt_topology); PJRT_Error* destroy_error = pjrt_api->PJRT_TopologyDescription_Destroy(&destroy_args); EXPECT_EQ(destroy_error, nullptr) << destroy_error->status.message(); } void TestCustomCallV2() {} TEST(PjrtCApiGpuExtensionTest, CustomCallUntyped) { PJRT_Gpu_Register_Custom_Call_Args args; args.struct_size = PJRT_Gpu_Register_Custom_Call_Args_STRUCT_SIZE; std::string function_name = "untyped_function_name"; args.function_name = function_name.c_str(); args.function_name_size = function_name.size(); args.api_version = 0; args.handler_instantiate = nullptr; args.handler_prepare = nullptr; args.handler_initialize = nullptr; args.handler_execute = reinterpret_cast<void*>(&TestCustomCallV2); auto api = GetPjrtApi(); const PJRT_Extension_Base* next = reinterpret_cast<const PJRT_Extension_Base*>(api->extension_start); while (next != nullptr && next->type != PJRT_Extension_Type::PJRT_Extension_Type_Gpu_Custom_Call) { next = next->next; } ASSERT_NE(next, nullptr); PJRT_Error* error = reinterpret_cast<const PJRT_Gpu_Custom_Call*>(next)->custom_call(&args); CHECK_EQ(error, nullptr); void* custom_call = xla::CustomCallTargetRegistry::Global()->Lookup( function_name, stream_executor::GpuPlatformName()); EXPECT_EQ(custom_call, reinterpret_cast<void*>(&TestCustomCallV2)); } TEST(PjrtCApiGpuExtensionTest, CustomCallTyped) { static constexpr auto* noop = +[] { return xla::ffi::Error::Success(); }; XLA_FFI_DEFINE_HANDLER(kNoop, noop, xla::ffi::Ffi::Bind()); PJRT_Gpu_Register_Custom_Call_Args args; args.struct_size = PJRT_Gpu_Register_Custom_Call_Args_STRUCT_SIZE; std::string function_name = "typed_function_name"; args.function_name = function_name.c_str(); args.function_name_size = function_name.size(); args.api_version = 1; args.handler_instantiate = nullptr; args.handler_prepare = nullptr; args.handler_initialize = nullptr; args.handler_execute = reinterpret_cast<void*>(kNoop); auto api = GetPjrtApi(); const PJRT_Extension_Base* next = reinterpret_cast<const PJRT_Extension_Base*>(api->extension_start); while (next != nullptr && next->type != PJRT_Extension_Type::PJRT_Extension_Type_Gpu_Custom_Call) { next = next->next; } ASSERT_NE(next, nullptr); PJRT_Error* error = reinterpret_cast<const PJRT_Gpu_Custom_Call*>(next)->custom_call(&args); CHECK_EQ(error, nullptr); auto registration = xla::ffi::FindHandler(function_name, stream_executor::GpuPlatformName()) .value(); EXPECT_EQ(reinterpret_cast<void*>(registration.bundle.execute), kNoop); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api_gpu.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/c/pjrt_c_api_gpu_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d860f9ce-8480-49bb-8ab4-5ebe9fdd68e0
cpp
google/quiche
oghttp2_util
quiche/http2/adapter/oghttp2_util.cc
quiche/http2/adapter/oghttp2_util_test.cc
#include "quiche/http2/adapter/oghttp2_util.h" namespace http2 { namespace adapter { quiche::HttpHeaderBlock ToHeaderBlock(absl::Span<const Header> headers) { quiche::HttpHeaderBlock block; for (const Header& header : headers) { absl::string_view name = GetStringView(header.first).first; absl::string_view value = GetStringView(header.second).first; block.AppendValueOrAddHeader(name, value); } return block; } } }
#include "quiche/http2/adapter/oghttp2_util.h" #include <utility> #include <vector> #include "quiche/http2/adapter/http2_protocol.h" #include "quiche/http2/adapter/test_frame_sequence.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace adapter { namespace test { namespace { using HeaderPair = std::pair<absl::string_view, absl::string_view>; TEST(ToHeaderBlock, EmptySpan) { quiche::HttpHeaderBlock block = ToHeaderBlock({}); EXPECT_TRUE(block.empty()); } TEST(ToHeaderBlock, ExampleRequestHeaders) { const std::vector<HeaderPair> pairs = {{":authority", "example.com"}, {":method", "GET"}, {":path", "/example.html"}, {":scheme", "http"}, {"accept", "text/plain, text/html"}}; const std::vector<Header> headers = ToHeaders(pairs); quiche::HttpHeaderBlock block = ToHeaderBlock(headers); EXPECT_THAT(block, testing::ElementsAreArray(pairs)); } TEST(ToHeaderBlock, ExampleResponseHeaders) { const std::vector<HeaderPair> pairs = { {":status", "403"}, {"content-length", "1023"}, {"x-extra-info", "humblest apologies"}}; const std::vector<Header> headers = ToHeaders(pairs); quiche::HttpHeaderBlock block = ToHeaderBlock(headers); EXPECT_THAT(block, testing::ElementsAreArray(pairs)); } TEST(ToHeaderBlock, RepeatedRequestHeaderNames) { const std::vector<HeaderPair> pairs = { {":authority", "example.com"}, {":method", "GET"}, {":path", "/example.html"}, {":scheme", "http"}, {"cookie", "chocolate_chips=yes"}, {"accept", "text/plain, text/html"}, {"cookie", "raisins=no"}}; const std::vector<HeaderPair> expected = { {":authority", "example.com"}, {":method", "GET"}, {":path", "/example.html"}, {":scheme", "http"}, {"cookie", "chocolate_chips=yes; raisins=no"}, {"accept", "text/plain, text/html"}}; const std::vector<Header> headers = ToHeaders(pairs); quiche::HttpHeaderBlock block = ToHeaderBlock(headers); EXPECT_THAT(block, testing::ElementsAreArray(expected)); } TEST(ToHeaderBlock, RepeatedResponseHeaderNames) { const std::vector<HeaderPair> pairs = { {":status", "403"}, {"x-extra-info", "sorry"}, {"content-length", "1023"}, {"x-extra-info", "humblest apologies"}, {"content-length", "1024"}, {"set-cookie", "chocolate_chips=yes"}, {"set-cookie", "raisins=no"}}; const std::vector<HeaderPair> expected = { {":status", "403"}, {"x-extra-info", absl::string_view("sorry\0humblest apologies", 24)}, {"content-length", absl::string_view("1023" "\0" "1024", 9)}, {"set-cookie", absl::string_view("chocolate_chips=yes\0raisins=no", 30)}}; const std::vector<Header> headers = ToHeaders(pairs); quiche::HttpHeaderBlock block = ToHeaderBlock(headers); EXPECT_THAT(block, testing::ElementsAreArray(expected)); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/adapter/oghttp2_util.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/adapter/oghttp2_util_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
1cc91eed-892b-4197-b92b-ad38eaf993c4
cpp
google/arolla
lru_cache
arolla/util/lru_cache.h
arolla/util/lru_cache_test.cc
#ifndef AROLLA_UTIL_LRU_CACHE_H_ #define AROLLA_UTIL_LRU_CACHE_H_ #include <cstddef> #include <functional> #include <list> #include <utility> #include "absl/base/nullability.h" #include "absl/container/flat_hash_set.h" #include "absl/hash/hash.h" #include "absl/log/check.h" namespace arolla { template <typename Key, typename Value, typename KeyHash = absl::Hash<Key>, typename KeyEq = std::equal_to<>> class LruCache { public: explicit LruCache(size_t capacity) : capacity_(capacity) { DCHECK_GT(capacity, 0); index_.reserve(capacity + 1); } LruCache(const LruCache&) = delete; LruCache& operator=(const LruCache&) = delete; template <typename K> [[nodiscard]] absl::Nullable<const Value*> LookupOrNull(K&& key) { if (auto it = index_.find(std::forward<K>(key)); it != index_.end()) { entries_.splice(entries_.begin(), entries_, it->entry); return &it->entry->second; } return nullptr; } template <typename K, typename V> [[nodiscard]] absl::Nonnull<const Value*> Put(K&& key, V&& value) { entries_.emplace_front(std::forward<K>(key), std::forward<V>(value)); const auto& [it, ok] = index_.emplace(IndexEntry{entries_.begin()}); if (!ok) { entries_.pop_front(); entries_.splice(entries_.begin(), entries_, it->entry); } else if (entries_.size() > capacity_) { index_.erase(entries_.back().first); entries_.pop_back(); } DCHECK_LE(entries_.size(), capacity_); DCHECK_EQ(entries_.size(), index_.size()); return &entries_.front().second; } void Clear() { entries_.clear(); index_.clear(); } private: using Entry = std::pair<const Key, const Value>; struct IndexEntry { typename std::list<Entry>::iterator entry; }; struct IndexRecordHash { using is_transparent = void; size_t operator()(const IndexEntry& index_record) const { return KeyHash()(index_record.entry->first); } template <typename K> size_t operator()(K&& key) const { return KeyHash()(std::forward<K>(key)); } }; struct IndexRecordEq { using is_transparent = void; bool operator()(const IndexEntry& lhs, const IndexEntry& rhs) const { return KeyEq()(lhs.entry->first, rhs.entry->first); } template <typename K> bool operator()(const IndexEntry& lhs, K&& rhs) const { return KeyEq()(lhs.entry->first, std::forward<K>(rhs)); } }; using Index = absl::flat_hash_set<IndexEntry, IndexRecordHash, IndexRecordEq>; size_t capacity_; std::list<Entry> entries_; Index index_; }; } #endif
#include "arolla/util/lru_cache.h" #include <functional> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/hash/hash.h" #include "absl/strings/string_view.h" namespace arolla { namespace { using ::testing::IsNull; using ::testing::Pointee; TEST(LruCache, BasicBehaviuor) { LruCache<int, double, std::hash<int>, std::equal_to<int>> cache(2); ASSERT_THAT(cache.LookupOrNull(1), IsNull()); ASSERT_THAT(cache.LookupOrNull(2), IsNull()); ASSERT_THAT(cache.LookupOrNull(3), IsNull()); (void)cache.Put(1, 1.5); ASSERT_THAT(cache.LookupOrNull(1), Pointee(1.5)); ASSERT_THAT(cache.LookupOrNull(2), IsNull()); ASSERT_THAT(cache.LookupOrNull(3), IsNull()); (void)cache.Put(2, 2.5); ASSERT_THAT(cache.LookupOrNull(1), Pointee(1.5)); ASSERT_THAT(cache.LookupOrNull(2), Pointee(2.5)); ASSERT_THAT(cache.LookupOrNull(3), IsNull()); (void)cache.Put(3, 3.5); ASSERT_THAT(cache.LookupOrNull(1), IsNull()); ASSERT_THAT(cache.LookupOrNull(2), Pointee(2.5)); ASSERT_THAT(cache.LookupOrNull(3), Pointee(3.5)); } TEST(LruCache, TransparentKeyType) { LruCache<std::string, int, absl::Hash<absl::string_view>, std::equal_to<>> cache(3); (void)cache.Put("1", 1); (void)cache.Put(absl::string_view("2"), 2); (void)cache.Put(std::string("3"), 3); ASSERT_THAT(cache.LookupOrNull("1"), Pointee(1)); ASSERT_THAT(cache.LookupOrNull("2"), Pointee(2)); ASSERT_THAT(cache.LookupOrNull("3"), Pointee(3)); ASSERT_THAT(cache.LookupOrNull(absl::string_view("1")), Pointee(1)); ASSERT_THAT(cache.LookupOrNull(absl::string_view("2")), Pointee(2)); ASSERT_THAT(cache.LookupOrNull(absl::string_view("3")), Pointee(3)); ASSERT_THAT(cache.LookupOrNull(std::string("1")), Pointee(1)); ASSERT_THAT(cache.LookupOrNull(std::string("2")), Pointee(2)); ASSERT_THAT(cache.LookupOrNull(std::string("3")), Pointee(3)); } TEST(LruCache, Clear) { LruCache<int, double> cache(2); ASSERT_THAT(cache.LookupOrNull(1), IsNull()); (void)cache.Put(1, 1.5); ASSERT_THAT(cache.LookupOrNull(1), Pointee(1.5)); cache.Clear(); ASSERT_THAT(cache.LookupOrNull(1), IsNull()); } TEST(LruCache, Overwrite) { LruCache<int, double> cache(2); (void)cache.Put(1, 1.5); ASSERT_THAT(cache.LookupOrNull(1), Pointee(1.5)); (void)cache.Put(1, 2.5); ASSERT_THAT(cache.LookupOrNull(1), Pointee(1.5)); } TEST(LruCache, EvictionOrder) { { LruCache<int, double> cache(2); (void)cache.Put(1, 1.0); (void)cache.Put(2, 2.0); (void)cache.Put(3, 3.0); EXPECT_THAT(cache.LookupOrNull(1), IsNull()); EXPECT_THAT(cache.LookupOrNull(2), Pointee(2.0)); EXPECT_THAT(cache.LookupOrNull(3), Pointee(3.0)); } { LruCache<int, double> cache(2); (void)cache.Put(1, 1.0); (void)cache.Put(2, 2.0); (void)cache.LookupOrNull(1); (void)cache.Put(3, 3.0); EXPECT_THAT(cache.LookupOrNull(1), Pointee(1.0)); EXPECT_THAT(cache.LookupOrNull(2), IsNull()); EXPECT_THAT(cache.LookupOrNull(3), Pointee(3.0)); } { LruCache<int, double> cache(2); (void)cache.Put(1, 1.0); (void)cache.Put(2, 2.0); (void)cache.Put(1, 1.1); (void)cache.Put(3, 3.0); EXPECT_THAT(cache.LookupOrNull(1), Pointee(1.0)); EXPECT_THAT(cache.LookupOrNull(2), IsNull()); EXPECT_THAT(cache.LookupOrNull(3), Pointee(3.0)); } } TEST(LruCache, LookupPointerStability) { LruCache<int, double> cache(3); (void)cache.Put(1, 1.0); (void)cache.Put(2, 2.0); (void)cache.Put(3, 3.0); auto* p0 = cache.LookupOrNull(0); auto* p1 = cache.LookupOrNull(1); auto* p2 = cache.LookupOrNull(2); auto* q0 = cache.LookupOrNull(0); auto* q1 = cache.LookupOrNull(1); auto* q2 = cache.LookupOrNull(2); EXPECT_EQ(p0, q0); EXPECT_EQ(p1, q1); EXPECT_EQ(p2, q2); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/lru_cache.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/lru_cache_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
f24f6e3d-aa16-43d2-9f4f-0415e71257c3
cpp
google/arolla
dict_codegen_literal
arolla/codegen/dict/dict_codegen_literal.cc
arolla/codegen/dict/dict_codegen_literal_test.cc
#include <cstdint> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "arolla/codegen/expr/types.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/dict/dict_types.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_ref.h" #include "arolla/util/bytes.h" #include "arolla/util/text.h" #include "arolla/util/status_macros_backport.h" namespace arolla::codegen { namespace { template <class T> absl::StatusOr<std::string> CppDictLiteralRepr(TypedRef dict_ref) { ASSIGN_OR_RETURN(const KeyToRowDict<T>& dict, dict_ref.As<KeyToRowDict<T>>()); std::vector<std::pair<T, int64_t>> sorted_dict(dict.map().begin(), dict.map().end()); std::sort(sorted_dict.begin(), sorted_dict.end()); std::ostringstream oss; ASSIGN_OR_RETURN(std::string type_name, CppTypeName(::arolla::GetQType<T>())); oss << "::arolla::KeyToRowDict<" << type_name << ">{"; for (const auto& [k, v] : sorted_dict) { ASSIGN_OR_RETURN(std::string key_repr, CppLiteralRepr(TypedRef::FromValue(k))); ASSIGN_OR_RETURN(std::string value_repr, CppLiteralRepr(TypedRef::FromValue(v))); oss << "{" << key_repr << "," << value_repr << "},"; } oss << "}"; return oss.str(); } #define REGISTER_CPP_TYPE(NAME, CTYPE) \ { \ auto status = []() -> absl::Status { \ ASSIGN_OR_RETURN(std::string type_name, CppTypeName(GetQType<CTYPE>())); \ return RegisterCppType( \ GetKeyToRowDictQType<CTYPE>(), \ absl::StrFormat("::arolla::KeyToRowDict<%s>", type_name), \ CppDictLiteralRepr<CTYPE>); \ }(); \ if (!status.ok()) { \ LOG(FATAL) << status.message(); \ } \ } int Register() { REGISTER_CPP_TYPE(INT32, int32_t); REGISTER_CPP_TYPE(INT64, int64_t); REGISTER_CPP_TYPE(UINT64, uint64_t); REGISTER_CPP_TYPE(BOOLEAN, bool); REGISTER_CPP_TYPE(BYTES, ::arolla::Bytes); REGISTER_CPP_TYPE(TEXT, ::arolla::Text); return 0; } int registered = Register(); } }
#include <cstdint> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status_matchers.h" #include "arolla/codegen/expr/types.h" #include "arolla/qtype/dict/dict_types.h" #include "arolla/qtype/typed_ref.h" namespace { using ::absl_testing::IsOkAndHolds; TEST(DictLiteralTest, Sanity) { EXPECT_THAT( arolla::codegen::CppTypeName(arolla::GetKeyToRowDictQType<int32_t>()), IsOkAndHolds("::arolla::KeyToRowDict<int32_t>")); EXPECT_THAT(arolla::codegen::CppLiteralRepr(arolla::TypedRef::FromValue( ::arolla::KeyToRowDict<int32_t>())), IsOkAndHolds("::arolla::KeyToRowDict<int32_t>{}")); EXPECT_THAT( arolla::codegen::CppLiteralRepr(arolla::TypedRef::FromValue( arolla::KeyToRowDict<int32_t>{{{5, 2}, {2, 3}}})), IsOkAndHolds("::arolla::KeyToRowDict<int32_t>{{int32_t{2},int64_t{3}},{" "int32_t{5},int64_t{2}},}")); } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/codegen/dict/dict_codegen_literal.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/codegen/dict/dict_codegen_literal_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
28c9bf17-b5d5-4830-a34f-6402572d733a
cpp
tensorflow/tensorflow
tflite_inference_stage
tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.cc
tensorflow/lite/tools/evaluation/stages/tflite_inference_stage_test.cc
#include "tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.h" #include <cstring> #include <fstream> #include <memory> #include <string> #include <utility> #include "absl/base/attributes.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/profiling/time.h" #include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" void RegisterSelectedOps(::tflite::MutableOpResolver* resolver); void ABSL_ATTRIBUTE_WEAK RegisterSelectedOps(::tflite::MutableOpResolver* resolver) {} namespace tflite { namespace evaluation { namespace { TfLiteModelInfo GetTfliteModelInfo(const Interpreter& interpreter) { TfLiteModelInfo model_info; for (int i : interpreter.inputs()) { model_info.inputs.push_back(interpreter.tensor(i)); } for (int i : interpreter.outputs()) { model_info.outputs.push_back(interpreter.tensor(i)); } return model_info; } } void TfliteInferenceStage::UpdateModelInfo() { model_info_ = GetTfliteModelInfo(*interpreter_); outputs_.clear(); outputs_.reserve(interpreter_->outputs().size()); for (int i : interpreter_->outputs()) { TfLiteTensor* tensor = interpreter_->tensor(i); outputs_.push_back(tensor->data.raw); } } TfLiteStatus TfliteInferenceStage::ResizeInputs( const std::vector<std::vector<int>>& shapes) { const std::vector<int>& interpreter_inputs = interpreter_->inputs(); if (interpreter_inputs.size() != shapes.size()) { LOG(ERROR) << "New shape is not compatible"; return kTfLiteError; } for (int j = 0; j < shapes.size(); ++j) { int i = interpreter_inputs[j]; TfLiteTensor* t = interpreter_->tensor(i); if (t->type != kTfLiteString) { TF_LITE_ENSURE_STATUS(interpreter_->ResizeInputTensor(i, shapes[j])); } } TF_LITE_ENSURE_STATUS(interpreter_->AllocateTensors()); UpdateModelInfo(); return kTfLiteOk; } TfLiteStatus TfliteInferenceStage::ApplyCustomDelegate( Interpreter::TfLiteDelegatePtr delegate) { if (!interpreter_) { LOG(ERROR) << "Stage not initialized before calling ApplyCustomDelegate"; return kTfLiteError; } if (!delegate) { LOG(WARNING) << "Tried to apply null TfLiteDelegatePtr to TfliteInferenceStage"; return kTfLiteOk; } delegates_.push_back(std::move(delegate)); TF_LITE_ENSURE_STATUS( interpreter_->ModifyGraphWithDelegate(delegates_.back().get())); UpdateModelInfo(); return kTfLiteOk; } TfLiteStatus TfliteInferenceStage::Init( const DelegateProviders* delegate_providers) { if (!config_.specification().has_tflite_inference_params()) { LOG(ERROR) << "TfliteInferenceParams not provided"; return kTfLiteError; } auto& params = config_.specification().tflite_inference_params(); if (!params.has_model_file_path()) { LOG(ERROR) << "Model path not provided"; return kTfLiteError; } std::ifstream model_check(params.model_file_path()); if (!model_check.good()) { LOG(ERROR) << "Model file not found"; return kTfLiteError; } model_ = FlatBufferModel::BuildFromFile(params.model_file_path().c_str()); bool apply_default_delegates = true; if (delegate_providers != nullptr) { const auto& provider_params = delegate_providers->GetAllParams(); if (provider_params.HasParam("use_xnnpack") && provider_params.HasValueSet<bool>("use_xnnpack") && !provider_params.Get<bool>("use_xnnpack")) { apply_default_delegates = false; } } if (apply_default_delegates) { resolver_ = std::make_unique<ops::builtin::BuiltinOpResolver>(); } else { resolver_ = std::make_unique< ops::builtin::BuiltinOpResolverWithoutDefaultDelegates>(); } RegisterSelectedOps(resolver_.get()); InterpreterBuilder(*model_, *resolver_)(&interpreter_); if (!interpreter_) { LOG(ERROR) << "Could not build interpreter"; return kTfLiteError; } interpreter_->SetNumThreads(params.num_threads()); if (!delegate_providers) { std::string error_message; auto delegate = CreateTfLiteDelegate(params, &error_message); if (delegate) { delegates_.push_back(std::move(delegate)); LOG(INFO) << "Successfully created " << params.Delegate_Name(params.delegate()) << " delegate."; } else { LOG(WARNING) << error_message; } } else { auto delegates = delegate_providers->CreateAllDelegates(params); for (auto& one : delegates) delegates_.push_back(std::move(one.delegate)); } for (int i = 0; i < delegates_.size(); ++i) { if (interpreter_->ModifyGraphWithDelegate(delegates_[i].get()) != kTfLiteOk) { LOG(FATAL) << "Failed to apply delegate " << i; } } interpreter_->AllocateTensors(); UpdateModelInfo(); return kTfLiteOk; } TfLiteStatus TfliteInferenceStage::Run() { if (!inputs_) { LOG(ERROR) << "Input data not set"; return kTfLiteError; } for (int i = 0; i < interpreter_->inputs().size(); ++i) { TfLiteTensor* tensor = interpreter_->tensor(interpreter_->inputs()[i]); tensor->data.raw = static_cast<char*>(inputs_->at(i)); } auto& params = config_.specification().tflite_inference_params(); for (int i = 0; i < params.invocations_per_run(); ++i) { int64_t start_us = profiling::time::NowMicros(); if (interpreter_->Invoke() != kTfLiteOk) { LOG(ERROR) << "TFLite interpreter failed to invoke at run " << i; return kTfLiteError; } latency_stats_.UpdateStat(profiling::time::NowMicros() - start_us); } return kTfLiteOk; } EvaluationStageMetrics TfliteInferenceStage::LatestMetrics() { auto& params = config_.specification().tflite_inference_params(); EvaluationStageMetrics metrics; auto* latency_metrics = metrics.mutable_process_metrics()->mutable_total_latency(); latency_metrics->set_last_us(latency_stats_.newest()); latency_metrics->set_max_us(latency_stats_.max()); latency_metrics->set_min_us(latency_stats_.min()); latency_metrics->set_sum_us(latency_stats_.sum()); latency_metrics->set_avg_us(latency_stats_.avg()); latency_metrics->set_std_deviation_us(latency_stats_.std_deviation()); metrics.set_num_runs( static_cast<int>(latency_stats_.count() / params.invocations_per_run())); auto* inference_metrics = metrics.mutable_process_metrics()->mutable_tflite_inference_metrics(); inference_metrics->set_num_inferences(latency_stats_.count()); return metrics; } } }
#include "tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/utils.h" namespace tflite { namespace evaluation { namespace { constexpr char kTfliteInferenceStageName[] = "tflite_inference_stage"; constexpr char kModelPath[] = "tensorflow/lite/testdata/add_quantized.bin"; constexpr int kTotalElements = 1 * 8 * 8 * 3; template <typename T> T* SetValues(T array[], T value) { for (int i = 0; i < kTotalElements; i++) { array[i] = value; } return array; } EvaluationStageConfig GetTfliteInferenceStageConfig() { EvaluationStageConfig config; config.set_name(kTfliteInferenceStageName); auto* params = config.mutable_specification()->mutable_tflite_inference_params(); params->set_model_file_path(kModelPath); params->set_invocations_per_run(2); return config; } TEST(TfliteInferenceStage, NoParams) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); config.mutable_specification()->clear_tflite_inference_params(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TfliteInferenceStage, NoModelPath) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); config.mutable_specification() ->mutable_tflite_inference_params() ->clear_model_file_path(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TfliteInferenceStage, IncorrectModelPath) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); config.mutable_specification() ->mutable_tflite_inference_params() ->set_model_file_path("xyz.tflite"); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TfliteInferenceStage, NoInputData) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.Run(), kTfLiteError); } TEST(TfliteInferenceStage, CorrectModelInfo) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); const TfLiteModelInfo* model_info = stage.GetModelInfo(); EXPECT_EQ(model_info->inputs.size(), 1); const TfLiteTensor* tensor = model_info->inputs[0]; EXPECT_EQ(tensor->type, kTfLiteUInt8); EXPECT_EQ(tensor->bytes, kTotalElements); const TfLiteIntArray* input_shape = tensor->dims; EXPECT_EQ(input_shape->data[0], 1); EXPECT_EQ(input_shape->data[1], 8); EXPECT_EQ(input_shape->data[2], 8); EXPECT_EQ(input_shape->data[3], 3); EXPECT_EQ(model_info->outputs.size(), 1); tensor = model_info->outputs[0]; EXPECT_EQ(tensor->type, kTfLiteUInt8); EXPECT_EQ(tensor->bytes, kTotalElements); const TfLiteIntArray* output_shape = tensor->dims; EXPECT_EQ(output_shape->data[0], 1); EXPECT_EQ(output_shape->data[1], 8); EXPECT_EQ(output_shape->data[2], 8); EXPECT_EQ(output_shape->data[3], 3); } TEST(TfliteInferenceStage, TestResizeModel) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.ResizeInputs({{3, 8, 8, 3}}), kTfLiteOk); const TfLiteModelInfo* model_info = stage.GetModelInfo(); EXPECT_EQ(model_info->inputs.size(), 1); const TfLiteTensor* tensor = model_info->inputs[0]; EXPECT_EQ(tensor->type, kTfLiteUInt8); EXPECT_EQ(tensor->bytes, 3 * kTotalElements); const TfLiteIntArray* input_shape = tensor->dims; EXPECT_EQ(input_shape->data[0], 3); EXPECT_EQ(input_shape->data[1], 8); EXPECT_EQ(input_shape->data[2], 8); EXPECT_EQ(input_shape->data[3], 3); EXPECT_EQ(model_info->outputs.size(), 1); tensor = model_info->outputs[0]; EXPECT_EQ(tensor->type, kTfLiteUInt8); EXPECT_EQ(tensor->bytes, 3 * kTotalElements); const TfLiteIntArray* output_shape = tensor->dims; EXPECT_EQ(output_shape->data[0], 3); EXPECT_EQ(output_shape->data[1], 8); EXPECT_EQ(output_shape->data[2], 8); EXPECT_EQ(output_shape->data[3], 3); } TEST(TfliteInferenceStage, CorrectOutput) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); uint8_t input_tensor[kTotalElements]; SetValues(input_tensor, static_cast<uint8_t>(2)); std::vector<void*> inputs; inputs.push_back(input_tensor); stage.SetInputs(inputs); EXPECT_EQ(stage.Run(), kTfLiteOk); uint8_t* output_tensor = static_cast<uint8_t*>(stage.GetOutputs()->at(0)); for (int i = 0; i < kTotalElements; i++) { EXPECT_EQ(output_tensor[i], static_cast<uint8_t>(6)); } EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_EQ(metrics.num_runs(), 1); const auto& latency = metrics.process_metrics().total_latency(); const auto max_latency = latency.max_us(); EXPECT_GT(max_latency, 0); EXPECT_LT(max_latency, 1e7); EXPECT_LE(latency.last_us(), max_latency); EXPECT_LE(latency.min_us(), max_latency); EXPECT_GE(latency.sum_us(), max_latency); EXPECT_LE(latency.avg_us(), max_latency); EXPECT_TRUE(latency.has_std_deviation_us()); EXPECT_EQ( metrics.process_metrics().tflite_inference_metrics().num_inferences(), 2); } TEST(TfliteInferenceStage, CustomDelegate) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); Interpreter::TfLiteDelegatePtr test_delegate = CreateNNAPIDelegate(); EXPECT_NE(stage.ApplyCustomDelegate(std::move(test_delegate)), kTfLiteOk); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.ApplyCustomDelegate(std::move(test_delegate)), kTfLiteOk); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/tflite_inference_stage_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6a6114bb-5dc2-413d-b16f-9cc25ad67de1
cpp
abseil/abseil-cpp
notification
absl/synchronization/notification.cc
absl/synchronization/notification_test.cc
#include "absl/synchronization/notification.h" #include <atomic> #include "absl/base/internal/raw_logging.h" #include "absl/base/internal/tracing.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" namespace absl { ABSL_NAMESPACE_BEGIN void Notification::Notify() { base_internal::TraceSignal(this, TraceObjectKind()); MutexLock l(&this->mutex_); #ifndef NDEBUG if (ABSL_PREDICT_FALSE(notified_yet_.load(std::memory_order_relaxed))) { ABSL_RAW_LOG( FATAL, "Notify() method called more than once for Notification object %p", static_cast<void *>(this)); } #endif notified_yet_.store(true, std::memory_order_release); } Notification::~Notification() { MutexLock l(&this->mutex_); } void Notification::WaitForNotification() const { base_internal::TraceWait(this, TraceObjectKind()); if (!HasBeenNotifiedInternal(&this->notified_yet_)) { this->mutex_.LockWhen( Condition(&HasBeenNotifiedInternal, &this->notified_yet_)); this->mutex_.Unlock(); } base_internal::TraceContinue(this, TraceObjectKind()); } bool Notification::WaitForNotificationWithTimeout( absl::Duration timeout) const { base_internal::TraceWait(this, TraceObjectKind()); bool notified = HasBeenNotifiedInternal(&this->notified_yet_); if (!notified) { notified = this->mutex_.LockWhenWithTimeout( Condition(&HasBeenNotifiedInternal, &this->notified_yet_), timeout); this->mutex_.Unlock(); } base_internal::TraceContinue(notified ? this : nullptr, TraceObjectKind()); return notified; } bool Notification::WaitForNotificationWithDeadline(absl::Time deadline) const { base_internal::TraceWait(this, TraceObjectKind()); bool notified = HasBeenNotifiedInternal(&this->notified_yet_); if (!notified) { notified = this->mutex_.LockWhenWithDeadline( Condition(&HasBeenNotifiedInternal, &this->notified_yet_), deadline); this->mutex_.Unlock(); } base_internal::TraceContinue(notified ? this : nullptr, TraceObjectKind()); return notified; } ABSL_NAMESPACE_END }
#include "absl/synchronization/notification.h" #include <thread> #include <tuple> #include <vector> #include "gtest/gtest.h" #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/tracing.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" namespace absl { ABSL_NAMESPACE_BEGIN class ThreadSafeCounter { public: ThreadSafeCounter() : count_(0) {} void Increment() { MutexLock lock(&mutex_); ++count_; } int Get() const { MutexLock lock(&mutex_); return count_; } void WaitUntilGreaterOrEqual(int n) { MutexLock lock(&mutex_); auto cond = [this, n]() { return count_ >= n; }; mutex_.Await(Condition(&cond)); } private: mutable Mutex mutex_; int count_; }; static void RunWorker(int i, ThreadSafeCounter* ready_counter, Notification* notification, ThreadSafeCounter* done_counter) { ready_counter->Increment(); notification->WaitForNotification(); done_counter->Increment(); } static void BasicTests(bool notify_before_waiting, Notification* notification) { EXPECT_FALSE(notification->HasBeenNotified()); EXPECT_FALSE( notification->WaitForNotificationWithTimeout(absl::Milliseconds(0))); EXPECT_FALSE(notification->WaitForNotificationWithDeadline(absl::Now())); const absl::Duration delay = absl::Milliseconds(50); const absl::Time start = absl::Now(); EXPECT_FALSE(notification->WaitForNotificationWithTimeout(delay)); const absl::Duration elapsed = absl::Now() - start; const absl::Duration slop = absl::Milliseconds(5); EXPECT_LE(delay - slop, elapsed) << "WaitForNotificationWithTimeout returned " << delay - elapsed << " early (with " << slop << " slop), start time was " << start; ThreadSafeCounter ready_counter; ThreadSafeCounter done_counter; if (notify_before_waiting) { notification->Notify(); } const int kNumThreads = 10; std::vector<std::thread> workers; for (int i = 0; i < kNumThreads; ++i) { workers.push_back(std::thread(&RunWorker, i, &ready_counter, notification, &done_counter)); } if (!notify_before_waiting) { ready_counter.WaitUntilGreaterOrEqual(kNumThreads); EXPECT_EQ(0, done_counter.Get()); notification->Notify(); } notification->WaitForNotification(); EXPECT_TRUE(notification->HasBeenNotified()); EXPECT_TRUE(notification->WaitForNotificationWithTimeout(absl::Seconds(0))); EXPECT_TRUE(notification->WaitForNotificationWithDeadline(absl::Now())); for (std::thread& worker : workers) { worker.join(); } EXPECT_EQ(kNumThreads, ready_counter.Get()); EXPECT_EQ(kNumThreads, done_counter.Get()); } TEST(NotificationTest, SanityTest) { Notification local_notification1, local_notification2; BasicTests(false, &local_notification1); BasicTests(true, &local_notification2); } #if ABSL_HAVE_ATTRIBUTE_WEAK namespace base_internal { namespace { using TraceRecord = std::tuple<const void*, ObjectKind>; thread_local TraceRecord tls_signal; thread_local TraceRecord tls_wait; thread_local TraceRecord tls_continue; thread_local TraceRecord tls_observed; } extern "C" { void ABSL_INTERNAL_C_SYMBOL(AbslInternalTraceWait)(const void* object, ObjectKind kind) { tls_wait = {object, kind}; } void ABSL_INTERNAL_C_SYMBOL(AbslInternalTraceContinue)(const void* object, ObjectKind kind) { tls_continue = {object, kind}; } void ABSL_INTERNAL_C_SYMBOL(AbslInternalTraceSignal)(const void* object, ObjectKind kind) { tls_signal = {object, kind}; } void ABSL_INTERNAL_C_SYMBOL(AbslInternalTraceObserved)(const void* object, ObjectKind kind) { tls_observed = {object, kind}; } } TEST(NotificationTest, TracesNotify) { Notification n; tls_signal = {}; n.Notify(); EXPECT_EQ(tls_signal, TraceRecord(&n, ObjectKind::kNotification)); } TEST(NotificationTest, TracesWaitForNotification) { Notification n; n.Notify(); tls_wait = tls_continue = {}; n.WaitForNotification(); EXPECT_EQ(tls_wait, TraceRecord(&n, ObjectKind::kNotification)); EXPECT_EQ(tls_continue, TraceRecord(&n, ObjectKind::kNotification)); } TEST(NotificationTest, TracesWaitForNotificationWithTimeout) { Notification n; tls_wait = tls_continue = {}; n.WaitForNotificationWithTimeout(absl::Milliseconds(1)); EXPECT_EQ(tls_wait, TraceRecord(&n, ObjectKind::kNotification)); EXPECT_EQ(tls_continue, TraceRecord(nullptr, ObjectKind::kNotification)); n.Notify(); tls_wait = tls_continue = {}; n.WaitForNotificationWithTimeout(absl::Milliseconds(1)); EXPECT_EQ(tls_wait, TraceRecord(&n, ObjectKind::kNotification)); EXPECT_EQ(tls_continue, TraceRecord(&n, ObjectKind::kNotification)); } TEST(NotificationTest, TracesHasBeenNotified) { Notification n; tls_observed = {}; ASSERT_FALSE(n.HasBeenNotified()); EXPECT_EQ(tls_observed, TraceRecord(nullptr, ObjectKind::kUnknown)); n.Notify(); tls_observed = {}; ASSERT_TRUE(n.HasBeenNotified()); EXPECT_EQ(tls_observed, TraceRecord(&n, ObjectKind::kNotification)); } } #endif ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/synchronization/notification.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/synchronization/notification_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
fadd1566-bcfe-4089-be0e-cc0ef7650b6e
cpp
tensorflow/tensorflow
elementwise
tensorflow/lite/delegates/gpu/gl/kernels/elementwise.cc
tensorflow/lite/delegates/gpu/cl/kernels/elementwise_test.cc
#include "tensorflow/lite/delegates/gpu/gl/kernels/elementwise.h" #include <any> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/strings/substitute.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" #include "tensorflow/lite/delegates/gpu/gl/object.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { namespace { class ElementwiseOneArgument : public NodeShader { public: explicit ElementwiseOneArgument(OperationType operation_type) : operation_type_(operation_type) {} absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { std::string source; switch (operation_type_) { case OperationType::ABS: source = "value_0 = abs(value_0);"; break; case OperationType::COS: source = "value_0 = cos(value_0);"; break; case OperationType::COPY: source = "value_0 = value_0;"; break; case OperationType::ELU: source = R"( value_0.x = value_0.x < 0.0 ? exp(value_0.x) - 1.0 : value_0.x; value_0.y = value_0.y < 0.0 ? exp(value_0.y) - 1.0 : value_0.y; value_0.z = value_0.z < 0.0 ? exp(value_0.z) - 1.0 : value_0.z; value_0.w = value_0.w < 0.0 ? exp(value_0.w) - 1.0 : value_0.w; )"; break; case OperationType::EXP: source = "value_0 = exp(value_0);"; break; case tflite::gpu::OperationType::FLOOR: source = "value_0 = floor(value_0);"; break; case tflite::gpu::OperationType::GELU: source = "value_0 = 0.5 * value_0 * (1.0 + tanh(0.7978845608 * (value_0 + " "0.044715 * value_0 * value_0 * value_0)));"; break; case OperationType::HARD_SWISH: source = "value_0 *= clamp(value_0 / 6.0 + vec4(0.5), vec4(0.0), " "vec4(1.0));"; break; case OperationType::LOG: source = R"( const float nan = normalize(vec4(0, 0, 0, 0)).x; value_0.x = value_0.x > 0.0 ? log(value_0.x) : nan; value_0.y = value_0.y > 0.0 ? log(value_0.y) : nan; value_0.z = value_0.z > 0.0 ? log(value_0.z) : nan; value_0.w = value_0.w > 0.0 ? log(value_0.w) : nan; )"; break; case OperationType::NEG: source = "value_0 = -(value_0);"; break; case OperationType::RSQRT: source = R"( const float nan = normalize(vec4(0, 0, 0, 0)).x; value_0.x = value_0.x > 0.0 ? 1.0 / sqrt(value_0.x) : nan; value_0.y = value_0.y > 0.0 ? 1.0 / sqrt(value_0.y) : nan; value_0.z = value_0.z > 0.0 ? 1.0 / sqrt(value_0.z) : nan; value_0.w = value_0.w > 0.0 ? 1.0 / sqrt(value_0.w) : nan; )"; break; case OperationType::SIGMOID: source = "value_0 = 1.0 / (1.0 + exp(-1.0 * value_0));"; break; case OperationType::SIN: source = "value_0 = sin(value_0);"; break; case OperationType::SQRT: source = R"( const float nan = normalize(vec4(0, 0, 0, 0)).x; value_0.x = value_0.x >= 0.0 ? sqrt(value_0.x) : nan; value_0.y = value_0.y >= 0.0 ? sqrt(value_0.y) : nan; value_0.z = value_0.z >= 0.0 ? sqrt(value_0.z) : nan; value_0.w = value_0.w >= 0.0 ? sqrt(value_0.w) : nan; )"; break; case OperationType::SQUARE: source = "value_0 = value_0 * value_0;"; break; case OperationType::TANH: source = "value_0 = tanh(value_0);"; break; default: return absl::InvalidArgumentError( "Incorrect elementwise operation type."); } *generated_code = { {}, {}, {}, uint3(), uint3(), source, IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } private: OperationType operation_type_; }; class ElementwiseTwoArguments : public NodeShader { public: explicit ElementwiseTwoArguments(OperationType operation_type) : operation_type_(operation_type) {} inline bool IsElementwiseSupported(const GenerationContext& ctx) const { return ctx.input_shapes.size() == 2 && ctx.input_shapes[0] == ctx.input_shapes[1]; } inline bool IsBroadcastSupported(const GenerationContext& ctx) const { return ctx.input_shapes.size() == 2 && ctx.input_shapes[1][1] == 1 && ctx.input_shapes[1][2] == 1 && ctx.input_shapes[0][3] == ctx.input_shapes[1][3]; } absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { std::vector<Variable> parameters; std::vector<std::pair<std::string, Object>> objects; std::string argument0, argument1; if (IsElementwiseSupported(ctx)) { argument0 = "value_0"; argument1 = "value_1"; } else if (IsBroadcastSupported(ctx)) { argument0 = "$input_data_0[gid.x, gid.y, gid.z]$"; argument1 = "$input_data_1[0, 0, gid.z]$"; } else { const auto& attr = std::any_cast<const ElementwiseAttributes&>(ctx.op_attr); const auto* tensor = std::get_if<Tensor<Linear, DataType::FLOAT32>>(&attr.param); const auto* scalar = std::get_if<float>(&attr.param); if (!tensor && !scalar) { return absl::InvalidArgumentError( "Couldn't read scalar of const vector data from the attributes."); } argument0 = "value_0"; if (tensor) { argument1 = "$const_data[gid.z]$"; objects.push_back({"const_data", MakeReadonlyObject(tensor->data)}); } else { argument1 = "vec4($const_data$)"; parameters.push_back({"const_data", *scalar}); } if (attr.runtime_tensor_is_second) { argument0 = argument1; argument1 = "value_0"; } } std::string source; switch (operation_type_) { case OperationType::DIV: { source = "value_0 = $0/$1;"; break; } case tflite::gpu::OperationType::FLOOR_DIV: source = "value_0 = floor($0 / $1);"; break; case tflite::gpu::OperationType::FLOOR_MOD: source = "value_0 = $0 - floor($0 / $1) * $1;"; break; case OperationType::MAXIMUM: { source = "value_0 = max($0, $1);"; break; } case OperationType::MINIMUM: { source = "value_0 = min($0, $1);"; break; } case OperationType::SQUARED_DIFF: { source = "value_0 = ($0 - $1) * ($0 - $1);"; break; } case OperationType::SUB: { source = "value_0 = $0 - $1;"; break; } case OperationType::POW: { source = "value_0 = pow($0, $1);"; break; } default: return absl::InvalidArgumentError( "Incorrect elementwise with scalar operation type."); } source = absl::Substitute(source, argument0, argument1); *generated_code = { std::move(parameters), std::move(objects), {}, uint3(), uint3(), source, IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } private: OperationType operation_type_; }; } std::unique_ptr<NodeShader> NewElementwiseNodeShader( OperationType operation_type) { switch (operation_type) { case OperationType::ABS: case OperationType::COS: case OperationType::COPY: case OperationType::ELU: case OperationType::EXP: case OperationType::FLOOR: case OperationType::GELU: case OperationType::HARD_SWISH: case OperationType::LOG: case OperationType::NEG: case OperationType::RSQRT: case OperationType::SIGMOID: case OperationType::SIN: case OperationType::SQRT: case OperationType::SQUARE: case OperationType::TANH: return std::make_unique<ElementwiseOneArgument>(operation_type); case OperationType::DIV: case OperationType::FLOOR_DIV: case OperationType::FLOOR_MOD: case OperationType::MAXIMUM: case OperationType::MINIMUM: case OperationType::POW: case OperationType::SQUARED_DIFF: case OperationType::SUB: return std::make_unique<ElementwiseTwoArguments>(operation_type); default: return nullptr; } } } } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/elementwise_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, Abs) { ASSERT_OK(AbsTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Cos) { ASSERT_OK(CosTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Copy) { ASSERT_OK(CopyTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Elu) { ASSERT_OK(EluTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Exp) { ASSERT_OK(ExpTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Floor) { ASSERT_OK(FloorTest(&exec_env_)); } TEST_F(OpenCLOperationTest, FloorDiv) { ASSERT_OK(FloorDivTest(&exec_env_)); } TEST_F(OpenCLOperationTest, FloorMod) { ASSERT_OK(FloorModTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Gelu) { ASSERT_OK(GeluTest(&exec_env_)); } TEST_F(OpenCLOperationTest, HardSwish) { ASSERT_OK(HardSwishTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Log) { ASSERT_OK(LogTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Neg) { ASSERT_OK(NegTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Rsqrt) { ASSERT_OK(RsqrtTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Sigmoid) { ASSERT_OK(SigmoidTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Sin) { ASSERT_OK(SinTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Sqrt) { ASSERT_OK(SqrtTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Square) { ASSERT_OK(SquareTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Tanh) { ASSERT_OK(TanhTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Sub) { ASSERT_OK(SubTest(&exec_env_)); } TEST_F(OpenCLOperationTest, SquaredDiff) { ASSERT_OK(SquaredDiffTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Div) { ASSERT_OK(DivTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Pow) { ASSERT_OK(PowTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Add) { ASSERT_OK(AddTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Maximum) { ASSERT_OK(MaximumTest(&exec_env_)); } TEST_F(OpenCLOperationTest, MaximumWithScalar) { ASSERT_OK(MaximumWithScalarTest(&exec_env_)); } TEST_F(OpenCLOperationTest, MaximumWithConstantLinearTensor) { ASSERT_OK(MaximumWithConstantLinearTensorTest(&exec_env_)); } TEST_F(OpenCLOperationTest, MaximumWithConstantHWCTensor) { ASSERT_OK(MaximumWithConstantHWCTensorTest(&exec_env_)); } TEST_F(OpenCLOperationTest, MaximumWithConstantHWCTensorBroadcastChannels) { ASSERT_OK(MaximumWithConstantHWCTensorBroadcastChannelsTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Minimum) { ASSERT_OK(MinimumTest(&exec_env_)); } TEST_F(OpenCLOperationTest, MinimumWithScalar) { ASSERT_OK(MinimumWithScalarTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Mul) { ASSERT_OK(MulTest(&exec_env_)); } TEST_F(OpenCLOperationTest, MulBroadcastHW) { ASSERT_OK(MulBroadcastHWTest(&exec_env_)); } TEST_F(OpenCLOperationTest, MulBroadcastChannels) { ASSERT_OK(MulBroadcastChannelsTest(&exec_env_)); } TEST_F(OpenCLOperationTest, SubWithScalarAtFirstPosition) { ASSERT_OK(SubWithScalarAtFirstPositionTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Less) { ASSERT_OK(LessTest(&exec_env_)); } TEST_F(OpenCLOperationTest, LessEqual) { ASSERT_OK(LessEqualTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Greater) { ASSERT_OK(GreaterTest(&exec_env_)); } TEST_F(OpenCLOperationTest, GreaterEqual) { ASSERT_OK(GreaterEqualTest(&exec_env_)); } TEST_F(OpenCLOperationTest, Equal) { ASSERT_OK(EqualTest(&exec_env_)); } TEST_F(OpenCLOperationTest, NotEqual) { ASSERT_OK(NotEqualTest(&exec_env_)); } TEST_F(OpenCLOperationTest, CosBroadcast) { ASSERT_OK(CosBroadcastTest(&exec_env_)); } TEST_F(OpenCLOperationTest, MaximumScalarBroadcastInput) { ASSERT_OK(MaximumScalarBroadcastInputTest(&exec_env_)); } TEST_F(OpenCLOperationTest, MulLinearBroadcastInput) { ASSERT_OK(MulLinearBroadcastInputTest(&exec_env_)); } TEST_F(OpenCLOperationTest, MulBroadcastBothInputs) { ASSERT_OK(MulBroadcastBothInputsTest(&exec_env_)); } TEST_F(OpenCLOperationTest, LogicalAndTest) { ASSERT_OK(LogicalAndTest(&exec_env_)); } TEST_F(OpenCLOperationTest, LogicalAndWithConstantTest) { ASSERT_OK(LogicalAndWithConstantTest(&exec_env_)); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/kernels/elementwise.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/kernels/elementwise_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
dd9b6d0b-cfde-4480-9c14-d8bc39df53b2
cpp
tensorflow/tensorflow
criticality
third_party/xla/third_party/tsl/tsl/platform/default/criticality.h
third_party/xla/third_party/tsl/tsl/platform/criticality_test.cc
#ifndef TENSORFLOW_TSL_PLATFORM_DEFAULT_CRITICALITY_H_ #define TENSORFLOW_TSL_PLATFORM_DEFAULT_CRITICALITY_H_ namespace tsl { namespace criticality { inline Criticality GetCriticality() { return Criticality::kCritical; } } } #endif
#include "tsl/platform/criticality.h" #include "tsl/platform/test.h" namespace tsl { namespace criticality { TEST(CriticalityTest, Basic) { EXPECT_EQ(GetCriticality(), Criticality::kCritical); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/default/criticality.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/criticality_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1049daff-5780-4d51-8e50-1ccb85757684
cpp
tensorflow/tensorflow
increase_dynamism_for_auto_jit_pass
tensorflow/compiler/jit/increase_dynamism_for_auto_jit_pass.cc
tensorflow/compiler/jit/increase_dynamism_for_auto_jit_pass_test.cc
#include "tensorflow/compiler/jit/increase_dynamism_for_auto_jit_pass.h" #include <iterator> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/framework/scope_internal.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/xla_cluster_util.h" #include "xla/status_macros.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/dump_graph.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { template <class T> using StatusOrOptional = StatusOr<std::optional<T>>; StatusOrOptional<Tensor> TryToGetTensorFromConstOp(Node* n) { if (n->type_string() != "Const") { return {std::nullopt}; } const TensorProto* proto = nullptr; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "value", &proto)); Tensor tensor(proto->dtype()); TF_RET_CHECK(tensor.FromProto(*proto)); return {tensor}; } struct SliceInputs { Output slice_op; Output input; Output begin; Output size; std::vector<int64_t> size_as_vector; }; std::vector<int64_t> IntTensorAsVector(const Tensor& t) { DCHECK(t.dtype() == DT_INT32 || t.dtype() == DT_INT64); std::vector<int64_t> result; result.reserve(t.NumElements()); for (int i = 0; i < t.NumElements(); i++) { int64_t element = t.dtype() == DT_INT32 ? static_cast<int64_t>(t.flat<int32>()(i)) : t.flat<int64_t>()(i); result.push_back(element); } return result; } StatusOrOptional<SliceInputs> GetSliceInputs(Node* slice) { const int kSliceInputIndex = 0; const int kSliceBeginIndex = 1; const int kSliceSizeIndex = 2; const Edge* slice_input_edge; TF_RETURN_IF_ERROR(slice->input_edge(kSliceInputIndex, &slice_input_edge)); const Edge* slice_size_edge; TF_RETURN_IF_ERROR(slice->input_edge(kSliceSizeIndex, &slice_size_edge)); const Edge* slice_begin_edge; TF_RETURN_IF_ERROR(slice->input_edge(kSliceBeginIndex, &slice_begin_edge)); SliceInputs slice_inputs; slice_inputs.input = Output(slice_input_edge->src(), slice_input_edge->src_output()); slice_inputs.begin = Output(slice_begin_edge->src(), slice_begin_edge->src_output()); slice_inputs.size = Output(slice_size_edge->src(), slice_size_edge->src_output()); TF_ASSIGN_OR_RETURN(std::optional<Tensor> tf_slice_size, TryToGetTensorFromConstOp(slice_inputs.size.node())); if (!tf_slice_size.has_value()) { return {std::nullopt}; } if (tf_slice_size->dims() != 1) { return {std::nullopt}; } slice_inputs.size_as_vector = IntTensorAsVector(*tf_slice_size); return {slice_inputs}; } Output MakeInt64(const Scope& host_scope, absl::string_view name, const Output& x) { return x.type() == DT_INT64 ? x : ops::Cast(host_scope.WithOpName(name, "_s64"), x, DT_INT64); } SliceInputs MakeSliceIndexAndSizeInt64(const Scope& host_scope, const SliceInputs& slice_inputs) { SliceInputs result; result.input = slice_inputs.input; result.begin = MakeInt64(host_scope, "begin", slice_inputs.begin); result.size = MakeInt64(host_scope, "size", slice_inputs.size); result.size_as_vector = slice_inputs.size_as_vector; return result; } class ConstantCache { public: explicit ConstantCache(const Scope& s, const std::vector<const Edge*>& control_deps) : scope_(s), control_deps_(control_deps) {} Output Get1DHostConstant(int64_t constant) { auto it = cache_.find(constant); if (it == cache_.end()) { Output new_const = ops::Const(scope_.WithOpName("const_", constant), {constant}); it = cache_.insert({constant, new_const}).first; for (const Edge* e : control_deps_) { scope_.graph()->AddControlEdge(e->src(), new_const.node()); } } return it->second; } private: Scope scope_; std::unordered_map<int, Output> cache_; std::vector<const Edge*> control_deps_; }; Status ComputeSliceSize(const Scope& host_scope, const SliceInputs& slice_inputs, std::vector<const Edge*> control_deps, Output* size) { if (absl::c_all_of(slice_inputs.size_as_vector, [](int64_t i) { return i >= 0; })) { *size = slice_inputs.size; return absl::OkStatus(); } Output input_shape = ops::Shape(host_scope.WithOpName("input_shape"), slice_inputs.input, ops::Shape::OutType(DT_INT64)); ConstantCache constant_pool(host_scope, control_deps); std::vector<Output> slice_size; for (int i = 0, end = slice_inputs.size_as_vector.size(); i < end; i++) { if (slice_inputs.size_as_vector[i] >= 0) { slice_size.push_back( constant_pool.Get1DHostConstant(slice_inputs.size_as_vector[i])); continue; } DCHECK_EQ(slice_inputs.size_as_vector[i], -1); Output begin_i = ops::Slice( host_scope.WithOpName("begin_", i), slice_inputs.begin, constant_pool.Get1DHostConstant(i), constant_pool.Get1DHostConstant(1)); Output input_shape_i = ops::Slice( host_scope.WithOpName("input_shape_", i), input_shape, constant_pool.Get1DHostConstant(i), constant_pool.Get1DHostConstant(1)); slice_size.push_back(ops::Sub(host_scope.WithOpName("slice_size_", i), input_shape_i, begin_i)); DCHECK_EQ(slice_size.back().type(), DT_INT64); } if (slice_size.size() == 1) { *size = slice_size[0]; } else { auto concat_axis = ops::Const(host_scope.WithOpName("concat_axis"), 0); for (const Edge* e : control_deps) { host_scope.graph()->AddControlEdge(e->src(), concat_axis.node()); } *size = ops::Concat(host_scope.WithOpName("slice_size"), slice_size, concat_axis); } return absl::OkStatus(); } Status ConvertTensorFlowSliceToStaticShapedSlice( Graph* g, Node* slice, const SliceInputs& slice_inputs, absl::string_view cluster_name, Node** result) { string host_name; TF_RETURN_IF_ERROR(DeviceNameUtils::DeviceNameToCpuDeviceName( slice->assigned_device_name(), &host_name)); Status status; Scope main_scope = NewInternalScope(g, &status, nullptr) .WithXlaCluster(string(cluster_name)) .NewSubScope(absl::StrCat(slice->name(), "/static_shaped_slice")); Scope host_scope = main_scope.WithAssignedDevice(host_name); SliceInputs slice_inputs_int64 = MakeSliceIndexAndSizeInt64(host_scope, slice_inputs); Node* old_size; std::vector<const Edge*> old_size_ctrl_deps; TF_RETURN_IF_ERROR(slice->input_node(2, &old_size)); absl::c_copy_if(old_size->in_edges(), std::back_inserter(old_size_ctrl_deps), [](const Edge* e) { return e->IsControlEdge(); }); Output slice_size; TF_RETURN_IF_ERROR(ComputeSliceSize(host_scope, slice_inputs_int64, old_size_ctrl_deps, &slice_size)); *result = ops::Slice(main_scope.WithAssignedDevice(slice->assigned_device_name()) .WithOpName("static_shaped_slice"), slice_inputs_int64.input, slice_inputs_int64.begin, slice_size) .node(); TF_RETURN_IF_ERROR(main_scope.status()); std::vector<string> compile_time_const_inputs; compile_time_const_inputs.push_back("size"); (*result)->AddAttr(kXlaCompileTimeConstantInputsAttr, compile_time_const_inputs); return status; } void ReplaceTensorFlowSliceWithStaticShapedSlice(Graph* g, Node* slice, Node* static_shaped_slice) { std::vector<const Edge*> slice_out_edges; absl::c_copy(slice->out_edges(), std::back_inserter(slice_out_edges)); for (const Edge* e : slice_out_edges) { DCHECK(e->src_output() == 0 || e->src_output() == Graph::kControlSlot); int src_output = e->src_output(); int dst_input = e->dst_input(); Node* dst = e->dst(); g->RemoveEdge(e); g->AddEdge(static_shaped_slice, src_output, dst, dst_input); } for (const Edge* e : slice->in_edges()) { if (e->IsControlEdge()) { g->AddControlEdge(e->src(), static_shaped_slice); } } g->RemoveNode(slice); } Status RewriteSlice(Graph* g, Node* slice, const SliceInputs& slice_inputs, absl::string_view cluster_name) { VLOG(3) << "Rewriting slice " << slice->name() << " to a \"static shaped\" Slice"; Node* static_shaped_slice; TF_RETURN_IF_ERROR(ConvertTensorFlowSliceToStaticShapedSlice( g, slice, slice_inputs, cluster_name, &static_shaped_slice)); ReplaceTensorFlowSliceWithStaticShapedSlice(g, slice, static_shaped_slice); return absl::OkStatus(); } absl::StatusOr<bool> ShouldRewriteSlice(Node* n) { if (n->type_string() != "Slice") { return false; } if (!GetXlaClusterForNode(*n).has_value()) { return false; } TF_ASSIGN_OR_RETURN(std::optional<SliceInputs> slice_inputs, GetSliceInputs(n)); if (!slice_inputs.has_value()) { return false; } bool slice_size_has_error = absl::c_all_of(slice_inputs->size_as_vector, [](int64_t size_i) { return size_i >= -1; }); if (!slice_size_has_error) { return false; } return !slice_inputs->begin.node()->IsConstant(); } Status FindAndRewriteSlices(Graph* g, bool* changed) { std::vector<Node*> slices_to_rewrite; for (Node* n : g->nodes()) { TF_ASSIGN_OR_RETURN(bool is_rewritable, ShouldRewriteSlice(n)); if (is_rewritable) { slices_to_rewrite.push_back(n); } } for (Node* n : slices_to_rewrite) { TF_ASSIGN_OR_RETURN(std::optional<SliceInputs> slice_inputs, GetSliceInputs(n)); TF_RET_CHECK(slice_inputs.has_value()); TF_RETURN_IF_ERROR( RewriteSlice(g, n, *slice_inputs, *GetXlaClusterForNode(*n))); } if (!slices_to_rewrite.empty()) { FixupSourceAndSinkEdges(g); } *changed = !slices_to_rewrite.empty(); return absl::OkStatus(); } } Status IncreaseDynamismForAutoJitPass::Run( const GraphOptimizationPassOptions& options) { MarkForCompilationPassFlags* flags = GetMarkForCompilationPassFlags(); if (flags->tf_xla_clustering_debug) { DumpGraphToFile("before_increase_dynamism_for_auto_jit_pass", **options.graph, options.flib_def); } bool changed; TF_RETURN_IF_ERROR(FindAndRewriteSlices(options.graph->get(), &changed)); if (changed && flags->tf_xla_clustering_debug) { DumpGraphToFile("increase_dynamism_for_auto_jit_pass", **options.graph, options.flib_def); } return absl::OkStatus(); } }
#include "tensorflow/compiler/jit/increase_dynamism_for_auto_jit_pass.h" #include <gmock/gmock.h> #include "absl/status/status.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/compiler/jit/node_matchers.h" #include "tensorflow/compiler/jit/xla_cluster_util.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session_options.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace { using ::testing::_; using testing::matchers::AssignedDevice; using testing::matchers::Attr; using testing::matchers::Const; using testing::matchers::CtrlDeps; using testing::matchers::Inputs; using testing::matchers::Name; using testing::matchers::NodeWith; using testing::matchers::Op; using testing::matchers::Out; class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& device_attributes) : Device(nullptr, device_attributes) {} Status Sync() override { return errors::Unimplemented("FakeDevice::Sync()"); } Allocator* GetAllocator(AllocatorAttributes attr) override { return nullptr; } static std::unique_ptr<Device> Make(const string& name, const string& type) { DeviceAttributes device_attributes; device_attributes.set_name(name); device_attributes.set_device_type(DeviceType(type).type()); return std::make_unique<FakeDevice>(device_attributes); } }; const char* kHostName = "/job:worker/replica:0/task:0/device:CPU:0"; const char* kDeviceName = "/job:worker/replica:0/task:0/device:GPU:0"; Status IncreaseDynamismForAutoJit(const Scope& s, std::unique_ptr<Graph>* result) { std::vector<std::unique_ptr<Device>> devices; devices.push_back(FakeDevice::Make(kDeviceName, DEVICE_GPU)); devices.push_back(FakeDevice::Make(kHostName, DEVICE_CPU)); std::unique_ptr<DeviceSet> device_set(new DeviceSet()); for (auto& device : devices) { device_set->AddDevice(device.get()); } auto graph = std::make_unique<Graph>(OpRegistry::Global()); SessionOptions session_options; session_options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_global_jit_level(OptimizerOptions::ON_2); GraphOptimizationPassOptions options; options.graph = &graph; options.device_set = device_set.get(); options.session_options = &session_options; std::unordered_map<string, string> assigned_device_names; for (Node* n : s.graph()->nodes()) { assigned_device_names[n->name()] = n->assigned_device_name(); } TF_RETURN_IF_ERROR(s.ToGraph(graph.get())); for (Node* n : graph->nodes()) { n->set_assigned_device_name(assigned_device_names[n->name()]); } IncreaseDynamismForAutoJitPass rewriter; TF_RETURN_IF_ERROR(rewriter.Run(options)); *result = std::move(graph); return absl::OkStatus(); } TEST(SliceToDynamicSliceRewriteTest, Basic) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size = ops::Const(root.WithOpName("size"), {-1, 500}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); const int64_t zero_64 = 0; const int32_t zero_32 = 0; const int64_t one_64 = 1; auto m_input = Out(NodeWith(Op("Placeholder"), Name("input"))); auto m_begin_s64 = Out(NodeWith( Op("Cast"), Inputs(Out(NodeWith(Op("Placeholder"), Name("begin")))))); auto m_input_shape = Out(NodeWith(Op("Shape"), Inputs(m_input))); auto m_slice_size_0 = Out(NodeWith( Op("Sub"), AssignedDevice(kHostName), Inputs( Out(NodeWith(Op("Slice"), AssignedDevice(kHostName), Inputs(m_input_shape, Const(zero_64), Const(one_64)))), Out(NodeWith(Op("Slice"), AssignedDevice(kHostName), Inputs(m_begin_s64, Const(zero_64), Const(one_64))))))); auto m_dynamic_slice_size = Out(NodeWith(Op("ConcatV2"), AssignedDevice(kHostName), Inputs(m_slice_size_0, Const(static_cast<int64_t>(500)), Const(zero_32)))); std::vector<string> compile_time_constant_inputs; compile_time_constant_inputs.push_back("size"); auto m_dynamic_slice = NodeWith( Op("Slice"), AssignedDevice(kDeviceName), Attr(kXlaCompileTimeConstantInputsAttr, compile_time_constant_inputs), Inputs(m_input, m_begin_s64, m_dynamic_slice_size)); Node* static_shaped_slice = testing::FindNodeByName( result.get(), "slice/static_shaped_slice/static_shaped_slice"); ASSERT_NE(static_shaped_slice, nullptr); EXPECT_THAT(static_shaped_slice, m_dynamic_slice); } TEST(SliceToDynamicSliceRewriteTest, SliceFromVector) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size = ops::Const(root.WithOpName("size"), {-1}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* static_shaped_slice = testing::FindNodeByName( result.get(), "slice/static_shaped_slice/static_shaped_slice"); EXPECT_NE(static_shaped_slice, nullptr); EXPECT_THAT(result->nodes(), Not(Contains(NodeWith(Op("ConcatV2"))))); } TEST(SliceToDynamicSliceRewriteTest, ControlDependencePreserved) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size = ops::Const(root.WithOpName("size"), {-1, 500}); Output control_pred = ops::Placeholder(root.WithOpName("control"), DT_BOOL); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); root.graph()->AddControlEdge(control_pred.node(), slice.node()); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* static_shaped_slice = testing::FindNodeByName( result.get(), "slice/static_shaped_slice/static_shaped_slice"); ASSERT_NE(static_shaped_slice, nullptr); EXPECT_THAT(static_shaped_slice, NodeWith(Op("Slice"), CtrlDeps(NodeWith(Op("Placeholder"), Name("control"))))); } int64_t ToInt64(int v) { return static_cast<int64_t>(v); } TEST(SliceToDynamicSliceRewriteTest, Int64Indices) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT64); Output size = ops::Const(root.WithOpName("size"), {ToInt64(-1), ToInt64(500)}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); EXPECT_THAT(result->nodes(), Not(Contains(NodeWith(Op("Cast"))))); } TEST(SliceToDynamicSliceRewriteTest, DontRewriteInvalidSlice) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size_placeholder = ops::Placeholder(root.WithOpName("size_placeholder"), DT_INT32); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size_placeholder); Output size = ops::Const(root.WithOpName("size"), {-8, 500}); TF_ASSERT_OK(root.graph()->UpdateEdge(size.node(), 0, slice.node(), 2)); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); EXPECT_THAT(result->nodes(), Not(Contains(NodeWith(Op("Slice"), Attr(kXlaCompileTimeConstantInputsAttr))))); } TEST(SliceToDynamicSliceRewriteTest, DontRewriteUnclusteredSlice) { Scope root = Scope::NewRootScope().ExitOnError().WithAssignedDevice(kDeviceName); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size = ops::Const(root.WithOpName("size"), {-1, 500}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); EXPECT_THAT(result->nodes(), Not(Contains(NodeWith(Op("Slice"), Attr(kXlaCompileTimeConstantInputsAttr))))); } TEST(SliceToDynamicSliceRewriteTest, DontRewriteSliceWithNonConstSize) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT64); Output size = ops::Placeholder(root.WithOpName("size"), DT_INT64); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); EXPECT_THAT(result->nodes(), Not(Contains(NodeWith(Op("Slice"), Attr(kXlaCompileTimeConstantInputsAttr))))); } TEST(SliceToDynamicSliceRewriteTest, ScalarSlice) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT64); Output size = ops::Const<int64_t>(root.WithOpName("size"), {}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* static_shaped_slice = testing::FindNodeByName( result.get(), "slice/static_shaped_slice/static_shaped_slice"); ASSERT_NE(static_shaped_slice, nullptr); EXPECT_THAT(static_shaped_slice, NodeWith(Op("Slice"), Attr(kXlaCompileTimeConstantInputsAttr), Inputs(_, _, Out(NodeWith(Name(size.node()->name())))))); } TEST(SliceToDynamicSliceRewriteTest, IndicesNotVector) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); auto ToInt64 = [](int v) { return static_cast<int64_t>(v); }; Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT64); Output size_placeholder = ops::Placeholder(root.WithOpName("size"), DT_INT64); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size_placeholder); Output size = ops::Const(root.WithOpName("size"), {{ToInt64(-1)}, {ToInt64(500)}}); TF_ASSERT_OK(root.graph()->UpdateEdge(size.node(), 0, slice.node(), 2)); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); EXPECT_THAT(result->nodes(), Not(Contains(NodeWith(Op("Slice"), Attr(kXlaCompileTimeConstantInputsAttr))))); } TEST(SliceToDynamicSliceRewriteTest, SliceWithSliceInput) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size_a = ops::Const(root.WithOpName("size_a"), {-1, 500}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size_a); Output size_b = ops::Const(root.WithOpName("size_a"), {-1, 200}); Output slice_with_slice_input = ops::Slice( root.WithOpName("slice_with_slice_input"), slice, begin, size_b); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* static_shaped_slice = testing::FindNodeByName( result.get(), "slice_with_slice_input/static_shaped_slice/static_shaped_slice"); ASSERT_NE(static_shaped_slice, nullptr); EXPECT_EQ(static_shaped_slice->output_type(0), DT_FLOAT) << "Expected DT_FLOAT, was " << DataType_Name(static_shaped_slice->output_type(0)); EXPECT_THAT( static_shaped_slice, NodeWith( Op("Slice"), Inputs(Out(NodeWith( Op("Slice"), Name("slice/static_shaped_slice/static_shaped_slice"))), _, _))); } TEST(SliceToDynamicSliceRewriteTest, SliceWithSliceBegin) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input_float = ops::Placeholder(root.WithOpName("input_float"), DT_FLOAT); Output input_i64 = ops::Placeholder(root.WithOpName("input_i64"), DT_INT64); Output begin_begin = ops::Placeholder(root.WithOpName("begin_begin"), DT_INT32); Output begin_size = ops::Const(root.WithOpName("begin_size"), {-1}); Output begin = ops::Slice(root.WithOpName("begin"), input_i64, begin_begin, begin_size); Output size = ops::Const(root.WithOpName("size"), {ToInt64(-1), ToInt64(200)}); Output slice_with_slice_begin = ops::Slice( root.WithOpName("slice_with_slice_begin"), input_float, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* static_shaped_slice = testing::FindNodeByName( result.get(), "slice_with_slice_begin/static_shaped_slice/static_shaped_slice"); ASSERT_NE(static_shaped_slice, nullptr); EXPECT_EQ(static_shaped_slice->output_type(0), DT_FLOAT) << "Expected DT_FLOAT, was " << DataType_Name(static_shaped_slice->output_type(0)); EXPECT_THAT( static_shaped_slice, NodeWith( Op("Slice"), Inputs(_, Out(NodeWith( Op("Slice"), Name("begin/static_shaped_slice/static_shaped_slice"))), _))); } TEST(SliceToDynamicSliceRewriteTest, WithControlDepsToConstant) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Placeholder(root.WithOpName("begin"), DT_INT32); Output size = ops::Const(root.WithOpName("size"), {-1}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); Output dependency = ops::Placeholder(root.WithOpName("dependency"), DT_BOOL); root.graph()->AddControlEdge(dependency.node(), size.node()); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* const_0 = testing::FindNodeByName(result.get(), "slice/static_shaped_slice/const_0"); EXPECT_NE(const_0, nullptr); EXPECT_THAT(const_0, NodeWith(Op("Const"), CtrlDeps(NodeWith(Op("Placeholder"), Name("dependency"))))); } TEST(SliceToDynamicSliceRewriteTest, DontRewriteSliceWithConstBegin) { Scope root = Scope::NewRootScope() .ExitOnError() .WithAssignedDevice(kDeviceName) .WithXlaCluster("cluster_0"); Output input = ops::Placeholder(root.WithOpName("input"), DT_FLOAT); Output begin = ops::Const(root.WithOpName("begin"), {10, 10}); Output size = ops::Const(root.WithOpName("size"), {-1, 500}); Output slice = ops::Slice(root.WithOpName("slice"), input, begin, size); std::unique_ptr<Graph> result; TF_ASSERT_OK(IncreaseDynamismForAutoJit(root, &result)); Node* slice_node = testing::FindNodeByName(result.get(), "slice"); EXPECT_THAT(slice_node, NodeWith(Op("Slice"), Inputs(Out(NodeWith(Op("Placeholder"))), Out(NodeWith(Op("Const"))), Out(NodeWith(Op("Const")))))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/increase_dynamism_for_auto_jit_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/increase_dynamism_for_auto_jit_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fb500ced-65dc-4fb0-889f-5da1a2768a2a
cpp
tensorflow/tensorflow
alias_analysis
third_party/xla/xla/service/llvm_ir/alias_analysis.cc
third_party/xla/xla/service/llvm_ir/alias_analysis_test.cc
#include "xla/service/llvm_ir/alias_analysis.h" #include <map> #include "absl/container/flat_hash_set.h" #include "llvm/IR/MDBuilder.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/buffer_assignment.h" #include "xla/service/hlo_value.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/service/llvm_ir/llvm_type_conversion_util.h" #include "xla/service/logical_buffer.h" #include "xla/shape.h" #include "xla/shape_util.h" namespace xla { namespace llvm_ir { static const BufferAllocation* kParameterAllocation = new BufferAllocation( -1, 0, LogicalBuffer::Color(0)); void AliasAnalysis::AddAliasingInformationToIrArray(const HloInstruction& hlo, llvm_ir::IrArray* array, const ShapeIndex& index) { BufferAllocation::Slice buffer_slice; if (hlo.opcode() == HloOpcode::kParameter && hlo.parent() == module_.entry_computation()) { buffer_slice = BufferAllocation::Slice(kParameterAllocation, 0, 0); } else { auto unique_slice = assignment_.GetUniqueSlice(&hlo, index); if (!unique_slice.ok()) { return; } buffer_slice = unique_slice.value(); } if (module_.config().debug_options().xla_llvm_enable_alias_scope_metadata()) { llvm::MDNode*& alias_scope_md = alias_scope_metadata_[buffer_slice]; if (alias_scope_md == nullptr) { alias_scope_md = GetAliasScopeMetadataForBuffer(buffer_slice, GetAliasDomain()); } if (alias_scope_md != nullptr) { array->AddAliasScopeMetadata(alias_scope_md); } } if (module_.config().debug_options().xla_llvm_enable_noalias_metadata()) { llvm::MDNode*& noalias_md = noalias_metadata_[{buffer_slice, &hlo}]; if (noalias_md == nullptr) { noalias_md = GetNoaliasMetadataForBuffer(buffer_slice, GetAliasDomain(), assignment_, hlo); } if (noalias_md != nullptr) { array->AddNoaliasMetadata(noalias_md); } } if (module_.config() .debug_options() .xla_llvm_enable_invariant_load_metadata()) { if (hlo.opcode() == HloOpcode::kParameter && hlo.parent() == module_.entry_computation()) { array->MarkInvariantOverWholeProgram(context_); } } } llvm::MDNode* AliasAnalysis::GetAliasDomain() { llvm::MDBuilder metadata_builder(*context_); if (alias_domain_ == nullptr) { alias_domain_ = metadata_builder.createAliasScopeDomain("XLA global AA domain"); } return alias_domain_; } llvm::MDNode* AliasAnalysis::GetAliasScopeMetadataForBuffer( const BufferAllocation::Slice& buffer_slice, llvm::MDNode* domain) { if (buffer_slice.allocation() == kParameterAllocation) { return nullptr; } llvm::MDBuilder metadata_builder(domain->getContext()); llvm::MDNode* scope = metadata_builder.createAliasScope( "buffer: " + buffer_slice.ToString(), domain); llvm::MDNode* scope_list = llvm::MDNode::get(domain->getContext(), scope); return scope_list; } llvm::MDNode* AliasAnalysis::GetNoaliasMetadataForBuffer( const BufferAllocation::Slice& buffer_slice, llvm::MDNode* domain, const BufferAssignment& assignment, const HloInstruction& hlo) { std::vector<const HloValue*> worklist; absl::flat_hash_set<const HloInstruction*> added_to_worklist; auto add_buffers_to_worklist = [&](const HloInstruction* instruction) { if (instruction->opcode() == HloOpcode::kParameter) { return; } if (added_to_worklist.contains(instruction)) { return; } added_to_worklist.insert(instruction); ShapeUtil::ForEachSubshape( instruction->shape(), [&](const Shape& , const ShapeIndex& index) { for (const HloValue* buffer : assignment.GetSourceBuffers(instruction, index)) { if (assignment.HasAllocation(*buffer)) { worklist.push_back(buffer); } } }); }; for (HloInstruction* user : hlo.users()) { add_buffers_to_worklist(user); for (HloInstruction* operand : user->operands()) { add_buffers_to_worklist(operand); } } add_buffers_to_worklist(&hlo); for (HloInstruction* operand : hlo.operands()) { add_buffers_to_worklist(operand); } std::set<BufferAllocation::Slice> buffers; for (const HloValue* buffer : worklist) { const BufferAllocation::Slice noalias_slice = assignment.GetAssignedAllocation(*buffer).GetSlice(*buffer); if (!buffer_slice.OverlapsWith(noalias_slice)) { buffers.insert(noalias_slice); constexpr int kMaxNoAliasSetSize = 500; if (buffers.size() >= kMaxNoAliasSetSize) { break; } } } if (buffers.empty()) { return nullptr; } llvm::MDBuilder metadata_builder(domain->getContext()); std::vector<llvm::Metadata*> scopes; for (const BufferAllocation::Slice noalias_slice : buffers) { llvm::MDNode* scope = metadata_builder.createAliasScope( "buffer: " + noalias_slice.ToString(), domain); scopes.push_back(scope); } llvm::MDNode* noalias_list = llvm::MDNode::get(domain->getContext(), AsArrayRef(scopes)); return noalias_list; } } }
#include "absl/status/status.h" #include "xla/ffi/ffi.h" #include "xla/ffi/ffi_api.h" #include "xla/service/cpu/tests/cpu_codegen_test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla.pb.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { class AliasAnalysisTest : public CpuCodegenTest { DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_cpu_use_thunk_runtime(false); return debug_options; } }; static absl::Status FakeCustomCallTarget(ffi::AnyBuffer, ffi::Result<ffi::AnyBuffer>) { return absl::OkStatus(); } XLA_FFI_DEFINE_HANDLER(kFakeCustomCallTarget, FakeCustomCallTarget, ffi::Ffi::Bind() .Arg<ffi::AnyBuffer>() .Ret<ffi::AnyBuffer>() ); XLA_FFI_REGISTER_HANDLER(ffi::GetXlaFfiApi(), "__xla_test$$FakeCustomCallTarget", "Host", kFakeCustomCallTarget); TEST_F(AliasAnalysisTest, EmbeddedComputationParamsMayAliasTemps) { const char* hlo_string = R"( HloModule while body { const.0.125 = f32[] constant(0.125) body.state = f32[] parameter(0) ROOT add.2.2 = f32[] add(const.0.125, body.state) } condition { const.100 = f32[] constant(100) condition.state = f32[] parameter(0) addend = f32[] custom-call(condition.state), custom_call_target="__xla_test$$FakeCustomCallTarget", api_version=API_VERSION_TYPED_FFI add = f32[] add(addend, condition.state) ROOT greater-than = pred[] compare(const.100, add), direction=GT } ENTRY while3 { const.0 = f32[] constant(0) ROOT while = f32[] while(const.0), condition=condition, body=body } )"; CompileAndVerifyIr(hlo_string, R"( ; CHECK-LABEL: @body(ptr %retval ; CHECK: %[[add_result:.*]] = fadd float %[[fadd_lhs:.*]], %[[fadd_rhs:.*]] ; CHECK: store float %[[add_result]], ptr %[[store_dest:.*]], align 4, !alias.scope ![[alias_scope_md_for_store:[0-9]+]] ; ; CHECK-LABEL: @condition(ptr %retval, ptr noalias %run_options, ptr noalias %params ; CHECK: %[[cond_state_buf_ptr:.*]] = getelementptr inbounds ptr, ptr %buffer_table, i64 0 ; CHECK: %[[cond_state_buf_untyped:.*]] = load ptr, ptr %[[cond_state_buf_ptr]] ; CHECK: load float, ptr %[[cond_state_buf_untyped]], align 4, !alias.scope ![[alias_scope_md_for_store]], !noalias ![[noalias_md_for_load:.*]] ; ; CHECK-LABEL: @while3( ![[alias_scope_md_for_store]] = !{![[buffer_idx_0:.*]]} ![[buffer_idx_0]] = !{!"buffer: {index:0, offset:0, size:4}", ![[aa_md_root:.*]]} ![[aa_md_root]] = !{!"XLA global AA domain"} ![[buffer_idx_1:.*]] = !{!"buffer: {index:1, offset:0, size:4}", !3} ![[buffer_idx_1_offset_16:.*]] = !{!"buffer: {index:1, offset:16, size:1}", !3} ![[noalias_md_for_load]] = !{![[buffer_idx_1_offset_16]], ![[buffer_idx_1]]} } )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/llvm_ir/alias_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/llvm_ir/alias_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5da530f5-75a9-4bfc-ad08-cd8396413f6e
cpp
google/quiche
moqt_session
quiche/quic/moqt/moqt_session.cc
quiche/quic/moqt/moqt_session_test.cc
#include "quiche/quic/moqt/moqt_session.h" #include <algorithm> #include <array> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_map.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/node_hash_map.h" #include "absl/functional/bind_front.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/moqt/moqt_framer.h" #include "quiche/quic/moqt/moqt_messages.h" #include "quiche/quic/moqt/moqt_parser.h" #include "quiche/quic/moqt/moqt_priority.h" #include "quiche/quic/moqt/moqt_publisher.h" #include "quiche/quic/moqt/moqt_subscribe_windows.h" #include "quiche/quic/moqt/moqt_track.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_buffer_allocator.h" #include "quiche/common/quiche_stream.h" #include "quiche/common/simple_buffer_allocator.h" #include "quiche/web_transport/web_transport.h" #define ENDPOINT \ (perspective() == Perspective::IS_SERVER ? "MoQT Server: " : "MoQT Client: ") namespace moqt { namespace { using ::quic::Perspective; constexpr MoqtPriority kDefaultSubscriberPriority = 0x80; constexpr webtransport::SendGroupId kMoqtSendGroupId = 0; bool PublisherHasData(const MoqtTrackPublisher& publisher) { absl::StatusOr<MoqtTrackStatusCode> status = publisher.GetTrackStatus(); return status.ok() && DoesTrackStatusImplyHavingData(*status); } SubscribeWindow SubscribeMessageToWindow(const MoqtSubscribe& subscribe, MoqtTrackPublisher& publisher) { const FullSequence sequence = PublisherHasData(publisher) ? publisher.GetLargestSequence() : FullSequence{0, 0}; switch (GetFilterType(subscribe)) { case MoqtFilterType::kLatestGroup: return SubscribeWindow(sequence.group, 0); case MoqtFilterType::kLatestObject: return SubscribeWindow(sequence.group, sequence.object); case MoqtFilterType::kAbsoluteStart: return SubscribeWindow(*subscribe.start_group, *subscribe.start_object); case MoqtFilterType::kAbsoluteRange: return SubscribeWindow(*subscribe.start_group, *subscribe.start_object, *subscribe.end_group, *subscribe.end_object); case MoqtFilterType::kNone: QUICHE_BUG(MoqtSession_Subscription_invalid_filter_passed); return SubscribeWindow(0, 0); } } class DefaultPublisher : public MoqtPublisher { public: static DefaultPublisher* GetInstance() { static DefaultPublisher* instance = new DefaultPublisher(); return instance; } absl::StatusOr<std::shared_ptr<MoqtTrackPublisher>> GetTrack( const FullTrackName& track_name) override { return absl::NotFoundError("No tracks published"); } }; } MoqtSession::MoqtSession(webtransport::Session* session, MoqtSessionParameters parameters, MoqtSessionCallbacks callbacks) : session_(session), parameters_(parameters), callbacks_(std::move(callbacks)), framer_(quiche::SimpleBufferAllocator::Get(), parameters.using_webtrans), publisher_(DefaultPublisher::GetInstance()), local_max_subscribe_id_(parameters.max_subscribe_id), liveness_token_(std::make_shared<Empty>()) {} MoqtSession::ControlStream* MoqtSession::GetControlStream() { if (!control_stream_.has_value()) { return nullptr; } webtransport::Stream* raw_stream = session_->GetStreamById(*control_stream_); if (raw_stream == nullptr) { return nullptr; } return static_cast<ControlStream*>(raw_stream->visitor()); } void MoqtSession::SendControlMessage(quiche::QuicheBuffer message) { ControlStream* control_stream = GetControlStream(); if (control_stream == nullptr) { QUICHE_LOG(DFATAL) << "Trying to send a message on the control stream " "while it does not exist"; return; } control_stream->SendOrBufferMessage(std::move(message)); } void MoqtSession::OnSessionReady() { QUICHE_DLOG(INFO) << ENDPOINT << "Underlying session ready"; if (parameters_.perspective == Perspective::IS_SERVER) { return; } webtransport::Stream* control_stream = session_->OpenOutgoingBidirectionalStream(); if (control_stream == nullptr) { Error(MoqtError::kInternalError, "Unable to open a control stream"); return; } control_stream->SetVisitor( std::make_unique<ControlStream>(this, control_stream)); control_stream_ = control_stream->GetStreamId(); MoqtClientSetup setup = MoqtClientSetup{ .supported_versions = std::vector<MoqtVersion>{parameters_.version}, .role = MoqtRole::kPubSub, .max_subscribe_id = parameters_.max_subscribe_id, .supports_object_ack = parameters_.support_object_acks, }; if (!parameters_.using_webtrans) { setup.path = parameters_.path; } SendControlMessage(framer_.SerializeClientSetup(setup)); QUIC_DLOG(INFO) << ENDPOINT << "Send the SETUP message"; } void MoqtSession::OnSessionClosed(webtransport::SessionErrorCode, const std::string& error_message) { if (!error_.empty()) { return; } QUICHE_DLOG(INFO) << ENDPOINT << "Underlying session closed with message: " << error_message; error_ = error_message; std::move(callbacks_.session_terminated_callback)(error_message); } void MoqtSession::OnIncomingBidirectionalStreamAvailable() { while (webtransport::Stream* stream = session_->AcceptIncomingBidirectionalStream()) { if (control_stream_.has_value()) { Error(MoqtError::kProtocolViolation, "Bidirectional stream already open"); return; } stream->SetVisitor(std::make_unique<ControlStream>(this, stream)); stream->visitor()->OnCanRead(); } } void MoqtSession::OnIncomingUnidirectionalStreamAvailable() { while (webtransport::Stream* stream = session_->AcceptIncomingUnidirectionalStream()) { stream->SetVisitor(std::make_unique<IncomingDataStream>(this, stream)); stream->visitor()->OnCanRead(); } } void MoqtSession::OnDatagramReceived(absl::string_view datagram) { MoqtObject message; absl::string_view payload = ParseDatagram(datagram, message); QUICHE_DLOG(INFO) << ENDPOINT << "Received OBJECT message in datagram for subscribe_id " << message.subscribe_id << " for track alias " << message.track_alias << " with sequence " << message.group_id << ":" << message.object_id << " priority " << message.publisher_priority << " length " << payload.size(); auto [full_track_name, visitor] = TrackPropertiesFromAlias(message); if (visitor != nullptr) { visitor->OnObjectFragment(full_track_name, message.group_id, message.object_id, message.publisher_priority, message.object_status, message.forwarding_preference, payload, true); } } void MoqtSession::Error(MoqtError code, absl::string_view error) { if (!error_.empty()) { return; } QUICHE_DLOG(INFO) << ENDPOINT << "MOQT session closed with code: " << static_cast<int>(code) << " and message: " << error; error_ = std::string(error); session_->CloseSession(static_cast<uint64_t>(code), error); std::move(callbacks_.session_terminated_callback)(error); } void MoqtSession::Announce(FullTrackName track_namespace, MoqtOutgoingAnnounceCallback announce_callback) { if (peer_role_ == MoqtRole::kPublisher) { std::move(announce_callback)( track_namespace, MoqtAnnounceErrorReason{MoqtAnnounceErrorCode::kInternalError, "ANNOUNCE cannot be sent to Publisher"}); return; } if (pending_outgoing_announces_.contains(track_namespace)) { std::move(announce_callback)( track_namespace, MoqtAnnounceErrorReason{ MoqtAnnounceErrorCode::kInternalError, "ANNOUNCE message already outstanding for namespace"}); return; } MoqtAnnounce message; message.track_namespace = track_namespace; SendControlMessage(framer_.SerializeAnnounce(message)); QUIC_DLOG(INFO) << ENDPOINT << "Sent ANNOUNCE message for " << message.track_namespace; pending_outgoing_announces_[track_namespace] = std::move(announce_callback); } bool MoqtSession::SubscribeAbsolute(const FullTrackName& name, uint64_t start_group, uint64_t start_object, RemoteTrack::Visitor* visitor, MoqtSubscribeParameters parameters) { MoqtSubscribe message; message.full_track_name = name; message.subscriber_priority = kDefaultSubscriberPriority; message.group_order = std::nullopt; message.start_group = start_group; message.start_object = start_object; message.end_group = std::nullopt; message.end_object = std::nullopt; message.parameters = std::move(parameters); return Subscribe(message, visitor); } bool MoqtSession::SubscribeAbsolute(const FullTrackName& name, uint64_t start_group, uint64_t start_object, uint64_t end_group, RemoteTrack::Visitor* visitor, MoqtSubscribeParameters parameters) { if (end_group < start_group) { QUIC_DLOG(ERROR) << "Subscription end is before beginning"; return false; } MoqtSubscribe message; message.full_track_name = name; message.subscriber_priority = kDefaultSubscriberPriority; message.group_order = std::nullopt; message.start_group = start_group; message.start_object = start_object; message.end_group = end_group; message.end_object = std::nullopt; message.parameters = std::move(parameters); return Subscribe(message, visitor); } bool MoqtSession::SubscribeAbsolute(const FullTrackName& name, uint64_t start_group, uint64_t start_object, uint64_t end_group, uint64_t end_object, RemoteTrack::Visitor* visitor, MoqtSubscribeParameters parameters) { if (end_group < start_group) { QUIC_DLOG(ERROR) << "Subscription end is before beginning"; return false; } if (end_group == start_group && end_object < start_object) { QUIC_DLOG(ERROR) << "Subscription end is before beginning"; return false; } MoqtSubscribe message; message.full_track_name = name; message.subscriber_priority = kDefaultSubscriberPriority; message.group_order = std::nullopt; message.start_group = start_group; message.start_object = start_object; message.end_group = end_group; message.end_object = end_object; message.parameters = std::move(parameters); return Subscribe(message, visitor); } bool MoqtSession::SubscribeCurrentObject(const FullTrackName& name, RemoteTrack::Visitor* visitor, MoqtSubscribeParameters parameters) { MoqtSubscribe message; message.full_track_name = name; message.subscriber_priority = kDefaultSubscriberPriority; message.group_order = std::nullopt; message.start_group = std::nullopt; message.start_object = std::nullopt; message.end_group = std::nullopt; message.end_object = std::nullopt; message.parameters = std::move(parameters); return Subscribe(message, visitor); } bool MoqtSession::SubscribeCurrentGroup(const FullTrackName& name, RemoteTrack::Visitor* visitor, MoqtSubscribeParameters parameters) { MoqtSubscribe message; message.full_track_name = name; message.subscriber_priority = kDefaultSubscriberPriority; message.group_order = std::nullopt; message.start_group = std::nullopt; message.start_object = 0; message.end_group = std::nullopt; message.end_object = std::nullopt; message.parameters = std::move(parameters); return Subscribe(message, visitor); } bool MoqtSession::SubscribeIsDone(uint64_t subscribe_id, SubscribeDoneCode code, absl::string_view reason_phrase) { auto it = published_subscriptions_.find(subscribe_id); if (it == published_subscriptions_.end()) { return false; } PublishedSubscription& subscription = *it->second; std::vector<webtransport::StreamId> streams_to_reset = subscription.GetAllStreams(); MoqtSubscribeDone subscribe_done; subscribe_done.subscribe_id = subscribe_id; subscribe_done.status_code = code; subscribe_done.reason_phrase = reason_phrase; subscribe_done.final_id = subscription.largest_sent(); SendControlMessage(framer_.SerializeSubscribeDone(subscribe_done)); QUIC_DLOG(INFO) << ENDPOINT << "Sent SUBSCRIBE_DONE message for " << subscribe_id; published_subscriptions_.erase(it); for (webtransport::StreamId stream_id : streams_to_reset) { webtransport::Stream* stream = session_->GetStreamById(stream_id); if (stream == nullptr) { continue; } stream->ResetWithUserCode(kResetCodeSubscriptionGone); } return true; } bool MoqtSession::Subscribe(MoqtSubscribe& message, RemoteTrack::Visitor* visitor) { if (peer_role_ == MoqtRole::kSubscriber) { QUIC_DLOG(INFO) << ENDPOINT << "Tried to send SUBSCRIBE to subscriber peer"; return false; } if (next_subscribe_id_ > peer_max_subscribe_id_) { QUIC_DLOG(INFO) << ENDPOINT << "Tried to send SUBSCRIBE with ID " << next_subscribe_id_ << " which is greater than the maximum ID " << peer_max_subscribe_id_; return false; } message.subscribe_id = next_subscribe_id_++; auto it = remote_track_aliases_.find(message.full_track_name); if (it != remote_track_aliases_.end()) { message.track_alias = it->second; if (message.track_alias >= next_remote_track_alias_) { next_remote_track_alias_ = message.track_alias + 1; } } else { message.track_alias = next_remote_track_alias_++; } if (SupportsObjectAck() && visitor != nullptr) { visitor->OnCanAckObjects(absl::bind_front(&MoqtSession::SendObjectAck, this, message.subscribe_id)); } else { QUICHE_DLOG_IF(WARNING, message.parameters.object_ack_window.has_value()) << "Attempting to set object_ack_window on a connection that does not " "support it."; message.parameters.object_ack_window = std::nullopt; } SendControlMessage(framer_.SerializeSubscribe(message)); QUIC_DLOG(INFO) << ENDPOINT << "Sent SUBSCRIBE message for " << message.full_track_name; active_subscribes_.try_emplace(message.subscribe_id, message, visitor); return true; } webtransport::Stream* MoqtSession::OpenOrQueueDataStream( uint64_t subscription_id, FullSequence first_object) { auto it = published_subscriptions_.find(subscription_id); if (it == published_subscriptions_.end()) { return nullptr; } PublishedSubscription& subscription = *it->second; if (!session_->CanOpenNextOutgoingUnidirectionalStream()) { subscription.AddQueuedOutgoingDataStream(first_object); return nullptr; } return OpenDataStream(subscription, first_object); } webtransport::Stream* MoqtSession::OpenDataStream( PublishedSubscription& subscription, FullSequence first_object) { webtransport::Stream* new_stream = session_->OpenOutgoingUnidirectionalStream(); if (new_stream == nullptr) { QUICHE_BUG(MoqtSession_OpenDataStream_blocked) << "OpenDataStream called when creation of new streams is blocked."; return nullptr; } new_stream->SetVisitor(std::make_unique<OutgoingDataStream>( this, new_stream, subscription, first_object)); subscription.OnDataStreamCreated(new_stream->GetStreamId(), first_object); return new_stream; } void MoqtSession::OnCanCreateNewOutgoingUnidirectionalStream() { while (!subscribes_with_queued_outgoing_data_streams_.empty() && session_->CanOpenNextOutgoingUnidirectionalStream()) { auto next = subscribes_with_queued_outgoing_data_streams_.rbegin(); auto subscription = published_subscriptions_.find(next->subscription_id); if (subscription == published_subscriptions_.end()) { subscribes_with_queued_outgoing_data_streams_.erase((++next).base()); continue; } webtransport::Stream* stream = OpenDataStream(*subscription->second, subscription->second->NextQueuedOutgoingDataStream()); if (stream != nullptr) { stream->visitor()->OnCanWrite(); } } } void MoqtSession::UpdateQueuedSendOrder( uint64_t subscribe_id, std::optional<webtransport::SendOrder> old_send_order, std::optional<webtransport::SendOrder> new_send_order) { if (old_send_order == new_send_order) { return; } if (old_send_order.has_value()) { subscribes_with_queued_outgoing_data_streams_.erase( SubscriptionWithQueuedStream{*old_send_order, subscribe_id}); } if (new_send_order.has_value()) { subscribes_with_queued_outgoing_data_streams_.emplace(*new_send_order, subscribe_id); } } void MoqtSession::GrantMoreSubscribes(uint64_t num_subscribes) { local_max_subscribe_id_ += num_subscribes; MoqtMaxSubscribeId message; message.max_subscribe_id = local_max_subscribe_id_; SendControlMessage(framer_.SerializeMaxSubscribeId(message)); } std::pair<FullTrackName, RemoteTrack::Visitor*> MoqtSession::TrackPropertiesFromAlias(const MoqtObject& message) { auto it = remote_tracks_.find(message.track_alias); RemoteTrack::Visitor* visitor = nullptr; if (it == remote_tracks_.end()) { auto subscribe_it = active_subscribes_.find(message.subscribe_id); if (subscribe_it == active_subscribes_.end()) { return std::pair<FullTrackName, RemoteTrack::Visitor*>( {FullTrackName{}, nullptr}); } ActiveSubscribe& subscribe = subscribe_it->second; visitor = subscribe.visitor; subscribe.received_object = true; if (subscribe.forwarding_preference.has_value()) { if (message.forwarding_preference != *subscribe.forwarding_preference) { Error(MoqtError::kProtocolViolation, "Forwarding preference changes mid-track"); return std::pair<FullTrackName, RemoteTrack::Visitor*>( {FullTrackName{}, nullptr}); } } else { subscribe.forwarding_preference = message.forwarding_preference; } return std::make_pair(subscribe.message.full_track_name, subscribe.visitor); } RemoteTrack& track = it->second; if (!track.CheckForwardingPreference(message.forwarding_preference)) { Error(MoqtError::kProtocolViolation, "Forwarding preference changes mid-track"); return std::pair<FullTrackName, RemoteTrack::Visitor*>( {FullTrackName{}, nullptr}); } return std::make_pair(track.full_track_name(), track.visitor()); } template <class Parser> static void ForwardStreamDataToParser(webtransport::Stream& stream, Parser& parser) { bool fin = quiche::ProcessAllReadableRegions(stream, [&](absl::string_view chunk) { parser.ProcessData(chunk, false); }); if (fin) { parser.ProcessData("", true); } } MoqtSession::ControlStream::ControlStream(MoqtSession* session, webtransport::Stream* stream) : session_(session), stream_(stream), parser_(session->parameters_.using_webtrans, *this) { stream_->SetPriority( webtransport::StreamPriority{kMoqtSendGroupId, kMoqtControlStreamSendOrder}); } void MoqtSession::ControlStream::OnCanRead() { ForwardStreamDataToParser(*stream_, parser_); } void MoqtSession::ControlStream::OnCanWrite() { } void MoqtSession::ControlStream::OnResetStreamReceived( webtransport::StreamErrorCode error) { session_->Error(MoqtError::kProtocolViolation, absl::StrCat("Control stream reset with error code ", error)); } void MoqtSession::ControlStream::OnStopSendingReceived( webtransport::StreamErrorCode error) { session_->Error(MoqtError::kProtocolViolation, absl::StrCat("Control stream reset with error code ", error)); } void MoqtSession::ControlStream::OnClientSetupMessage( const MoqtClientSetup& message) { session_->control_stream_ = stream_->GetStreamId(); if (perspective() == Perspective::IS_CLIENT) { session_->Error(MoqtError::kProtocolViolation, "Received CLIENT_SETUP from server"); return; } if (absl::c_find(message.supported_versions, session_->parameters_.version) == message.supported_versions.end()) { session_->Error(MoqtError::kProtocolViolation, absl::StrCat("Version mismatch: expected 0x", absl::Hex(session_->parameters_.version))); return; } session_->peer_supports_object_ack_ = message.supports_object_ack; QUICHE_DLOG(INFO) << ENDPOINT << "Received the SETUP message"; if (session_->parameters_.perspective == Perspective::IS_SERVER) { MoqtServerSetup response; response.selected_version = session_->parameters_.version; response.role = MoqtRole::kPubSub; response.max_subscribe_id = session_->parameters_.max_subscribe_id; response.supports_object_ack = session_->parameters_.support_object_acks; SendOrBufferMessage(session_->framer_.SerializeServerSetup(response)); QUIC_DLOG(INFO) << ENDPOINT << "Sent the SETUP message"; } if (message.max_subscribe_id.has_value()) { session_->peer_max_subscribe_id_ = *message.max_subscribe_id; } std::move(session_->callbacks_.session_established_callback)(); session_->peer_role_ = *message.role; } void MoqtSession::ControlStream::OnServerSetupMessage( const MoqtServerSetup& message) { if (perspective() == Perspective::IS_SERVER) { session_->Error(MoqtError::kProtocolViolation, "Received SERVER_SETUP from client"); return; } if (message.selected_version != session_->parameters_.version) { session_->Error(MoqtError::kProtocolViolation, absl::StrCat("Version mismatch: expected 0x", absl::Hex(session_->parameters_.version))); return; } session_->peer_supports_object_ack_ = message.supports_object_ack; QUIC_DLOG(INFO) << ENDPOINT << "Received the SETUP message"; if (message.max_subscribe_id.has_value()) { session_->peer_max_subscribe_id_ = *message.max_subscribe_id; } std::move(session_->callbacks_.session_established_callback)(); session_->peer_role_ = *message.role; } void MoqtSession::ControlStream::SendSubscribeError( const MoqtSubscribe& message, SubscribeErrorCode error_code, absl::string_view reason_phrase, uint64_t track_alias) { MoqtSubscribeError subscribe_error; subscribe_error.subscribe_id = message.subscribe_id; subscribe_error.error_code = error_code; subscribe_error.reason_phrase = reason_phrase; subscribe_error.track_alias = track_alias; SendOrBufferMessage( session_->framer_.SerializeSubscribeError(subscribe_error)); } void MoqtSession::ControlStream::OnSubscribeMessage( const MoqtSubscribe& message) { if (session_->peer_role_ == MoqtRole::kPublisher) { QUIC_DLOG(INFO) << ENDPOINT << "Publisher peer sent SUBSCRIBE"; session_->Error(MoqtError::kProtocolViolation, "Received SUBSCRIBE from publisher"); return; } if (message.subscribe_id > session_->local_max_subscribe_id_) { QUIC_DLOG(INFO) << ENDPOINT << "Received SUBSCRIBE with too large ID"; session_->Error(MoqtError::kTooManySubscribes, "Received SUBSCRIBE with too large ID"); return; } QUIC_DLOG(INFO) << ENDPOINT << "Received a SUBSCRIBE for " << message.full_track_name; const FullTrackName& track_name = message.full_track_name; absl::StatusOr<std::shared_ptr<MoqtTrackPublisher>> track_publisher = session_->publisher_->GetTrack(track_name); if (!track_publisher.ok()) { QUIC_DLOG(INFO) << ENDPOINT << "SUBSCRIBE for " << track_name << " rejected by the application: " << track_publisher.status(); SendSubscribeError(message, SubscribeErrorCode::kTrackDoesNotExist, track_publisher.status().message(), message.track_alias); return; } std::optional<FullSequence> largest_id; if (PublisherHasData(**track_publisher)) { largest_id = (*track_publisher)->GetLargestSequence(); } MoqtDeliveryOrder delivery_order = (*track_publisher)->GetDeliveryOrder(); MoqtPublishingMonitorInterface* monitoring = nullptr; auto monitoring_it = session_->monitoring_interfaces_for_published_tracks_.find(track_name); if (monitoring_it != session_->monitoring_interfaces_for_published_tracks_.end()) { monitoring = monitoring_it->second; session_->monitoring_interfaces_for_published_tracks_.erase(monitoring_it); } auto subscription = std::make_unique<MoqtSession::PublishedSubscription>( session_, *std::move(track_publisher), message, monitoring); auto [it, success] = session_->published_subscriptions_.emplace( message.subscribe_id, std::move(subscription)); if (!success) { SendSubscribeError(message, SubscribeErrorCode::kInternalError, "Duplicate subscribe ID", message.track_alias); } MoqtSubscribeOk subscribe_ok; subscribe_ok.subscribe_id = message.subscribe_id; subscribe_ok.group_order = delivery_order; subscribe_ok.largest_id = largest_id; SendOrBufferMessage(session_->framer_.SerializeSubscribeOk(subscribe_ok)); if (largest_id.has_value()) { it->second->Backfill(); } } void MoqtSession::ControlStream::OnSubscribeOkMessage( const MoqtSubscribeOk& message) { auto it = session_->active_subscribes_.find(message.subscribe_id); if (it == session_->active_subscribes_.end()) { session_->Error(MoqtError::kProtocolViolation, "Received SUBSCRIBE_OK for nonexistent subscribe"); return; } MoqtSubscribe& subscribe = it->second.message; QUIC_DLOG(INFO) << ENDPOINT << "Received the SUBSCRIBE_OK for " << "subscribe_id = " << message.subscribe_id << " " << subscribe.full_track_name; RemoteTrack::Visitor* visitor = it->second.visitor; auto [track_iter, new_entry] = session_->remote_tracks_.try_emplace( subscribe.track_alias, subscribe.full_track_name, subscribe.track_alias, visitor); if (it->second.forwarding_preference.has_value()) { if (!track_iter->second.CheckForwardingPreference( *it->second.forwarding_preference)) { session_->Error(MoqtError::kProtocolViolation, "Forwarding preference different in early objects"); return; } } if (visitor != nullptr) { visitor->OnReply(subscribe.full_track_name, std::nullopt); } session_->active_subscribes_.erase(it); } void MoqtSession::ControlStream::OnSubscribeErrorMessage( const MoqtSubscribeError& message) { auto it = session_->active_subscribes_.find(message.subscribe_id); if (it == session_->active_subscribes_.end()) { session_->Error(MoqtError::kProtocolViolation, "Received SUBSCRIBE_ERROR for nonexistent subscribe"); return; } if (it->second.received_object) { session_->Error(MoqtError::kProtocolViolation, "Received SUBSCRIBE_ERROR after object"); return; } MoqtSubscribe& subscribe = it->second.message; QUIC_DLOG(INFO) << ENDPOINT << "Received the SUBSCRIBE_ERROR for " << "subscribe_id = " << message.subscribe_id << " (" << subscribe.full_track_name << ")" << ", error = " << static_cast<int>(message.error_code) << " (" << message.reason_phrase << ")"; RemoteTrack::Visitor* visitor = it->second.visitor; if (message.error_code == SubscribeErrorCode::kRetryTrackAlias) { session_->remote_track_aliases_[subscribe.full_track_name] = message.track_alias; session_->Subscribe(subscribe, visitor); } else if (visitor != nullptr) { visitor->OnReply(subscribe.full_track_name, message.reason_phrase); } session_->active_subscribes_.erase(it); } void MoqtSession::ControlStream::OnUnsubscribeMessage( const MoqtUnsubscribe& message) { session_->SubscribeIsDone(message.subscribe_id, SubscribeDoneCode::kUnsubscribed, ""); } void MoqtSession::ControlStream::OnSubscribeUpdateMessage( const MoqtSubscribeUpdate& message) { auto it = session_->published_subscriptions_.find(message.subscribe_id); if (it == session_->published_subscriptions_.end()) { return; } FullSequence start(message.start_group, message.start_object); std::optional<FullSequence> end; if (message.end_group.has_value()) { end = FullSequence(*message.end_group, message.end_object.has_value() ? *message.end_object : UINT64_MAX); } it->second->Update(start, end, message.subscriber_priority); } void MoqtSession::ControlStream::OnAnnounceMessage( const MoqtAnnounce& message) { if (session_->peer_role_ == MoqtRole::kSubscriber) { QUIC_DLOG(INFO) << ENDPOINT << "Subscriber peer sent SUBSCRIBE"; session_->Error(MoqtError::kProtocolViolation, "Received ANNOUNCE from Subscriber"); return; } std::optional<MoqtAnnounceErrorReason> error = session_->callbacks_.incoming_announce_callback(message.track_namespace); if (error.has_value()) { MoqtAnnounceError reply; reply.track_namespace = message.track_namespace; reply.error_code = error->error_code; reply.reason_phrase = error->reason_phrase; SendOrBufferMessage(session_->framer_.SerializeAnnounceError(reply)); return; } MoqtAnnounceOk ok; ok.track_namespace = message.track_namespace; SendOrBufferMessage(session_->framer_.SerializeAnnounceOk(ok)); } void MoqtSession::ControlStream::OnAnnounceOkMessage( const MoqtAnnounceOk& message) { auto it = session_->pending_outgoing_announces_.find(message.track_namespace); if (it == session_->pending_outgoing_announces_.end()) { session_->Error(MoqtError::kProtocolViolation, "Received ANNOUNCE_OK for nonexistent announce"); return; } std::move(it->second)(message.track_namespace, std::nullopt); session_->pending_outgoing_announces_.erase(it); } void MoqtSession::ControlStream::OnAnnounceErrorMessage( const MoqtAnnounceError& message) { auto it = session_->pending_outgoing_announces_.find(message.track_namespace); if (it == session_->pending_outgoing_announces_.end()) { session_->Error(MoqtError::kProtocolViolation, "Received ANNOUNCE_ERROR for nonexistent announce"); return; } std::move(it->second)( message.track_namespace, MoqtAnnounceErrorReason{message.error_code, std::string(message.reason_phrase)}); session_->pending_outgoing_announces_.erase(it); } void MoqtSession::ControlStream::OnAnnounceCancelMessage( const MoqtAnnounceCancel& message) { } void MoqtSession::ControlStream::OnMaxSubscribeIdMessage( const MoqtMaxSubscribeId& message) { if (session_->peer_role_ == MoqtRole::kSubscriber) { QUIC_DLOG(INFO) << ENDPOINT << "Subscriber peer sent MAX_SUBSCRIBE_ID"; session_->Error(MoqtError::kProtocolViolation, "Received MAX_SUBSCRIBE_ID from Subscriber"); return; } if (message.max_subscribe_id < session_->peer_max_subscribe_id_) { QUIC_DLOG(INFO) << ENDPOINT << "Peer sent MAX_SUBSCRIBE_ID message with " "lower value than previous"; session_->Error(MoqtError::kProtocolViolation, "MAX_SUBSCRIBE_ID message has lower value than previous"); return; } session_->peer_max_subscribe_id_ = message.max_subscribe_id; } void MoqtSession::ControlStream::OnParsingError(MoqtError error_code, absl::string_view reason) { session_->Error(error_code, absl::StrCat("Parse error: ", reason)); } void MoqtSession::ControlStream::SendOrBufferMessage( quiche::QuicheBuffer message, bool fin) { quiche::StreamWriteOptions options; options.set_send_fin(fin); options.set_buffer_unconditionally(true); std::array<absl::string_view, 1> write_vector = {message.AsStringView()}; absl::Status success = stream_->Writev(absl::MakeSpan(write_vector), options); if (!success.ok()) { session_->Error(MoqtError::kInternalError, "Failed to write a control message"); } } void MoqtSession::IncomingDataStream::OnObjectMessage(const MoqtObject& message, absl::string_view payload, bool end_of_message) { QUICHE_DVLOG(1) << ENDPOINT << "Received OBJECT message on stream " << stream_->GetStreamId() << " for subscribe_id " << message.subscribe_id << " for track alias " << message.track_alias << " with sequence " << message.group_id << ":" << message.object_id << " priority " << message.publisher_priority << " forwarding_preference " << MoqtForwardingPreferenceToString( message.forwarding_preference) << " length " << payload.size() << " length " << message.payload_length << (end_of_message ? "F" : ""); if (!session_->parameters_.deliver_partial_objects) { if (!end_of_message) { if (partial_object_.empty()) { partial_object_.reserve(message.payload_length); } absl::StrAppend(&partial_object_, payload); return; } if (!partial_object_.empty()) { absl::StrAppend(&partial_object_, payload); payload = absl::string_view(partial_object_); } } auto [full_track_name, visitor] = session_->TrackPropertiesFromAlias(message); if (visitor != nullptr) { visitor->OnObjectFragment( full_track_name, message.group_id, message.object_id, message.publisher_priority, message.object_status, message.forwarding_preference, payload, end_of_message); } partial_object_.clear(); } void MoqtSession::IncomingDataStream::OnCanRead() { ForwardStreamDataToParser(*stream_, parser_); } void MoqtSession::IncomingDataStream::OnControlMessageReceived() { session_->Error(MoqtError::kProtocolViolation, "Received a control message on a data stream"); } void MoqtSession::IncomingDataStream::OnParsingError(MoqtError error_code, absl::string_view reason) { session_->Error(error_code, absl::StrCat("Parse error: ", reason)); } MoqtSession::PublishedSubscription::PublishedSubscription( MoqtSession* session, std::shared_ptr<MoqtTrackPublisher> track_publisher, const MoqtSubscribe& subscribe, MoqtPublishingMonitorInterface* monitoring_interface) : subscription_id_(subscribe.subscribe_id), session_(session), track_publisher_(track_publisher), track_alias_(subscribe.track_alias), window_(SubscribeMessageToWindow(subscribe, *track_publisher)), subscriber_priority_(subscribe.subscriber_priority), subscriber_delivery_order_(subscribe.group_order), monitoring_interface_(monitoring_interface) { track_publisher->AddObjectListener(this); if (monitoring_interface_ != nullptr) { monitoring_interface_->OnObjectAckSupportKnown( subscribe.parameters.object_ack_window.has_value()); } QUIC_DLOG(INFO) << ENDPOINT << "Created subscription for " << subscribe.full_track_name; } MoqtSession::PublishedSubscription::~PublishedSubscription() { track_publisher_->RemoveObjectListener(this); } SendStreamMap& MoqtSession::PublishedSubscription::stream_map() { if (!lazily_initialized_stream_map_.has_value()) { QUICHE_DCHECK( DoesTrackStatusImplyHavingData(*track_publisher_->GetTrackStatus())); lazily_initialized_stream_map_.emplace( track_publisher_->GetForwardingPreference()); } return *lazily_initialized_stream_map_; } void MoqtSession::PublishedSubscription::Update( FullSequence start, std::optional<FullSequence> end, MoqtPriority subscriber_priority) { window_.UpdateStartEnd(start, end); subscriber_priority_ = subscriber_priority; } void MoqtSession::PublishedSubscription::set_subscriber_priority( MoqtPriority priority) { if (priority == subscriber_priority_) { return; } if (queued_outgoing_data_streams_.empty()) { subscriber_priority_ = priority; return; } webtransport::SendOrder old_send_order = FinalizeSendOrder(queued_outgoing_data_streams_.rbegin()->first); subscriber_priority_ = priority; session_->UpdateQueuedSendOrder(subscription_id_, old_send_order, FinalizeSendOrder(old_send_order)); }; void MoqtSession::PublishedSubscription::OnNewObjectAvailable( FullSequence sequence) { if (!window_.InWindow(sequence)) { return; } MoqtForwardingPreference forwarding_preference = track_publisher_->GetForwardingPreference(); if (forwarding_preference == MoqtForwardingPreference::kDatagram) { SendDatagram(sequence); return; } std::optional<webtransport::StreamId> stream_id = stream_map().GetStreamForSequence(sequence); webtransport::Stream* raw_stream = nullptr; if (stream_id.has_value()) { raw_stream = session_->session_->GetStreamById(*stream_id); } else { raw_stream = session_->OpenOrQueueDataStream(subscription_id_, sequence); } if (raw_stream == nullptr) { return; } OutgoingDataStream* stream = static_cast<OutgoingDataStream*>(raw_stream->visitor()); stream->SendObjects(*this); } void MoqtSession::PublishedSubscription::Backfill() { const FullSequence start = window_.start(); const FullSequence end = track_publisher_->GetLargestSequence(); const MoqtForwardingPreference preference = track_publisher_->GetForwardingPreference(); absl::flat_hash_set<ReducedSequenceIndex> already_opened; std::vector<FullSequence> objects = track_publisher_->GetCachedObjectsInRange(start, end); QUICHE_DCHECK(absl::c_is_sorted(objects)); for (FullSequence sequence : objects) { auto [it, was_missing] = already_opened.insert(ReducedSequenceIndex(sequence, preference)); if (!was_missing) { continue; } OnNewObjectAvailable(sequence); } } std::vector<webtransport::StreamId> MoqtSession::PublishedSubscription::GetAllStreams() const { if (!lazily_initialized_stream_map_.has_value()) { return {}; } return lazily_initialized_stream_map_->GetAllStreams(); } webtransport::SendOrder MoqtSession::PublishedSubscription::GetSendOrder( FullSequence sequence) const { MoqtForwardingPreference forwarding_preference = track_publisher_->GetForwardingPreference(); MoqtPriority publisher_priority = track_publisher_->GetPublisherPriority(); MoqtDeliveryOrder delivery_order = subscriber_delivery_order().value_or( track_publisher_->GetDeliveryOrder()); switch (forwarding_preference) { case MoqtForwardingPreference::kTrack: return SendOrderForStream(subscriber_priority_, publisher_priority, 0, delivery_order); break; case MoqtForwardingPreference::kSubgroup: return SendOrderForStream(subscriber_priority_, publisher_priority, sequence.group, sequence.subgroup, delivery_order); break; case MoqtForwardingPreference::kDatagram: QUICHE_NOTREACHED(); return 0; } } void MoqtSession::PublishedSubscription::AddQueuedOutgoingDataStream( FullSequence first_object) { std::optional<webtransport::SendOrder> start_send_order = queued_outgoing_data_streams_.empty() ? std::optional<webtransport::SendOrder>() : queued_outgoing_data_streams_.rbegin()->first; webtransport::SendOrder send_order = GetSendOrder(first_object); queued_outgoing_data_streams_.emplace( UpdateSendOrderForSubscriberPriority(send_order, 0), first_object); if (!start_send_order.has_value()) { session_->UpdateQueuedSendOrder(subscription_id_, std::nullopt, send_order); } else if (*start_send_order < send_order) { session_->UpdateQueuedSendOrder( subscription_id_, FinalizeSendOrder(*start_send_order), send_order); } } FullSequence MoqtSession::PublishedSubscription::NextQueuedOutgoingDataStream() { QUICHE_DCHECK(!queued_outgoing_data_streams_.empty()); if (queued_outgoing_data_streams_.empty()) { return FullSequence(); } auto it = queued_outgoing_data_streams_.rbegin(); webtransport::SendOrder old_send_order = FinalizeSendOrder(it->first); FullSequence first_object = it->second; queued_outgoing_data_streams_.erase((++it).base()); if (queued_outgoing_data_streams_.empty()) { session_->UpdateQueuedSendOrder(subscription_id_, old_send_order, std::nullopt); } else { webtransport::SendOrder new_send_order = FinalizeSendOrder(queued_outgoing_data_streams_.rbegin()->first); if (old_send_order != new_send_order) { session_->UpdateQueuedSendOrder(subscription_id_, old_send_order, new_send_order); } } return first_object; } void MoqtSession::PublishedSubscription::OnDataStreamCreated( webtransport::StreamId id, FullSequence start_sequence) { stream_map().AddStream(start_sequence, id); } void MoqtSession::PublishedSubscription::OnDataStreamDestroyed( webtransport::StreamId id, FullSequence end_sequence) { stream_map().RemoveStream(end_sequence, id); } void MoqtSession::PublishedSubscription::OnObjectSent(FullSequence sequence) { if (largest_sent_.has_value()) { largest_sent_ = std::max(*largest_sent_, sequence); } else { largest_sent_ = sequence; } } MoqtSession::OutgoingDataStream::OutgoingDataStream( MoqtSession* session, webtransport::Stream* stream, PublishedSubscription& subscription, FullSequence first_object) : session_(session), stream_(stream), subscription_id_(subscription.subscription_id()), next_object_(first_object), session_liveness_(session->liveness_token_) { UpdateSendOrder(subscription); } MoqtSession::OutgoingDataStream::~OutgoingDataStream() { if (session_liveness_.expired()) { return; } auto it = session_->published_subscriptions_.find(subscription_id_); if (it != session_->published_subscriptions_.end()) { it->second->OnDataStreamDestroyed(stream_->GetStreamId(), next_object_); } } void MoqtSession::OutgoingDataStream::OnCanWrite() { PublishedSubscription* subscription = GetSubscriptionIfValid(); if (subscription == nullptr) { return; } SendObjects(*subscription); } MoqtSession::PublishedSubscription* MoqtSession::OutgoingDataStream::GetSubscriptionIfValid() { auto it = session_->published_subscriptions_.find(subscription_id_); if (it == session_->published_subscriptions_.end()) { stream_->ResetWithUserCode(kResetCodeSubscriptionGone); return nullptr; } PublishedSubscription* subscription = it->second.get(); MoqtTrackPublisher& publisher = subscription->publisher(); absl::StatusOr<MoqtTrackStatusCode> status = publisher.GetTrackStatus(); if (!status.ok()) { return nullptr; } if (!DoesTrackStatusImplyHavingData(*status)) { QUICHE_BUG(GetSubscriptionIfValid_InvalidTrackStatus) << "The track publisher returned a status indicating that no objects " "are available, but a stream for those objects exists."; session_->Error(MoqtError::kInternalError, "Invalid track state provided by application"); return nullptr; } return subscription; } void MoqtSession::OutgoingDataStream::SendObjects( PublishedSubscription& subscription) { while (stream_->CanWrite()) { std::optional<PublishedObject> object = subscription.publisher().GetCachedObject(next_object_); if (!object.has_value()) { break; } if (!subscription.InWindow(next_object_)) { bool success = stream_->SendFin(); QUICHE_BUG_IF(OutgoingDataStream_fin_due_to_update, !success) << "Writing FIN failed despite CanWrite() being true."; return; } SendNextObject(subscription, *std::move(object)); } } void MoqtSession::OutgoingDataStream::SendNextObject( PublishedSubscription& subscription, PublishedObject object) { QUICHE_DCHECK(object.sequence == next_object_); QUICHE_DCHECK(stream_->CanWrite()); MoqtTrackPublisher& publisher = subscription.publisher(); QUICHE_DCHECK(DoesTrackStatusImplyHavingData(*publisher.GetTrackStatus())); MoqtForwardingPreference forwarding_preference = publisher.GetForwardingPreference(); UpdateSendOrder(subscription); MoqtObject header; header.subscribe_id = subscription_id_; header.track_alias = subscription.track_alias(); header.group_id = object.sequence.group; header.object_id = object.sequence.object; header.publisher_priority = publisher.GetPublisherPriority(); header.object_status = object.status; header.forwarding_preference = forwarding_preference; header.subgroup_id = (forwarding_preference == MoqtForwardingPreference::kSubgroup) ? 0 : std::optional<uint64_t>(); header.payload_length = object.payload.length(); quiche::QuicheBuffer serialized_header = session_->framer_.SerializeObjectHeader(header, !stream_header_written_); bool fin = false; switch (forwarding_preference) { case MoqtForwardingPreference::kTrack: if (object.status == MoqtObjectStatus::kEndOfGroup || object.status == MoqtObjectStatus::kGroupDoesNotExist) { ++next_object_.group; next_object_.object = 0; } else { ++next_object_.object; } fin = object.status == MoqtObjectStatus::kEndOfTrack || !subscription.InWindow(next_object_); break; case MoqtForwardingPreference::kSubgroup: ++next_object_.object; fin = object.status == MoqtObjectStatus::kEndOfTrack || object.status == MoqtObjectStatus::kEndOfGroup || object.status == MoqtObjectStatus::kEndOfSubgroup || object.status == MoqtObjectStatus::kGroupDoesNotExist || !subscription.InWindow(next_object_); break; case MoqtForwardingPreference::kDatagram: QUICHE_NOTREACHED(); break; } std::array<absl::string_view, 2> write_vector = { serialized_header.AsStringView(), object.payload.AsStringView()}; quiche::StreamWriteOptions options; options.set_send_fin(fin); absl::Status write_status = stream_->Writev(write_vector, options); if (!write_status.ok()) { QUICHE_BUG(MoqtSession_SendNextObject_write_failed) << "Writing into MoQT stream failed despite CanWrite() being true " "before; status: " << write_status; session_->Error(MoqtError::kInternalError, "Data stream write error"); return; } QUIC_DVLOG(1) << "Stream " << stream_->GetStreamId() << " successfully wrote " << object.sequence << ", fin = " << fin << ", next: " << next_object_; stream_header_written_ = true; subscription.OnObjectSent(object.sequence); } void MoqtSession::PublishedSubscription::SendDatagram(FullSequence sequence) { std::optional<PublishedObject> object = track_publisher_->GetCachedObject(sequence); if (!object.has_value()) { QUICHE_BUG(PublishedSubscription_SendDatagram_object_not_in_cache) << "Got notification about an object that is not in the cache"; return; } MoqtObject header; header.subscribe_id = subscription_id_; header.track_alias = track_alias(); header.group_id = object->sequence.group; header.object_id = object->sequence.object; header.publisher_priority = track_publisher_->GetPublisherPriority(); header.object_status = object->status; header.forwarding_preference = MoqtForwardingPreference::kDatagram; header.subgroup_id = std::nullopt; header.payload_length = object->payload.length(); quiche::QuicheBuffer datagram = session_->framer_.SerializeObjectDatagram( header, object->payload.AsStringView()); session_->session_->SendOrQueueDatagram(datagram.AsStringView()); OnObjectSent(object->sequence); } void MoqtSession::OutgoingDataStream::UpdateSendOrder( PublishedSubscription& subscription) { stream_->SetPriority( webtransport::StreamPriority{kMoqtSendGroupId, subscription.GetSendOrder(next_object_)}); } }
#include "quiche/quic/moqt/moqt_session.h" #include <cstdint> #include <cstring> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "quiche/quic/core/quic_data_reader.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/moqt/moqt_known_track_publisher.h" #include "quiche/quic/moqt/moqt_messages.h" #include "quiche/quic/moqt/moqt_parser.h" #include "quiche/quic/moqt/moqt_priority.h" #include "quiche/quic/moqt/moqt_publisher.h" #include "quiche/quic/moqt/moqt_track.h" #include "quiche/quic/moqt/tools/moqt_mock_visitor.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/quiche_stream.h" #include "quiche/web_transport/test_tools/mock_web_transport.h" #include "quiche/web_transport/web_transport.h" namespace moqt { namespace test { namespace { using ::quic::test::MemSliceFromString; using ::testing::_; using ::testing::AnyNumber; using ::testing::Return; using ::testing::StrictMock; constexpr webtransport::StreamId kControlStreamId = 4; constexpr webtransport::StreamId kIncomingUniStreamId = 15; constexpr webtransport::StreamId kOutgoingUniStreamId = 14; static std::optional<MoqtMessageType> ExtractMessageType( const absl::string_view message) { quic::QuicDataReader reader(message); uint64_t value; if (!reader.ReadVarInt62(&value)) { return std::nullopt; } return static_cast<MoqtMessageType>(value); } static std::shared_ptr<MockTrackPublisher> SetupPublisher( FullTrackName track_name, MoqtForwardingPreference forwarding_preference, FullSequence largest_sequence) { auto publisher = std::make_shared<MockTrackPublisher>(std::move(track_name)); ON_CALL(*publisher, GetTrackStatus()) .WillByDefault(Return(MoqtTrackStatusCode::kInProgress)); ON_CALL(*publisher, GetForwardingPreference()) .WillByDefault(Return(forwarding_preference)); ON_CALL(*publisher, GetLargestSequence()) .WillByDefault(Return(largest_sequence)); return publisher; } } class MoqtSessionPeer { public: static std::unique_ptr<MoqtControlParserVisitor> CreateControlStream( MoqtSession* session, webtransport::test::MockStream* stream) { auto new_stream = std::make_unique<MoqtSession::ControlStream>(session, stream); session->control_stream_ = kControlStreamId; EXPECT_CALL(*stream, visitor()) .Times(AnyNumber()) .WillRepeatedly(Return(new_stream.get())); return new_stream; } static std::unique_ptr<MoqtDataParserVisitor> CreateIncomingDataStream( MoqtSession* session, webtransport::Stream* stream) { auto new_stream = std::make_unique<MoqtSession::IncomingDataStream>(session, stream); return new_stream; } static MoqtControlParserVisitor* FetchParserVisitorFromWebtransportStreamVisitor( MoqtSession* session, webtransport::StreamVisitor* visitor) { return static_cast<MoqtSession::ControlStream*>(visitor); } static void CreateRemoteTrack(MoqtSession* session, const FullTrackName& name, RemoteTrack::Visitor* visitor, uint64_t track_alias) { session->remote_tracks_.try_emplace(track_alias, name, track_alias, visitor); session->remote_track_aliases_.try_emplace(name, track_alias); } static void AddActiveSubscribe(MoqtSession* session, uint64_t subscribe_id, MoqtSubscribe& subscribe, RemoteTrack::Visitor* visitor) { session->active_subscribes_[subscribe_id] = {subscribe, visitor}; } static MoqtObjectListener* AddSubscription( MoqtSession* session, std::shared_ptr<MoqtTrackPublisher> publisher, uint64_t subscribe_id, uint64_t track_alias, uint64_t start_group, uint64_t start_object) { MoqtSubscribe subscribe; subscribe.full_track_name = publisher->GetTrackName(); subscribe.track_alias = track_alias; subscribe.subscribe_id = subscribe_id; subscribe.start_group = start_group; subscribe.start_object = start_object; subscribe.subscriber_priority = 0x80; session->published_subscriptions_.emplace( subscribe_id, std::make_unique<MoqtSession::PublishedSubscription>( session, std::move(publisher), subscribe, nullptr)); return session->published_subscriptions_[subscribe_id].get(); } static void DeleteSubscription(MoqtSession* session, uint64_t subscribe_id) { session->published_subscriptions_.erase(subscribe_id); } static void UpdateSubscriberPriority(MoqtSession* session, uint64_t subscribe_id, MoqtPriority priority) { session->published_subscriptions_[subscribe_id]->set_subscriber_priority( priority); } static void set_peer_role(MoqtSession* session, MoqtRole role) { session->peer_role_ = role; } static RemoteTrack& remote_track(MoqtSession* session, uint64_t track_alias) { return session->remote_tracks_.find(track_alias)->second; } static void set_next_subscribe_id(MoqtSession* session, uint64_t id) { session->next_subscribe_id_ = id; } static void set_peer_max_subscribe_id(MoqtSession* session, uint64_t id) { session->peer_max_subscribe_id_ = id; } }; class MoqtSessionTest : public quic::test::QuicTest { public: MoqtSessionTest() : session_(&mock_session_, MoqtSessionParameters(quic::Perspective::IS_CLIENT, ""), session_callbacks_.AsSessionCallbacks()) { session_.set_publisher(&publisher_); MoqtSessionPeer::set_peer_max_subscribe_id(&session_, kDefaultInitialMaxSubscribeId); } ~MoqtSessionTest() { EXPECT_CALL(session_callbacks_.session_deleted_callback, Call()); } MockSessionCallbacks session_callbacks_; StrictMock<webtransport::test::MockSession> mock_session_; MoqtSession session_; MoqtKnownTrackPublisher publisher_; }; TEST_F(MoqtSessionTest, Queries) { EXPECT_EQ(session_.perspective(), quic::Perspective::IS_CLIENT); } TEST_F(MoqtSessionTest, OnSessionReady) { webtransport::test::MockStream mock_stream; EXPECT_CALL(mock_session_, OpenOutgoingBidirectionalStream()) .WillOnce(Return(&mock_stream)); std::unique_ptr<webtransport::StreamVisitor> visitor; EXPECT_CALL(mock_stream, SetVisitor(_)) .WillOnce([&](std::unique_ptr<webtransport::StreamVisitor> new_visitor) { visitor = std::move(new_visitor); }); EXPECT_CALL(mock_stream, GetStreamId()) .WillOnce(Return(webtransport::StreamId(4))); EXPECT_CALL(mock_session_, GetStreamById(4)).WillOnce(Return(&mock_stream)); bool correct_message = false; EXPECT_CALL(mock_stream, visitor()).WillOnce([&] { return visitor.get(); }); EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kClientSetup); return absl::OkStatus(); }); session_.OnSessionReady(); EXPECT_TRUE(correct_message); MoqtControlParserVisitor* stream_input = MoqtSessionPeer::FetchParserVisitorFromWebtransportStreamVisitor( &session_, visitor.get()); MoqtServerSetup setup = { kDefaultMoqtVersion, MoqtRole::kPubSub, }; EXPECT_CALL(session_callbacks_.session_established_callback, Call()).Times(1); stream_input->OnServerSetupMessage(setup); } TEST_F(MoqtSessionTest, OnClientSetup) { MoqtSession server_session( &mock_session_, MoqtSessionParameters(quic::Perspective::IS_SERVER), session_callbacks_.AsSessionCallbacks()); webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&server_session, &mock_stream); MoqtClientSetup setup = { {kDefaultMoqtVersion}, MoqtRole::kPubSub, std::nullopt, }; bool correct_message = false; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kServerSetup); return absl::OkStatus(); }); EXPECT_CALL(mock_stream, GetStreamId()).WillOnce(Return(0)); EXPECT_CALL(session_callbacks_.session_established_callback, Call()).Times(1); stream_input->OnClientSetupMessage(setup); } TEST_F(MoqtSessionTest, OnSessionClosed) { bool reported_error = false; EXPECT_CALL(session_callbacks_.session_terminated_callback, Call(_)) .WillOnce([&](absl::string_view error_message) { reported_error = true; EXPECT_EQ(error_message, "foo"); }); session_.OnSessionClosed(webtransport::SessionErrorCode(1), "foo"); EXPECT_TRUE(reported_error); } TEST_F(MoqtSessionTest, OnIncomingBidirectionalStream) { ::testing::InSequence seq; webtransport::test::MockStream mock_stream; StrictMock<webtransport::test::MockStreamVisitor> mock_stream_visitor; EXPECT_CALL(mock_session_, AcceptIncomingBidirectionalStream()) .WillOnce(Return(&mock_stream)); EXPECT_CALL(mock_stream, SetVisitor(_)).Times(1); EXPECT_CALL(mock_stream, visitor()).WillOnce(Return(&mock_stream_visitor)); EXPECT_CALL(mock_stream_visitor, OnCanRead()).Times(1); EXPECT_CALL(mock_session_, AcceptIncomingBidirectionalStream()) .WillOnce(Return(nullptr)); session_.OnIncomingBidirectionalStreamAvailable(); } TEST_F(MoqtSessionTest, OnIncomingUnidirectionalStream) { ::testing::InSequence seq; webtransport::test::MockStream mock_stream; StrictMock<webtransport::test::MockStreamVisitor> mock_stream_visitor; EXPECT_CALL(mock_session_, AcceptIncomingUnidirectionalStream()) .WillOnce(Return(&mock_stream)); EXPECT_CALL(mock_stream, SetVisitor(_)).Times(1); EXPECT_CALL(mock_stream, visitor()).WillOnce(Return(&mock_stream_visitor)); EXPECT_CALL(mock_stream_visitor, OnCanRead()).Times(1); EXPECT_CALL(mock_session_, AcceptIncomingUnidirectionalStream()) .WillOnce(Return(nullptr)); session_.OnIncomingUnidirectionalStreamAvailable(); } TEST_F(MoqtSessionTest, Error) { bool reported_error = false; EXPECT_CALL( mock_session_, CloseSession(static_cast<uint64_t>(MoqtError::kParameterLengthMismatch), "foo")) .Times(1); EXPECT_CALL(session_callbacks_.session_terminated_callback, Call(_)) .WillOnce([&](absl::string_view error_message) { reported_error = (error_message == "foo"); }); session_.Error(MoqtError::kParameterLengthMismatch, "foo"); EXPECT_TRUE(reported_error); } TEST_F(MoqtSessionTest, AddLocalTrack) { MoqtSubscribe request = { 1, 2, FullTrackName({"foo", "bar"}), 0x80, std::nullopt, 0, 0, std::nullopt, std::nullopt, MoqtSubscribeParameters(), }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); bool correct_message = false; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kSubscribeError); return absl::OkStatus(); }); stream_input->OnSubscribeMessage(request); EXPECT_TRUE(correct_message); auto track_publisher = std::make_shared<MockTrackPublisher>(FullTrackName("foo", "bar")); EXPECT_CALL(*track_publisher, GetTrackStatus()) .WillRepeatedly(Return(MoqtTrackStatusCode::kStatusNotAvailable)); publisher_.Add(track_publisher); correct_message = true; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kSubscribeOk); return absl::OkStatus(); }); stream_input->OnSubscribeMessage(request); EXPECT_TRUE(correct_message); } TEST_F(MoqtSessionTest, AnnounceWithOk) { testing::MockFunction<void( FullTrackName track_namespace, std::optional<MoqtAnnounceErrorReason> error_message)> announce_resolved_callback; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); EXPECT_CALL(mock_session_, GetStreamById(_)).WillOnce(Return(&mock_stream)); bool correct_message = true; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kAnnounce); return absl::OkStatus(); }); session_.Announce(FullTrackName{"foo"}, announce_resolved_callback.AsStdFunction()); EXPECT_TRUE(correct_message); MoqtAnnounceOk ok = { FullTrackName{"foo"}, }; correct_message = false; EXPECT_CALL(announce_resolved_callback, Call(_, _)) .WillOnce([&](FullTrackName track_namespace, std::optional<MoqtAnnounceErrorReason> error) { correct_message = true; EXPECT_EQ(track_namespace, FullTrackName{"foo"}); EXPECT_FALSE(error.has_value()); }); stream_input->OnAnnounceOkMessage(ok); EXPECT_TRUE(correct_message); } TEST_F(MoqtSessionTest, AnnounceWithError) { testing::MockFunction<void( FullTrackName track_namespace, std::optional<MoqtAnnounceErrorReason> error_message)> announce_resolved_callback; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); EXPECT_CALL(mock_session_, GetStreamById(_)).WillOnce(Return(&mock_stream)); bool correct_message = true; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kAnnounce); return absl::OkStatus(); }); session_.Announce(FullTrackName{"foo"}, announce_resolved_callback.AsStdFunction()); EXPECT_TRUE(correct_message); MoqtAnnounceError error = { FullTrackName{"foo"}, MoqtAnnounceErrorCode::kInternalError, "Test error", }; correct_message = false; EXPECT_CALL(announce_resolved_callback, Call(_, _)) .WillOnce([&](FullTrackName track_namespace, std::optional<MoqtAnnounceErrorReason> error) { correct_message = true; EXPECT_EQ(track_namespace, FullTrackName{"foo"}); ASSERT_TRUE(error.has_value()); EXPECT_EQ(error->error_code, MoqtAnnounceErrorCode::kInternalError); EXPECT_EQ(error->reason_phrase, "Test error"); }); stream_input->OnAnnounceErrorMessage(error); EXPECT_TRUE(correct_message); } TEST_F(MoqtSessionTest, SubscribeForPast) { FullTrackName ftn("foo", "bar"); auto track = std::make_shared<MockTrackPublisher>(ftn); EXPECT_CALL(*track, GetTrackStatus()) .WillRepeatedly(Return(MoqtTrackStatusCode::kInProgress)); EXPECT_CALL(*track, GetCachedObject(_)).WillRepeatedly([] { return std::optional<PublishedObject>(); }); EXPECT_CALL(*track, GetCachedObjectsInRange(_, _)) .WillRepeatedly(Return(std::vector<FullSequence>())); EXPECT_CALL(*track, GetLargestSequence()) .WillRepeatedly(Return(FullSequence(10, 20))); publisher_.Add(track); MoqtSubscribe request = { 1, 2, FullTrackName({"foo", "bar"}), 0x80, std::nullopt, 0, 0, std::nullopt, std::nullopt, MoqtSubscribeParameters(), }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); bool correct_message = true; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kSubscribeOk); return absl::OkStatus(); }); stream_input->OnSubscribeMessage(request); EXPECT_TRUE(correct_message); } TEST_F(MoqtSessionTest, SubscribeIdTooHigh) { MoqtSubscribe request = { kDefaultInitialMaxSubscribeId + 1, 2, FullTrackName({"foo", "bar"}), 0x80, std::nullopt, 0, 0, std::nullopt, std::nullopt, MoqtSubscribeParameters(), }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); EXPECT_CALL(mock_session_, CloseSession(static_cast<uint64_t>(MoqtError::kTooManySubscribes), "Received SUBSCRIBE with too large ID")) .Times(1); stream_input->OnSubscribeMessage(request); } TEST_F(MoqtSessionTest, TooManySubscribes) { MoqtSessionPeer::set_next_subscribe_id(&session_, kDefaultInitialMaxSubscribeId); MockRemoteTrackVisitor remote_track_visitor; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); EXPECT_CALL(mock_session_, GetStreamById(_)).WillOnce(Return(&mock_stream)); bool correct_message = true; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kSubscribe); return absl::OkStatus(); }); EXPECT_TRUE(session_.SubscribeCurrentGroup(FullTrackName("foo", "bar"), &remote_track_visitor)); EXPECT_FALSE(session_.SubscribeCurrentGroup(FullTrackName("foo", "bar"), &remote_track_visitor)); } TEST_F(MoqtSessionTest, SubscribeWithOk) { webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); MockRemoteTrackVisitor remote_track_visitor; EXPECT_CALL(mock_session_, GetStreamById(_)).WillOnce(Return(&mock_stream)); bool correct_message = true; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kSubscribe); return absl::OkStatus(); }); session_.SubscribeCurrentGroup(FullTrackName("foo", "bar"), &remote_track_visitor); MoqtSubscribeOk ok = { 0, quic::QuicTimeDelta::FromMilliseconds(0), }; correct_message = false; EXPECT_CALL(remote_track_visitor, OnReply(_, _)) .WillOnce([&](const FullTrackName& ftn, std::optional<absl::string_view> error_message) { correct_message = true; EXPECT_EQ(ftn, FullTrackName("foo", "bar")); EXPECT_FALSE(error_message.has_value()); }); stream_input->OnSubscribeOkMessage(ok); EXPECT_TRUE(correct_message); } TEST_F(MoqtSessionTest, MaxSubscribeIdChangesResponse) { MoqtSessionPeer::set_next_subscribe_id(&session_, kDefaultInitialMaxSubscribeId + 1); MockRemoteTrackVisitor remote_track_visitor; EXPECT_FALSE(session_.SubscribeCurrentGroup(FullTrackName("foo", "bar"), &remote_track_visitor)); MoqtMaxSubscribeId max_subscribe_id = { kDefaultInitialMaxSubscribeId + 1, }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); stream_input->OnMaxSubscribeIdMessage(max_subscribe_id); EXPECT_CALL(mock_session_, GetStreamById(_)).WillOnce(Return(&mock_stream)); bool correct_message = true; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kSubscribe); return absl::OkStatus(); }); EXPECT_TRUE(session_.SubscribeCurrentGroup(FullTrackName("foo", "bar"), &remote_track_visitor)); EXPECT_TRUE(correct_message); } TEST_F(MoqtSessionTest, LowerMaxSubscribeIdIsAnError) { MoqtMaxSubscribeId max_subscribe_id = { kDefaultInitialMaxSubscribeId - 1, }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); EXPECT_CALL( mock_session_, CloseSession(static_cast<uint64_t>(MoqtError::kProtocolViolation), "MAX_SUBSCRIBE_ID message has lower value than previous")) .Times(1); stream_input->OnMaxSubscribeIdMessage(max_subscribe_id); } TEST_F(MoqtSessionTest, GrantMoreSubscribes) { webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); EXPECT_CALL(mock_session_, GetStreamById(_)).WillOnce(Return(&mock_stream)); bool correct_message = true; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kMaxSubscribeId); return absl::OkStatus(); }); session_.GrantMoreSubscribes(1); EXPECT_TRUE(correct_message); MoqtSubscribe request = { kDefaultInitialMaxSubscribeId + 1, 2, FullTrackName({"foo", "bar"}), 0x80, std::nullopt, 0, 0, std::nullopt, std::nullopt, MoqtSubscribeParameters(), }; correct_message = false; FullTrackName ftn("foo", "bar"); auto track = std::make_shared<MockTrackPublisher>(ftn); EXPECT_CALL(*track, GetTrackStatus()) .WillRepeatedly(Return(MoqtTrackStatusCode::kInProgress)); EXPECT_CALL(*track, GetCachedObject(_)).WillRepeatedly([] { return std::optional<PublishedObject>(); }); EXPECT_CALL(*track, GetCachedObjectsInRange(_, _)) .WillRepeatedly(Return(std::vector<FullSequence>())); EXPECT_CALL(*track, GetLargestSequence()) .WillRepeatedly(Return(FullSequence(10, 20))); publisher_.Add(track); EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kSubscribeOk); return absl::OkStatus(); }); stream_input->OnSubscribeMessage(request); EXPECT_TRUE(correct_message); } TEST_F(MoqtSessionTest, SubscribeWithError) { webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); MockRemoteTrackVisitor remote_track_visitor; EXPECT_CALL(mock_session_, GetStreamById(_)).WillOnce(Return(&mock_stream)); bool correct_message = true; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kSubscribe); return absl::OkStatus(); }); session_.SubscribeCurrentGroup(FullTrackName("foo", "bar"), &remote_track_visitor); MoqtSubscribeError error = { 0, SubscribeErrorCode::kInvalidRange, "deadbeef", 2, }; correct_message = false; EXPECT_CALL(remote_track_visitor, OnReply(_, _)) .WillOnce([&](const FullTrackName& ftn, std::optional<absl::string_view> error_message) { correct_message = true; EXPECT_EQ(ftn, FullTrackName("foo", "bar")); EXPECT_EQ(*error_message, "deadbeef"); }); stream_input->OnSubscribeErrorMessage(error); EXPECT_TRUE(correct_message); } TEST_F(MoqtSessionTest, ReplyToAnnounce) { webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); MoqtAnnounce announce = { FullTrackName{"foo"}, }; bool correct_message = false; EXPECT_CALL(session_callbacks_.incoming_announce_callback, Call(FullTrackName{"foo"})) .WillOnce(Return(std::nullopt)); EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kAnnounceOk); return absl::OkStatus(); }); stream_input->OnAnnounceMessage(announce); EXPECT_TRUE(correct_message); } TEST_F(MoqtSessionTest, IncomingObject) { MockRemoteTrackVisitor visitor_; FullTrackName ftn("foo", "bar"); std::string payload = "deadbeef"; MoqtSessionPeer::CreateRemoteTrack(&session_, ftn, &visitor_, 2); MoqtObject object = { 1, 2, 0, 0, 0, MoqtObjectStatus::kNormal, MoqtForwardingPreference::kSubgroup, 0, 8, }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtDataParserVisitor> object_stream = MoqtSessionPeer::CreateIncomingDataStream(&session_, &mock_stream); EXPECT_CALL(visitor_, OnObjectFragment(_, _, _, _, _, _, _, _)).Times(1); EXPECT_CALL(mock_stream, GetStreamId()) .WillRepeatedly(Return(kIncomingUniStreamId)); object_stream->OnObjectMessage(object, payload, true); } TEST_F(MoqtSessionTest, IncomingPartialObject) { MockRemoteTrackVisitor visitor_; FullTrackName ftn("foo", "bar"); std::string payload = "deadbeef"; MoqtSessionPeer::CreateRemoteTrack(&session_, ftn, &visitor_, 2); MoqtObject object = { 1, 2, 0, 0, 0, MoqtObjectStatus::kNormal, MoqtForwardingPreference::kSubgroup, 0, 16, }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtDataParserVisitor> object_stream = MoqtSessionPeer::CreateIncomingDataStream(&session_, &mock_stream); EXPECT_CALL(visitor_, OnObjectFragment(_, _, _, _, _, _, _, _)).Times(1); EXPECT_CALL(mock_stream, GetStreamId()) .WillRepeatedly(Return(kIncomingUniStreamId)); object_stream->OnObjectMessage(object, payload, false); object_stream->OnObjectMessage(object, payload, true); } TEST_F(MoqtSessionTest, IncomingPartialObjectNoBuffer) { MoqtSessionParameters parameters(quic::Perspective::IS_CLIENT); parameters.deliver_partial_objects = true; MoqtSession session(&mock_session_, parameters, session_callbacks_.AsSessionCallbacks()); MockRemoteTrackVisitor visitor_; FullTrackName ftn("foo", "bar"); std::string payload = "deadbeef"; MoqtSessionPeer::CreateRemoteTrack(&session, ftn, &visitor_, 2); MoqtObject object = { 1, 2, 0, 0, 0, MoqtObjectStatus::kNormal, MoqtForwardingPreference::kSubgroup, 0, 16, }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtDataParserVisitor> object_stream = MoqtSessionPeer::CreateIncomingDataStream(&session, &mock_stream); EXPECT_CALL(visitor_, OnObjectFragment(_, _, _, _, _, _, _, _)).Times(2); EXPECT_CALL(mock_stream, GetStreamId()) .WillRepeatedly(Return(kIncomingUniStreamId)); object_stream->OnObjectMessage(object, payload, false); object_stream->OnObjectMessage(object, payload, true); } TEST_F(MoqtSessionTest, ObjectBeforeSubscribeOk) { MockRemoteTrackVisitor visitor_; FullTrackName ftn("foo", "bar"); std::string payload = "deadbeef"; MoqtSubscribe subscribe = { 1, 2, ftn, 0x80, std::nullopt, 0, 0, std::nullopt, std::nullopt, }; MoqtSessionPeer::AddActiveSubscribe(&session_, 1, subscribe, &visitor_); MoqtObject object = { 1, 2, 0, 0, 0, MoqtObjectStatus::kNormal, MoqtForwardingPreference::kSubgroup, 0, 8, }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtDataParserVisitor> object_stream = MoqtSessionPeer::CreateIncomingDataStream(&session_, &mock_stream); EXPECT_CALL(visitor_, OnObjectFragment(_, _, _, _, _, _, _, _)) .WillOnce([&](const FullTrackName& full_track_name, uint64_t group_sequence, uint64_t object_sequence, MoqtPriority publisher_priority, MoqtObjectStatus status, MoqtForwardingPreference forwarding_preference, absl::string_view payload, bool end_of_message) { EXPECT_EQ(full_track_name, ftn); EXPECT_EQ(group_sequence, object.group_id); EXPECT_EQ(object_sequence, object.object_id); }); EXPECT_CALL(mock_stream, GetStreamId()) .WillRepeatedly(Return(kIncomingUniStreamId)); object_stream->OnObjectMessage(object, payload, true); MoqtSubscribeOk ok = { 1, quic::QuicTimeDelta::FromMilliseconds(0), MoqtDeliveryOrder::kAscending, std::nullopt, }; webtransport::test::MockStream mock_control_stream; std::unique_ptr<MoqtControlParserVisitor> control_stream = MoqtSessionPeer::CreateControlStream(&session_, &mock_control_stream); EXPECT_CALL(visitor_, OnReply(_, _)).Times(1); control_stream->OnSubscribeOkMessage(ok); } TEST_F(MoqtSessionTest, ObjectBeforeSubscribeError) { MockRemoteTrackVisitor visitor; FullTrackName ftn("foo", "bar"); std::string payload = "deadbeef"; MoqtSubscribe subscribe = { 1, 2, ftn, 0x80, std::nullopt, 0, 0, std::nullopt, std::nullopt, }; MoqtSessionPeer::AddActiveSubscribe(&session_, 1, subscribe, &visitor); MoqtObject object = { 1, 2, 0, 0, 0, MoqtObjectStatus::kNormal, MoqtForwardingPreference::kSubgroup, 0, 8, }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtDataParserVisitor> object_stream = MoqtSessionPeer::CreateIncomingDataStream(&session_, &mock_stream); EXPECT_CALL(visitor, OnObjectFragment(_, _, _, _, _, _, _, _)) .WillOnce([&](const FullTrackName& full_track_name, uint64_t group_sequence, uint64_t object_sequence, MoqtPriority publisher_priority, MoqtObjectStatus status, MoqtForwardingPreference forwarding_preference, absl::string_view payload, bool end_of_message) { EXPECT_EQ(full_track_name, ftn); EXPECT_EQ(group_sequence, object.group_id); EXPECT_EQ(object_sequence, object.object_id); }); EXPECT_CALL(mock_stream, GetStreamId()) .WillRepeatedly(Return(kIncomingUniStreamId)); object_stream->OnObjectMessage(object, payload, true); MoqtSubscribeError subscribe_error = { 1, SubscribeErrorCode::kRetryTrackAlias, "foo", 3, }; webtransport::test::MockStream mock_control_stream; std::unique_ptr<MoqtControlParserVisitor> control_stream = MoqtSessionPeer::CreateControlStream(&session_, &mock_control_stream); EXPECT_CALL(mock_session_, CloseSession(static_cast<uint64_t>(MoqtError::kProtocolViolation), "Received SUBSCRIBE_ERROR after object")) .Times(1); control_stream->OnSubscribeErrorMessage(subscribe_error); } TEST_F(MoqtSessionTest, TwoEarlyObjectsDifferentForwarding) { MockRemoteTrackVisitor visitor; FullTrackName ftn("foo", "bar"); std::string payload = "deadbeef"; MoqtSubscribe subscribe = { 1, 2, ftn, 0x80, std::nullopt, 0, 0, std::nullopt, std::nullopt, }; MoqtSessionPeer::AddActiveSubscribe(&session_, 1, subscribe, &visitor); MoqtObject object = { 1, 2, 0, 0, 0, MoqtObjectStatus::kNormal, MoqtForwardingPreference::kSubgroup, 0, 8, }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtDataParserVisitor> object_stream = MoqtSessionPeer::CreateIncomingDataStream(&session_, &mock_stream); EXPECT_CALL(visitor, OnObjectFragment(_, _, _, _, _, _, _, _)) .WillOnce([&](const FullTrackName& full_track_name, uint64_t group_sequence, uint64_t object_sequence, MoqtPriority publisher_priority, MoqtObjectStatus status, MoqtForwardingPreference forwarding_preference, absl::string_view payload, bool end_of_message) { EXPECT_EQ(full_track_name, ftn); EXPECT_EQ(group_sequence, object.group_id); EXPECT_EQ(object_sequence, object.object_id); }); EXPECT_CALL(mock_stream, GetStreamId()) .WillRepeatedly(Return(kIncomingUniStreamId)); object_stream->OnObjectMessage(object, payload, true); object.forwarding_preference = MoqtForwardingPreference::kTrack; ++object.object_id; EXPECT_CALL(mock_session_, CloseSession(static_cast<uint64_t>(MoqtError::kProtocolViolation), "Forwarding preference changes mid-track")) .Times(1); object_stream->OnObjectMessage(object, payload, true); } TEST_F(MoqtSessionTest, EarlyObjectForwardingDoesNotMatchTrack) { MockRemoteTrackVisitor visitor; FullTrackName ftn("foo", "bar"); std::string payload = "deadbeef"; MoqtSubscribe subscribe = { 1, 2, ftn, 0x80, std::nullopt, 0, 0, std::nullopt, std::nullopt, }; MoqtSessionPeer::AddActiveSubscribe(&session_, 1, subscribe, &visitor); MoqtObject object = { 1, 2, 0, 0, 0, MoqtObjectStatus::kNormal, MoqtForwardingPreference::kSubgroup, 0, 8, }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtDataParserVisitor> object_stream = MoqtSessionPeer::CreateIncomingDataStream(&session_, &mock_stream); EXPECT_CALL(visitor, OnObjectFragment(_, _, _, _, _, _, _, _)) .WillOnce([&](const FullTrackName& full_track_name, uint64_t group_sequence, uint64_t object_sequence, MoqtPriority publisher_priority, MoqtObjectStatus status, MoqtForwardingPreference forwarding_preference, absl::string_view payload, bool end_of_message) { EXPECT_EQ(full_track_name, ftn); EXPECT_EQ(group_sequence, object.group_id); EXPECT_EQ(object_sequence, object.object_id); }); EXPECT_CALL(mock_stream, GetStreamId()) .WillRepeatedly(Return(kIncomingUniStreamId)); object_stream->OnObjectMessage(object, payload, true); MoqtSessionPeer::CreateRemoteTrack(&session_, ftn, &visitor, 2); MoqtSessionPeer::remote_track(&session_, 2) .CheckForwardingPreference(MoqtForwardingPreference::kTrack); MoqtSubscribeOk ok = { 1, quic::QuicTimeDelta::FromMilliseconds(0), MoqtDeliveryOrder::kAscending, std::nullopt, }; webtransport::test::MockStream mock_control_stream; std::unique_ptr<MoqtControlParserVisitor> control_stream = MoqtSessionPeer::CreateControlStream(&session_, &mock_control_stream); EXPECT_CALL(mock_session_, CloseSession(static_cast<uint64_t>(MoqtError::kProtocolViolation), "Forwarding preference different in early objects")) .Times(1); control_stream->OnSubscribeOkMessage(ok); } TEST_F(MoqtSessionTest, CreateIncomingDataStreamAndSend) { FullTrackName ftn("foo", "bar"); auto track = SetupPublisher(ftn, MoqtForwardingPreference::kSubgroup, FullSequence(4, 2)); MoqtObjectListener* subscription = MoqtSessionPeer::AddSubscription(&session_, track, 0, 2, 5, 0); EXPECT_CALL(mock_session_, CanOpenNextOutgoingUnidirectionalStream()) .WillOnce(Return(true)); bool fin = false; webtransport::test::MockStream mock_stream; EXPECT_CALL(mock_stream, CanWrite()).WillRepeatedly([&] { return !fin; }); EXPECT_CALL(mock_session_, OpenOutgoingUnidirectionalStream()) .WillOnce(Return(&mock_stream)); std::unique_ptr<webtransport::StreamVisitor> stream_visitor; EXPECT_CALL(mock_stream, SetVisitor(_)) .WillOnce([&](std::unique_ptr<webtransport::StreamVisitor> visitor) { stream_visitor = std::move(visitor); }); EXPECT_CALL(mock_stream, visitor()).WillOnce([&] { return stream_visitor.get(); }); EXPECT_CALL(mock_stream, GetStreamId()) .WillRepeatedly(Return(kOutgoingUniStreamId)); EXPECT_CALL(mock_session_, GetStreamById(kOutgoingUniStreamId)) .WillRepeatedly(Return(&mock_stream)); bool correct_message = false; const std::string kExpectedMessage = {0x04, 0x00, 0x02, 0x05, 0x00, 0x00}; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = absl::StartsWith(data[0], kExpectedMessage); fin |= options.send_fin(); return absl::OkStatus(); }); EXPECT_CALL(*track, GetCachedObject(FullSequence(5, 0))).WillRepeatedly([] { return PublishedObject{FullSequence(5, 0), MoqtObjectStatus::kNormal, MemSliceFromString("deadbeef")}; }); EXPECT_CALL(*track, GetCachedObject(FullSequence(5, 1))).WillRepeatedly([] { return std::optional<PublishedObject>(); }); subscription->OnNewObjectAvailable(FullSequence(5, 0)); EXPECT_TRUE(correct_message); } TEST_F(MoqtSessionTest, UnidirectionalStreamCannotBeOpened) { FullTrackName ftn("foo", "bar"); auto track = SetupPublisher(ftn, MoqtForwardingPreference::kSubgroup, FullSequence(4, 2)); MoqtObjectListener* subscription = MoqtSessionPeer::AddSubscription(&session_, track, 0, 2, 5, 0); EXPECT_CALL(mock_session_, CanOpenNextOutgoingUnidirectionalStream()) .WillOnce(Return(false)); subscription->OnNewObjectAvailable(FullSequence(5, 0)); EXPECT_CALL(mock_session_, CanOpenNextOutgoingUnidirectionalStream()) .WillOnce(Return(true)); bool fin = false; webtransport::test::MockStream mock_stream; EXPECT_CALL(mock_stream, CanWrite()).WillRepeatedly([&] { return !fin; }); EXPECT_CALL(mock_session_, OpenOutgoingUnidirectionalStream()) .WillOnce(Return(&mock_stream)); std::unique_ptr<webtransport::StreamVisitor> stream_visitor; EXPECT_CALL(mock_stream, SetVisitor(_)) .WillOnce([&](std::unique_ptr<webtransport::StreamVisitor> visitor) { stream_visitor = std::move(visitor); }); EXPECT_CALL(mock_stream, visitor()).WillOnce([&] { return stream_visitor.get(); }); EXPECT_CALL(mock_stream, GetStreamId()) .WillRepeatedly(Return(kOutgoingUniStreamId)); EXPECT_CALL(mock_session_, GetStreamById(kOutgoingUniStreamId)) .WillRepeatedly(Return(&mock_stream)); EXPECT_CALL(mock_stream, Writev(_, _)).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*track, GetCachedObject(FullSequence(5, 0))).WillRepeatedly([] { return PublishedObject{FullSequence(5, 0), MoqtObjectStatus::kNormal, MemSliceFromString("deadbeef")}; }); EXPECT_CALL(*track, GetCachedObject(FullSequence(5, 1))).WillRepeatedly([] { return std::optional<PublishedObject>(); }); session_.OnCanCreateNewOutgoingUnidirectionalStream(); } TEST_F(MoqtSessionTest, OutgoingStreamDisappears) { FullTrackName ftn("foo", "bar"); auto track = SetupPublisher(ftn, MoqtForwardingPreference::kSubgroup, FullSequence(4, 2)); MoqtObjectListener* subscription = MoqtSessionPeer::AddSubscription(&session_, track, 0, 2, 5, 0); EXPECT_CALL(mock_session_, CanOpenNextOutgoingUnidirectionalStream()) .WillOnce(Return(true)); webtransport::test::MockStream mock_stream; EXPECT_CALL(mock_stream, CanWrite()).WillRepeatedly(Return(true)); EXPECT_CALL(mock_session_, OpenOutgoingUnidirectionalStream()) .WillOnce(Return(&mock_stream)); std::unique_ptr<webtransport::StreamVisitor> stream_visitor; EXPECT_CALL(mock_stream, SetVisitor(_)) .WillOnce([&](std::unique_ptr<webtransport::StreamVisitor> visitor) { stream_visitor = std::move(visitor); }); EXPECT_CALL(mock_stream, visitor()).WillRepeatedly([&] { return stream_visitor.get(); }); EXPECT_CALL(mock_stream, GetStreamId()) .WillRepeatedly(Return(kOutgoingUniStreamId)); EXPECT_CALL(mock_session_, GetStreamById(kOutgoingUniStreamId)) .WillRepeatedly(Return(&mock_stream)); EXPECT_CALL(mock_stream, Writev(_, _)).WillOnce(Return(absl::OkStatus())); EXPECT_CALL(*track, GetCachedObject(FullSequence(5, 0))).WillRepeatedly([] { return PublishedObject{FullSequence(5, 0), MoqtObjectStatus::kNormal, MemSliceFromString("deadbeef")}; }); EXPECT_CALL(*track, GetCachedObject(FullSequence(5, 1))).WillOnce([] { return std::optional<PublishedObject>(); }); subscription->OnNewObjectAvailable(FullSequence(5, 0)); EXPECT_CALL(mock_session_, GetStreamById(kOutgoingUniStreamId)) .WillRepeatedly(Return(nullptr)); EXPECT_CALL(*track, GetCachedObject(FullSequence(5, 1))).Times(0); subscription->OnNewObjectAvailable(FullSequence(5, 1)); } TEST_F(MoqtSessionTest, OneBidirectionalStreamClient) { webtransport::test::MockStream mock_stream; EXPECT_CALL(mock_session_, OpenOutgoingBidirectionalStream()) .WillOnce(Return(&mock_stream)); std::unique_ptr<webtransport::StreamVisitor> visitor; EXPECT_CALL(mock_stream, SetVisitor(_)) .WillOnce([&](std::unique_ptr<webtransport::StreamVisitor> new_visitor) { visitor = std::move(new_visitor); }); EXPECT_CALL(mock_stream, GetStreamId()) .WillOnce(Return(webtransport::StreamId(4))); EXPECT_CALL(mock_session_, GetStreamById(4)).WillOnce(Return(&mock_stream)); bool correct_message = false; EXPECT_CALL(mock_stream, visitor()).WillOnce([&] { return visitor.get(); }); EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kClientSetup); return absl::OkStatus(); }); session_.OnSessionReady(); EXPECT_TRUE(correct_message); bool reported_error = false; EXPECT_CALL(mock_session_, AcceptIncomingBidirectionalStream()) .WillOnce(Return(&mock_stream)); EXPECT_CALL(mock_session_, CloseSession(static_cast<uint64_t>(MoqtError::kProtocolViolation), "Bidirectional stream already open")) .Times(1); EXPECT_CALL(session_callbacks_.session_terminated_callback, Call(_)) .WillOnce([&](absl::string_view error_message) { reported_error = (error_message == "Bidirectional stream already open"); }); session_.OnIncomingBidirectionalStreamAvailable(); EXPECT_TRUE(reported_error); } TEST_F(MoqtSessionTest, OneBidirectionalStreamServer) { MoqtSession server_session( &mock_session_, MoqtSessionParameters(quic::Perspective::IS_SERVER), session_callbacks_.AsSessionCallbacks()); webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&server_session, &mock_stream); MoqtClientSetup setup = { {kDefaultMoqtVersion}, MoqtRole::kPubSub, std::nullopt, }; bool correct_message = false; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kServerSetup); return absl::OkStatus(); }); EXPECT_CALL(mock_stream, GetStreamId()).WillOnce(Return(0)); EXPECT_CALL(session_callbacks_.session_established_callback, Call()).Times(1); stream_input->OnClientSetupMessage(setup); bool reported_error = false; EXPECT_CALL(mock_session_, AcceptIncomingBidirectionalStream()) .WillOnce(Return(&mock_stream)); EXPECT_CALL(mock_session_, CloseSession(static_cast<uint64_t>(MoqtError::kProtocolViolation), "Bidirectional stream already open")) .Times(1); EXPECT_CALL(session_callbacks_.session_terminated_callback, Call(_)) .WillOnce([&](absl::string_view error_message) { reported_error = (error_message == "Bidirectional stream already open"); }); server_session.OnIncomingBidirectionalStreamAvailable(); EXPECT_TRUE(reported_error); } TEST_F(MoqtSessionTest, ReceiveUnsubscribe) { FullTrackName ftn("foo", "bar"); auto track = SetupPublisher(ftn, MoqtForwardingPreference::kTrack, FullSequence(4, 2)); MoqtSessionPeer::AddSubscription(&session_, track, 0, 1, 3, 4); webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); MoqtUnsubscribe unsubscribe = { 0, }; EXPECT_CALL(mock_session_, GetStreamById(4)).WillOnce(Return(&mock_stream)); bool correct_message = false; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kSubscribeDone); return absl::OkStatus(); }); stream_input->OnUnsubscribeMessage(unsubscribe); EXPECT_TRUE(correct_message); } TEST_F(MoqtSessionTest, SendDatagram) { FullTrackName ftn("foo", "bar"); std::shared_ptr<MockTrackPublisher> track_publisher = SetupPublisher( ftn, MoqtForwardingPreference::kDatagram, FullSequence{4, 0}); MoqtObjectListener* listener = MoqtSessionPeer::AddSubscription(&session_, track_publisher, 0, 2, 5, 0); bool correct_message = false; uint8_t kExpectedMessage[] = { 0x01, 0x00, 0x02, 0x05, 0x00, 0x00, 0x08, 0x64, 0x65, 0x61, 0x64, 0x62, 0x65, 0x65, 0x66, }; EXPECT_CALL(mock_session_, SendOrQueueDatagram(_)) .WillOnce([&](absl::string_view datagram) { if (datagram.size() == sizeof(kExpectedMessage)) { correct_message = (0 == memcmp(datagram.data(), kExpectedMessage, sizeof(kExpectedMessage))); } return webtransport::DatagramStatus( webtransport::DatagramStatusCode::kSuccess, ""); }); EXPECT_CALL(*track_publisher, GetCachedObject(FullSequence{5, 0})) .WillRepeatedly([] { return PublishedObject{FullSequence{5, 0}, MoqtObjectStatus::kNormal, MemSliceFromString("deadbeef")}; }); listener->OnNewObjectAvailable(FullSequence(5, 0)); EXPECT_TRUE(correct_message); } TEST_F(MoqtSessionTest, ReceiveDatagram) { MockRemoteTrackVisitor visitor_; FullTrackName ftn("foo", "bar"); std::string payload = "deadbeef"; MoqtSessionPeer::CreateRemoteTrack(&session_, ftn, &visitor_, 2); MoqtObject object = { 1, 2, 0, 0, 0, MoqtObjectStatus::kNormal, MoqtForwardingPreference::kDatagram, std::nullopt, 8, }; char datagram[] = {0x01, 0x01, 0x02, 0x00, 0x00, 0x00, 0x08, 0x64, 0x65, 0x61, 0x64, 0x62, 0x65, 0x65, 0x66}; EXPECT_CALL(visitor_, OnObjectFragment(ftn, object.group_id, object.object_id, object.publisher_priority, object.object_status, object.forwarding_preference, payload, true)) .Times(1); session_.OnDatagramReceived(absl::string_view(datagram, sizeof(datagram))); } TEST_F(MoqtSessionTest, ForwardingPreferenceMismatch) { MockRemoteTrackVisitor visitor_; FullTrackName ftn("foo", "bar"); std::string payload = "deadbeef"; MoqtSessionPeer::CreateRemoteTrack(&session_, ftn, &visitor_, 2); MoqtObject object = { 1, 2, 0, 0, 0, MoqtObjectStatus::kNormal, MoqtForwardingPreference::kSubgroup, 0, 8, }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtDataParserVisitor> object_stream = MoqtSessionPeer::CreateIncomingDataStream(&session_, &mock_stream); EXPECT_CALL(visitor_, OnObjectFragment(_, _, _, _, _, _, _, _)).Times(1); EXPECT_CALL(mock_stream, GetStreamId()) .WillRepeatedly(Return(kIncomingUniStreamId)); object_stream->OnObjectMessage(object, payload, true); ++object.object_id; object.forwarding_preference = MoqtForwardingPreference::kTrack; EXPECT_CALL(mock_session_, CloseSession(static_cast<uint64_t>(MoqtError::kProtocolViolation), "Forwarding preference changes mid-track")) .Times(1); object_stream->OnObjectMessage(object, payload, true); } TEST_F(MoqtSessionTest, AnnounceToPublisher) { MoqtSessionPeer::set_peer_role(&session_, MoqtRole::kPublisher); testing::MockFunction<void( FullTrackName track_namespace, std::optional<MoqtAnnounceErrorReason> error_message)> announce_resolved_callback; EXPECT_CALL(announce_resolved_callback, Call(_, _)).Times(1); session_.Announce(FullTrackName{"foo"}, announce_resolved_callback.AsStdFunction()); } TEST_F(MoqtSessionTest, SubscribeFromPublisher) { MoqtSessionPeer::set_peer_role(&session_, MoqtRole::kPublisher); MoqtSubscribe request = { 1, 2, FullTrackName({"foo", "bar"}), 0x80, std::nullopt, 0, 0, std::nullopt, std::nullopt, MoqtSubscribeParameters(), }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); EXPECT_CALL(mock_session_, CloseSession(static_cast<uint64_t>(MoqtError::kProtocolViolation), "Received SUBSCRIBE from publisher")) .Times(1); EXPECT_CALL(session_callbacks_.session_terminated_callback, Call(_)).Times(1); stream_input->OnSubscribeMessage(request); } TEST_F(MoqtSessionTest, AnnounceFromSubscriber) { MoqtSessionPeer::set_peer_role(&session_, MoqtRole::kSubscriber); webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtControlParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); MoqtAnnounce announce = { FullTrackName{"foo"}, }; EXPECT_CALL(mock_session_, CloseSession(static_cast<uint64_t>(MoqtError::kProtocolViolation), "Received ANNOUNCE from Subscriber")) .Times(1); EXPECT_CALL(session_callbacks_.session_terminated_callback, Call(_)).Times(1); stream_input->OnAnnounceMessage(announce); } TEST_F(MoqtSessionTest, QueuedStreamsOpenedInOrder) { FullTrackName ftn("foo", "bar"); auto track = SetupPublisher(ftn, MoqtForwardingPreference::kSubgroup, FullSequence(0, 0)); EXPECT_CALL(*track, GetTrackStatus()) .WillRepeatedly(Return(MoqtTrackStatusCode::kNotYetBegun)); MoqtObjectListener* subscription = MoqtSessionPeer::AddSubscription(&session_, track, 0, 14, 0, 0); EXPECT_CALL(mock_session_, CanOpenNextOutgoingUnidirectionalStream()) .WillOnce(Return(false)) .WillOnce(Return(false)) .WillOnce(Return(false)); EXPECT_CALL(*track, GetTrackStatus()) .WillRepeatedly(Return(MoqtTrackStatusCode::kInProgress)); subscription->OnNewObjectAvailable(FullSequence(1, 0)); subscription->OnNewObjectAvailable(FullSequence(0, 0)); subscription->OnNewObjectAvailable(FullSequence(2, 0)); EXPECT_CALL(mock_session_, CanOpenNextOutgoingUnidirectionalStream()) .WillRepeatedly(Return(true)); webtransport::test::MockStream mock_stream0, mock_stream1, mock_stream2; EXPECT_CALL(mock_session_, OpenOutgoingUnidirectionalStream()) .WillOnce(Return(&mock_stream0)) .WillOnce(Return(&mock_stream1)) .WillOnce(Return(&mock_stream2)); std::unique_ptr<webtransport::StreamVisitor> stream_visitor[3]; EXPECT_CALL(mock_stream0, SetVisitor(_)) .WillOnce([&](std::unique_ptr<webtransport::StreamVisitor> visitor) { stream_visitor[0] = std::move(visitor); }); EXPECT_CALL(mock_stream1, SetVisitor(_)) .WillOnce([&](std::unique_ptr<webtransport::StreamVisitor> visitor) { stream_visitor[1] = std::move(visitor); }); EXPECT_CALL(mock_stream2, SetVisitor(_)) .WillOnce([&](std::unique_ptr<webtransport::StreamVisitor> visitor) { stream_visitor[2] = std::move(visitor); }); EXPECT_CALL(mock_stream0, GetStreamId()).WillRepeatedly(Return(0)); EXPECT_CALL(mock_stream1, GetStreamId()).WillRepeatedly(Return(1)); EXPECT_CALL(mock_stream2, GetStreamId()).WillRepeatedly(Return(2)); EXPECT_CALL(mock_stream0, visitor()).WillOnce([&]() { return stream_visitor[0].get(); }); EXPECT_CALL(mock_stream1, visitor()).WillOnce([&]() { return stream_visitor[1].get(); }); EXPECT_CALL(mock_stream2, visitor()).WillOnce([&]() { return stream_visitor[2].get(); }); EXPECT_CALL(*track, GetCachedObject(FullSequence(0, 0))) .WillOnce( Return(PublishedObject{FullSequence(0, 0), MoqtObjectStatus::kNormal, MemSliceFromString("deadbeef")})); EXPECT_CALL(*track, GetCachedObject(FullSequence(0, 1))) .WillOnce(Return(std::nullopt)); EXPECT_CALL(*track, GetCachedObject(FullSequence(1, 0))) .WillOnce( Return(PublishedObject{FullSequence(1, 0), MoqtObjectStatus::kNormal, MemSliceFromString("deadbeef")})); EXPECT_CALL(*track, GetCachedObject(FullSequence(1, 1))) .WillOnce(Return(std::nullopt)); EXPECT_CALL(*track, GetCachedObject(FullSequence(2, 0))) .WillOnce( Return(PublishedObject{FullSequence(2, 0), MoqtObjectStatus::kNormal, MemSliceFromString("deadbeef")})); EXPECT_CALL(*track, GetCachedObject(FullSequence(2, 1))) .WillOnce(Return(std::nullopt)); EXPECT_CALL(mock_stream0, CanWrite()).WillRepeatedly(Return(true)); EXPECT_CALL(mock_stream1, CanWrite()).WillRepeatedly(Return(true)); EXPECT_CALL(mock_stream2, CanWrite()).WillRepeatedly(Return(true)); EXPECT_CALL(mock_stream0, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { EXPECT_EQ(static_cast<const uint8_t>(data[0][4]), 0); return absl::OkStatus(); }); EXPECT_CALL(mock_stream1, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { EXPECT_EQ(static_cast<const uint8_t>(data[0][3]), 1); return absl::OkStatus(); }); EXPECT_CALL(mock_stream2, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { EXPECT_EQ(static_cast<const uint8_t>(data[0][3]), 2); return absl::OkStatus(); }); session_.OnCanCreateNewOutgoingUnidirectionalStream(); } TEST_F(MoqtSessionTest, StreamQueuedForSubscriptionThatDoesntExist) { FullTrackName ftn("foo", "bar"); auto track = SetupPublisher(ftn, MoqtForwardingPreference::kSubgroup, FullSequence(0, 0)); EXPECT_CALL(*track, GetTrackStatus()) .WillRepeatedly(Return(MoqtTrackStatusCode::kNotYetBegun)); MoqtObjectListener* subscription = MoqtSessionPeer::AddSubscription(&session_, track, 0, 14, 0, 0); EXPECT_CALL(mock_session_, CanOpenNextOutgoingUnidirectionalStream()) .WillOnce(Return(false)); EXPECT_CALL(*track, GetTrackStatus()) .WillRepeatedly(Return(MoqtTrackStatusCode::kInProgress)); subscription->OnNewObjectAvailable(FullSequence(0, 0)); MoqtSessionPeer::DeleteSubscription(&session_, 0); EXPECT_CALL(mock_session_, CanOpenNextOutgoingUnidirectionalStream()) .WillRepeatedly(Return(true)); EXPECT_CALL(mock_session_, OpenOutgoingUnidirectionalStream()).Times(0); session_.OnCanCreateNewOutgoingUnidirectionalStream(); } TEST_F(MoqtSessionTest, QueuedStreamPriorityChanged) { FullTrackName ftn("foo", "bar"); auto track = SetupPublisher(ftn, MoqtForwardingPreference::kSubgroup, FullSequence(0, 0)); EXPECT_CALL(*track, GetTrackStatus()) .WillRepeatedly(Return(MoqtTrackStatusCode::kNotYetBegun)); MoqtObjectListener* subscription0 = MoqtSessionPeer::AddSubscription(&session_, track, 0, 14, 0, 0); MoqtObjectListener* subscription1 = MoqtSessionPeer::AddSubscription(&session_, track, 1, 14, 0, 0); MoqtSessionPeer::UpdateSubscriberPriority(&session_, 0, 1); MoqtSessionPeer::UpdateSubscriberPriority(&session_, 1, 2); EXPECT_CALL(mock_session_, CanOpenNextOutgoingUnidirectionalStream()) .WillOnce(Return(false)) .WillOnce(Return(false)) .WillOnce(Return(false)) .WillOnce(Return(false)); EXPECT_CALL(*track, GetTrackStatus()) .WillRepeatedly(Return(MoqtTrackStatusCode::kInProgress)); subscription0->OnNewObjectAvailable(FullSequence(0, 0)); subscription1->OnNewObjectAvailable(FullSequence(0, 0)); subscription0->OnNewObjectAvailable(FullSequence(1, 0)); subscription1->OnNewObjectAvailable(FullSequence(1, 0)); EXPECT_CALL(mock_session_, CanOpenNextOutgoingUnidirectionalStream()) .WillOnce(Return(true)) .WillOnce(Return(false)); webtransport::test::MockStream mock_stream0; EXPECT_CALL(mock_session_, OpenOutgoingUnidirectionalStream()) .WillOnce(Return(&mock_stream0)); std::unique_ptr<webtransport::StreamVisitor> stream_visitor0; EXPECT_CALL(mock_stream0, SetVisitor(_)) .WillOnce([&](std::unique_ptr<webtransport::StreamVisitor> visitor) { stream_visitor0 = std::move(visitor); }); EXPECT_CALL(mock_stream0, GetStreamId()).WillRepeatedly(Return(0)); EXPECT_CALL(mock_stream0, visitor()).WillOnce([&]() { return stream_visitor0.get(); }); EXPECT_CALL(*track, GetCachedObject(FullSequence(0, 0))) .WillOnce( Return(PublishedObject{FullSequence(0, 0), MoqtObjectStatus::kNormal, MemSliceFromString("deadbeef")})); EXPECT_CALL(*track, GetCachedObject(FullSequence(0, 1))) .WillOnce(Return(std::nullopt)); EXPECT_CALL(mock_stream0, CanWrite()).WillRepeatedly(Return(true)); EXPECT_CALL(mock_stream0, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { EXPECT_EQ(static_cast<const uint8_t>(data[0][1]), 0); EXPECT_EQ(static_cast<const uint8_t>(data[0][3]), 0); return absl::OkStatus(); }); session_.OnCanCreateNewOutgoingUnidirectionalStream(); MoqtSessionPeer::UpdateSubscriberPriority(&session_, 1, 0); EXPECT_CALL(mock_session_, CanOpenNextOutgoingUnidirectionalStream()) .WillOnce(Return(true)) .WillRepeatedly(Return(false)); webtransport::test::MockStream mock_stream1; EXPECT_CALL(mock_session_, OpenOutgoingUnidirectionalStream()) .WillOnce(Return(&mock_stream1)); std::unique_ptr<webtransport::StreamVisitor> stream_visitor1; EXPECT_CALL(mock_stream1, SetVisitor(_)) .WillOnce([&](std::unique_ptr<webtransport::StreamVisitor> visitor) { stream_visitor1 = std::move(visitor); }); EXPECT_CALL(mock_stream1, GetStreamId()).WillRepeatedly(Return(1)); EXPECT_CALL(mock_stream1, visitor()).WillOnce([&]() { return stream_visitor1.get(); }); EXPECT_CALL(*track, GetCachedObject(FullSequence(0, 0))) .WillOnce( Return(PublishedObject{FullSequence(0, 0), MoqtObjectStatus::kNormal, MemSliceFromString("deadbeef")})); EXPECT_CALL(*track, GetCachedObject(FullSequence(0, 1))) .WillOnce(Return(std::nullopt)); EXPECT_CALL(mock_stream1, CanWrite()).WillRepeatedly(Return(true)); EXPECT_CALL(mock_stream1, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { EXPECT_EQ(static_cast<const uint8_t>(data[0][1]), 1); EXPECT_EQ(static_cast<const uint8_t>(data[0][3]), 0); return absl::OkStatus(); }); session_.OnCanCreateNewOutgoingUnidirectionalStream(); } #if 0 TEST_F(MoqtSessionTest, SubscribeUpdateClosesSubscription) { MoqtSessionPeer::set_peer_role(&session_, MoqtRole::kSubscriber); FullTrackName ftn("foo", "bar"); MockLocalTrackVisitor track_visitor; session_.AddLocalTrack(ftn, MoqtForwardingPreference::kTrack, &track_visitor); MoqtSessionPeer::AddSubscription(&session_, ftn, 0, 2, 5, 0); LocalTrack* track = MoqtSessionPeer::local_track(&session_, ftn); track->GetWindow(0)->OnObjectSent(FullSequence(7, 3), MoqtObjectStatus::kNormal); MoqtSubscribeUpdate update = { 0, 5, 0, 7, 3, }; webtransport::test::MockStream mock_stream; std::unique_ptr<MoqtParserVisitor> stream_input = MoqtSessionPeer::CreateControlStream(&session_, &mock_stream); EXPECT_CALL(mock_session_, GetStreamById(4)).WillOnce(Return(&mock_stream)); bool correct_message = false; EXPECT_CALL(mock_stream, Writev(_, _)) .WillOnce([&](absl::Span<const absl::string_view> data, const quiche::StreamWriteOptions& options) { correct_message = true; EXPECT_EQ(*ExtractMessageType(data[0]), MoqtMessageType::kSubscribeDone); return absl::OkStatus(); }); stream_input->OnSubscribeUpdateMessage(update); EXPECT_TRUE(correct_message); EXPECT_FALSE(session_.HasSubscribers(ftn)); } #endif } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/moqt/moqt_session.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/moqt/moqt_session_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
83a1dfda-633f-4317-b2d6-68d361a98e54
cpp
tensorflow/tensorflow
cross_op
tensorflow/compiler/tf2xla/kernels/cross_op.cc
tensorflow/core/kernels/cross_op_test.cc
#include <vector> #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/xla_builder.h" namespace tensorflow { namespace { class CrossOp : public XlaOpKernel { public: explicit CrossOp(OpKernelConstruction* context) : XlaOpKernel(context) {} void Compile(XlaOpKernelContext* ctx) override { TensorShape in0_shape = ctx->InputShape(0); TensorShape in1_shape = ctx->InputShape(1); OP_REQUIRES(ctx, in0_shape == in1_shape, errors::InvalidArgument("Both inputs must be of same shape: ", in0_shape.DebugString(), " vs. ", in1_shape.DebugString())); OP_REQUIRES(ctx, in0_shape.dims() >= 1, errors::InvalidArgument("Input must be at least 1D", in0_shape.DebugString())); auto inner_dim = in0_shape.dim_size(in0_shape.dims() - 1); OP_REQUIRES(ctx, inner_dim == 3, errors::FailedPrecondition( "Cross-products are only defined for 3-element vectors.")); std::vector<int64_t> starts(in0_shape.dims(), 0); std::vector<int64_t> limits; const auto& dim_sizes = in0_shape.dim_sizes(); limits.reserve(dim_sizes.size()); for (auto dim_size : in0_shape.dim_sizes()) { limits.push_back(dim_size); } std::vector<int64_t> strides(in0_shape.dims(), 1); xla::XlaBuilder* b = ctx->builder(); auto in0 = ctx->Input(0); auto in1 = ctx->Input(1); starts.back() = 0; limits.back() = 1; auto u1 = xla::Slice(in0, starts, limits, strides); auto v1 = xla::Slice(in1, starts, limits, strides); starts.back() = 1; limits.back() = 2; auto u2 = xla::Slice(in0, starts, limits, strides); auto v2 = xla::Slice(in1, starts, limits, strides); starts.back() = 2; limits.back() = 3; auto u3 = xla::Slice(in0, starts, limits, strides); auto v3 = xla::Slice(in1, starts, limits, strides); auto s1 = xla::Sub(xla::Mul(u2, v3), xla::Mul(u3, v2)); auto s2 = xla::Sub(xla::Mul(u3, v1), xla::Mul(u1, v3)); auto s3 = xla::Sub(xla::Mul(u1, v2), xla::Mul(u2, v1)); auto output = xla::ConcatInDim(b, {s1, s2, s3}, in0_shape.dims() - 1); ctx->SetOutput(0, output); } private: CrossOp(const CrossOp&) = delete; void operator=(const CrossOp&) = delete; }; REGISTER_XLA_OP(Name("Cross"), CrossOp); } }
#include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { class CrossOpTest : public OpsTestBase { protected: CrossOpTest() { TF_EXPECT_OK(NodeDefBuilder("cross_op", "Cross") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); } }; TEST_F(CrossOpTest, Zero) { AddInputFromArray<float>(TensorShape({3}), {0, 0, 0}); AddInputFromArray<float>(TensorShape({3}), {0, 0, 0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({3})); test::FillValues<float>(&expected, {0, 0, 0}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(CrossOpTest, RightHandRule) { AddInputFromArray<float>(TensorShape({2, 3}), {1, 0, 0, 0, 1, 0}); AddInputFromArray<float>(TensorShape({2, 3}), {0, 1, 0, 1, 0, 0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 3})); test::FillValues<float>(&expected, {{0, 0, 1, 0, 0, -1}}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(CrossOpTest, ArbitraryNonintegral) { const float u1 = -0.669, u2 = -0.509, u3 = 0.125; const float v1 = -0.477, v2 = 0.592, v3 = -0.110; const float s1 = u2 * v3 - u3 * v2; const float s2 = u3 * v1 - u1 * v3; const float s3 = u1 * v2 - u2 * v1; AddInputFromArray<float>(TensorShape({3}), {u1, u2, u3}); AddInputFromArray<float>(TensorShape({3}), {v1, v2, v3}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({3})); test::FillValues<float>(&expected, {s1, s2, s3}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-6); } class CrossOpIntTest : public OpsTestBase { protected: CrossOpIntTest() { TF_EXPECT_OK(NodeDefBuilder("cross_int_op", "Cross") .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); } }; TEST_F(CrossOpIntTest, RightHandRule) { AddInputFromArray<int>(TensorShape({2, 3}), {2, 0, 0, 0, 2, 0}); AddInputFromArray<int>(TensorShape({2, 3}), {0, 2, 0, 2, 0, 0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_INT32, TensorShape({2, 3})); test::FillValues<int>(&expected, {{0, 0, 4, 0, 0, -4}}); test::ExpectTensorEqual<int>(expected, *GetOutput(0)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/cross_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/cross_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fe34d6ce-f548-4ce9-b75b-ba93249e22dd
cpp
tensorflow/tensorflow
autotune_result_wrapper
third_party/xla/xla/autotune_result_wrapper.cc
third_party/xla/xla/autotune_result_wrapper_test.cc
#include "xla/autotune_result_wrapper.h" #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "xla/autotune_results.pb.h" #include "xla/autotuning.pb.h" #include "xla/tsl/lib/strings/proto_serialization.h" namespace xla { absl::StatusOr<AutotuneResultWrapper> AutotuneResultWrapper::FromKeyAndValue(OpaqueKey key, OpaqueValue value) { AutotuneResults key_proto; if (!key_proto.ParseFromString(key)) { return absl::Status(absl::StatusCode::kInvalidArgument, "Could not parse the provided key"); } AutotuneResults::Entry value_entry; if (!value_entry.ParseFromString(value)) { return absl::Status(absl::StatusCode::kInvalidArgument, "Could not parse the provided value"); } AutotuneResults::Entry full_entry; full_entry.set_device(key_proto.results(0).device()); full_entry.set_hlo(key_proto.results(0).hlo()); *full_entry.mutable_result() = value_entry.result(); return AutotuneResultWrapper(full_entry, key_proto.version()); } AutotuneResultWrapper::OpaqueKey AutotuneResultWrapper::Key() const { AutotuneResults key_proto; key_proto.set_version(version_); auto entry = key_proto.add_results(); entry->set_device(autotune_result_.device()); entry->set_hlo(autotune_result_.hlo()); OpaqueKey serialized; CHECK(tsl::SerializeToStringDeterministic(key_proto, &serialized)); return serialized; } AutotuneResultWrapper::OpaqueValue AutotuneResultWrapper::Value() const { AutotuneResults::Entry entry; *entry.mutable_result() = autotune_result_.result(); OpaqueValue serialized; CHECK(tsl::SerializeToStringDeterministic(entry, &serialized)); return serialized; } std::vector<AutotuneResultWrapper> AutotuneResultWrapper::AutotuneResultsToWrappers( const AutotuneResults& autotune_results) { std::vector<AutotuneResultWrapper> wrappers; wrappers.reserve(autotune_results.results_size()); for (const auto& result : autotune_results.results()) { wrappers.push_back( AutotuneResultWrapper(result, autotune_results.version())); } return wrappers; } absl::StatusOr<AutotuneResults> AutotuneResultWrapper::AutotuneResultsFromWrappers( const std::vector<AutotuneResultWrapper>& wrappers) { AutotuneResults autotune_results; for (const auto& wrapper : wrappers) { if (autotune_results.results_size() > 0 && autotune_results.version() != wrapper.version_) { return absl::Status(absl::StatusCode::kInvalidArgument, "All wrappers must have the same version number"); } *autotune_results.add_results() = wrapper.autotune_result_; autotune_results.set_version(wrapper.version_); } return autotune_results; } }
#include "xla/autotune_result_wrapper.h" #include <cstdint> #include <utility> #include <vector> #include "xla/autotune_results.pb.h" #include "xla/autotuning.pb.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "tsl/platform/statusor.h" namespace xla { namespace { AutotuneResults ThreeAutotuneEntries(int32_t version) { AutotuneResults results; results.set_version(version); auto r1 = results.add_results(); r1->set_device("dev1"); r1->set_hlo("hlo1"); r1->mutable_result()->set_scratch_bytes(1); auto r2 = results.add_results(); r2->set_device("dev2"); r2->set_hlo("hlo2"); r2->mutable_result()->set_scratch_bytes(2); auto r3 = results.add_results(); r3->set_device("dev3"); r3->set_hlo("hlo3"); r3->mutable_result()->set_scratch_bytes(3); return results; } TEST(AutotuneResultWrapperTest, FullRoundTrip) { std::vector<AutotuneResultWrapper> wrappers = AutotuneResultWrapper::AutotuneResultsToWrappers( ThreeAutotuneEntries(42)); std::vector<std::pair<AutotuneResultWrapper::OpaqueKey, AutotuneResultWrapper::OpaqueValue>> key_value_pairs; for (const auto& wrapper : wrappers) { key_value_pairs.push_back(std::make_pair(wrapper.Key(), wrapper.Value())); } std::vector<AutotuneResultWrapper> new_wrappers; for (const auto& [key, value] : key_value_pairs) { TF_ASSERT_OK_AND_ASSIGN(AutotuneResultWrapper wrapper, AutotuneResultWrapper::FromKeyAndValue(key, value)); new_wrappers.push_back(std::move(wrapper)); } TF_ASSERT_OK_AND_ASSIGN( AutotuneResults round_tripped, AutotuneResultWrapper::AutotuneResultsFromWrappers(new_wrappers)); EXPECT_EQ(round_tripped.results_size(), 3); EXPECT_EQ(round_tripped.version(), 42); EXPECT_EQ(round_tripped.results(0).device(), "dev1"); EXPECT_EQ(round_tripped.results(0).hlo(), "hlo1"); EXPECT_EQ(round_tripped.results(0).result().scratch_bytes(), 1); EXPECT_EQ(round_tripped.results(1).device(), "dev2"); EXPECT_EQ(round_tripped.results(1).hlo(), "hlo2"); EXPECT_EQ(round_tripped.results(1).result().scratch_bytes(), 2); EXPECT_EQ(round_tripped.results(2).device(), "dev3"); EXPECT_EQ(round_tripped.results(2).hlo(), "hlo3"); EXPECT_EQ(round_tripped.results(2).result().scratch_bytes(), 3); } TEST(AutotuneResultWrapperTest, InconsistentVersions) { std::vector<AutotuneResultWrapper> wrappers = AutotuneResultWrapper::AutotuneResultsToWrappers( ThreeAutotuneEntries(42)); auto inconsistent_wrappers = AutotuneResultWrapper::AutotuneResultsToWrappers( ThreeAutotuneEntries(43)); wrappers.insert(wrappers.end(), inconsistent_wrappers.begin(), inconsistent_wrappers.end()); std::vector<std::pair<AutotuneResultWrapper::OpaqueKey, AutotuneResultWrapper::OpaqueValue>> key_value_pairs; for (const auto& wrapper : wrappers) { key_value_pairs.push_back(std::make_pair(wrapper.Key(), wrapper.Value())); } std::vector<AutotuneResultWrapper> decoded_wrappers; for (const auto& [key, value] : key_value_pairs) { TF_ASSERT_OK_AND_ASSIGN(AutotuneResultWrapper wrapper, AutotuneResultWrapper::FromKeyAndValue(key, value)); decoded_wrappers.push_back(std::move(wrapper)); } EXPECT_IS_NOT_OK( AutotuneResultWrapper::AutotuneResultsFromWrappers(decoded_wrappers)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/autotune_result_wrapper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/autotune_result_wrapper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
93c98b2f-f94c-4951-b330-76c929dd1705
cpp
abseil/abseil-cpp
absl_check
absl/log/absl_check.h
absl/log/absl_check_test.cc
#ifndef ABSL_LOG_ABSL_CHECK_H_ #define ABSL_LOG_ABSL_CHECK_H_ #include "absl/log/internal/check_impl.h" #define ABSL_CHECK(condition) \ ABSL_LOG_INTERNAL_CHECK_IMPL((condition), #condition) #define ABSL_QCHECK(condition) \ ABSL_LOG_INTERNAL_QCHECK_IMPL((condition), #condition) #define ABSL_PCHECK(condition) \ ABSL_LOG_INTERNAL_PCHECK_IMPL((condition), #condition) #define ABSL_DCHECK(condition) \ ABSL_LOG_INTERNAL_DCHECK_IMPL((condition), #condition) #define ABSL_CHECK_EQ(val1, val2) \ ABSL_LOG_INTERNAL_CHECK_EQ_IMPL((val1), #val1, (val2), #val2) #define ABSL_CHECK_NE(val1, val2) \ ABSL_LOG_INTERNAL_CHECK_NE_IMPL((val1), #val1, (val2), #val2) #define ABSL_CHECK_LE(val1, val2) \ ABSL_LOG_INTERNAL_CHECK_LE_IMPL((val1), #val1, (val2), #val2) #define ABSL_CHECK_LT(val1, val2) \ ABSL_LOG_INTERNAL_CHECK_LT_IMPL((val1), #val1, (val2), #val2) #define ABSL_CHECK_GE(val1, val2) \ ABSL_LOG_INTERNAL_CHECK_GE_IMPL((val1), #val1, (val2), #val2) #define ABSL_CHECK_GT(val1, val2) \ ABSL_LOG_INTERNAL_CHECK_GT_IMPL((val1), #val1, (val2), #val2) #define ABSL_QCHECK_EQ(val1, val2) \ ABSL_LOG_INTERNAL_QCHECK_EQ_IMPL((val1), #val1, (val2), #val2) #define ABSL_QCHECK_NE(val1, val2) \ ABSL_LOG_INTERNAL_QCHECK_NE_IMPL((val1), #val1, (val2), #val2) #define ABSL_QCHECK_LE(val1, val2) \ ABSL_LOG_INTERNAL_QCHECK_LE_IMPL((val1), #val1, (val2), #val2) #define ABSL_QCHECK_LT(val1, val2) \ ABSL_LOG_INTERNAL_QCHECK_LT_IMPL((val1), #val1, (val2), #val2) #define ABSL_QCHECK_GE(val1, val2) \ ABSL_LOG_INTERNAL_QCHECK_GE_IMPL((val1), #val1, (val2), #val2) #define ABSL_QCHECK_GT(val1, val2) \ ABSL_LOG_INTERNAL_QCHECK_GT_IMPL((val1), #val1, (val2), #val2) #define ABSL_DCHECK_EQ(val1, val2) \ ABSL_LOG_INTERNAL_DCHECK_EQ_IMPL((val1), #val1, (val2), #val2) #define ABSL_DCHECK_NE(val1, val2) \ ABSL_LOG_INTERNAL_DCHECK_NE_IMPL((val1), #val1, (val2), #val2) #define ABSL_DCHECK_LE(val1, val2) \ ABSL_LOG_INTERNAL_DCHECK_LE_IMPL((val1), #val1, (val2), #val2) #define ABSL_DCHECK_LT(val1, val2) \ ABSL_LOG_INTERNAL_DCHECK_LT_IMPL((val1), #val1, (val2), #val2) #define ABSL_DCHECK_GE(val1, val2) \ ABSL_LOG_INTERNAL_DCHECK_GE_IMPL((val1), #val1, (val2), #val2) #define ABSL_DCHECK_GT(val1, val2) \ ABSL_LOG_INTERNAL_DCHECK_GT_IMPL((val1), #val1, (val2), #val2) #define ABSL_CHECK_OK(status) ABSL_LOG_INTERNAL_CHECK_OK_IMPL((status), #status) #define ABSL_QCHECK_OK(status) \ ABSL_LOG_INTERNAL_QCHECK_OK_IMPL((status), #status) #define ABSL_DCHECK_OK(status) \ ABSL_LOG_INTERNAL_DCHECK_OK_IMPL((status), #status) #define ABSL_CHECK_STREQ(s1, s2) \ ABSL_LOG_INTERNAL_CHECK_STREQ_IMPL((s1), #s1, (s2), #s2) #define ABSL_CHECK_STRNE(s1, s2) \ ABSL_LOG_INTERNAL_CHECK_STRNE_IMPL((s1), #s1, (s2), #s2) #define ABSL_CHECK_STRCASEEQ(s1, s2) \ ABSL_LOG_INTERNAL_CHECK_STRCASEEQ_IMPL((s1), #s1, (s2), #s2) #define ABSL_CHECK_STRCASENE(s1, s2) \ ABSL_LOG_INTERNAL_CHECK_STRCASENE_IMPL((s1), #s1, (s2), #s2) #define ABSL_QCHECK_STREQ(s1, s2) \ ABSL_LOG_INTERNAL_QCHECK_STREQ_IMPL((s1), #s1, (s2), #s2) #define ABSL_QCHECK_STRNE(s1, s2) \ ABSL_LOG_INTERNAL_QCHECK_STRNE_IMPL((s1), #s1, (s2), #s2) #define ABSL_QCHECK_STRCASEEQ(s1, s2) \ ABSL_LOG_INTERNAL_QCHECK_STRCASEEQ_IMPL((s1), #s1, (s2), #s2) #define ABSL_QCHECK_STRCASENE(s1, s2) \ ABSL_LOG_INTERNAL_QCHECK_STRCASENE_IMPL((s1), #s1, (s2), #s2) #define ABSL_DCHECK_STREQ(s1, s2) \ ABSL_LOG_INTERNAL_DCHECK_STREQ_IMPL((s1), #s1, (s2), #s2) #define ABSL_DCHECK_STRNE(s1, s2) \ ABSL_LOG_INTERNAL_DCHECK_STRNE_IMPL((s1), #s1, (s2), #s2) #define ABSL_DCHECK_STRCASEEQ(s1, s2) \ ABSL_LOG_INTERNAL_DCHECK_STRCASEEQ_IMPL((s1), #s1, (s2), #s2) #define ABSL_DCHECK_STRCASENE(s1, s2) \ ABSL_LOG_INTERNAL_DCHECK_STRCASENE_IMPL((s1), #s1, (s2), #s2) #endif
#include "absl/log/absl_check.h" #define ABSL_TEST_CHECK ABSL_CHECK #define ABSL_TEST_CHECK_OK ABSL_CHECK_OK #define ABSL_TEST_CHECK_EQ ABSL_CHECK_EQ #define ABSL_TEST_CHECK_NE ABSL_CHECK_NE #define ABSL_TEST_CHECK_GE ABSL_CHECK_GE #define ABSL_TEST_CHECK_LE ABSL_CHECK_LE #define ABSL_TEST_CHECK_GT ABSL_CHECK_GT #define ABSL_TEST_CHECK_LT ABSL_CHECK_LT #define ABSL_TEST_CHECK_STREQ ABSL_CHECK_STREQ #define ABSL_TEST_CHECK_STRNE ABSL_CHECK_STRNE #define ABSL_TEST_CHECK_STRCASEEQ ABSL_CHECK_STRCASEEQ #define ABSL_TEST_CHECK_STRCASENE ABSL_CHECK_STRCASENE #define ABSL_TEST_DCHECK ABSL_DCHECK #define ABSL_TEST_DCHECK_OK ABSL_DCHECK_OK #define ABSL_TEST_DCHECK_EQ ABSL_DCHECK_EQ #define ABSL_TEST_DCHECK_NE ABSL_DCHECK_NE #define ABSL_TEST_DCHECK_GE ABSL_DCHECK_GE #define ABSL_TEST_DCHECK_LE ABSL_DCHECK_LE #define ABSL_TEST_DCHECK_GT ABSL_DCHECK_GT #define ABSL_TEST_DCHECK_LT ABSL_DCHECK_LT #define ABSL_TEST_DCHECK_STREQ ABSL_DCHECK_STREQ #define ABSL_TEST_DCHECK_STRNE ABSL_DCHECK_STRNE #define ABSL_TEST_DCHECK_STRCASEEQ ABSL_DCHECK_STRCASEEQ #define ABSL_TEST_DCHECK_STRCASENE ABSL_DCHECK_STRCASENE #define ABSL_TEST_QCHECK ABSL_QCHECK #define ABSL_TEST_QCHECK_OK ABSL_QCHECK_OK #define ABSL_TEST_QCHECK_EQ ABSL_QCHECK_EQ #define ABSL_TEST_QCHECK_NE ABSL_QCHECK_NE #define ABSL_TEST_QCHECK_GE ABSL_QCHECK_GE #define ABSL_TEST_QCHECK_LE ABSL_QCHECK_LE #define ABSL_TEST_QCHECK_GT ABSL_QCHECK_GT #define ABSL_TEST_QCHECK_LT ABSL_QCHECK_LT #define ABSL_TEST_QCHECK_STREQ ABSL_QCHECK_STREQ #define ABSL_TEST_QCHECK_STRNE ABSL_QCHECK_STRNE #define ABSL_TEST_QCHECK_STRCASEEQ ABSL_QCHECK_STRCASEEQ #define ABSL_TEST_QCHECK_STRCASENE ABSL_QCHECK_STRCASENE #include "gtest/gtest.h" #include "absl/log/check_test_impl.inc"
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/log/absl_check.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/log/absl_check_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
3f3c60b9-ff73-42be-a9ee-70a0a1e549dc
cpp
google/cel-cpp
cel_proto_wrapper
eval/public/structs/cel_proto_wrapper.cc
eval/public/structs/cel_proto_wrapper_test.cc
#include "eval/public/structs/cel_proto_wrapper.h" #include "absl/types/optional.h" #include "eval/public/cel_value.h" #include "eval/public/message_wrapper.h" #include "eval/public/structs/cel_proto_wrap_util.h" #include "eval/public/structs/proto_message_type_adapter.h" #include "google/protobuf/arena.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" namespace google::api::expr::runtime { namespace { using ::google::protobuf::Arena; using ::google::protobuf::Descriptor; using ::google::protobuf::Message; } CelValue CelProtoWrapper::InternalWrapMessage(const Message* message) { return CelValue::CreateMessageWrapper( MessageWrapper(message, &GetGenericProtoTypeInfoInstance())); } CelValue CelProtoWrapper::CreateMessage(const Message* value, Arena* arena) { return internal::UnwrapMessageToValue(value, &InternalWrapMessage, arena); } absl::optional<CelValue> CelProtoWrapper::MaybeWrapValue( const Descriptor* descriptor, google::protobuf::MessageFactory* factory, const CelValue& value, Arena* arena) { const Message* msg = internal::MaybeWrapValueToMessage(descriptor, factory, value, arena); if (msg != nullptr) { return InternalWrapMessage(msg); } else { return absl::nullopt; } } }
#include "eval/public/structs/cel_proto_wrapper.h" #include <cassert> #include <limits> #include <memory> #include <string> #include <utility> #include <vector> #include "google/protobuf/any.pb.h" #include "google/protobuf/duration.pb.h" #include "google/protobuf/empty.pb.h" #include "google/protobuf/struct.pb.h" #include "google/protobuf/wrappers.pb.h" #include "google/protobuf/dynamic_message.h" #include "google/protobuf/message.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "eval/public/cel_value.h" #include "eval/public/containers/container_backed_list_impl.h" #include "eval/public/containers/container_backed_map_impl.h" #include "eval/testutil/test_message.pb.h" #include "internal/proto_time_encoding.h" #include "internal/status_macros.h" #include "internal/testing.h" #include "testutil/util.h" namespace google::api::expr::runtime { namespace { using ::testing::Eq; using ::testing::UnorderedPointwise; using google::protobuf::Duration; using google::protobuf::ListValue; using google::protobuf::Struct; using google::protobuf::Timestamp; using google::protobuf::Value; using google::protobuf::Any; using google::protobuf::BoolValue; using google::protobuf::BytesValue; using google::protobuf::DoubleValue; using google::protobuf::FloatValue; using google::protobuf::Int32Value; using google::protobuf::Int64Value; using google::protobuf::StringValue; using google::protobuf::UInt32Value; using google::protobuf::UInt64Value; using google::protobuf::Arena; class CelProtoWrapperTest : public ::testing::Test { protected: CelProtoWrapperTest() {} void ExpectWrappedMessage(const CelValue& value, const google::protobuf::Message& message) { auto result = CelProtoWrapper::MaybeWrapValue( message.GetDescriptor(), message.GetReflection()->GetMessageFactory(), value, arena()); EXPECT_TRUE(result.has_value()); EXPECT_TRUE((*result).IsMessage()); EXPECT_THAT((*result).MessageOrDie(), testutil::EqualsProto(message)); auto identity = CelProtoWrapper::MaybeWrapValue( message.GetDescriptor(), message.GetReflection()->GetMessageFactory(), *result, arena()); EXPECT_FALSE(identity.has_value()); result = CelProtoWrapper::MaybeWrapValue( ReflectedCopy(message)->GetDescriptor(), ReflectedCopy(message)->GetReflection()->GetMessageFactory(), value, arena()); EXPECT_TRUE(result.has_value()); EXPECT_TRUE((*result).IsMessage()); EXPECT_THAT((*result).MessageOrDie(), testutil::EqualsProto(message)); } void ExpectNotWrapped(const CelValue& value, const google::protobuf::Message& message) { auto result = CelProtoWrapper::MaybeWrapValue( message.GetDescriptor(), message.GetReflection()->GetMessageFactory(), value, arena()); EXPECT_FALSE(result.has_value()); } template <class T> void ExpectUnwrappedPrimitive(const google::protobuf::Message& message, T result) { CelValue cel_value = CelProtoWrapper::CreateMessage(&message, arena()); T value; EXPECT_TRUE(cel_value.GetValue(&value)); EXPECT_THAT(value, Eq(result)); T dyn_value; CelValue cel_dyn_value = CelProtoWrapper::CreateMessage(ReflectedCopy(message).get(), arena()); EXPECT_THAT(cel_dyn_value.type(), Eq(cel_value.type())); EXPECT_TRUE(cel_dyn_value.GetValue(&dyn_value)); EXPECT_THAT(value, Eq(dyn_value)); } void ExpectUnwrappedMessage(const google::protobuf::Message& message, google::protobuf::Message* result) { CelValue cel_value = CelProtoWrapper::CreateMessage(&message, arena()); if (result == nullptr) { EXPECT_TRUE(cel_value.IsNull()); return; } EXPECT_TRUE(cel_value.IsMessage()); EXPECT_THAT(cel_value.MessageOrDie(), testutil::EqualsProto(*result)); } std::unique_ptr<google::protobuf::Message> ReflectedCopy( const google::protobuf::Message& message) { std::unique_ptr<google::protobuf::Message> dynamic_value( factory_.GetPrototype(message.GetDescriptor())->New()); dynamic_value->CopyFrom(message); return dynamic_value; } Arena* arena() { return &arena_; } private: Arena arena_; google::protobuf::DynamicMessageFactory factory_; }; TEST_F(CelProtoWrapperTest, TestType) { Duration msg_duration; msg_duration.set_seconds(2); msg_duration.set_nanos(3); CelValue value_duration1 = CelProtoWrapper::CreateDuration(&msg_duration); EXPECT_THAT(value_duration1.type(), Eq(CelValue::Type::kDuration)); CelValue value_duration2 = CelProtoWrapper::CreateMessage(&msg_duration, arena()); EXPECT_THAT(value_duration2.type(), Eq(CelValue::Type::kDuration)); Timestamp msg_timestamp; msg_timestamp.set_seconds(2); msg_timestamp.set_nanos(3); CelValue value_timestamp1 = CelProtoWrapper::CreateTimestamp(&msg_timestamp); EXPECT_THAT(value_timestamp1.type(), Eq(CelValue::Type::kTimestamp)); CelValue value_timestamp2 = CelProtoWrapper::CreateMessage(&msg_timestamp, arena()); EXPECT_THAT(value_timestamp2.type(), Eq(CelValue::Type::kTimestamp)); } TEST_F(CelProtoWrapperTest, TestDuration) { Duration msg_duration; msg_duration.set_seconds(2); msg_duration.set_nanos(3); CelValue value_duration1 = CelProtoWrapper::CreateDuration(&msg_duration); EXPECT_THAT(value_duration1.type(), Eq(CelValue::Type::kDuration)); CelValue value_duration2 = CelProtoWrapper::CreateMessage(&msg_duration, arena()); EXPECT_THAT(value_duration2.type(), Eq(CelValue::Type::kDuration)); CelValue value = CelProtoWrapper::CreateDuration(&msg_duration); EXPECT_TRUE(value.IsDuration()); Duration out; auto status = cel::internal::EncodeDuration(value.DurationOrDie(), &out); EXPECT_TRUE(status.ok()); EXPECT_THAT(out, testutil::EqualsProto(msg_duration)); } TEST_F(CelProtoWrapperTest, TestTimestamp) { Timestamp msg_timestamp; msg_timestamp.set_seconds(2); msg_timestamp.set_nanos(3); CelValue value_timestamp1 = CelProtoWrapper::CreateTimestamp(&msg_timestamp); EXPECT_THAT(value_timestamp1.type(), Eq(CelValue::Type::kTimestamp)); CelValue value_timestamp2 = CelProtoWrapper::CreateMessage(&msg_timestamp, arena()); EXPECT_THAT(value_timestamp2.type(), Eq(CelValue::Type::kTimestamp)); CelValue value = CelProtoWrapper::CreateTimestamp(&msg_timestamp); EXPECT_TRUE(value.IsTimestamp()); Timestamp out; auto status = cel::internal::EncodeTime(value.TimestampOrDie(), &out); EXPECT_TRUE(status.ok()); EXPECT_THAT(out, testutil::EqualsProto(msg_timestamp)); } TEST_F(CelProtoWrapperTest, UnwrapValueNull) { Value json; json.set_null_value(google::protobuf::NullValue::NULL_VALUE); ExpectUnwrappedMessage(json, nullptr); } TEST_F(CelProtoWrapperTest, UnwrapDynamicValueNull) { Value value_msg; value_msg.set_null_value(protobuf::NULL_VALUE); CelValue value = CelProtoWrapper::CreateMessage(ReflectedCopy(value_msg).get(), arena()); EXPECT_TRUE(value.IsNull()); } TEST_F(CelProtoWrapperTest, UnwrapValueBool) { bool value = true; Value json; json.set_bool_value(true); ExpectUnwrappedPrimitive(json, value); } TEST_F(CelProtoWrapperTest, UnwrapValueNumber) { double value = 1.0; Value json; json.set_number_value(value); ExpectUnwrappedPrimitive(json, value); } TEST_F(CelProtoWrapperTest, UnwrapValueString) { const std::string test = "test"; auto value = CelValue::StringHolder(&test); Value json; json.set_string_value(test); ExpectUnwrappedPrimitive(json, value); } TEST_F(CelProtoWrapperTest, UnwrapValueStruct) { const std::vector<std::string> kFields = {"field1", "field2", "field3"}; Struct value_struct; auto& value1 = (*value_struct.mutable_fields())[kFields[0]]; value1.set_bool_value(true); auto& value2 = (*value_struct.mutable_fields())[kFields[1]]; value2.set_number_value(1.0); auto& value3 = (*value_struct.mutable_fields())[kFields[2]]; value3.set_string_value("test"); CelValue value = CelProtoWrapper::CreateMessage(&value_struct, arena()); ASSERT_TRUE(value.IsMap()); const CelMap* cel_map = value.MapOrDie(); CelValue field1 = CelValue::CreateString(&kFields[0]); auto field1_presence = cel_map->Has(field1); ASSERT_OK(field1_presence); EXPECT_TRUE(*field1_presence); auto lookup1 = (*cel_map)[field1]; ASSERT_TRUE(lookup1.has_value()); ASSERT_TRUE(lookup1->IsBool()); EXPECT_EQ(lookup1->BoolOrDie(), true); CelValue field2 = CelValue::CreateString(&kFields[1]); auto field2_presence = cel_map->Has(field2); ASSERT_OK(field2_presence); EXPECT_TRUE(*field2_presence); auto lookup2 = (*cel_map)[field2]; ASSERT_TRUE(lookup2.has_value()); ASSERT_TRUE(lookup2->IsDouble()); EXPECT_DOUBLE_EQ(lookup2->DoubleOrDie(), 1.0); CelValue field3 = CelValue::CreateString(&kFields[2]); auto field3_presence = cel_map->Has(field3); ASSERT_OK(field3_presence); EXPECT_TRUE(*field3_presence); auto lookup3 = (*cel_map)[field3]; ASSERT_TRUE(lookup3.has_value()); ASSERT_TRUE(lookup3->IsString()); EXPECT_EQ(lookup3->StringOrDie().value(), "test"); std::string missing = "missing_field"; CelValue missing_field = CelValue::CreateString(&missing); auto missing_field_presence = cel_map->Has(missing_field); ASSERT_OK(missing_field_presence); EXPECT_FALSE(*missing_field_presence); const CelList* key_list = cel_map->ListKeys().value(); ASSERT_EQ(key_list->size(), kFields.size()); std::vector<std::string> result_keys; for (int i = 0; i < key_list->size(); i++) { CelValue key = (*key_list)[i]; ASSERT_TRUE(key.IsString()); result_keys.push_back(std::string(key.StringOrDie().value())); } EXPECT_THAT(result_keys, UnorderedPointwise(Eq(), kFields)); } TEST_F(CelProtoWrapperTest, UnwrapDynamicStruct) { Struct struct_msg; const std::string kFieldInt = "field_int"; const std::string kFieldBool = "field_bool"; (*struct_msg.mutable_fields())[kFieldInt].set_number_value(1.); (*struct_msg.mutable_fields())[kFieldBool].set_bool_value(true); CelValue value = CelProtoWrapper::CreateMessage(ReflectedCopy(struct_msg).get(), arena()); EXPECT_TRUE(value.IsMap()); const CelMap* cel_map = value.MapOrDie(); ASSERT_TRUE(cel_map != nullptr); { auto lookup = (*cel_map)[CelValue::CreateString(&kFieldInt)]; ASSERT_TRUE(lookup.has_value()); auto v = lookup.value(); ASSERT_TRUE(v.IsDouble()); EXPECT_THAT(v.DoubleOrDie(), testing::DoubleEq(1.)); } { auto lookup = (*cel_map)[CelValue::CreateString(&kFieldBool)]; ASSERT_TRUE(lookup.has_value()); auto v = lookup.value(); ASSERT_TRUE(v.IsBool()); EXPECT_EQ(v.BoolOrDie(), true); } { auto presence = cel_map->Has(CelValue::CreateBool(true)); ASSERT_FALSE(presence.ok()); EXPECT_EQ(presence.status().code(), absl::StatusCode::kInvalidArgument); auto lookup = (*cel_map)[CelValue::CreateBool(true)]; ASSERT_TRUE(lookup.has_value()); auto v = lookup.value(); ASSERT_TRUE(v.IsError()); } } TEST_F(CelProtoWrapperTest, UnwrapDynamicValueStruct) { const std::string kField1 = "field1"; const std::string kField2 = "field2"; Value value_msg; (*value_msg.mutable_struct_value()->mutable_fields())[kField1] .set_number_value(1); (*value_msg.mutable_struct_value()->mutable_fields())[kField2] .set_number_value(2); CelValue value = CelProtoWrapper::CreateMessage(ReflectedCopy(value_msg).get(), arena()); EXPECT_TRUE(value.IsMap()); EXPECT_TRUE( (*value.MapOrDie())[CelValue::CreateString(&kField1)].has_value()); EXPECT_TRUE( (*value.MapOrDie())[CelValue::CreateString(&kField2)].has_value()); } TEST_F(CelProtoWrapperTest, UnwrapValueList) { const std::vector<std::string> kFields = {"field1", "field2", "field3"}; ListValue list_value; list_value.add_values()->set_bool_value(true); list_value.add_values()->set_number_value(1.0); list_value.add_values()->set_string_value("test"); CelValue value = CelProtoWrapper::CreateMessage(&list_value, arena()); ASSERT_TRUE(value.IsList()); const CelList* cel_list = value.ListOrDie(); ASSERT_EQ(cel_list->size(), 3); CelValue value1 = (*cel_list)[0]; ASSERT_TRUE(value1.IsBool()); EXPECT_EQ(value1.BoolOrDie(), true); auto value2 = (*cel_list)[1]; ASSERT_TRUE(value2.IsDouble()); EXPECT_DOUBLE_EQ(value2.DoubleOrDie(), 1.0); auto value3 = (*cel_list)[2]; ASSERT_TRUE(value3.IsString()); EXPECT_EQ(value3.StringOrDie().value(), "test"); } TEST_F(CelProtoWrapperTest, UnwrapDynamicValueListValue) { Value value_msg; value_msg.mutable_list_value()->add_values()->set_number_value(1.); value_msg.mutable_list_value()->add_values()->set_number_value(2.); CelValue value = CelProtoWrapper::CreateMessage(ReflectedCopy(value_msg).get(), arena()); EXPECT_TRUE(value.IsList()); EXPECT_THAT((*value.ListOrDie())[0].DoubleOrDie(), testing::DoubleEq(1)); EXPECT_THAT((*value.ListOrDie())[1].DoubleOrDie(), testing::DoubleEq(2)); } TEST_F(CelProtoWrapperTest, UnwrapAnyValue) { TestMessage test_message; test_message.set_string_value("test"); Any any; any.PackFrom(test_message); ExpectUnwrappedMessage(any, &test_message); } TEST_F(CelProtoWrapperTest, UnwrapInvalidAny) { Any any; CelValue value = CelProtoWrapper::CreateMessage(&any, arena()); ASSERT_TRUE(value.IsError()); any.set_type_url("/"); ASSERT_TRUE(CelProtoWrapper::CreateMessage(&any, arena()).IsError()); any.set_type_url("/invalid.proto.name"); ASSERT_TRUE(CelProtoWrapper::CreateMessage(&any, arena()).IsError()); } TEST_F(CelProtoWrapperTest, UnwrapBoolWrapper) { bool value = true; BoolValue wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapInt32Wrapper) { int64_t value = 12; Int32Value wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapUInt32Wrapper) { uint64_t value = 12; UInt32Value wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapInt64Wrapper) { int64_t value = 12; Int64Value wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapUInt64Wrapper) { uint64_t value = 12; UInt64Value wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapFloatWrapper) { double value = 42.5; FloatValue wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapDoubleWrapper) { double value = 42.5; DoubleValue wrapper; wrapper.set_value(value); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapStringWrapper) { std::string text = "42"; auto value = CelValue::StringHolder(&text); StringValue wrapper; wrapper.set_value(text); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, UnwrapBytesWrapper) { std::string text = "42"; auto value = CelValue::BytesHolder(&text); BytesValue wrapper; wrapper.set_value("42"); ExpectUnwrappedPrimitive(wrapper, value); } TEST_F(CelProtoWrapperTest, WrapNull) { auto cel_value = CelValue::CreateNull(); Value json; json.set_null_value(protobuf::NULL_VALUE); ExpectWrappedMessage(cel_value, json); Any any; any.PackFrom(json); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapBool) { auto cel_value = CelValue::CreateBool(true); Value json; json.set_bool_value(true); ExpectWrappedMessage(cel_value, json); BoolValue wrapper; wrapper.set_value(true); ExpectWrappedMessage(cel_value, wrapper); Any any; any.PackFrom(wrapper); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapBytes) { std::string str = "hello world"; auto cel_value = CelValue::CreateBytes(CelValue::BytesHolder(&str)); BytesValue wrapper; wrapper.set_value(str); ExpectWrappedMessage(cel_value, wrapper); Any any; any.PackFrom(wrapper); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapBytesToValue) { std::string str = "hello world"; auto cel_value = CelValue::CreateBytes(CelValue::BytesHolder(&str)); Value json; json.set_string_value("aGVsbG8gd29ybGQ="); ExpectWrappedMessage(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapDuration) { auto cel_value = CelValue::CreateDuration(absl::Seconds(300)); Duration d; d.set_seconds(300); ExpectWrappedMessage(cel_value, d); Any any; any.PackFrom(d); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapDurationToValue) { auto cel_value = CelValue::CreateDuration(absl::Seconds(300)); Value json; json.set_string_value("300s"); ExpectWrappedMessage(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapDouble) { double num = 1.5; auto cel_value = CelValue::CreateDouble(num); Value json; json.set_number_value(num); ExpectWrappedMessage(cel_value, json); DoubleValue wrapper; wrapper.set_value(num); ExpectWrappedMessage(cel_value, wrapper); Any any; any.PackFrom(wrapper); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapDoubleToFloatValue) { double num = 1.5; auto cel_value = CelValue::CreateDouble(num); FloatValue wrapper; wrapper.set_value(num); ExpectWrappedMessage(cel_value, wrapper); double small_num = -9.9e-100; wrapper.set_value(small_num); cel_value = CelValue::CreateDouble(small_num); ExpectWrappedMessage(cel_value, wrapper); } TEST_F(CelProtoWrapperTest, WrapDoubleOverflow) { double lowest_double = std::numeric_limits<double>::lowest(); auto cel_value = CelValue::CreateDouble(lowest_double); FloatValue wrapper; wrapper.set_value(-std::numeric_limits<float>::infinity()); ExpectWrappedMessage(cel_value, wrapper); double max_double = std::numeric_limits<double>::max(); cel_value = CelValue::CreateDouble(max_double); wrapper.set_value(std::numeric_limits<float>::infinity()); ExpectWrappedMessage(cel_value, wrapper); } TEST_F(CelProtoWrapperTest, WrapInt64) { int32_t num = std::numeric_limits<int32_t>::lowest(); auto cel_value = CelValue::CreateInt64(num); Value json; json.set_number_value(static_cast<double>(num)); ExpectWrappedMessage(cel_value, json); Int64Value wrapper; wrapper.set_value(num); ExpectWrappedMessage(cel_value, wrapper); Any any; any.PackFrom(wrapper); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapInt64ToInt32Value) { int32_t num = std::numeric_limits<int32_t>::lowest(); auto cel_value = CelValue::CreateInt64(num); Int32Value wrapper; wrapper.set_value(num); ExpectWrappedMessage(cel_value, wrapper); } TEST_F(CelProtoWrapperTest, WrapFailureInt64ToInt32Value) { int64_t num = std::numeric_limits<int64_t>::lowest(); auto cel_value = CelValue::CreateInt64(num); Int32Value wrapper; ExpectNotWrapped(cel_value, wrapper); } TEST_F(CelProtoWrapperTest, WrapInt64ToValue) { int64_t max = std::numeric_limits<int64_t>::max(); auto cel_value = CelValue::CreateInt64(max); Value json; json.set_string_value(absl::StrCat(max)); ExpectWrappedMessage(cel_value, json); int64_t min = std::numeric_limits<int64_t>::min(); cel_value = CelValue::CreateInt64(min); json.set_string_value(absl::StrCat(min)); ExpectWrappedMessage(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapUint64) { uint32_t num = std::numeric_limits<uint32_t>::max(); auto cel_value = CelValue::CreateUint64(num); Value json; json.set_number_value(static_cast<double>(num)); ExpectWrappedMessage(cel_value, json); UInt64Value wrapper; wrapper.set_value(num); ExpectWrappedMessage(cel_value, wrapper); Any any; any.PackFrom(wrapper); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapUint64ToUint32Value) { uint32_t num = std::numeric_limits<uint32_t>::max(); auto cel_value = CelValue::CreateUint64(num); UInt32Value wrapper; wrapper.set_value(num); ExpectWrappedMessage(cel_value, wrapper); } TEST_F(CelProtoWrapperTest, WrapUint64ToValue) { uint64_t num = std::numeric_limits<uint64_t>::max(); auto cel_value = CelValue::CreateUint64(num); Value json; json.set_string_value(absl::StrCat(num)); ExpectWrappedMessage(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapFailureUint64ToUint32Value) { uint64_t num = std::numeric_limits<uint64_t>::max(); auto cel_value = CelValue::CreateUint64(num); UInt32Value wrapper; ExpectNotWrapped(cel_value, wrapper); } TEST_F(CelProtoWrapperTest, WrapString) { std::string str = "test"; auto cel_value = CelValue::CreateString(CelValue::StringHolder(&str)); Value json; json.set_string_value(str); ExpectWrappedMessage(cel_value, json); StringValue wrapper; wrapper.set_value(str); ExpectWrappedMessage(cel_value, wrapper); Any any; any.PackFrom(wrapper); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapTimestamp) { absl::Time ts = absl::FromUnixSeconds(1615852799); auto cel_value = CelValue::CreateTimestamp(ts); Timestamp t; t.set_seconds(1615852799); ExpectWrappedMessage(cel_value, t); Any any; any.PackFrom(t); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapTimestampToValue) { absl::Time ts = absl::FromUnixSeconds(1615852799); auto cel_value = CelValue::CreateTimestamp(ts); Value json; json.set_string_value("2021-03-15T23:59:59Z"); ExpectWrappedMessage(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapList) { std::vector<CelValue> list_elems = { CelValue::CreateDouble(1.5), CelValue::CreateInt64(-2L), }; ContainerBackedListImpl list(std::move(list_elems)); auto cel_value = CelValue::CreateList(&list); Value json; json.mutable_list_value()->add_values()->set_number_value(1.5); json.mutable_list_value()->add_values()->set_number_value(-2.); ExpectWrappedMessage(cel_value, json); ExpectWrappedMessage(cel_value, json.list_value()); Any any; any.PackFrom(json.list_value()); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapFailureListValueBadJSON) { TestMessage message; std::vector<CelValue> list_elems = { CelValue::CreateDouble(1.5), CelProtoWrapper::CreateMessage(&message, arena()), }; ContainerBackedListImpl list(std::move(list_elems)); auto cel_value = CelValue::CreateList(&list); Value json; ExpectNotWrapped(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapStruct) { const std::string kField1 = "field1"; std::vector<std::pair<CelValue, CelValue>> args = { {CelValue::CreateString(CelValue::StringHolder(&kField1)), CelValue::CreateBool(true)}}; auto cel_map = CreateContainerBackedMap( absl::Span<std::pair<CelValue, CelValue>>(args.data(), args.size())) .value(); auto cel_value = CelValue::CreateMap(cel_map.get()); Value json; (*json.mutable_struct_value()->mutable_fields())[kField1].set_bool_value( true); ExpectWrappedMessage(cel_value, json); ExpectWrappedMessage(cel_value, json.struct_value()); Any any; any.PackFrom(json.struct_value()); ExpectWrappedMessage(cel_value, any); } TEST_F(CelProtoWrapperTest, WrapFailureStructBadKeyType) { std::vector<std::pair<CelValue, CelValue>> args = { {CelValue::CreateInt64(1L), CelValue::CreateBool(true)}}; auto cel_map = CreateContainerBackedMap( absl::Span<std::pair<CelValue, CelValue>>(args.data(), args.size())) .value(); auto cel_value = CelValue::CreateMap(cel_map.get()); Value json; ExpectNotWrapped(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapFailureStructBadValueType) { const std::string kField1 = "field1"; TestMessage bad_value; std::vector<std::pair<CelValue, CelValue>> args = { {CelValue::CreateString(CelValue::StringHolder(&kField1)), CelProtoWrapper::CreateMessage(&bad_value, arena())}}; auto cel_map = CreateContainerBackedMap( absl::Span<std::pair<CelValue, CelValue>>(args.data(), args.size())) .value(); auto cel_value = CelValue::CreateMap(cel_map.get()); Value json; ExpectNotWrapped(cel_value, json); } TEST_F(CelProtoWrapperTest, WrapFailureWrongType) { auto cel_value = CelValue::CreateNull(); std::vector<const google::protobuf::Message*> wrong_types = { &BoolValue::default_instance(), &BytesValue::default_instance(), &DoubleValue::default_instance(), &Duration::default_instance(), &FloatValue::default_instance(), &Int32Value::default_instance(), &Int64Value::default_instance(), &ListValue::default_instance(), &StringValue::default_instance(), &Struct::default_instance(), &Timestamp::default_instance(), &UInt32Value::default_instance(), &UInt64Value::default_instance(), }; for (const auto* wrong_type : wrong_types) { ExpectNotWrapped(cel_value, *wrong_type); } } TEST_F(CelProtoWrapperTest, WrapFailureErrorToAny) { auto cel_value = CreateNoSuchFieldError(arena(), "error_field"); ExpectNotWrapped(cel_value, Any::default_instance()); } class InvalidListKeysCelMapBuilder : public CelMapBuilder { public: absl::StatusOr<const CelList*> ListKeys() const override { return absl::InternalError("Error while invoking ListKeys()"); } }; TEST_F(CelProtoWrapperTest, DebugString) { google::protobuf::Empty e; EXPECT_THAT(CelProtoWrapper::CreateMessage(&e, arena()).DebugString(), testing::StartsWith("Message: ")); ListValue list_value; list_value.add_values()->set_bool_value(true); list_value.add_values()->set_number_value(1.0); list_value.add_values()->set_string_value("test"); CelValue value = CelProtoWrapper::CreateMessage(&list_value, arena()); EXPECT_EQ(value.DebugString(), "CelList: [bool: 1, double: 1.000000, string: test]"); Struct value_struct; auto& value1 = (*value_struct.mutable_fields())["a"]; value1.set_bool_value(true); auto& value2 = (*value_struct.mutable_fields())["b"]; value2.set_number_value(1.0); auto& value3 = (*value_struct.mutable_fields())["c"]; value3.set_string_value("test"); value = CelProtoWrapper::CreateMessage(&value_struct, arena()); EXPECT_THAT( value.DebugString(), testing::AllOf(testing::StartsWith("CelMap: {"), testing::HasSubstr("<string: a>: <bool: 1>"), testing::HasSubstr("<string: b>: <double: 1.0"), testing::HasSubstr("<string: c>: <string: test>"))); InvalidListKeysCelMapBuilder invalid_cel_map; auto cel_map_value = CelValue::CreateMap(&invalid_cel_map); EXPECT_EQ(cel_map_value.DebugString(), "CelMap: invalid list keys"); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/structs/cel_proto_wrapper.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/structs/cel_proto_wrapper_test.cc
4552db5798fb0853b131b783d8875794334fae7f
61403832-c7b7-416d-abcd-da425f14f1b7
cpp
google/cel-cpp
to_address
internal/to_address.h
internal/to_address_test.cc
#ifndef THIRD_PARTY_CEL_CPP_INTERNAL_TO_ADDRESS_H_ #define THIRD_PARTY_CEL_CPP_INTERNAL_TO_ADDRESS_H_ #include <memory> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/meta/type_traits.h" namespace cel::internal { #if defined(__cpp_lib_to_address) && __cpp_lib_to_address >= 201711L using std::to_address; #else template <typename T> constexpr T* to_address(T* ptr) noexcept { static_assert(!std::is_function<T>::value, "T must not be a function"); return ptr; } template <typename T, typename = void> struct PointerTraitsToAddress { static constexpr auto Dispatch( const T& p ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept { return internal::to_address(p.operator->()); } }; template <typename T> struct PointerTraitsToAddress< T, absl::void_t<decltype(std::pointer_traits<T>::to_address( std::declval<const T&>()))> > { static constexpr auto Dispatch( const T& p ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept { return std::pointer_traits<T>::to_address(p); } }; template <typename T> constexpr auto to_address(const T& ptr ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept { return PointerTraitsToAddress<T>::Dispatch(ptr); } #endif } #endif
#include "internal/to_address.h" #include <memory> #include "internal/testing.h" namespace cel { namespace { TEST(ToAddress, RawPointer) { char c; EXPECT_EQ(internal::to_address(&c), &c); } struct ImplicitFancyPointer { using element_type = char; char* operator->() const { return ptr; } char* ptr; }; struct ExplicitFancyPointer { char* ptr; }; } } namespace std { template <> struct pointer_traits<cel::ExplicitFancyPointer> : pointer_traits<char*> { static constexpr char* to_address( const cel::ExplicitFancyPointer& efp) noexcept { return efp.ptr; } }; } namespace cel { namespace { TEST(ToAddress, FancyPointerNoPointerTraits) { char c; ImplicitFancyPointer ip{&c}; EXPECT_EQ(internal::to_address(ip), &c); } TEST(ToAddress, FancyPointerWithPointerTraits) { char c; ExplicitFancyPointer ip{&c}; EXPECT_EQ(internal::to_address(ip), &c); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/to_address.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/to_address_test.cc
4552db5798fb0853b131b783d8875794334fae7f
c36b89df-44db-42b2-bb20-ef6a5f8cc238
cpp
tensorflow/tensorflow
quantized_concat_op
tensorflow/core/kernels/quantized_concat_op.cc
tensorflow/core/kernels/quantized_concat_op_test.cc
#define EIGEN_USE_THREADS #include <limits> #include <utility> #include <vector> #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/concat_lib_cpu.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/platform/status.h" namespace tensorflow { namespace { template <typename T> struct RequantizeCopier { RequantizeCopier( const std::vector<std::pair<float, float>>* input_min_and_max, float output_min, float output_max) : output_min(output_min), output_max(output_max), input_min_and_max(input_min_and_max) {} inline void Copy(T* dst, const T* src, int input_index, size_t n) { const float input_min = (*input_min_and_max)[input_index].first; const float input_max = (*input_min_and_max)[input_index].second; if (input_min == output_min && input_max == output_max) { DCHECK(DataTypeCanUseMemcpy(DataTypeToEnum<T>::v())); memcpy(dst, src, n * sizeof(T)); } else { Eigen::array<Eigen::DenseIndex, 1> dims; dims[0] = n; typename TTypes<T, 1>::UnalignedConstTensor input_array(src, dims); typename TTypes<T, 1>::UnalignedTensor output_array(dst, dims); QuantizedToFloatStruct<T> q2f(input_min, input_max); auto input_float = DEQUANTIZE_WITH_EIGEN(input_array, q2f); FloatToQuantizedStruct<T> f2q(output_min, output_max); auto input_requantized = QUANTIZE_WITH_EIGEN(input_float, f2q, T); output_array = input_requantized; } } float output_min; float output_max; const std::vector<std::pair<float, float>>* input_min_and_max; }; } template <typename T> class QuantizedConcatOp : public OpKernel { public: typedef std::vector<std::unique_ptr<typename TTypes<T, 2>::ConstMatrix>> ConstMatrixVector; explicit QuantizedConcatOp(OpKernelConstruction* c) : OpKernel(c) {} Status CalculateInputAndOutputRange( const OpInputList& input_mins, const OpInputList& input_maxes, const size_t N, std::vector<std::pair<float, float>>* input_mins_and_maxes, float* output_min, float* output_max) { input_mins_and_maxes->reserve(N); float overall_min = std::numeric_limits<float>::max(); float overall_max = std::numeric_limits<float>::lowest(); for (int i = 0; i < N; ++i) { if (input_mins[i].NumElements() != 1) { return errors::InvalidArgument( "input_mins each tensor's num elements must be 1, given num " "elements ", input_mins[i].NumElements(), " in index ", i); } if (input_maxes[i].NumElements() != 1) { return errors::InvalidArgument( "input_maxes each tensor's num elements must be 1, given num " "elements ", input_maxes[i].NumElements(), " in index ", i); } const float input_min = input_mins[i].flat<float>()(0); const float input_max = input_maxes[i].flat<float>()(0); input_mins_and_maxes->emplace_back(input_min, input_max); overall_min = std::min(overall_min, input_min); overall_max = std::max(overall_max, input_max); } overall_min = std::min(0.0f, overall_min); if (std::is_signed<T>::value) { const float largest_value = std::max(std::abs(overall_min), std::abs(overall_max)); *output_min = -largest_value; *output_max = largest_value; } else { *output_min = overall_min; *output_max = overall_max; } return absl::OkStatus(); } int64_t CalculateInputsDim(const TensorShape& input_shape, const int32_t concat_dim) { int64_t inputs_flat_dim0 = 1; for (int d = 0; d < concat_dim; ++d) { inputs_flat_dim0 *= input_shape.dim_size(d); } return inputs_flat_dim0; } Status CalculateConcatDims(const size_t N, const TensorShape& input_shape, int input_dims, const OpInputList& values, const int32_t concat_dim, const int64_t inputs_flat_dim0, ConstMatrixVector* inputs_flat, int* output_concat_dim) { inputs_flat->reserve(N); *output_concat_dim = 0; const bool input_is_scalar = TensorShapeUtils::IsScalar(input_shape); for (int i = 0; i < N; ++i) { const auto in = values[i]; const bool in_is_scalar = TensorShapeUtils::IsScalar(in.shape()); if (!(in.dims() == input_dims || (input_is_scalar && in_is_scalar))) { return errors::InvalidArgument( "ConcatOp : Ranks of all input tensors should match: shape[0] = ", input_shape.DebugString(), " vs. shape[", i, "] = ", in.shape().DebugString()); } for (int j = 0; j < input_dims; ++j) { if (j == concat_dim) { continue; } if (in.dim_size(j) != input_shape.dim_size(j)) { return errors::InvalidArgument( "ConcatOp : Dimensions of inputs should match: shape[0] = ", input_shape.DebugString(), " vs. shape[", i, "] = ", in.shape().DebugString()); } } if (in.NumElements() > 0) { int64_t inputs_flat_dim1 = in.NumElements() / inputs_flat_dim0; inputs_flat->emplace_back(new typename TTypes<T, 2>::ConstMatrix( in.shaped<T, 2>({inputs_flat_dim0, inputs_flat_dim1}))); } *output_concat_dim += in.dims() > 0 ? in.dim_size(concat_dim) : 1; } return absl::OkStatus(); } void Compute(OpKernelContext* context) override { const Tensor* concat_dim_tensor = nullptr; OP_REQUIRES_OK(context, context->input("concat_dim", &concat_dim_tensor)); OP_REQUIRES( context, TensorShapeUtils::IsScalar(concat_dim_tensor->shape()), errors::InvalidArgument( "Concat dim tensor should be a scalar integer, but got shape ", concat_dim_tensor->shape().DebugString())); const int32_t concat_dim = concat_dim_tensor->scalar<int32>()(); OpInputList values; OP_REQUIRES_OK(context, context->input_list("values", &values)); const size_t N = values.size(); OpInputList input_mins; OP_REQUIRES_OK(context, context->input_list("input_mins", &input_mins)); OP_REQUIRES(context, (input_mins.size() == N), errors::InvalidArgument( "QuantizedConcatOp : Expected mins input list length ", input_mins.size(), " to equal values length ", N)); OpInputList input_maxes; OP_REQUIRES_OK(context, context->input_list("input_maxes", &input_maxes)); OP_REQUIRES(context, (input_maxes.size() == N), errors::InvalidArgument( "QuantizedConcatOp : Expected maxes input list length ", input_maxes.size(), " to equal values length ", N)); const int input_dims = values[0].dims(); const TensorShape& input_shape = values[0].shape(); OP_REQUIRES( context, (0 <= concat_dim && concat_dim < input_dims), errors::InvalidArgument( "ConcatOp : Expected concatenating dimensions in the range [", 0, ", ", input_dims, "), but got ", concat_dim)); float output_min = std::numeric_limits<float>::max(); float output_max = std::numeric_limits<float>::lowest(); std::vector<std::pair<float, float>> input_mins_and_maxes; OP_REQUIRES_OK(context, CalculateInputAndOutputRange(input_mins, input_maxes, N, &input_mins_and_maxes, &output_min, &output_max)); const int64_t inputs_flat_dim0 = CalculateInputsDim(input_shape, concat_dim); ConstMatrixVector inputs_flat; int output_concat_dim; OP_REQUIRES_OK( context, CalculateConcatDims(N, input_shape, input_dims, values, concat_dim, inputs_flat_dim0, &inputs_flat, &output_concat_dim)); TensorShape output_shape(input_shape); if (output_shape.dims() == 0) { output_shape.AddDim(output_concat_dim); } else { output_shape.set_dim(concat_dim, output_concat_dim); } Tensor* output = nullptr; OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output)); if (output->NumElements() > 0) { int64_t output_dim1 = output->NumElements() / inputs_flat_dim0; auto output_flat = output->shaped<T, 2>({inputs_flat_dim0, output_dim1}); ConcatCPUImpl<T>( context->device(), inputs_flat, sizeof(T) , RequantizeCopier<T>(&input_mins_and_maxes, output_min, output_max), &output_flat); } Tensor* output_min_tensor = nullptr; OP_REQUIRES_OK(context, context->allocate_output(1, {}, &output_min_tensor)); output_min_tensor->flat<float>()(0) = output_min; Tensor* output_max_tensor = nullptr; OP_REQUIRES_OK(context, context->allocate_output(2, {}, &output_max_tensor)); output_max_tensor->flat<float>()(0) = output_max; } }; #define REGISTER_QUANTIZED_CONCAT(type) \ REGISTER_KERNEL_BUILDER(Name("QuantizedConcat") \ .Device(DEVICE_CPU) \ .TypeConstraint<type>("T") \ .HostMemory("concat_dim"), \ QuantizedConcatOp<type>) REGISTER_QUANTIZED_CONCAT(quint8); REGISTER_QUANTIZED_CONCAT(qint32); #undef REGISTER_QUANTIZED_CONCAT }
#define EIGEN_USE_THREADS #include <functional> #include <memory> #include <vector> #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { using test::graph::Constant; class QuantizedConcatTest : public OpsTestBase { protected: QuantizedConcatTest() {} void TestSmall8Bit(float first_min, float first_max, float second_min, float second_max); void TestSmall32Bit(float first_min, float first_max, float second_min, float second_max); void TestSecondDim8Bit(float first_min, float first_max, float second_min, float second_max); void TestInvalidMinMax(const Tensor& first_min, const Tensor& first_max); }; TEST_F(QuantizedConcatTest, InvalidMin) { Tensor first_min(DT_FLOAT, {3}); test::FillValues<float>(&first_min, {0.0, 0.0, 0.0}); Tensor first_max(DT_FLOAT, {}); test::FillValues<float>(&first_max, {0.0}); TestInvalidMinMax(first_min, first_max); } TEST_F(QuantizedConcatTest, InvalidMax) { Tensor first_min(DT_FLOAT, {}); test::FillValues<float>(&first_min, {0.0}); Tensor first_max(DT_FLOAT, {3, 0, 2}); TestInvalidMinMax(first_min, first_max); } void QuantizedConcatTest::TestInvalidMinMax(const Tensor& first_min, const Tensor& first_max) { TF_ASSERT_OK(NodeDefBuilder("quantized_concat_op", "QuantizedConcat") .Input(FakeInput(DT_INT32)) .Input(FakeInput(2, DT_QUINT8)) .Input(FakeInput(2, DT_FLOAT)) .Input(FakeInput(2, DT_FLOAT)) .Attr("N", 2) .Attr("T", DataTypeToEnum<quint8>::v()) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); Tensor first_quantized(DT_QUINT8, {1}); test::FillValues<quint8>(&first_quantized, {1}); Tensor second_quantized(DT_QUINT8, {1}); test::FillValues<quint8>(&second_quantized, {1}); AddInputFromArray<int32>(TensorShape({}), {0}); AddInputFromArray<quint8>(first_quantized.shape(), first_quantized.flat<quint8>()); AddInputFromArray<quint8>(second_quantized.shape(), second_quantized.flat<quint8>()); AddInputFromArray<float>(first_min.shape(), first_min.flat<float>()); AddInputFromArray<float>(TensorShape({}), {1.0}); AddInputFromArray<float>(first_max.shape(), first_max.flat<float>()); AddInputFromArray<float>(TensorShape({}), {2.0}); EXPECT_TRUE(errors::IsInvalidArgument(RunOpKernel())); } TEST_F(QuantizedConcatTest, Small8Bit) { TestSmall8Bit(0.0f, 255.0f, 0.0f, 25.0f); } TEST_F(QuantizedConcatTest, Small8BitSameRange) { TestSmall8Bit(0.0f, 255.0f, 0.0f, 255.0f); } void QuantizedConcatTest::TestSmall8Bit(float first_min, float first_max, float second_min, float second_max) { TF_ASSERT_OK(NodeDefBuilder("quantized_concat_op", "QuantizedConcat") .Input(FakeInput(DT_INT32)) .Input(FakeInput(2, DT_QUINT8)) .Input(FakeInput(2, DT_FLOAT)) .Input(FakeInput(2, DT_FLOAT)) .Attr("N", 2) .Attr("T", DataTypeToEnum<quint8>::v()) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const int first_batch = 2; const int first_height = 2; const int first_width = 3; Tensor first_float(DT_FLOAT, {first_batch, first_height, first_width}); test::FillValues<float>(&first_float, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); Tensor first_quantized = FloatTensorToQuantized<quint8>(first_float, first_min, first_max); const int second_batch = 2; const int second_height = 2; const int second_width = 3; Tensor second_float(DT_FLOAT, {second_batch, second_height, second_width}); test::FillValues<float>(&second_float, {13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}); Tensor second_quantized = FloatTensorToQuantized<quint8>(second_float, second_min, second_max); const int expected_batch = first_batch + second_batch; Tensor expected_float(DT_FLOAT, {expected_batch, first_height, first_width}); test::FillValues<float>(&expected_float, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}); AddInputFromArray<int32>(TensorShape({}), {0}); AddInputFromArray<quint8>(first_quantized.shape(), first_quantized.flat<quint8>()); AddInputFromArray<quint8>(second_quantized.shape(), second_quantized.flat<quint8>()); AddInputFromArray<float>(TensorShape({}), {first_min}); AddInputFromArray<float>(TensorShape({}), {second_min}); AddInputFromArray<float>(TensorShape({}), {first_max}); AddInputFromArray<float>(TensorShape({}), {second_max}); TF_ASSERT_OK(RunOpKernel()); const Tensor& output_quantized = *GetOutput(0); const float output_min = GetOutput(1)->flat<float>()(0); const float output_max = GetOutput(2)->flat<float>()(0); Tensor output_float = QuantizedTensorToFloat<quint8>(output_quantized, output_min, output_max); test::ExpectTensorNear<float>(expected_float, output_float, 0.2); } TEST_F(QuantizedConcatTest, Small32Bit) { TestSmall32Bit(0.0f, 1200.0f, 0.0f, 2400.0f); } TEST_F(QuantizedConcatTest, Small32BitSameRange) { TestSmall32Bit(-2400.0f, 2400.0f, -2400.0f, 2400.0f); } TEST_F(QuantizedConcatTest, Small32BitOneDimSameRangeAsOutput) { TestSmall32Bit(-2400.0f, 2400.0f, -1200.0f, 2400.0f); } void QuantizedConcatTest::TestSmall32Bit(float first_min, float first_max, float second_min, float second_max) { TF_ASSERT_OK(NodeDefBuilder("quantized_concat_op", "QuantizedConcat") .Input(FakeInput(DT_INT32)) .Input(FakeInput(2, DT_QINT32)) .Input(FakeInput(2, DT_FLOAT)) .Input(FakeInput(2, DT_FLOAT)) .Attr("N", 2) .Attr("T", DataTypeToEnum<qint32>::v()) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const int first_batch = 2; const int first_height = 2; const int first_width = 3; Tensor first_float(DT_FLOAT, {first_batch, first_height, first_width}); test::FillValues<float>(&first_float, {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200}); Tensor first_quantized = FloatTensorToQuantized<qint32>(first_float, first_min, first_max); const int second_batch = 2; const int second_height = 2; const int second_width = 3; Tensor second_float(DT_FLOAT, {second_batch, second_height, second_width}); test::FillValues<float>(&second_float, {1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400}); Tensor second_quantized = FloatTensorToQuantized<qint32>(second_float, second_min, second_max); const int expected_batch = first_batch + second_batch; Tensor expected_float(DT_FLOAT, {expected_batch, first_height, first_width}); test::FillValues<float>( &expected_float, {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400}); AddInputFromArray<int32>(TensorShape({}), {0}); AddInputFromArray<qint32>(first_quantized.shape(), first_quantized.flat<qint32>()); AddInputFromArray<qint32>(second_quantized.shape(), second_quantized.flat<qint32>()); AddInputFromArray<float>(TensorShape({}), {first_min}); AddInputFromArray<float>(TensorShape({}), {second_min}); AddInputFromArray<float>(TensorShape({}), {first_max}); AddInputFromArray<float>(TensorShape({}), {second_max}); TF_ASSERT_OK(RunOpKernel()); const Tensor& output_quantized = *GetOutput(0); const float output_min = GetOutput(1)->flat<float>()(0); const float output_max = GetOutput(2)->flat<float>()(0); Tensor output_float = QuantizedTensorToFloat<qint32>(output_quantized, output_min, output_max); test::ExpectTensorNear<float>(expected_float, output_float, 0.2); } TEST_F(QuantizedConcatTest, SecondDim8Bit) { TestSecondDim8Bit(-10.0f, 150.0f, 0.0f, 200.0f); } TEST_F(QuantizedConcatTest, SecondDim8BitSameRange) { TestSecondDim8Bit(-10.0f, 150.0f, -10.0f, 150.0f); } void QuantizedConcatTest::TestSecondDim8Bit(float first_min, float first_max, float second_min, float second_max) { TF_ASSERT_OK(NodeDefBuilder("quantized_concat_op", "QuantizedConcat") .Input(FakeInput(DT_INT32)) .Input(FakeInput(2, DT_QUINT8)) .Input(FakeInput(2, DT_FLOAT)) .Input(FakeInput(2, DT_FLOAT)) .Attr("N", 2) .Attr("T", DataTypeToEnum<quint8>::v()) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const int first_batch = 2; const int first_height = 2; const int first_width = 3; Tensor first_float(DT_FLOAT, {first_batch, first_height, first_width}); test::FillValues<float>(&first_float, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); Tensor first_quantized = FloatTensorToQuantized<quint8>(first_float, first_min, first_max); const int second_batch = 2; const int second_height = 2; const int second_width = 3; Tensor second_float(DT_FLOAT, {second_batch, second_height, second_width}); test::FillValues<float>(&second_float, {13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}); Tensor second_quantized = FloatTensorToQuantized<quint8>(second_float, second_min, second_max); const int expected_height = first_height + second_height; Tensor expected_float(DT_FLOAT, {first_batch, expected_height, first_width}); test::FillValues<float>(&expected_float, {1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 7, 8, 9, 10, 11, 12, 19, 20, 21, 22, 23, 24}); AddInputFromArray<int32>(TensorShape({}), {1}); AddInputFromArray<quint8>(first_quantized.shape(), first_quantized.flat<quint8>()); AddInputFromArray<quint8>(second_quantized.shape(), second_quantized.flat<quint8>()); AddInputFromArray<float>(TensorShape({}), {first_min}); AddInputFromArray<float>(TensorShape({}), {second_min}); AddInputFromArray<float>(TensorShape({}), {first_max}); AddInputFromArray<float>(TensorShape({}), {second_max}); TF_ASSERT_OK(RunOpKernel()); const Tensor& output_quantized = *GetOutput(0); const float output_min = GetOutput(1)->flat<float>()(0); const float output_max = GetOutput(2)->flat<float>()(0); Tensor output_float = QuantizedTensorToFloat<quint8>(output_quantized, output_min, output_max); test::ExpectTensorNear<float>(expected_float, output_float, 1.0); } template <typename T> static void ConcatHelper(::testing::benchmark::State& state, int concat_dimension, bool same_limits, int dim2) { Graph* g = new Graph(OpRegistry::Global()); DataType dt = DataTypeToEnum<T>::v(); const int kDim1 = 100; TensorShape shape({kDim1, dim2}); Tensor concat_dim = test::AsScalar<int32>(concat_dimension); Tensor in0(dt, shape); in0.flat<T>().setRandom(); Tensor in1(dt, shape); in1.flat<T>().setRandom(); Tensor mins0 = test::AsScalar<float>(-1.0); Tensor maxes0 = test::AsScalar<float>(1.0); Tensor mins1 = test::AsScalar<float>(same_limits ? -1.0 : -255.0); Tensor maxes1 = test::AsScalar<float>(same_limits ? 1.0 : 255.0); Node* node; TF_CHECK_OK(NodeBuilder(g->NewName("n"), "QuantizedConcat") .Input(Constant(g, concat_dim)) .Input({Constant(g, in0), Constant(g, in1)}) .Input({Constant(g, mins0), Constant(g, mins1)}) .Input({Constant(g, maxes0), Constant(g, maxes1)}) .Attr("N", 2) .Attr("T", dt) .Finalize(g, &node)); test::Benchmark("cpu", g, false).Run(state); state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * ((kDim1 * dim2) + (kDim1 * dim2)) * sizeof(T)); } static void BM_QConcatDim0SameLimitQInt32(::testing::benchmark::State& state) { const int dim2 = state.range(0); ConcatHelper<qint32>(state, 0 , true , dim2); } static void BM_QConcatDim1SameLimitQInt32(::testing::benchmark::State& state) { const int dim2 = state.range(0); ConcatHelper<qint32>(state, 1 , true , dim2); } static void BM_QConcatDim0DifferLimitQInt32( ::testing::benchmark::State& state) { const int dim2 = state.range(0); ConcatHelper<qint32>(state, 0 , false , dim2); } static void BM_QConcatDim1DifferLimitQInt32( ::testing::benchmark::State& state) { const int dim2 = state.range(0); ConcatHelper<qint32>(state, 1 , false , dim2); } BENCHMARK(BM_QConcatDim0SameLimitQInt32) ->UseRealTime() ->Arg(1000) ->Arg(20000) ->Arg(100000); BENCHMARK(BM_QConcatDim1SameLimitQInt32) ->UseRealTime() ->Arg(1000) ->Arg(20000) ->Arg(100000); BENCHMARK(BM_QConcatDim0DifferLimitQInt32) ->UseRealTime() ->Arg(1000) ->Arg(20000) ->Arg(100000); BENCHMARK(BM_QConcatDim1DifferLimitQInt32) ->UseRealTime() ->Arg(1000) ->Arg(20000) ->Arg(100000); static void BM_QConcatDim0SameLimitQUint8(::testing::benchmark::State& state) { const int dim2 = state.range(0); ConcatHelper<qint32>(state, 0 , true , dim2); } static void BM_QConcatDim1SameLimitQUint8(::testing::benchmark::State& state) { const int dim2 = state.range(0); ConcatHelper<qint32>(state, 1 , true , dim2); } static void BM_QConcatDim0DifferLimitQUint8( ::testing::benchmark::State& state) { const int dim2 = state.range(0); ConcatHelper<qint32>(state, 0 , false , dim2); } static void BM_QConcatDim1DifferLimitQUint8( ::testing::benchmark::State& state) { const int dim2 = state.range(0); ConcatHelper<qint32>(state, 1 , false , dim2); } BENCHMARK(BM_QConcatDim0SameLimitQUint8) ->UseRealTime() ->Arg(1000) ->Arg(20000) ->Arg(100000); BENCHMARK(BM_QConcatDim1SameLimitQUint8) ->UseRealTime() ->Arg(1000) ->Arg(20000) ->Arg(100000); BENCHMARK(BM_QConcatDim0DifferLimitQUint8) ->UseRealTime() ->Arg(1000) ->Arg(20000) ->Arg(100000); BENCHMARK(BM_QConcatDim1DifferLimitQUint8) ->UseRealTime() ->Arg(1000) ->Arg(20000) ->Arg(100000); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/quantized_concat_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/quantized_concat_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea