url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
600M
2.05B
node_id
stringlengths
18
32
number
int64
2
6.51k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
4
milestone
dict
comments
sequencelengths
0
30
created_at
unknown
updated_at
unknown
closed_at
unknown
author_association
stringclasses
3 values
active_lock_reason
float64
draft
float64
0
1
βŒ€
pull_request
dict
body
stringlengths
0
228k
βŒ€
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
float64
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/2056
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2056/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2056/comments
https://api.github.com/repos/huggingface/datasets/issues/2056/events
https://github.com/huggingface/datasets/issues/2056
831,718,397
MDU6SXNzdWU4MzE3MTgzOTc=
2,056
issue with opus100/en-fr dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/79165106?v=4", "events_url": "https://api.github.com/users/dorost1234/events{/privacy}", "followers_url": "https://api.github.com/users/dorost1234/followers", "following_url": "https://api.github.com/users/dorost1234/following{/other_user}", "gists_url": "https://api.github.com/users/dorost1234/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dorost1234", "id": 79165106, "login": "dorost1234", "node_id": "MDQ6VXNlcjc5MTY1MTA2", "organizations_url": "https://api.github.com/users/dorost1234/orgs", "received_events_url": "https://api.github.com/users/dorost1234/received_events", "repos_url": "https://api.github.com/users/dorost1234/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dorost1234/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dorost1234/subscriptions", "type": "User", "url": "https://api.github.com/users/dorost1234" }
[]
closed
false
null
[]
null
[ "@lhoestq I also deleted the cache and redownload the file and still the same issue, I appreciate any help on this. thanks ", "Here please find the minimal code to reproduce the issue @lhoestq note this only happens with MT5TokenizerFast\r\n\r\n```\r\nfrom datasets import load_dataset\r\nfrom transformers import MT5TokenizerFast\r\n\r\ndef get_tokenized_dataset(dataset_name, dataset_config_name, tokenizer):\r\n datasets = load_dataset(dataset_name, dataset_config_name, script_version=\"master\")\r\n column_names = datasets[\"train\"].column_names\r\n text_column_name = \"translation\"\r\n def process_dataset(datasets):\r\n def process_function(examples):\r\n lang = \"fr\"\r\n return {\"src_texts\": [example[lang] for example in examples[text_column_name]]}\r\n datasets = datasets.map(\r\n process_function,\r\n batched=True,\r\n num_proc=None,\r\n remove_columns=column_names,\r\n load_from_cache_file=True,\r\n )\r\n return datasets\r\n datasets = process_dataset(datasets)\r\n text_column_name = \"src_texts\"\r\n column_names = [\"src_texts\"]\r\n def tokenize_function(examples):\r\n return tokenizer(examples[text_column_name], return_special_tokens_mask=True)\r\n tokenized_datasets = datasets.map(\r\n tokenize_function,\r\n batched=True,\r\n num_proc=None,\r\n remove_columns=column_names,\r\n load_from_cache_file=True\r\n )\r\n\r\nif __name__ == \"__main__\":\r\n tokenizer_kwargs = {\r\n \"cache_dir\": None,\r\n \"use_fast\": True,\r\n \"revision\": \"main\",\r\n \"use_auth_token\": None\r\n }\r\n tokenizer = MT5TokenizerFast.from_pretrained(\"google/mt5-small\", **tokenizer_kwargs)\r\n get_tokenized_dataset(dataset_name=\"opus100\", dataset_config_name=\"en-fr\", tokenizer=tokenizer)\r\n~ \r\n```", "as per https://github.com/huggingface/tokenizers/issues/626 this looks like to be the tokenizer bug, I therefore, reported it there https://github.com/huggingface/tokenizers/issues/626 and I am closing this one." ]
"2021-03-15T11:32:42Z"
"2021-03-16T15:49:00Z"
"2021-03-16T15:48:59Z"
NONE
null
null
null
Hi I am running run_mlm.py code of huggingface repo with opus100/fr-en pair, I am getting this error, note that this error occurs for only this pairs and not the other pairs. Any idea why this is occurring? and how I can solve this? Thanks a lot @lhoestq for your help in advance. ` thread '<unnamed>' panicked at 'index out of bounds: the len is 617 but the index is 617', /__w/tokenizers/tokenizers/tokenizers/src/tokenizer/normalizer.rs:382:21 note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 626/1000 [00:27<00:16, 22.69ba/s] Traceback (most recent call last): File "run_mlm.py", line 550, in <module> main() File "run_mlm.py", line 412, in main in zip(data_args.dataset_name, data_args.dataset_config_name)] File "run_mlm.py", line 411, in <listcomp> logger) for dataset_name, dataset_config_name\ File "/user/dara/dev/codes/seq2seq/data/tokenize_datasets.py", line 96, in get_tokenized_dataset load_from_cache_file=not data_args.overwrite_cache, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/dataset_dict.py", line 448, in map for k, dataset in self.items() File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/dataset_dict.py", line 448, in <dictcomp> for k, dataset in self.items() File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 1309, in map update_data=update_data, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 204, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/fingerprint.py", line 337, in wrapper out = func(self, *args, **kwargs) File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 1574, in _map_single batch, indices, check_same_num_examples=len(self.list_indexes()) > 0, offset=offset File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 1490, in apply_function_on_filtered_inputs function(*fn_args, effective_indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs) File "/user/dara/dev/codes/seq2seq/data/tokenize_datasets.py", line 89, in tokenize_function return tokenizer(examples[text_column_name], return_special_tokens_mask=True) File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/transformers/tokenization_utils_base.py", line 2347, in __call__ **kwargs, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/transformers/tokenization_utils_base.py", line 2532, in batch_encode_plus **kwargs, File "/user/dara/libs/anaconda3/envs/fast/lib/python3.7/site-packages/transformers/tokenization_utils_fast.py", line 384, in _batch_encode_plus is_pretokenized=is_split_into_words, pyo3_runtime.PanicException: index out of bounds: the len is 617 but the index is 617 `
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2056/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2056/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4491
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4491/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4491/comments
https://api.github.com/repos/huggingface/datasets/issues/4491/events
https://github.com/huggingface/datasets/issues/4491
1,270,803,822
I_kwDODunzps5Lvu1u
4,491
Dataset Viewer issue for Pavithree/test
{ "avatar_url": "https://avatars.githubusercontent.com/u/23344465?v=4", "events_url": "https://api.github.com/users/Pavithree/events{/privacy}", "followers_url": "https://api.github.com/users/Pavithree/followers", "following_url": "https://api.github.com/users/Pavithree/following{/other_user}", "gists_url": "https://api.github.com/users/Pavithree/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Pavithree", "id": 23344465, "login": "Pavithree", "node_id": "MDQ6VXNlcjIzMzQ0NDY1", "organizations_url": "https://api.github.com/users/Pavithree/orgs", "received_events_url": "https://api.github.com/users/Pavithree/received_events", "repos_url": "https://api.github.com/users/Pavithree/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Pavithree/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Pavithree/subscriptions", "type": "User", "url": "https://api.github.com/users/Pavithree" }
[ { "color": "E5583E", "default": false, "description": "Related to the dataset viewer on huggingface.co", "id": 3470211881, "name": "dataset-viewer", "node_id": "LA_kwDODunzps7O1zsp", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" } ]
null
[ "This issue can be resolved according to this post https://stackoverflow.com/questions/70566660/parquet-with-null-columns-on-pyarrow. It looks like first data entry in the json file must not have any null values as pyarrow uses this first file to infer schema for entire dataset." ]
"2022-06-14T13:23:10Z"
"2022-06-14T14:37:21Z"
"2022-06-14T14:34:33Z"
NONE
null
null
null
### Link https://huggingface.co/datasets/Pavithree/test ### Description I have extracted the subset of original eli5 dataset found at hugging face. However, while loading the dataset It throws ArrowNotImplementedError: Unsupported cast from string to null using function cast_null error. Is there anything missing from my end? Kindly help. ### Owner _No response_
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4491/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4491/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3718
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3718/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3718/comments
https://api.github.com/repos/huggingface/datasets/issues/3718/events
https://github.com/huggingface/datasets/pull/3718
1,137,196,388
PR_kwDODunzps4yx8r2
3,718
Fix Evidence Infer Treatment dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[]
"2022-02-14T11:58:07Z"
"2022-02-14T13:21:45Z"
"2022-02-14T13:21:44Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3718.diff", "html_url": "https://github.com/huggingface/datasets/pull/3718", "merged_at": "2022-02-14T13:21:43Z", "patch_url": "https://github.com/huggingface/datasets/pull/3718.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3718" }
This PR: - fixes a bug in the script, by removing an unnamed column with the row index: fix KeyError - fix the metadata JSON, by adding both configurations (1.1 and 2.0): fix ExpectedMoreDownloadedFiles - updates the dataset card Fix #3515.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3718/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3718/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3827
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3827/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3827/comments
https://api.github.com/repos/huggingface/datasets/issues/3827/events
https://github.com/huggingface/datasets/pull/3827
1,159,878,436
PR_kwDODunzps4z95dj
3,827
Remove deprecated `remove_columns` param in `filter`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_3827). All of your documentation changes will be reflected on that endpoint." ]
"2022-03-04T17:23:26Z"
"2022-03-07T12:37:52Z"
"2022-03-07T12:37:51Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3827.diff", "html_url": "https://github.com/huggingface/datasets/pull/3827", "merged_at": "2022-03-07T12:37:51Z", "patch_url": "https://github.com/huggingface/datasets/pull/3827.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3827" }
A leftover from #3803.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3827/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3827/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1203
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1203/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1203/comments
https://api.github.com/repos/huggingface/datasets/issues/1203/events
https://github.com/huggingface/datasets/pull/1203
757,935,170
MDExOlB1bGxSZXF1ZXN0NTMzMjAzMTc0
1,203
Add Neural Code Search Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/34424769?v=4", "events_url": "https://api.github.com/users/vinaykudari/events{/privacy}", "followers_url": "https://api.github.com/users/vinaykudari/followers", "following_url": "https://api.github.com/users/vinaykudari/following{/other_user}", "gists_url": "https://api.github.com/users/vinaykudari/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vinaykudari", "id": 34424769, "login": "vinaykudari", "node_id": "MDQ6VXNlcjM0NDI0NzY5", "organizations_url": "https://api.github.com/users/vinaykudari/orgs", "received_events_url": "https://api.github.com/users/vinaykudari/received_events", "repos_url": "https://api.github.com/users/vinaykudari/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vinaykudari/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vinaykudari/subscriptions", "type": "User", "url": "https://api.github.com/users/vinaykudari" }
[]
closed
false
null
[]
null
[ "> Really good thanks !\r\n> \r\n> I left a few comments\r\n\r\nThanks, resolved them :) ", "looks like this PR includes changes about many other files than the ones for Code Search\r\n\r\ncan you create another branch and another PR please ?", "> looks like this PR includes changes about many other files than the ones for Code Search\r\n> \r\n> can you create another branch and another PR please ?\r\n\r\nOkay sure" ]
"2020-12-06T14:12:39Z"
"2020-12-09T16:40:15Z"
"2020-12-09T16:40:15Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1203.diff", "html_url": "https://github.com/huggingface/datasets/pull/1203", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1203.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1203" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1203/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1203/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4075
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4075/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4075/comments
https://api.github.com/repos/huggingface/datasets/issues/4075/events
https://github.com/huggingface/datasets/issues/4075
1,188,462,162
I_kwDODunzps5G1n5S
4,075
Add CCAgT dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/20444345?v=4", "events_url": "https://api.github.com/users/johnnv1/events{/privacy}", "followers_url": "https://api.github.com/users/johnnv1/followers", "following_url": "https://api.github.com/users/johnnv1/following{/other_user}", "gists_url": "https://api.github.com/users/johnnv1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/johnnv1", "id": 20444345, "login": "johnnv1", "node_id": "MDQ6VXNlcjIwNDQ0MzQ1", "organizations_url": "https://api.github.com/users/johnnv1/orgs", "received_events_url": "https://api.github.com/users/johnnv1/received_events", "repos_url": "https://api.github.com/users/johnnv1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/johnnv1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/johnnv1/subscriptions", "type": "User", "url": "https://api.github.com/users/johnnv1" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" }, { "color": "bfdadc", "default": false, "description": "Vision datasets", "id": 3608941089, "name": "vision", "node_id": "LA_kwDODunzps7XHBIh", "url": "https://api.github.com/repos/huggingface/datasets/labels/vision" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/20444345?v=4", "events_url": "https://api.github.com/users/johnnv1/events{/privacy}", "followers_url": "https://api.github.com/users/johnnv1/followers", "following_url": "https://api.github.com/users/johnnv1/following{/other_user}", "gists_url": "https://api.github.com/users/johnnv1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/johnnv1", "id": 20444345, "login": "johnnv1", "node_id": "MDQ6VXNlcjIwNDQ0MzQ1", "organizations_url": "https://api.github.com/users/johnnv1/orgs", "received_events_url": "https://api.github.com/users/johnnv1/received_events", "repos_url": "https://api.github.com/users/johnnv1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/johnnv1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/johnnv1/subscriptions", "type": "User", "url": "https://api.github.com/users/johnnv1" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/20444345?v=4", "events_url": "https://api.github.com/users/johnnv1/events{/privacy}", "followers_url": "https://api.github.com/users/johnnv1/followers", "following_url": "https://api.github.com/users/johnnv1/following{/other_user}", "gists_url": "https://api.github.com/users/johnnv1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/johnnv1", "id": 20444345, "login": "johnnv1", "node_id": "MDQ6VXNlcjIwNDQ0MzQ1", "organizations_url": "https://api.github.com/users/johnnv1/orgs", "received_events_url": "https://api.github.com/users/johnnv1/received_events", "repos_url": "https://api.github.com/users/johnnv1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/johnnv1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/johnnv1/subscriptions", "type": "User", "url": "https://api.github.com/users/johnnv1" } ]
null
[ "Awesome ! Let us know if you have questions or if we can help ;) I'm assigning you\r\n\r\nPS: if possible, please try to not use Google Drive links in your dataset script, since Google Drive has download quotas and is not always reliable.", "HI, I was waiting to come out in the second version to do the implementation.\r\n\r\n- Paper: https://dx.doi.org/10.2139/ssrn.4126881\r\n- Data: [Data mendelay](http://doi.org/10.17632/wg4bpm33hj.2)", "Nice ! πŸš€ ", "The link of CCAgT dataset is: https://huggingface.co/datasets/lapix/CCAgT" ]
"2022-03-31T18:20:28Z"
"2022-07-06T19:03:42Z"
"2022-07-06T19:03:42Z"
NONE
null
null
null
## Adding a Dataset - **Name:** CCAgT dataset: Images of Cervical Cells with AgNOR Stain Technique - **Description:** The dataset contains 2540 images (1600x1200 where each pixel is 0.111ΞΌmΓ—0.111ΞΌm) from three different slides, having at least one nucleus per image. These images are from fields belonging to a sample cervical slide, colored with silver-stained, a method known as Argyrophilic Nucleolar Organizer Regions (AgNOR). - **Paper:** https://doi.org/10.1109/cbms49503.2020.00110 - **Data:** https://arquivos.ufsc.br/d/373be2177a33426a9e6c/ or https://drive.google.com/drive/u/4/folders/1TBpYCv6S1ydASLauSzcsvO7Wc5O-WUw0 - **Motivation:** This is a unique dataset (because of the stain), for a major health problem, cervical cancer, with real data. Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Hi, this is a public version of the dataset that I have been working on, soon we will have another version of this dataset. But until this new version goes out, I thought I would add this dataset here, if it makes sense for the repository. You can assign the task to me if possible
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4075/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4075/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5542
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5542/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5542/comments
https://api.github.com/repos/huggingface/datasets/issues/5542/events
https://github.com/huggingface/datasets/pull/5542
1,588,633,724
PR_kwDODunzps5KLjMl
5,542
Avoid saving sparse ChunkedArrays in pyarrow tables
{ "avatar_url": "https://avatars.githubusercontent.com/u/6591505?v=4", "events_url": "https://api.github.com/users/marioga/events{/privacy}", "followers_url": "https://api.github.com/users/marioga/followers", "following_url": "https://api.github.com/users/marioga/following{/other_user}", "gists_url": "https://api.github.com/users/marioga/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/marioga", "id": 6591505, "login": "marioga", "node_id": "MDQ6VXNlcjY1OTE1MDU=", "organizations_url": "https://api.github.com/users/marioga/orgs", "received_events_url": "https://api.github.com/users/marioga/received_events", "repos_url": "https://api.github.com/users/marioga/repos", "site_admin": false, "starred_url": "https://api.github.com/users/marioga/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/marioga/subscriptions", "type": "User", "url": "https://api.github.com/users/marioga" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008452 / 0.011353 (-0.002901) | 0.004500 / 0.011008 (-0.006508) | 0.100103 / 0.038508 (0.061595) | 0.029395 / 0.023109 (0.006286) | 0.297740 / 0.275898 (0.021842) | 0.359132 / 0.323480 (0.035652) | 0.007045 / 0.007986 (-0.000941) | 0.003415 / 0.004328 (-0.000913) | 0.076389 / 0.004250 (0.072138) | 0.036612 / 0.037052 (-0.000440) | 0.308773 / 0.258489 (0.050284) | 0.345701 / 0.293841 (0.051860) | 0.033230 / 0.128546 (-0.095317) | 0.011463 / 0.075646 (-0.064183) | 0.322382 / 0.419271 (-0.096890) | 0.041194 / 0.043533 (-0.002339) | 0.300685 / 0.255139 (0.045546) | 0.323076 / 0.283200 (0.039876) | 0.087330 / 0.141683 (-0.054353) | 1.508661 / 1.452155 (0.056506) | 1.531776 / 1.492716 (0.039059) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.188391 / 0.018006 (0.170385) | 0.400102 / 0.000490 (0.399612) | 0.002006 / 0.000200 (0.001806) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023232 / 0.037411 (-0.014179) | 0.097313 / 0.014526 (0.082787) | 0.106244 / 0.176557 (-0.070313) | 0.141180 / 0.737135 (-0.595955) | 0.107871 / 0.296338 (-0.188468) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418610 / 0.215209 (0.203400) | 4.162243 / 2.077655 (2.084588) | 1.884300 / 1.504120 (0.380180) | 1.694197 / 1.541195 (0.153002) | 1.727740 / 1.468490 (0.259250) | 0.692129 / 4.584777 (-3.892648) | 3.364230 / 3.745712 (-0.381482) | 1.871507 / 5.269862 (-3.398355) | 1.261520 / 4.565676 (-3.304156) | 0.083258 / 0.424275 (-0.341017) | 0.012479 / 0.007607 (0.004872) | 0.528802 / 0.226044 (0.302757) | 5.281029 / 2.268929 (3.012100) | 2.402222 / 55.444624 (-53.042403) | 2.064954 / 6.876477 (-4.811522) | 2.027044 / 2.142072 (-0.115029) | 0.813124 / 4.805227 (-3.992103) | 0.149397 / 6.500664 (-6.351267) | 0.065032 / 0.075469 (-0.010437) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239192 / 1.841788 (-0.602595) | 13.529913 / 8.074308 (5.455605) | 14.253251 / 10.191392 (4.061859) | 0.165145 / 0.680424 (-0.515278) | 0.028367 / 0.534201 (-0.505834) | 0.395121 / 0.579283 (-0.184162) | 0.405372 / 0.434364 (-0.028992) | 0.472201 / 0.540337 (-0.068137) | 0.560620 / 1.386936 (-0.826316) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006368 / 0.011353 (-0.004985) | 0.004542 / 0.011008 (-0.006466) | 0.076361 / 0.038508 (0.037853) | 0.026893 / 0.023109 (0.003784) | 0.341210 / 0.275898 (0.065312) | 0.378377 / 0.323480 (0.054898) | 0.004833 / 0.007986 (-0.003153) | 0.003358 / 0.004328 (-0.000970) | 0.075516 / 0.004250 (0.071265) | 0.038841 / 0.037052 (0.001788) | 0.342230 / 0.258489 (0.083741) | 0.384317 / 0.293841 (0.090476) | 0.031874 / 0.128546 (-0.096672) | 0.011651 / 0.075646 (-0.063995) | 0.085816 / 0.419271 (-0.333455) | 0.042389 / 0.043533 (-0.001144) | 0.340678 / 0.255139 (0.085539) | 0.367441 / 0.283200 (0.084241) | 0.089748 / 0.141683 (-0.051935) | 1.487358 / 1.452155 (0.035203) | 1.615049 / 1.492716 (0.122333) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220933 / 0.018006 (0.202926) | 0.397162 / 0.000490 (0.396673) | 0.002336 / 0.000200 (0.002136) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025004 / 0.037411 (-0.012407) | 0.100877 / 0.014526 (0.086351) | 0.110624 / 0.176557 (-0.065932) | 0.152042 / 0.737135 (-0.585094) | 0.112951 / 0.296338 (-0.183388) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441071 / 0.215209 (0.225862) | 4.419471 / 2.077655 (2.341817) | 2.082976 / 1.504120 (0.578856) | 1.884023 / 1.541195 (0.342828) | 1.950590 / 1.468490 (0.482100) | 0.706104 / 4.584777 (-3.878673) | 3.329825 / 3.745712 (-0.415887) | 1.868850 / 5.269862 (-3.401011) | 1.178785 / 4.565676 (-3.386892) | 0.083910 / 0.424275 (-0.340365) | 0.012296 / 0.007607 (0.004689) | 0.542998 / 0.226044 (0.316953) | 5.429944 / 2.268929 (3.161015) | 2.502285 / 55.444624 (-52.942339) | 2.150507 / 6.876477 (-4.725970) | 2.170492 / 2.142072 (0.028420) | 0.813410 / 4.805227 (-3.991817) | 0.152310 / 6.500664 (-6.348354) | 0.066999 / 0.075469 (-0.008470) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.290839 / 1.841788 (-0.550949) | 14.089491 / 8.074308 (6.015183) | 13.704922 / 10.191392 (3.513530) | 0.130089 / 0.680424 (-0.550335) | 0.017000 / 0.534201 (-0.517201) | 0.381173 / 0.579283 (-0.198110) | 0.389271 / 0.434364 (-0.045093) | 0.461700 / 0.540337 (-0.078637) | 0.556428 / 1.386936 (-0.830508) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2cfa9be08f17519ff3deeae63cb998f4be7616e0 \"CML watermark\")\n" ]
"2023-02-17T01:52:38Z"
"2023-02-17T19:20:49Z"
"2023-02-17T11:12:32Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5542.diff", "html_url": "https://github.com/huggingface/datasets/pull/5542", "merged_at": "2023-02-17T11:12:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/5542.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5542" }
Fixes https://github.com/huggingface/datasets/issues/5541
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5542/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5542/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1739
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1739/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1739/comments
https://api.github.com/repos/huggingface/datasets/issues/1739/events
https://github.com/huggingface/datasets/pull/1739
787,219,138
MDExOlB1bGxSZXF1ZXN0NTU1OTY5Njgx
1,739
fixes and improvements for the WebNLG loader
{ "avatar_url": "https://avatars.githubusercontent.com/u/9607332?v=4", "events_url": "https://api.github.com/users/Shimorina/events{/privacy}", "followers_url": "https://api.github.com/users/Shimorina/followers", "following_url": "https://api.github.com/users/Shimorina/following{/other_user}", "gists_url": "https://api.github.com/users/Shimorina/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Shimorina", "id": 9607332, "login": "Shimorina", "node_id": "MDQ6VXNlcjk2MDczMzI=", "organizations_url": "https://api.github.com/users/Shimorina/orgs", "received_events_url": "https://api.github.com/users/Shimorina/received_events", "repos_url": "https://api.github.com/users/Shimorina/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Shimorina/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Shimorina/subscriptions", "type": "User", "url": "https://api.github.com/users/Shimorina" }
[]
closed
false
null
[]
null
[ "The dataset card is fantastic!\r\n\r\nLooks good to me! Did you check that this still passes the slow tests with the existing dummy data?", "Yes, I ran and passed all the tests specified in [this guide](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md#automatically-add-code-metadata), including the slow ones.", "I just added the `from pathlib import Path` at the top to fix the script", "I ran the tests locally and they all pass, merging", "Thank you for the review!" ]
"2021-01-15T21:45:23Z"
"2021-01-29T14:34:06Z"
"2021-01-29T10:53:03Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1739.diff", "html_url": "https://github.com/huggingface/datasets/pull/1739", "merged_at": "2021-01-29T10:53:03Z", "patch_url": "https://github.com/huggingface/datasets/pull/1739.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1739" }
- fixes test sets loading in v3.0 - adds additional fields for v3.0_ru - adds info to the WebNLG data card
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1739/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1739/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/259
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/259/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/259/comments
https://api.github.com/repos/huggingface/datasets/issues/259/events
https://github.com/huggingface/datasets/issues/259
636,239,529
MDU6SXNzdWU2MzYyMzk1Mjk=
259
documentation missing how to split a dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/2873355?v=4", "events_url": "https://api.github.com/users/fotisj/events{/privacy}", "followers_url": "https://api.github.com/users/fotisj/followers", "following_url": "https://api.github.com/users/fotisj/following{/other_user}", "gists_url": "https://api.github.com/users/fotisj/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fotisj", "id": 2873355, "login": "fotisj", "node_id": "MDQ6VXNlcjI4NzMzNTU=", "organizations_url": "https://api.github.com/users/fotisj/orgs", "received_events_url": "https://api.github.com/users/fotisj/received_events", "repos_url": "https://api.github.com/users/fotisj/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fotisj/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fotisj/subscriptions", "type": "User", "url": "https://api.github.com/users/fotisj" }
[]
closed
false
null
[]
null
[ "this seems to work for my specific problem:\r\n\r\n`self.train_ds, self.test_ds, self.val_ds = map(_prepare_ds, ('train', 'test[:25%]+test[50%:75%]', 'test[75%:]'))`", "Currently you can indeed split a dataset using `ds_test = nlp.load_dataset('imdb, split='test[:5000]')` (works also with percentages).\r\n\r\nHowever right now we don't have a way to shuffle a dataset but we are thinking about it in the discussion in #166. Feel free to share your thoughts about it.\r\n\r\nOne trick that you can do until we have a better solution is to shuffle and split the indices of your dataset:\r\n```python\r\nimport nlp\r\nfrom sklearn.model_selection import train_test_split\r\n\r\nimdb = nlp.load_dataset('imbd', split='test')\r\ntest_indices, val_indices = train_test_split(range(len(imdb)))\r\n```\r\n\r\nand then to iterate each split:\r\n```python\r\nfor i in test_indices:\r\n example = imdb[i]\r\n ...\r\n```\r\n", "I added a small guide [here](https://github.com/huggingface/nlp/tree/master/docs/splits.md) that explains how to split a dataset. It is very similar to the tensorflow datasets guide, as we kept the same logic.", "Thanks a lot, the new explanation is very helpful!\r\n\r\nAbout using train_test_split from sklearn: I stumbled across the [same error message as this user ](https://github.com/huggingface/nlp/issues/147 )and thought it can't be used at the moment in this context. Will check it out again.\r\n\r\nOne of the problems is how to shuffle very large datasets, which don't fit into the memory. Well, one strategy could be shuffling data in sections. But in a case where the data is sorted by the labels you have to swap larger sections first. \r\n", "We added a way to shuffle datasets (shuffle the indices and then reorder to make a new dataset).\r\nYou can do `shuffled_dset = dataset.shuffle(seed=my_seed)`. It shuffles the whole dataset.\r\nThere is also `dataset.train_test_split()` which if very handy (with the same signature as sklearn).\r\n\r\nClosing this issue as we added the docs for splits and tools to split datasets. Thanks again for your feedback !", "https://huggingface.co/docs/datasets/v1.0.1/package_reference/builder_classes.html#datasets.Split still links to https://github.com/huggingface/datasets/tree/main/docs/splits.md which is a 404\r\n", "The updated documentation doesn't link to this anymore: https://huggingface.co/docs/datasets/v2.10.0/en/package_reference/builder_classes#datasets.Split" ]
"2020-06-10T13:18:13Z"
"2023-03-14T13:56:07Z"
"2020-06-18T22:20:24Z"
NONE
null
null
null
I am trying to understand how to split a dataset ( as arrow_dataset). I know I can do something like this to access a split which is already in the original dataset : `ds_test = nlp.load_dataset('imdb, split='test') ` But how can I split ds_test into a test and a validation set (without reading the data into memory and keeping the arrow_dataset as container)? I guess it has something to do with the module split :-) but there is no real documentation in the code but only a reference to a longer description: > See the [guide on splits](https://github.com/huggingface/nlp/tree/master/docs/splits.md) for more information. But the guide seems to be missing. To clarify: I know that this has been modelled after the dataset of tensorflow and that some of the documentation there can be used [like this one](https://www.tensorflow.org/datasets/splits). But to come back to the example above: I cannot simply split the testset doing this: `ds_test = nlp.load_dataset('imdb, split='test'[:5000]) ` `ds_val = nlp.load_dataset('imdb, split='test'[5000:])` because the imdb test data is sorted by class (probably not a good idea anyway)
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/259/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/259/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3310
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3310/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3310/comments
https://api.github.com/repos/huggingface/datasets/issues/3310/events
https://github.com/huggingface/datasets/issues/3310
1,060,098,104
I_kwDODunzps4_L9A4
3,310
Fatal error condition occurred in aws-c-io
{ "avatar_url": "https://avatars.githubusercontent.com/u/31850219?v=4", "events_url": "https://api.github.com/users/Crabzmatic/events{/privacy}", "followers_url": "https://api.github.com/users/Crabzmatic/followers", "following_url": "https://api.github.com/users/Crabzmatic/following{/other_user}", "gists_url": "https://api.github.com/users/Crabzmatic/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Crabzmatic", "id": 31850219, "login": "Crabzmatic", "node_id": "MDQ6VXNlcjMxODUwMjE5", "organizations_url": "https://api.github.com/users/Crabzmatic/orgs", "received_events_url": "https://api.github.com/users/Crabzmatic/received_events", "repos_url": "https://api.github.com/users/Crabzmatic/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Crabzmatic/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Crabzmatic/subscriptions", "type": "User", "url": "https://api.github.com/users/Crabzmatic" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Hi ! Are you having this issue only with this specific dataset, or it also happens with other ones like `squad` ?", "@lhoestq It happens also on `squad`. It successfully downloads the whole dataset and then crashes on: \r\n\r\n```\r\nFatal error condition occurred in D:\\bld\\aws-c-io_1633633258269\\work\\source\\event_loop.c:74: aws_thread_launch(&cleanup_thread, s_event_loop_destroy_async_thread_fn, el_group, &thread_options) == AWS_OP_SUCCESS\r\nExiting Application\r\n```\r\n\r\nI tested it on Ubuntu and its working OK. Didn't test on non-preview version of Windows 11, `Windows-10-10.0.22504-SP0` is a preview version, not sure if this is causing it.", "I see the same error in Windows-10.0.19042 as of a few days ago:\r\n\r\n`Fatal error condition occurred in D:\\bld\\aws-c-io_1633633258269\\work\\source\\event_loop.c:74: aws_thread_launch(&cleanup_thread, s_event_loop_destroy_async_thread_fn, el_group, &thread_options) == AWS_OP_SUCCESS`\r\n\r\npython 3.8.12 h7840368_2_cpython conda-forge\r\nboto3 1.20.11 pyhd8ed1ab_0 conda-forge\r\nbotocore 1.23.11 pyhd8ed1ab_0 conda-forge\r\n\r\n...but I am not using `datasets` (although I might take a look now that I know about it!)\r\n\r\nThe error has occurred a few times over the last two days, but not consistently enough for me to get it with DEBUG. If there is any interest I can report back here, but it seems not unique to `datasets`.", "I'm not sure what `datasets` has to do with a crash that seems related to `aws-c-io`, could it be an issue with your environment ?", "> I'm not sure what `datasets` has to do with a crash that seems related to `aws-c-io`, could it be an issue with your environment ?\r\n\r\nAgreed, this issue is not likely a bug in datasets, since I get the identical error without datasets installed.", "Will close this issue. Bug in `aws-c-io` shouldn't be in `datasets` repo. Nevertheless, it can be useful to know that it happens. Thanks @leehaust @lhoestq ", "I have also had this issue since a few days, when running scripts using PyCharm in particular, but it does not seem to affect the script from running, only reporting this error at the end of the run.", "I also get this issue, It appears after my script has finished running. I get the following error message\r\n```\r\nFatal error condition occurred in /home/conda/feedstock_root/build_artifacts/aws-c-io_1637179816120/work/source/event_loop.c:72: aws_thread_launch(&cleanup_thread, s_event_loop_destroy_async_thread_fn, el_group, &thread_options) == AWS_OP_SUCCESS\r\nExiting Application\r\n################################################################################\r\nStack trace:\r\n################################################################################\r\n/home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../../././libaws-c-common.so.1(aws_backtrace_print+0x59) [0x2aabe0479579]\r\n/home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../../././libaws-c-common.so.1(aws_fatal_assert+0x48) [0x2aabe04696c8]\r\n/home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../.././././libaws-c-io.so.1.0.0(+0x13ad3) [0x2aabe0624ad3]\r\n/home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../../././libaws-c-common.so.1(aws_ref_count_release+0x1d) [0x2aabe047b60d]\r\n/home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../.././././libaws-c-io.so.1.0.0(+0x113ca) [0x2aabe06223ca]\r\n/home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../../././libaws-c-common.so.1(aws_ref_count_release+0x1d) [0x2aabe047b60d]\r\n/home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../../././libaws-crt-cpp.so(_ZN3Aws3Crt2Io15ClientBootstrapD1Ev+0x3a) [0x2aabe041cf5a]\r\n/home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../.././libaws-cpp-sdk-core.so(+0x5f570) [0x2aabe00eb570]\r\n/lib64/libc.so.6(+0x39ce9) [0x2aaaab835ce9]\r\n/lib64/libc.so.6(+0x39d37) [0x2aaaab835d37]\r\n/lib64/libc.so.6(__libc_start_main+0xfc) [0x2aaaab81e55c]\r\npython(+0x1c721d) [0x55555571b21d]\r\nAborted\r\n```\r\nI don't get this issue when running my code in a container, and it seems more relevant to PyArrow but thought a more complete stack trace might be helpful to someone\r\n", "I created an issue on JIRA:\r\nhttps://issues.apache.org/jira/browse/ARROW-15141", "@CallumMcMahon Do you have a small reproducer for this problem on Linux? I can reproduce this on Windows but sadly not with linux.", "Any updates on this issue? I started receiving the same error a few days ago on the amazon reviews", "Hi,\r\n\r\nI also ran into this issue, Windows only. It caused our massive binary to minidump left and right, very annoying.\r\nWhen the program is doing an exit, the destructors in the exit-handlers want to do cleanup, leading to code in event_loop.c, on line 73-ish:\r\n\r\nAWS_FATAL_ASSERT(\r\n aws_thread_launch(&cleanup_thread, s_event_loop_destroy_async_thread_fn, el_group, &thread_options) ==\r\n AWS_OP_SUCCESS);\r\n\r\nThe fatal_assert end in an abort/minidump.\r\n\r\nDigging through the code, I found that aws_thread_launch in the Windows version (aws-c-common/source/windows/thread.c) has only ONE reason to return anything other than AWS_OP_SUCCESS:\r\n\r\nreturn aws_raise_error(AWS_ERROR_THREAD_INSUFFICIENT_RESOURCE);\r\n\r\non line 263, when CreateThread fails. Our conclusion was that, apparently, Windows dislikes launching a new thread while already handling the exit-handlers. And while I appreciate the the fatal_assert is there in case of problems, the cure here is worse than the problem.\r\n\r\nI \"fixed\" this in our (Windows) environment by (bluntly) removing the AWS_FATAL_ASSERT. If Windows cannot start a thread, the program is in deep trouble anyway and the chances of that actually happening are acceptable (to us).\r\nThe exit is going to clean up all resources anyway.\r\n\r\nA neater fix would probably be to detect somehow that the program is actually in the process of exiting and then not bother (on windows, anyway) to start a cleanup thread. Alternatively, try to start the thread but not fatal-assert when it fails during exit. Or perhaps Windows can be convinced somehow to start the thread under these circumstances?\r\n\r\n@xhochy : The problem is Windows-only, the aws_thread_launch has two implementations (posix and windows). The problem is in the windows CreateThread which fails.\r\n", "I also encountered the same problem, but I made an error in the multi gpu training environment on Linux, and the single gpu training environment will not make an error.\r\ni use accelerate package to do multi gpu training.", "> I also get this issue, It appears after my script has finished running. I get the following error message\r\n> \r\n> ```\r\n> Fatal error condition occurred in /home/conda/feedstock_root/build_artifacts/aws-c-io_1637179816120/work/source/event_loop.c:72: aws_thread_launch(&cleanup_thread, s_event_loop_destroy_async_thread_fn, el_group, &thread_options) == AWS_OP_SUCCESS\r\n> Exiting Application\r\n> ################################################################################\r\n> Stack trace:\r\n> ################################################################################\r\n> /home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../../././libaws-c-common.so.1(aws_backtrace_print+0x59) [0x2aabe0479579]\r\n> /home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../../././libaws-c-common.so.1(aws_fatal_assert+0x48) [0x2aabe04696c8]\r\n> /home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../.././././libaws-c-io.so.1.0.0(+0x13ad3) [0x2aabe0624ad3]\r\n> /home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../../././libaws-c-common.so.1(aws_ref_count_release+0x1d) [0x2aabe047b60d]\r\n> /home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../.././././libaws-c-io.so.1.0.0(+0x113ca) [0x2aabe06223ca]\r\n> /home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../../././libaws-c-common.so.1(aws_ref_count_release+0x1d) [0x2aabe047b60d]\r\n> /home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../../././libaws-crt-cpp.so(_ZN3Aws3Crt2Io15ClientBootstrapD1Ev+0x3a) [0x2aabe041cf5a]\r\n> /home/user_name/conda_envs/env_name/lib/python3.7/site-packages/pyarrow/../../.././libaws-cpp-sdk-core.so(+0x5f570) [0x2aabe00eb570]\r\n> /lib64/libc.so.6(+0x39ce9) [0x2aaaab835ce9]\r\n> /lib64/libc.so.6(+0x39d37) [0x2aaaab835d37]\r\n> /lib64/libc.so.6(__libc_start_main+0xfc) [0x2aaaab81e55c]\r\n> python(+0x1c721d) [0x55555571b21d]\r\n> Aborted\r\n> ```\r\n> \r\n> I don't get this issue when running my code in a container, and it seems more relevant to PyArrow but thought a more complete stack trace might be helpful to someone\r\n\r\nAny updates for your issue because I'm getting the same one ", "Potentially related AWS issue: https://github.com/aws/aws-sdk-cpp/issues/1809\r\n\r\nRan into this issue today while training a BPE tokenizer on a dataset.\r\n\r\nTrain code:\r\n\r\n```python\r\n\"\"\"Train a ByteLevelBPETokenizer based on a given dataset. The dataset must be on the HF Hub.\r\nThis script is adaptated from the Transformers example in https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling\r\n\"\"\"\r\nfrom os import PathLike\r\nfrom pathlib import Path\r\nfrom typing import Sequence, Union\r\n\r\nfrom datasets import load_dataset\r\nfrom tokenizers import ByteLevelBPETokenizer\r\n\r\n\r\ndef train_tokenizer(dataset_name: str = \"oscar\", dataset_config_name: str = \"unshuffled_deduplicated_nl\",\r\n dataset_split: str = \"train\", dataset_textcol: str = \"text\",\r\n vocab_size: int = 50265, min_frequency: int = 2,\r\n special_tokens: Sequence[str] = (\"<s>\", \"<pad>\", \"</s>\", \"<unk>\", \"<mask>\"),\r\n dout: Union[str, PathLike] = \".\"):\r\n # load dataset\r\n dataset = load_dataset(dataset_name, dataset_config_name, split=dataset_split)\r\n # Instantiate tokenizer\r\n tokenizer = ByteLevelBPETokenizer()\r\n\r\n def batch_iterator(batch_size=1024):\r\n for i in range(0, len(dataset), batch_size):\r\n yield dataset[i: i + batch_size][dataset_textcol]\r\n\r\n # Customized training\r\n tokenizer.train_from_iterator(batch_iterator(), vocab_size=vocab_size, min_frequency=min_frequency,\r\n special_tokens=special_tokens)\r\n\r\n # Save to disk\r\n pdout = Path(dout).resolve()\r\n pdout.mkdir(exist_ok=True, parents=True)\r\n tokenizer.save_model(str(pdout))\r\n\r\n\r\ndef main():\r\n import argparse\r\n cparser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)\r\n\r\n cparser.add_argument(\"dataset_name\", help=\"Name of dataset to use for tokenizer training\")\r\n cparser.add_argument(\"--dataset_config_name\", default=None,\r\n help=\"Name of the config to use for tokenizer training\")\r\n cparser.add_argument(\"--dataset_split\", default=None,\r\n help=\"Name of the split to use for tokenizer training (typically 'train')\")\r\n cparser.add_argument(\"--dataset_textcol\", default=\"text\",\r\n help=\"Name of the text column to use for tokenizer training\")\r\n cparser.add_argument(\"--vocab_size\", type=int, default=50265, help=\"Vocabulary size\")\r\n cparser.add_argument(\"--min_frequency\", type=int, default=2, help=\"Minimal frequency of tokens\")\r\n cparser.add_argument(\"--special_tokens\", nargs=\"+\", default=[\"<s>\", \"<pad>\", \"</s>\", \"<unk>\", \"<mask>\"],\r\n help=\"Special tokens to add. Useful for specific training objectives. Note that if you wish\"\r\n \" to use this tokenizer with a default transformers.BartConfig, then make sure that the\"\r\n \" order of at least these special tokens are correct: BOS (0), padding (1), EOS (2)\")\r\n cparser.add_argument(\"--dout\", default=\".\", help=\"Path to directory to save tokenizer.json file\")\r\n\r\n train_tokenizer(**vars(cparser.parse_args()))\r\n\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n```\r\n\r\nCommand:\r\n\r\n```sh\r\n$WDIR=\"your_tokenizer\"\r\npython prepare_tokenizer.py dbrd --dataset_config_name plain_text --dataset_split unsupervised --dout $WDIR\r\n```\r\n\r\nOutput:\r\n\r\n```\r\nReusing dataset dbrd (cache/datasets/dbrd/plain_text/3.0.0/2b12e31348489dfe586c2d0f40694e5d9f9454c9468457ac9f1b51abf686eeb3)\r\n[00:00:30] Pre-processing sequences β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 0 / 0\r\n[00:00:00] Tokenize words β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 333319 / 333319\r\n[00:01:06] Count pairs β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 333319 / 333319\r\n[00:00:03] Compute merges β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 50004 / 50004\r\n\r\nFatal error condition occurred in /opt/vcpkg/buildtrees/aws-c-io/src/9e6648842a-364b708815.clean/source/event_loop.c:72: aws_thread_launch(&cleanup_thread, s_event_loop_destroy_async_thread_fn, el_group, &thread_options) == AWS_OP_SUCCESS\r\nExiting Application\r\n################################################################################\r\nStack trace:\r\n################################################################################\r\nvenv/lib/python3.9/site-packages/pyarrow/libarrow.so.900(+0x200af06) [0x155106589f06]\r\nvenv/lib/python3.9/site-packages/pyarrow/libarrow.so.900(+0x20028e5) [0x1551065818e5]\r\nvenv/lib/python3.9/site-packages/pyarrow/libarrow.so.900(+0x1f27e09) [0x1551064a6e09]\r\nvenv/lib/python3.9/site-packages/pyarrow/libarrow.so.900(+0x200ba3d) [0x15510658aa3d]\r\nvenv/lib/python3.9/site-packages/pyarrow/libarrow.so.900(+0x1f25948) [0x1551064a4948]\r\nvenv/lib/python3.9/site-packages/pyarrow/libarrow.so.900(+0x200ba3d) [0x15510658aa3d]\r\nvenv/lib/python3.9/site-packages/pyarrow/libarrow.so.900(+0x1ee0b46) [0x15510645fb46]\r\nvenv/lib/python3.9/site-packages/pyarrow/libarrow.so.900(+0x194546a) [0x155105ec446a]\r\n/lib64/libc.so.6(+0x39b0c) [0x1551075b8b0c]\r\n/lib64/libc.so.6(on_exit+0) [0x1551075b8c40]\r\n/lib64/libc.so.6(__libc_start_main+0xfa) [0x1551075a249a]\r\npython(_start+0x2e) [0x4006ce]\r\nAborted (core dumped)\r\n```\r\n\r\nRunning on datasets==2.4.0 and pyarrow==9.0.0 on RHEL 8.\r\n", "There is also a discussion here https://issues.apache.org/jira/browse/ARROW-15141 where it is suggested for conda users to use an older version of aws-sdk-cpp: `aws-sdk-cpp=1.8.186`", "Downgrading pyarrow to 6.0.1 solves the issue for me.\r\n\r\n`pip install pyarrow==6.0.1`", "First of all, I’d never call a downgrade a solution, at most a (very) temporary workaround.\r\nFurthermore: This bug also happens outside pyarrow, I incorporate AWS in a standalone Windows C-program and that crashes during exit.\r\n\r\nFrom: Bo-Ru (Roy) Lu ***@***.***>\r\nSent: Thursday, 15 September 2022 01:12\r\nTo: huggingface/datasets ***@***.***>\r\nCc: Ruurd Beerstra ***@***.***>; Comment ***@***.***>\r\nSubject: Re: [huggingface/datasets] Fatal error condition occurred in aws-c-io (Issue #3310)\r\n\r\nSent by an external sender. Please be cautious about clicking on links and opening attachments.\r\n--------------------------------------------------------------------------------------------------------------------------------\r\n\r\n\r\nDowngrading pyarrow to 6.0.1 solves the issue.\r\n\r\nβ€”\r\nReply to this email directly, view it on GitHub<https://github.com/huggingface/datasets/issues/3310#issuecomment-1247390774>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/AKYUE3WBCSMHKJOOA2RQELLV6JLSVANCNFSM5IQ3WG7Q>.\r\nYou are receiving this because you commented.Message ID: ***@***.******@***.***>>\r\n", "> First of all, I’d never call a downgrade a solution, at most a (very) temporary workaround.\r\n\r\nVery much so! It looks like an apparent fix for the underlying problem [might](https://github.com/awslabs/aws-c-io/pull/515) have landed, but it sounds like it might still be a bit of a [lift](https://github.com/aws/aws-sdk-cpp/issues/1809#issuecomment-1289859795) to get it into aws-sdk-cpp.\r\n\r\n> Downgrading pyarrow to 6.0.1 solves the issue for me.\r\n\r\nSidenote: On conda-forge side, all recent pyarrow releases (all the way up to v9 and soon v10) have carried the respective pin and will not run into this issue.\r\n\r\n```\r\nconda install -c conda-forge pyarrow\r\n```\r\n\r\n", "For pip people, I confirmed that installing the nightly version of pyarrow also solves this by: `pip install --extra-index-url https://pypi.fury.io/arrow-nightlies/ --prefer-binary --pre pyarrow --upgrade`. (See https://arrow.apache.org/docs/python/install.html#installing-nightly-packages)\r\nAny version after https://github.com/apache/arrow/pull/14157 would work fine.", "> Furthermore: This bug also happens outside pyarrow, I incorporate AWS in a standalone Windows C-program and that crashes during exit.\r\n\r\nDo you have a reproducer you could share? I'd like to test if the new versions that supposedly solve this actually do, but we don't have a way to test it...", "Hi,\r\n\r\nNo – sorry. It is part of a massive eco-system which cannot easily be shared.\r\nBut I think the problem was summarized quite clearly: Windows does not allow a CreateThread while doing ExitProcess.\r\nThe cleanup that gets called as part of the exit handler code tries to start a thread, the fatal-assert on that causes the crash, and in windows we get a very big dump file.\r\nThe fix I applied simply removes that fatal assert, that solves the problem for me.\r\nI did not delve into the what the thread was trying to achieve and if that might cause issues when not executed during exit of the process. We did not notice anything of the kind.\r\nHowever, we *did* notice the many, many gigabytes of accumulated dumps of hundreds of processes 😊\r\n\r\nI’ll try and upgrade to the latest AWS version and report my findings, but that will be after I return from a month of vacationing…\r\n\r\n\r\n * Regards – Ruurd Beerstra\r\n\r\n\r\nFrom: h-vetinari ***@***.***>\r\nSent: Friday, 28 October 2022 02:09\r\nTo: huggingface/datasets ***@***.***>\r\nCc: Ruurd Beerstra ***@***.***>; Comment ***@***.***>\r\nSubject: Re: [huggingface/datasets] Fatal error condition occurred in aws-c-io (Issue #3310)\r\n\r\nSent by an external sender. Please be cautious about clicking on links and opening attachments.\r\n--------------------------------------------------------------------------------------------------------------------------------\r\n\r\n\r\nFurthermore: This bug also happens outside pyarrow, I incorporate AWS in a standalone Windows C-program and that crashes during exit.\r\n\r\nDo you have a reproducer you could share? I'd like to test if the new versions that supposedly solve this actually do, but we don't have a way to test it...\r\n\r\nβ€”\r\nReply to this email directly, view it on GitHub<https://github.com/huggingface/datasets/issues/3310#issuecomment-1294251331>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/AKYUE3SHHPC5AT7KQ4GDAJDWFMKRTANCNFSM5IQ3WG7Q>.\r\nYou are receiving this because you commented.Message ID: ***@***.******@***.***>>\r\n", "> No – sorry. It is part of a massive eco-system which cannot easily be shared.\r\n\r\nOK, was worth a try...\r\n\r\n> The fix I applied simply removes that fatal assert, that solves the problem for me.\r\n\r\nThis seems to be what https://github.com/awslabs/aws-c-io/pull/515 did upstream.\r\n\r\n> I’ll try and upgrade to the latest AWS version and report my findings, but that will be after I return from a month of vacationing…\r\n\r\ncaution: aws-sdk-cpp hasn't yet upgraded its bundled(?) aws-c-io and hence doesn't contain the fix AFAICT", "Hi, I also encountered the same problem, but I made an error on Ubuntu without using `datasets` as @Crabzmatic he wrote.\r\n\r\nAt that time, I find my version of pyarrow is 9.0.0, which is different from as follow:\r\n> https://github.com/huggingface/datasets/issues/3310#issuecomment-1247390774\r\n> Downgrading pyarrow to 6.0.1 solves the issue for me.\r\n> \r\n> `pip install pyarrow==6.0.1`\r\n\r\nAs it happens, I found this error message when I introduced the [`Trainer`](https://huggingface.co/docs/transformers/main_classes/trainer) of HuggingFace\r\n\r\nFor example, I write following code:\r\n```python\r\nfrom transformers import Trainer\r\nprint('Hugging Face')\r\n```\r\n I get the following error message:\r\n```python\r\nHugging Face\r\nFatal error condition occurred in /opt/vcpkg/buildtrees/aws-c-io/src/9e6648842a-364b708815.clean/source/event_loop.c:72: aws_thread_launch(&cleanup_thread, s_event_loop_destroy_async_thread_fn, el_group, &thread_options) == AWS_OP_SUCCESS\r\nExiting Application\r\n################################################################################\r\nStack trace:\r\n################################################################################\r\n/home/ubuntu/anaconda3/envs/pytorch38/lib/python3.8/site-packages/pyarrow/libarrow.so.900(+0x200af06) [0x7fa9add1df06]\r\n/home/ubuntu/anaconda3/envs/pytorch38/lib/python3.8/site-packages/pyarrow/libarrow.so.900(+0x20028e5) [0x7fa9add158e5]\r\n/home/ubuntu/anaconda3/envs/pytorch38/lib/python3.8/site-packages/pyarrow/libarrow.so.900(+0x1f27e09) [0x7fa9adc3ae09]\r\n/home/ubuntu/anaconda3/envs/pytorch38/lib/python3.8/site-packages/pyarrow/libarrow.so.900(+0x200ba3d) [0x7fa9add1ea3d]\r\n/home/ubuntu/anaconda3/envs/pytorch38/lib/python3.8/site-packages/pyarrow/libarrow.so.900(+0x1f25948) [0x7fa9adc38948]\r\n/home/ubuntu/anaconda3/envs/pytorch38/lib/python3.8/site-packages/pyarrow/libarrow.so.900(+0x200ba3d) [0x7fa9add1ea3d]\r\n/home/ubuntu/anaconda3/envs/pytorch38/lib/python3.8/site-packages/pyarrow/libarrow.so.900(+0x1ee0b46) [0x7fa9adbf3b46]\r\n/home/ubuntu/anaconda3/envs/pytorch38/lib/python3.8/site-packages/pyarrow/libarrow.so.900(+0x194546a) [0x7fa9ad65846a]\r\n/lib/x86_64-linux-gnu/libc.so.6(+0x468d7) [0x7faa2fcfe8d7]\r\n/lib/x86_64-linux-gnu/libc.so.6(on_exit+0) [0x7faa2fcfea90]\r\n/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xfa) [0x7faa2fcdc0ba]\r\n/home/ubuntu/anaconda3/envs/pytorch38/bin/python(+0x1f9ad7) [0x5654571d1ad7]\r\n```\r\nBut, when I remove the `Trainer` module from transformers, **everthing is OK**.\r\n\r\nSo Why ?\r\n\r\n**Environment info**\r\n- Platform: Ubuntu 18\r\n- Python version: 3.8\r\n- PyArrow version: 9.0.0\r\n- transformers: 4.22.1\r\n- simpletransformers: 0.63.9", "> I get the following error message:\r\n\r\nNot sure what's going on, but that shouldn't happen, especially as we're pinning to a version that should avoid this.\r\n\r\nCan you please open an issue https://github.com/conda-forge/arrow-cpp-feedstock, including the requested output of `conda list` & `conda info`?", "pyarrow 10.0.1 was just released in conda-forge, which is the first release where we're building against aws-sdk-cpp 1.9.* again after more than a year. Since we cannot test the failure reported here on our infra, I'd be very grateful if someone could verify that the problem does or doesn't reappear. πŸ™ƒ \r\n\r\n```\r\nconda install -c conda-forge pyarrow=10\r\n```", "> pyarrow 10.0.1 was just released in conda-forge, which is the first release where we're building against aws-sdk-cpp 1.9.* again after more than a year. Since we cannot test the failure reported here on our infra, I'd be very grateful if someone could verify that the problem does or doesn't reappear. πŸ™ƒ\r\n> \r\n> ```\r\n> conda install -c conda-forge pyarrow=10\r\n> ```\r\n\r\nThe problem is gone after I install the new version. Thanks!\r\npip install pyarrow==10", "@liuchaoqun, with `pip install pyarrow` you don't get aws-bindings, they're too complicated to package into wheels as far as I know. And even if they're packaged, at the time of the release of pyarrow 10 it would have still been pinned to aws 1.8 for the same reasons as in this issue." ]
"2021-11-22T12:27:54Z"
"2023-02-08T10:31:05Z"
"2021-11-29T22:22:37Z"
NONE
null
null
null
## Describe the bug Fatal error when using the library ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset('wikiann', 'en') ``` ## Expected results No fatal errors ## Actual results ``` Fatal error condition occurred in D:\bld\aws-c-io_1633633258269\work\source\event_loop.c:74: aws_thread_launch(&cleanup_thread, s_event_loop_destroy_async_thread_fn, el_group, &thread_options) == AWS_OP_SUCCESS Exiting Application ``` ## Environment info - `datasets` version: 1.15.2.dev0 - Platform: Windows-10-10.0.22504-SP0 - Python version: 3.8.12 - PyArrow version: 6.0.0
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/3310/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3310/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4658
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4658/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4658/comments
https://api.github.com/repos/huggingface/datasets/issues/4658/events
https://github.com/huggingface/datasets/issues/4658
1,297,001,390
I_kwDODunzps5NTquu
4,658
Transfer CI tests to GitHub Actions
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[]
"2022-07-07T08:10:50Z"
"2022-07-12T11:18:25Z"
"2022-07-12T11:18:25Z"
MEMBER
null
null
null
Let's try CI tests using GitHub Actions to see if they are more stable than on CircleCI.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4658/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4658/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1170
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1170/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1170/comments
https://api.github.com/repos/huggingface/datasets/issues/1170/events
https://github.com/huggingface/datasets/pull/1170
757,754,378
MDExOlB1bGxSZXF1ZXN0NTMzMDczOTU0
1,170
Fix path handling for Windows
{ "avatar_url": "https://avatars.githubusercontent.com/u/17855740?v=4", "events_url": "https://api.github.com/users/edugp/events{/privacy}", "followers_url": "https://api.github.com/users/edugp/followers", "following_url": "https://api.github.com/users/edugp/following{/other_user}", "gists_url": "https://api.github.com/users/edugp/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/edugp", "id": 17855740, "login": "edugp", "node_id": "MDQ6VXNlcjE3ODU1NzQw", "organizations_url": "https://api.github.com/users/edugp/orgs", "received_events_url": "https://api.github.com/users/edugp/received_events", "repos_url": "https://api.github.com/users/edugp/repos", "site_admin": false, "starred_url": "https://api.github.com/users/edugp/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/edugp/subscriptions", "type": "User", "url": "https://api.github.com/users/edugp" }
[]
closed
false
null
[]
null
[ "@lhoestq here's the fix!" ]
"2020-12-05T18:31:54Z"
"2020-12-07T10:47:23Z"
"2020-12-07T10:47:23Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1170.diff", "html_url": "https://github.com/huggingface/datasets/pull/1170", "merged_at": "2020-12-07T10:47:23Z", "patch_url": "https://github.com/huggingface/datasets/pull/1170.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1170" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1170/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1170/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5313
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5313/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5313/comments
https://api.github.com/repos/huggingface/datasets/issues/5313/events
https://github.com/huggingface/datasets/pull/5313
1,468,484,136
PR_kwDODunzps5D6Qfb
5,313
Fix description of streaming in the docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-11-29T18:00:28Z"
"2022-12-01T14:55:30Z"
"2022-12-01T14:00:34Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5313.diff", "html_url": "https://github.com/huggingface/datasets/pull/5313", "merged_at": "2022-12-01T14:00:34Z", "patch_url": "https://github.com/huggingface/datasets/pull/5313.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5313" }
We say that "the data is being downloaded progressively" which is not true, it's just streamed, so I fixed it. Probably I missed some other places where it is written? Also changed docstrings for `StreamingDownloadManager`'s `download` and `extract` to reflect the same, as these docstrings are displayed in the documentation cc @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5313/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5313/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1035
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1035/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1035/comments
https://api.github.com/repos/huggingface/datasets/issues/1035/events
https://github.com/huggingface/datasets/pull/1035
755,947,097
MDExOlB1bGxSZXF1ZXN0NTMxNTczMTc3
1,035
add wiki_hop
{ "avatar_url": "https://avatars.githubusercontent.com/u/27137566?v=4", "events_url": "https://api.github.com/users/patil-suraj/events{/privacy}", "followers_url": "https://api.github.com/users/patil-suraj/followers", "following_url": "https://api.github.com/users/patil-suraj/following{/other_user}", "gists_url": "https://api.github.com/users/patil-suraj/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/patil-suraj", "id": 27137566, "login": "patil-suraj", "node_id": "MDQ6VXNlcjI3MTM3NTY2", "organizations_url": "https://api.github.com/users/patil-suraj/orgs", "received_events_url": "https://api.github.com/users/patil-suraj/received_events", "repos_url": "https://api.github.com/users/patil-suraj/repos", "site_admin": false, "starred_url": "https://api.github.com/users/patil-suraj/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patil-suraj/subscriptions", "type": "User", "url": "https://api.github.com/users/patil-suraj" }
[]
closed
false
null
[]
null
[ "Also the dummy data files are quite big (500KB)\r\nIf you could reduce that that would be nice (just look at the files inside and remove unecessary chunks of texts)\r\nin general dummy data are just a few KB and we suggest to not get higher than 50KB\r\n\r\nHaving light dummy data makes the repo faster to clone" ]
"2020-12-03T07:32:26Z"
"2020-12-03T16:43:40Z"
"2020-12-03T16:41:12Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1035.diff", "html_url": "https://github.com/huggingface/datasets/pull/1035", "merged_at": "2020-12-03T16:41:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/1035.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1035" }
This PR adds the WikiHop dataset from the QAngaroo multi hop reading comprehension datasets More info: http://qangaroo.cs.ucl.ac.uk/index.html
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1035/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1035/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/623
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/623/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/623/comments
https://api.github.com/repos/huggingface/datasets/issues/623/events
https://github.com/huggingface/datasets/issues/623
700,235,308
MDU6SXNzdWU3MDAyMzUzMDg=
623
Custom feature types in `load_dataset` from CSV
{ "avatar_url": "https://avatars.githubusercontent.com/u/8264887?v=4", "events_url": "https://api.github.com/users/lvwerra/events{/privacy}", "followers_url": "https://api.github.com/users/lvwerra/followers", "following_url": "https://api.github.com/users/lvwerra/following{/other_user}", "gists_url": "https://api.github.com/users/lvwerra/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lvwerra", "id": 8264887, "login": "lvwerra", "node_id": "MDQ6VXNlcjgyNjQ4ODc=", "organizations_url": "https://api.github.com/users/lvwerra/orgs", "received_events_url": "https://api.github.com/users/lvwerra/received_events", "repos_url": "https://api.github.com/users/lvwerra/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lvwerra/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lvwerra/subscriptions", "type": "User", "url": "https://api.github.com/users/lvwerra" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Currently `csv` doesn't support the `features` attribute (unlike `json`).\r\nWhat you can do for now is cast the features using the in-place transform `cast_`\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset('csv', data_files=file_dict, delimiter=';', column_names=['text', 'label'])\r\ndataset.cast_(emotion_features)\r\n```\r\n", "Thanks for the clarification!", "Hi @lhoestq we've tried out your suggestion but are now running into the following error:\r\n\r\n```\r\n---------------------------------------------------------------------------\r\nValueError Traceback (most recent call last)\r\n<ipython-input-163-81ffd5ac18c9> in <module>\r\n----> 1 dataset.cast_(emotion_features)\r\n\r\n/usr/local/lib/python3.6/dist-packages/datasets/dataset_dict.py in cast_(self, features)\r\n 125 self._check_values_type()\r\n 126 for dataset in self.values():\r\n--> 127 dataset.cast_(features=features)\r\n 128 \r\n 129 def remove_columns_(self, column_names: Union[str, List[str]]):\r\n\r\n/usr/local/lib/python3.6/dist-packages/datasets/fingerprint.py in wrapper(*args, **kwargs)\r\n 161 # Call actual function\r\n 162 \r\n--> 163 out = func(self, *args, **kwargs)\r\n 164 \r\n 165 # Update fingerprint of in-place transforms + update in-place history of transforms\r\n\r\n/usr/local/lib/python3.6/dist-packages/datasets/arrow_dataset.py in cast_(self, features)\r\n 602 self._info.features = features\r\n 603 schema = pa.schema(features.type)\r\n--> 604 self._data = self._data.cast(schema)\r\n 605 \r\n 606 @fingerprint(inplace=True)\r\n\r\n/usr/local/lib/python3.6/dist-packages/pyarrow/table.pxi in pyarrow.lib.Table.cast()\r\n\r\nValueError: Target schema's field names are not matching the table's field names: ['text', 'label'], ['label', 'text']\r\n```\r\n\r\nLooking at the types in `emotion_features` we see that `label` and `text` appear to be swapped in the Arrow table:\r\n\r\n```\r\nemotion_features.type\r\nStructType(struct<label: int64, text: string>)\r\n```\r\n\r\nDid we define the `emotion_features` incorrectly? We just followed the instructions from the [docs](https://huggingface.co/docs/datasets/features.html?highlight=features#dataset-features), but perhaps we misunderstood something 😬 \r\n\r\n", "In general, I don't think there is any hard reason we don't allow to use `features` in the csv script, right @lhoestq?\r\n\r\nShould I add it?", "> In general, I don't think there is any hard reason we don't allow to use `features` in the csv script, right @lhoestq?\r\n> \r\n> Should I add it?\r\n\r\nSure let's add it. Setting the convert options should do the job\r\n\r\n> Hi @lhoestq we've tried out your suggestion but are now running into the following error:\r\n> \r\n> ```\r\n> ---------------------------------------------------------------------------\r\n> ValueError Traceback (most recent call last)\r\n> <ipython-input-163-81ffd5ac18c9> in <module>\r\n> ----> 1 dataset.cast_(emotion_features)\r\n>\r\n> /usr/local/lib/python3.6/dist-packages/pyarrow/table.pxi in pyarrow.lib.Table.cast()\r\n> \r\n> ValueError: Target schema's field names are not matching the table's field names: ['text', 'label'], ['label', 'text']\r\n> ```\r\n>\r\n> Did we define the `emotion_features` incorrectly? We just followed the instructions from the [docs](https://huggingface.co/docs/datasets/features.html?highlight=features#dataset-features), but perhaps we misunderstood something 😬\r\n\r\nThanks for reporting, that's a bug :) I'm fixing it right now", "PR is open for the `ValueError: Target schema's field names are not matching the table's field names` error.\r\n\r\nI'm adding the features parameter to csv", "Thanks a lot for the PR and quick fix @lhoestq!" ]
"2020-09-12T13:21:34Z"
"2020-09-30T19:51:43Z"
"2020-09-30T08:39:54Z"
MEMBER
null
null
null
I am trying to load a local file with the `load_dataset` function and I want to predefine the feature types with the `features` argument. However, the types are always the same independent of the value of `features`. I am working with the local files from the emotion dataset. To get the data you can use the following code: ```Python from pathlib import Path import wget EMOTION_PATH = Path("./data/emotion") DOWNLOAD_URLS = [ "https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1", "https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1", "https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1", ] if not Path.is_dir(EMOTION_PATH): Path.mkdir(EMOTION_PATH) for url in DOWNLOAD_URLS: wget.download(url, str(EMOTION_PATH)) ``` The first five lines of the train set are: ``` i didnt feel humiliated;sadness i can go from feeling so hopeless to so damned hopeful just from being around someone who cares and is awake;sadness im grabbing a minute to post i feel greedy wrong;anger i am ever feeling nostalgic about the fireplace i will know that it is still on the property;love i am feeling grouchy;anger ``` Here the code to reproduce the issue: ```Python from datasets import Features, Value, ClassLabel, load_dataset class_names = ["sadness", "joy", "love", "anger", "fear", "surprise"] emotion_features = Features({'text': Value('string'), 'label': ClassLabel(names=class_names)}) file_dict = {'train': EMOTION_PATH/'train.txt'} dataset = load_dataset('csv', data_files=file_dict, delimiter=';', column_names=['text', 'label'], features=emotion_features) ``` **Observed behaviour:** ```Python dataset['train'].features ``` ```Python {'text': Value(dtype='string', id=None), 'label': Value(dtype='string', id=None)} ``` **Expected behaviour:** ```Python dataset['train'].features ``` ```Python {'text': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=6, names=['sadness', 'joy', 'love', 'anger', 'fear', 'surprise'], names_file=None, id=None)} ``` **Things I've tried:** - deleting the cache - trying other types such as `int64` Am I missing anything? Thanks for any pointer in the right direction.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/623/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/623/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3867
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3867/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3867/comments
https://api.github.com/repos/huggingface/datasets/issues/3867/events
https://github.com/huggingface/datasets/pull/3867
1,162,896,605
PR_kwDODunzps40Hjrk
3,867
Update for the rename doc-builder -> hf-doc-utils
{ "avatar_url": "https://avatars.githubusercontent.com/u/35901082?v=4", "events_url": "https://api.github.com/users/sgugger/events{/privacy}", "followers_url": "https://api.github.com/users/sgugger/followers", "following_url": "https://api.github.com/users/sgugger/following{/other_user}", "gists_url": "https://api.github.com/users/sgugger/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sgugger", "id": 35901082, "login": "sgugger", "node_id": "MDQ6VXNlcjM1OTAxMDgy", "organizations_url": "https://api.github.com/users/sgugger/orgs", "received_events_url": "https://api.github.com/users/sgugger/received_events", "repos_url": "https://api.github.com/users/sgugger/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sgugger/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sgugger/subscriptions", "type": "User", "url": "https://api.github.com/users/sgugger" }
[]
closed
false
null
[]
null
[ "why utils? it's a builder no?", "~~@julien-c there was a vote πŸ™‚ https://huggingface.slack.com/archives/C021H1P1HKR/p1646405136644739~~\r\n\r\noh I see you already commeented in the thread as well", "Thanks ! It looks all good to me (provided `hf-doc-utils` is the name we keep in the end). I'm fine with this name, and `hf-doc-builder` is also fine IMHO", "ok, this is definitely not a hill I'll die on =) @mishig25 @sgugger " ]
"2022-03-08T16:58:25Z"
"2023-09-24T09:54:44Z"
"2022-03-08T17:30:45Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3867.diff", "html_url": "https://github.com/huggingface/datasets/pull/3867", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/3867.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3867" }
This PR adapts the job to the upcoming change of name of `doc-builder`.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3867/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3867/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3019
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3019/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3019/comments
https://api.github.com/repos/huggingface/datasets/issues/3019/events
https://github.com/huggingface/datasets/pull/3019
1,015,339,983
PR_kwDODunzps4speOB
3,019
Fix filter leaking
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2021-10-04T15:42:58Z"
"2022-06-03T08:28:14Z"
"2021-10-05T08:33:07Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3019.diff", "html_url": "https://github.com/huggingface/datasets/pull/3019", "merged_at": "2021-10-05T08:33:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/3019.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3019" }
If filter is called after using a first transform `shuffle`, `select`, `shard`, `train_test_split`, or `filter`, then it could not work as expected and return examples from before the first transform. This is because the indices mapping was not taken into account when saving the indices to keep when doing the filtering Affected versions: 1.12.0 and 1.12.1 This should fix #3010
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3019/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3019/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4893
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4893/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4893/comments
https://api.github.com/repos/huggingface/datasets/issues/4893/events
https://github.com/huggingface/datasets/issues/4893
1,350,655,674
I_kwDODunzps5QgV66
4,893
Oversampling strategy for iterable datasets in `interleave_datasets`
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "color": "BDE59C", "default": false, "description": "Issues a bit more difficult than \"Good First\" issues", "id": 3761482852, "name": "good second issue", "node_id": "LA_kwDODunzps7gM6xk", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20second%20issue" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/52246514?v=4", "events_url": "https://api.github.com/users/ylacombe/events{/privacy}", "followers_url": "https://api.github.com/users/ylacombe/followers", "following_url": "https://api.github.com/users/ylacombe/following{/other_user}", "gists_url": "https://api.github.com/users/ylacombe/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ylacombe", "id": 52246514, "login": "ylacombe", "node_id": "MDQ6VXNlcjUyMjQ2NTE0", "organizations_url": "https://api.github.com/users/ylacombe/orgs", "received_events_url": "https://api.github.com/users/ylacombe/received_events", "repos_url": "https://api.github.com/users/ylacombe/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ylacombe/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ylacombe/subscriptions", "type": "User", "url": "https://api.github.com/users/ylacombe" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/52246514?v=4", "events_url": "https://api.github.com/users/ylacombe/events{/privacy}", "followers_url": "https://api.github.com/users/ylacombe/followers", "following_url": "https://api.github.com/users/ylacombe/following{/other_user}", "gists_url": "https://api.github.com/users/ylacombe/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ylacombe", "id": 52246514, "login": "ylacombe", "node_id": "MDQ6VXNlcjUyMjQ2NTE0", "organizations_url": "https://api.github.com/users/ylacombe/orgs", "received_events_url": "https://api.github.com/users/ylacombe/received_events", "repos_url": "https://api.github.com/users/ylacombe/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ylacombe/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ylacombe/subscriptions", "type": "User", "url": "https://api.github.com/users/ylacombe" } ]
null
[ "Hi @lhoestq,\r\nI plunged into the code and it should be manageable for me to work on it!\r\n#take\r\n\r\nAlso, setting `d1`, `d2` and `d3` as you did raised a `SyntaxError: 'yield' inside list comprehension` for me, on Python 3.8.10.\r\nThe following snippet works for me though:\r\n```\r\nd1 = IterableDataset(ExamplesIterable((lambda: (yield from [(i, {\"a\": i}) for i in [0, 1, 2]])), {}))\r\nd2 = IterableDataset(ExamplesIterable((lambda: (yield from [(i, {\"a\": i}) for i in [10, 11, 12, 13]])), {}))\r\nd3 = IterableDataset(ExamplesIterable((lambda: (yield from [(i, {\"a\": i}) for i in [20, 21, 22, 23, 24]])), {}))\r\n```\r\n\r\n", "Great @ylacombe thanks ! I'm assigning you this issue", "Hi @ylacombe :) Is there anything I can do to help ? Feel free to ping me if you have any question :)", "Hi @lhoestq,\r\n\r\nI actually have already wrote the code last time [on this commit](https://github.com/ylacombe/datasets/commit/84769db97facc78a33ec53f7b1b395951e1804df) but I still have to change the docs and write some tests though. I'm working on it.\r\n\r\nHowever, I still your advice on one matter. \r\nIn #4831, when using a `Dataset` list with probabilities, I had change the original behavior so that it stops as soon as one or all datasets are out of samples. By nature, this behavior can't be applied with an `IterableDataset` because one only knows an iterable dataset is out of sample when receiving a StopIteration error after calling the iterator once again. \r\nTo sum up, as it is right know, the behavior is not consistent with an `IterableDataset` list or a `Dataset` list, when using probabilities.\r\nTo be honest, I think that the current behavior with a `Dataset` list is desirable and avoid having too many samples, so I would recommand keeping that as it is, but I can understand the desire to have the same behavior for both classes. \r\nWhat do you think ? Please let me know if you need more details.\r\n\r\n\r\nEDIT:\r\nHere is an example:\r\n```\r\n>>> from tests.test_iterable_dataset import *\r\n>>> d1 = IterableDataset(ExamplesIterable((lambda: (yield from [(i, {\"a\": i}) for i in [0, 1, 2]])), {}))\r\n>>> d2 = IterableDataset(ExamplesIterable((lambda: (yield from [(i, {\"a\": i}) for i in [10, 11, 12, 13]])), {}))\r\n>>> d3 = IterableDataset(ExamplesIterable((lambda: (yield from [(i, {\"a\": i}) for i in [20, 21, 22, 23, 24]])), {}))\r\n>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42)\r\n>>> [x[\"a\"] for x in dataset]\r\n[10, 0, 11, 1, 2, 20, 12, 13]\r\n>>> from tests.test_arrow_dataset import *\r\n>>> d1 = Dataset.from_dict({\"a\": [0, 1, 2]})\r\n>>> d2 = Dataset.from_dict({\"a\": [10, 11, 12]})\r\n>>> d3 = Dataset.from_dict({\"a\": [20, 21, 22]})\r\n>>> interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42)[\"a\"]\r\n[10, 0, 11, 1, 2]\r\n[10, 0, 11, 1, 2]\r\n```\r\n ", "Hi ! Awesome :) \r\n\r\nMaybe you can pre-load the next sample to know if the dataset is empty or not ?\r\nThis way it should be possible to have the same behavior for `IterableDataset`", "Hi @ylacombe let us know if we can help with anything :)", "Hi @lhoestq, I've finally made some advances in the matter. I've modified the `IterableDataset` behavior so that it aligns with the `Dataset` behavior as we have discussed. The documentation has been dealt with too. \r\nIt works as expected on my examples. However I'm having trouble figuring out how to test `interleave_datasets` on `test_iterable_datasets.py` as I have never worked with pytest. Could you help me on that or give me some indications? \r\n", "Thanks @ylacombe :)\r\n\r\nUsing the `pytest` command, you can run all the functions in a python file that start with \"test_*\" and make sure they return not errors:\r\n```\r\npytest tests/test_iterable_dataset.py\r\n```\r\n\r\nIn our case it can be nice to define a `test_interleave_datasets_with_oversampling` function. This function can contain the code example that we mentioned earlier in this github issue to make sure it works as expected.", "Resolved via #5036." ]
"2022-08-25T10:06:55Z"
"2022-10-03T12:37:46Z"
"2022-10-03T12:37:46Z"
MEMBER
null
null
null
In https://github.com/huggingface/datasets/pull/4831 @ylacombe added an oversampling strategy for `interleave_datasets`. However right now it doesn't work for datasets loaded using `load_dataset(..., streaming=True)`, which are `IterableDataset` objects. It would be nice to expand `interleave_datasets` for iterable datasets as well to support this oversampling strategy ```python >>> from datasets.iterable_dataset import IterableDataset, ExamplesIterable >>> d1 = IterableDataset(ExamplesIterable(lambda: [(yield i, {"a": i}) for i in [0, 1, 2]], {})) >>> d2 = IterableDataset(ExamplesIterable(lambda: [(yield i, {"a": i}) for i in [10, 11, 12, 13]], {})) >>> d3 = IterableDataset(ExamplesIterable(lambda: [(yield i, {"a": i}) for i in [20, 21, 22, 23, 24]], {})) >>> dataset = interleave_datasets([d1, d2, d3]) # is supported >>> [x["a"] for x in dataset] [0, 10, 20, 1, 11, 21, 2, 12, 22] >>> dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted") # is not supported yet >>> [x["a"] for x in dataset] [0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 0, 24] ``` This can be implemented by adding the strategy to both `CyclingMultiSourcesExamplesIterable` and `RandomlyCyclingMultiSourcesExamplesIterable` used in `_interleave_iterable_datasets` in `iterable_dataset.py` I would be happy to share some guidance if anyone would like to give it a shot :)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4893/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4893/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2387
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2387/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2387/comments
https://api.github.com/repos/huggingface/datasets/issues/2387/events
https://github.com/huggingface/datasets/issues/2387
897,566,666
MDU6SXNzdWU4OTc1NjY2NjY=
2,387
datasets 1.6 ignores cache
{ "avatar_url": "https://avatars.githubusercontent.com/u/10676103?v=4", "events_url": "https://api.github.com/users/stas00/events{/privacy}", "followers_url": "https://api.github.com/users/stas00/followers", "following_url": "https://api.github.com/users/stas00/following{/other_user}", "gists_url": "https://api.github.com/users/stas00/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stas00", "id": 10676103, "login": "stas00", "node_id": "MDQ6VXNlcjEwNjc2MTAz", "organizations_url": "https://api.github.com/users/stas00/orgs", "received_events_url": "https://api.github.com/users/stas00/received_events", "repos_url": "https://api.github.com/users/stas00/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stas00/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stas00/subscriptions", "type": "User", "url": "https://api.github.com/users/stas00" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Looks like there are multiple issues regarding this (#2386, #2322) and it's a WIP #2329. Currently these datasets are being loaded in-memory which is causing this issue. Quoting @mariosasko here for a quick fix:\r\n\r\n> set `keep_in_memory` to `False` when loading a dataset (`sst = load_dataset(\"sst\", keep_in_memory=False)`) to prevent it from loading in-memory. Currently, in-memory datasets fail to find cached files due to this check (always False for them)\r\n\r\n", "Hi ! Since `datasets` 1.6.0 we no longer keep small datasets (<250MB) on disk and load them in RAM instead by default. This makes data processing and iterating on data faster. However datasets in RAM currently have no way to reload previous results from the cache (since nothing is written on disk). We are working on making the caching work for datasets in RAM.\r\n\r\nUntil then, I'd recommend passing `keep_in_memory=False` to the calls to `load_dataset` like here:\r\n\r\nhttps://github.com/huggingface/transformers/blob/223943872e8c9c3fc11db3c6e93da07f5177423f/examples/pytorch/language-modeling/run_clm.py#L233\r\n\r\nThis way you say explicitly that you want your dataset to stay on the disk, and it will be able to recover previously computed results from the cache.", "gotcha! thanks Quentin", "OK, It doesn't look like we can use the proposed workaround - see https://github.com/huggingface/transformers/issues/11801\r\n\r\nCould you please add an env var for us to be able to turn off this unwanted in our situation behavior? It is really problematic for dev work, when one needs to restart the training very often and needs a quick startup time. Manual editing of standard scripts is not a practical option when one uses examples.\r\n\r\nThis could also be a problem for tests, which will be slower because of lack of cache, albeit usually we use tiny datasets there. I think we want caching for tests.\r\n\r\nThank you.", "Hi @stas00, \r\n\r\nYou are right: an env variable is needed to turn off this behavior. I am adding it.\r\n\r\nFor the moment there is a config parameter to turn off this behavior: `datasets.config.MAX_IN_MEMORY_DATASET_SIZE_IN_BYTES = None`\r\n\r\nYou can find this info in the docs:\r\n- in the docstring of the parameter `keep_in_memory` of the function [`load_datasets`](https://huggingface.co/docs/datasets/package_reference/loading_methods.html#datasets.load_dataset):\r\n- in a Note in the docs about [Loading a Dataset](https://huggingface.co/docs/datasets/loading_datasets.html#from-the-huggingface-hub)\r\n\r\n> The default in πŸ€—Datasets is to memory-map the dataset on drive if its size is larger than datasets.config.MAX_IN_MEMORY_DATASET_SIZE_IN_BYTES (default 250 MiB); otherwise, the dataset is copied in-memory. This behavior can be disabled by setting datasets.config.MAX_IN_MEMORY_DATASET_SIZE_IN_BYTES = None, and in this case the dataset is not loaded in memory.", "Yes, but this still requires one to edit the standard example scripts, so if I'm doing that already I just as well can add `keep_in_memory=False`.\r\n\r\nMay be the low hanging fruit is to add `MAX_IN_MEMORY_DATASET_SIZE_IN_BYTES` env var to match the config, and if the user sets it to 0, then it'll be the same as `keep_in_memory=False` or `datasets.config.MAX_IN_MEMORY_DATASET_SIZE_IN_BYTES=0`?", "@stas00, however, for the moment, setting the value to `0` is equivalent to the opposite, i.e. `keep_in_memory=True`. This means the max size until which I load in memory is 0 bytes.\r\n\r\nTell me if this is logical/convenient, or I should change it.", "In my PR, to turn off current default bahavior, you should set env variable to one of: `{\"\", \"OFF\", \"NO\", \"FALSE\"}`.\r\n\r\nFor example:\r\n```\r\nMAX_IN_MEMORY_DATASET_SIZE_IN_BYTES=\r\n```", "IMHO, this behaviour is not very intuitive, as 0 is a normal quantity of bytes. So `MAX_IN_MEMORY_DATASET_SIZE_IN_BYTES=0` to me reads as don't cache ever.\r\n\r\nAlso \"SIZE_IN_BYTES\" that can take one of `{\"\", \"OFF\", \"NO\", \"FALSE\"}` is also quite odd.\r\n\r\nI think supporting a very simple `MAX_IN_MEMORY_DATASET_SIZE_IN_BYTES` that can accept any numerical value to match the name of the variable, requires minimal logic and is very straightforward. \r\n\r\nSo if you could adjust this logic - then `MAX_IN_MEMORY_DATASET_SIZE_IN_BYTES=0` is all that's needed to not do in-memory datasets.\r\n\r\nDoes it make sense?", "I understand your point @stas00, as I am not very convinced with current implementation.\r\n\r\nMy concern is: which numerical value should then pass a user who wants `keep_in_memory=True` by default, independently of dataset size? Currently it is `0` for this case.", "That's a good question, and again the normal bytes can be used for that:\r\n```\r\nMAX_IN_MEMORY_DATASET_SIZE_IN_BYTES=1e12 # (~2**40)\r\n```\r\nSince it's unlikely that anybody will have more than 1TB RAM.\r\n\r\nIt's also silly that it uses BYTES and not MBYTES - that level of refinement doesn't seem to be of a practical use in this context.\r\n\r\nNot sure when it was added and if there are back-compat issues here, but perhaps it could be renamed `MAX_IN_MEMORY_DATASET_SIZE` and support 1M, 1G, 1T, etc. \r\n\r\nBut scientific notation is quite intuitive too, as each 000 zeros is the next M, G, T multiplier. Minus the discrepancy of 1024 vs 1000, which adds up. And it is easy to write down `1e12`, as compared to `1099511627776` (2**40). (`1.1e12` is more exact).\r\n", "Great! Thanks, @stas00.\r\n\r\nI am implementing your suggestion to turn off default value when set to `0`.\r\n\r\nFor the other suggestion (allowing different metric prefixes), I will discuss with @lhoestq to agree on its implementation.", "Awesome! Thank you, @albertvillanova!!!\r\n\r\n" ]
"2021-05-21T00:12:58Z"
"2021-05-26T16:07:54Z"
"2021-05-26T16:07:54Z"
CONTRIBUTOR
null
null
null
Moving from https://github.com/huggingface/transformers/issues/11801#issuecomment-845546612 Quoting @VictorSanh: > > I downgraded datasets to `1.5.0` and printed `tokenized_datasets.cache_files` (L335): > > > `{'train': [{'filename': '/home/victor/.cache/huggingface/datasets/openwebtext10k/plain_text/1.0.0/3a8df094c671b4cb63ed0b41f40fb3bd855e9ce2e3765e5df50abcdfb5ec144b/cache-c6aefe81ca4e5152.arrow'}], 'validation': [{'filename': '/home/victor/.cache/huggingface/datasets/openwebtext10k/plain_text/1.0.0/3a8df094c671b4cb63ed0b41f40fb3bd855e9ce2e3765e5df50abcdfb5ec144b/cache-97cf4c813e6469c6.arrow'}]}` > > while the same command with the latest version of datasets (actually starting at `1.6.0`) gives: > > `{'train': [], 'validation': []}` > I also confirm that downgrading to `datasets==1.5.0` makes things fast again - i.e. cache is used. to reproduce: ``` USE_TF=0 python examples/pytorch/language-modeling/run_clm.py \ --model_name_or_path gpt2 \ --dataset_name "stas/openwebtext-10k" \ --output_dir output_dir \ --overwrite_output_dir \ --do_train \ --do_eval \ --max_train_samples 1000 \ --max_eval_samples 200 \ --per_device_train_batch_size 4 \ --per_device_eval_batch_size 4 \ --num_train_epochs 1 \ --warmup_steps 8 \ --block_size 64 \ --fp16 \ --report_to none ``` the first time the startup is slow and some 5 tqdm bars. It shouldn't do it on consequent runs. but with `datasets>1.5.0` it rebuilds on every run. @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2387/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2387/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5088
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5088/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5088/comments
https://api.github.com/repos/huggingface/datasets/issues/5088/events
https://github.com/huggingface/datasets/issues/5088
1,400,530,412
I_kwDODunzps5TemXs
5,088
load_datasets("json", ...) don't read local .json.gz properly
{ "avatar_url": "https://avatars.githubusercontent.com/u/112650299?v=4", "events_url": "https://api.github.com/users/junwang-wish/events{/privacy}", "followers_url": "https://api.github.com/users/junwang-wish/followers", "following_url": "https://api.github.com/users/junwang-wish/following{/other_user}", "gists_url": "https://api.github.com/users/junwang-wish/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/junwang-wish", "id": 112650299, "login": "junwang-wish", "node_id": "U_kgDOBrboOw", "organizations_url": "https://api.github.com/users/junwang-wish/orgs", "received_events_url": "https://api.github.com/users/junwang-wish/received_events", "repos_url": "https://api.github.com/users/junwang-wish/repos", "site_admin": false, "starred_url": "https://api.github.com/users/junwang-wish/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/junwang-wish/subscriptions", "type": "User", "url": "https://api.github.com/users/junwang-wish" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "Hi @junwang-wish, thanks for reporting.\r\n\r\nUnfortunately, I'm not able to reproduce the bug. Which version of `datasets` are you using? Does the problem persist if you update `datasets`?\r\n```shell\r\npip install -U datasets\r\n``` ", "Thanks @albertvillanova I updated `datasets` from `2.5.1` to `2.5.2` and tested copying the `json.gz` to a different directory and my mind was blown:\r\n\r\n```python\r\nfpath = '/data/junwang/.cache/general/57b6f2314cbe0bc45dda5b78f0871df2/test.json.gz'\r\nds_panda = DatasetDict(\r\n test=Dataset.from_pandas(\r\n pd.read_json(fpath, lines=True)\r\n )\r\n)\r\nds_direct = load_dataset(\r\n 'json', data_files={\r\n 'test': fpath\r\n }, features=Features(\r\n text_input=Value(dtype=\"string\", id=None),\r\n text_output=Value(dtype=\"string\", id=None)\r\n )\r\n)\r\nlen(ds_panda['test']), len(ds_direct['test'])\r\n```\r\nproduces \r\n```python\r\nUsing custom data configuration default-0e6cf24134163e8b\r\nFound cached dataset json (/data/junwang/.cache/huggingface/datasets/json/default-0e6cf24134163e8b/0.0.0/e6070c77f18f01a5ad4551a8b7edfba20b8438b7cad4d94e6ad9378022ce4aab)\r\n(1, 0)\r\n```\r\nbut then I ran below command to see if the same file in a different directory leads to same discrepancy\r\n```shell\r\ncp /data/junwang/.cache/general/57b6f2314cbe0bc45dda5b78f0871df2/test.json.gz tmp_test.json.gz\r\n```\r\nand so I ran\r\n```python\r\nfpath = 'tmp_test.json.gz'\r\nds_panda = DatasetDict(\r\n test=Dataset.from_pandas(\r\n pd.read_json(fpath, lines=True)\r\n )\r\n)\r\nds_direct = load_dataset(\r\n 'json', data_files={\r\n 'test': fpath\r\n }, features=Features(\r\n text_input=Value(dtype=\"string\", id=None),\r\n text_output=Value(dtype=\"string\", id=None)\r\n )\r\n)\r\nlen(ds_panda['test']), len(ds_direct['test'])\r\n```\r\nand behold, I get \r\n```python\r\nUsing custom data configuration default-f679b32ab0008520\r\nDownloading and preparing dataset json/default to /data/junwang/.cache/huggingface/datasets/json/default-f679b32ab0008520/0.0.0/e6070c77f18f01a5ad4551a8b7edfba20b8438b7cad4d94e6ad9378022ce4aab...\r\nDataset json downloaded and prepared to /data/junwang/.cache/huggingface/datasets/json/default-f679b32ab0008520/0.0.0/e6070c77f18f01a5ad4551a8b7edfba20b8438b7cad4d94e6ad9378022ce4aab. Subsequent calls will reuse this data.\r\n(1, 1)\r\n```\r\nThey match now !\r\n\r\nThis problem happens regardless of the shell I use (VScode jupyter extension or plain old Python REPL). \r\n\r\nI attached the `json.gz` here for reference: [test.json.gz](https://github.com/huggingface/datasets/files/9734843/test.json.gz)\r\n\r\n" ]
"2022-10-07T02:16:58Z"
"2022-10-07T14:43:16Z"
null
NONE
null
null
null
## Describe the bug I have a local file `*.json.gz` and it can be read by `pandas.read_json(lines=True)`, but cannot be read by `load_datasets("json")` (resulting in 0 lines) ## Steps to reproduce the bug ```python fpath = '/data/junwang/.cache/general/57b6f2314cbe0bc45dda5b78f0871df2/test.json.gz' ds_panda = DatasetDict( test=Dataset.from_pandas( pd.read_json(fpath, lines=True) ) ) ds_direct = load_dataset( 'json', data_files={ 'test': fpath }, features=Features( text_input=Value(dtype="string", id=None), text_output=Value(dtype="string", id=None) ) ) len(ds_panda['test']), len(ds_direct['test']) ``` ## Expected results Lines of `ds_panda['test']` and `ds_direct['test']` should match. ## Actual results ``` Using custom data configuration default-c0ef2598760968aa Downloading and preparing dataset json/default to /data/junwang/.cache/huggingface/datasets/json/default-c0ef2598760968aa/0.0.0/e6070c77f18f01a5ad4551a8b7edfba20b8438b7cad4d94e6ad9378022ce4aab... Dataset json downloaded and prepared to /data/junwang/.cache/huggingface/datasets/json/default-c0ef2598760968aa/0.0.0/e6070c77f18f01a5ad4551a8b7edfba20b8438b7cad4d94e6ad9378022ce4aab. Subsequent calls will reuse this data. (62087, 0) ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: - Platform: Ubuntu 18.04.4 LTS - Python version: 3.8.13 - PyArrow version: 9.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5088/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5088/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6480
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6480/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6480/comments
https://api.github.com/repos/huggingface/datasets/issues/6480/events
https://github.com/huggingface/datasets/pull/6480
2,031,116,653
PR_kwDODunzps5hcS7P
6,480
Add IterableDataset `__repr__`
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6480). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005392 / 0.011353 (-0.005960) | 0.003120 / 0.011008 (-0.007888) | 0.062017 / 0.038508 (0.023509) | 0.048824 / 0.023109 (0.025715) | 0.232300 / 0.275898 (-0.043598) | 0.262045 / 0.323480 (-0.061435) | 0.002909 / 0.007986 (-0.005077) | 0.003916 / 0.004328 (-0.000413) | 0.049469 / 0.004250 (0.045218) | 0.038965 / 0.037052 (0.001913) | 0.247841 / 0.258489 (-0.010648) | 0.268259 / 0.293841 (-0.025582) | 0.027588 / 0.128546 (-0.100958) | 0.010334 / 0.075646 (-0.065312) | 0.205811 / 0.419271 (-0.213460) | 0.035456 / 0.043533 (-0.008077) | 0.242774 / 0.255139 (-0.012365) | 0.260377 / 0.283200 (-0.022823) | 0.017469 / 0.141683 (-0.124214) | 1.199665 / 1.452155 (-0.252489) | 1.259316 / 1.492716 (-0.233400) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092357 / 0.018006 (0.074350) | 0.303745 / 0.000490 (0.303255) | 0.000212 / 0.000200 (0.000012) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018820 / 0.037411 (-0.018592) | 0.061548 / 0.014526 (0.047022) | 0.072527 / 0.176557 (-0.104030) | 0.119696 / 0.737135 (-0.617440) | 0.074153 / 0.296338 (-0.222185) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283952 / 0.215209 (0.068743) | 2.769844 / 2.077655 (0.692189) | 1.526100 / 1.504120 (0.021980) | 1.417584 / 1.541195 (-0.123611) | 1.440523 / 1.468490 (-0.027967) | 0.556994 / 4.584777 (-4.027783) | 2.400392 / 3.745712 (-1.345320) | 2.727794 / 5.269862 (-2.542068) | 1.724671 / 4.565676 (-2.841006) | 0.062111 / 0.424275 (-0.362164) | 0.004925 / 0.007607 (-0.002682) | 0.342748 / 0.226044 (0.116704) | 3.376790 / 2.268929 (1.107862) | 1.856498 / 55.444624 (-53.588127) | 1.574143 / 6.876477 (-5.302334) | 1.591828 / 2.142072 (-0.550245) | 0.644416 / 4.805227 (-4.160811) | 0.116862 / 6.500664 (-6.383802) | 0.041484 / 0.075469 (-0.033985) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975704 / 1.841788 (-0.866084) | 11.196447 / 8.074308 (3.122139) | 10.567518 / 10.191392 (0.376126) | 0.126786 / 0.680424 (-0.553638) | 0.013768 / 0.534201 (-0.520433) | 0.284531 / 0.579283 (-0.294752) | 0.260855 / 0.434364 (-0.173509) | 0.328888 / 0.540337 (-0.211450) | 0.439911 / 1.386936 (-0.947025) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005108 / 0.011353 (-0.006245) | 0.003006 / 0.011008 (-0.008003) | 0.048673 / 0.038508 (0.010165) | 0.051066 / 0.023109 (0.027957) | 0.279578 / 0.275898 (0.003680) | 0.298356 / 0.323480 (-0.025123) | 0.003965 / 0.007986 (-0.004020) | 0.002662 / 0.004328 (-0.001667) | 0.049037 / 0.004250 (0.044786) | 0.039385 / 0.037052 (0.002333) | 0.284545 / 0.258489 (0.026055) | 0.314240 / 0.293841 (0.020399) | 0.028493 / 0.128546 (-0.100053) | 0.010400 / 0.075646 (-0.065247) | 0.057375 / 0.419271 (-0.361896) | 0.032382 / 0.043533 (-0.011151) | 0.283163 / 0.255139 (0.028024) | 0.298967 / 0.283200 (0.015768) | 0.017564 / 0.141683 (-0.124119) | 1.172425 / 1.452155 (-0.279730) | 1.219975 / 1.492716 (-0.272742) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090664 / 0.018006 (0.072658) | 0.298419 / 0.000490 (0.297929) | 0.000211 / 0.000200 (0.000011) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021739 / 0.037411 (-0.015672) | 0.068274 / 0.014526 (0.053748) | 0.080820 / 0.176557 (-0.095736) | 0.119809 / 0.737135 (-0.617326) | 0.081612 / 0.296338 (-0.214727) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.303346 / 0.215209 (0.088137) | 2.971648 / 2.077655 (0.893993) | 1.634828 / 1.504120 (0.130708) | 1.510851 / 1.541195 (-0.030344) | 1.515236 / 1.468490 (0.046745) | 0.558487 / 4.584777 (-4.026289) | 2.436263 / 3.745712 (-1.309449) | 2.718525 / 5.269862 (-2.551336) | 1.727421 / 4.565676 (-2.838255) | 0.061396 / 0.424275 (-0.362879) | 0.004951 / 0.007607 (-0.002656) | 0.352950 / 0.226044 (0.126906) | 3.473766 / 2.268929 (1.204838) | 1.971299 / 55.444624 (-53.473325) | 1.712173 / 6.876477 (-5.164304) | 1.711334 / 2.142072 (-0.430738) | 0.627291 / 4.805227 (-4.177936) | 0.113779 / 6.500664 (-6.386885) | 0.046561 / 0.075469 (-0.028908) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.989507 / 1.841788 (-0.852280) | 11.777883 / 8.074308 (3.703575) | 10.525453 / 10.191392 (0.334061) | 0.129118 / 0.680424 (-0.551306) | 0.014989 / 0.534201 (-0.519212) | 0.282324 / 0.579283 (-0.296959) | 0.280688 / 0.434364 (-0.153676) | 0.322579 / 0.540337 (-0.217758) | 0.554327 / 1.386936 (-0.832609) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#79e94fcdf3d4378ddcdf7e130bb1ae23d99c6fce \"CML watermark\")\n" ]
"2023-12-07T16:31:50Z"
"2023-12-08T13:33:06Z"
"2023-12-08T13:26:54Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6480.diff", "html_url": "https://github.com/huggingface/datasets/pull/6480", "merged_at": "2023-12-08T13:26:54Z", "patch_url": "https://github.com/huggingface/datasets/pull/6480.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6480" }
Example for glue sst2: Dataset ``` DatasetDict({ test: Dataset({ features: ['sentence', 'label', 'idx'], num_rows: 1821 }) train: Dataset({ features: ['sentence', 'label', 'idx'], num_rows: 67349 }) validation: Dataset({ features: ['sentence', 'label', 'idx'], num_rows: 872 }) }) ``` IterableDataset (new) ``` IterableDatasetDict({ test: IterableDataset({ features: ['sentence', 'label', 'idx'], n_shards: 1 }) train: IterableDataset({ features: ['sentence', 'label', 'idx'], n_shards: 1 }) validation: IterableDataset({ features: ['sentence', 'label', 'idx'], n_shards: 1 }) }) ``` IterableDataset (before) ``` {'test': <datasets.iterable_dataset.IterableDataset object at 0x130d421f0>, 'train': <datasets.iterable_dataset.IterableDataset object at 0x136f3aaf0>, 'validation': <datasets.iterable_dataset.IterableDataset object at 0x136f4b100>} {'sentence': 'hide new secretions from the parental units ', 'label': 0, 'idx': 0} ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6480/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6480/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1742
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1742/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1742/comments
https://api.github.com/repos/huggingface/datasets/issues/1742/events
https://github.com/huggingface/datasets/pull/1742
787,623,640
MDExOlB1bGxSZXF1ZXN0NTU2MjgyMDYw
1,742
Add GLUE Compat (compatible with transformers<3.5.0)
{ "avatar_url": "https://avatars.githubusercontent.com/u/22514219?v=4", "events_url": "https://api.github.com/users/JetRunner/events{/privacy}", "followers_url": "https://api.github.com/users/JetRunner/followers", "following_url": "https://api.github.com/users/JetRunner/following{/other_user}", "gists_url": "https://api.github.com/users/JetRunner/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JetRunner", "id": 22514219, "login": "JetRunner", "node_id": "MDQ6VXNlcjIyNTE0MjE5", "organizations_url": "https://api.github.com/users/JetRunner/orgs", "received_events_url": "https://api.github.com/users/JetRunner/received_events", "repos_url": "https://api.github.com/users/JetRunner/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JetRunner/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JetRunner/subscriptions", "type": "User", "url": "https://api.github.com/users/JetRunner" }
[]
closed
false
null
[]
null
[ "Maybe it would be simpler to just overwrite the order of the label classes of the `glue` dataset ?\r\n```python\r\nmnli = load_dataset(\"glue\", \"mnli\", label_classes=[\"contradiction\", \"entailment\", \"neutral\"])\r\n```", "Sounds good. Will close the issue if that works." ]
"2021-01-17T05:54:25Z"
"2023-09-24T09:52:12Z"
"2021-03-29T12:43:30Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1742.diff", "html_url": "https://github.com/huggingface/datasets/pull/1742", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1742.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1742" }
Link to our discussion on Slack (HF internal) https://huggingface.slack.com/archives/C014N4749J9/p1609668119337400 The next step is to add a compatible option in the new `run_glue.py` I duplicated `glue` and made the following changes: 1. Change the name to `glue_compat`. 2. Change the label assignments for MNLI and AX.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1742/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1742/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1669
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1669/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1669/comments
https://api.github.com/repos/huggingface/datasets/issues/1669/events
https://github.com/huggingface/datasets/issues/1669
776,608,386
MDU6SXNzdWU3NzY2MDgzODY=
1,669
wiki_dpr dataset pre-processesing performance
{ "avatar_url": "https://avatars.githubusercontent.com/u/753898?v=4", "events_url": "https://api.github.com/users/dbarnhart/events{/privacy}", "followers_url": "https://api.github.com/users/dbarnhart/followers", "following_url": "https://api.github.com/users/dbarnhart/following{/other_user}", "gists_url": "https://api.github.com/users/dbarnhart/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dbarnhart", "id": 753898, "login": "dbarnhart", "node_id": "MDQ6VXNlcjc1Mzg5OA==", "organizations_url": "https://api.github.com/users/dbarnhart/orgs", "received_events_url": "https://api.github.com/users/dbarnhart/received_events", "repos_url": "https://api.github.com/users/dbarnhart/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dbarnhart/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dbarnhart/subscriptions", "type": "User", "url": "https://api.github.com/users/dbarnhart" }
[]
closed
false
null
[]
null
[ "Sorry, double posted." ]
"2020-12-30T19:41:09Z"
"2020-12-30T19:42:25Z"
"2020-12-30T19:42:25Z"
NONE
null
null
null
I've been working with wiki_dpr and noticed that the dataset processing is seriously impaired in performance [1]. It takes about 12h to process the entire dataset. Most of this time is simply loading and processing the data, but the actual indexing is also quite slow (3h). I won't repeat the concerns around multiprocessing as they are addressed in other issues (#786), but this is the first obvious thing to do. Using cython to speed up the text manipulation may be also help. Loading and processing a dataset of this size in under 15 minutes does not seem unreasonable on a modern multi-core machine. I have hit such targets myself on similar tasks. Would love to see this improve. The other issue is that it takes 3h to construct the FAISS index. If only we could use GPUs with HNSW, but we can't. My sharded GPU indexing code can build an IVF + PQ index in 10 minutes on 20 million vectors. Still, 3h seems slow even for the CPU. It looks like HF is adding only 1000 vectors at a time by default [2], whereas the faiss benchmarks adds 1 million vectors at a time (effectively) [3]. It's possible the runtime could be reduced with a larger batch. Also, it looks like project dependencies ultimately use OpenBLAS, but this is known to have issues when combined with OpenMP, which HNSW does [3]. A workaround is to set the environment variable `OMP_WAIT_POLICY=PASSIVE` via `os.environ` or similar. References: [1] https://github.com/huggingface/datasets/blob/master/datasets/wiki_dpr/wiki_dpr.py [2] https://github.com/huggingface/datasets/blob/master/src/datasets/search.py [3] https://github.com/facebookresearch/faiss/blob/master/benchs/bench_hnsw.py [4] https://github.com/facebookresearch/faiss/issues/422
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1669/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1669/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4831
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4831/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4831/comments
https://api.github.com/repos/huggingface/datasets/issues/4831/events
https://github.com/huggingface/datasets/pull/4831
1,336,199,643
PR_kwDODunzps49Cibf
4,831
Add oversampling strategies to interleave datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/52246514?v=4", "events_url": "https://api.github.com/users/ylacombe/events{/privacy}", "followers_url": "https://api.github.com/users/ylacombe/followers", "following_url": "https://api.github.com/users/ylacombe/following{/other_user}", "gists_url": "https://api.github.com/users/ylacombe/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ylacombe", "id": 52246514, "login": "ylacombe", "node_id": "MDQ6VXNlcjUyMjQ2NTE0", "organizations_url": "https://api.github.com/users/ylacombe/orgs", "received_events_url": "https://api.github.com/users/ylacombe/received_events", "repos_url": "https://api.github.com/users/ylacombe/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ylacombe/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ylacombe/subscriptions", "type": "User", "url": "https://api.github.com/users/ylacombe" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_4831). All of your documentation changes will be reflected on that endpoint.", "Hi @lhoestq, \r\nThanks for your review! I've added the requested mention in the documentation and corrected the Error type in `interleave_datasets`. \r\nI've also added test cases in `test_arrow_dataset.py`, which was useful since it allow me to detect an error in the case of an oversampling strategy with no sampling probabilities. \r\nCould you double check this part ? I've commented the code to explain the approach.\r\nThanks!\r\n", "@ylacombe Thanks for your effort!\r\n\r\n> Final note: I've been using that code for a research project involving a large-scale multilingual dataset. One should be careful when using oversampling to avoid exploding the size of the dataset. For example, if a very large data set has a low probability of being sampled, the final dataset may be several times the size of that large data set.\r\n\r\nMay I ask why is that, and how to solve it? In some scenarios, such as domain adaptation with limited resources, it is normal to have a big generic dataset and a small in-domain dataset.\r\n\r\nHere is an example with data sizes 8:2 and oversampling ratios 0.2:0.8\r\n\r\n```python\r\nfrom datasets import Dataset, interleave_datasets\r\n\r\nd1 = Dataset.from_dict({\"a\": [1, 2, 3, 4, 5, 6, 7, 8]})\r\nd2 = Dataset.from_dict({\"a\": [9, 10]})\r\n\r\nnew_d = interleave_datasets([d1, d2], probabilities=[0.2, 0.8], seed=42, stopping_strategy=\"all_exhausted\")\r\nprint(len(new_d))\r\nprint(new_d[\"a\"])\r\n```\r\n\r\n> 37\r\n> [9, 10, 9, 10, 1, 9, 10, 9, 2, 10, 9, 10, 9, 10, 9, 10, 9, 3, 10, 9, 10, 9, 10, 9, 10, 4, 9, 5, 6, 10, 9, 10, 9, 10, 9, 7, 8]\r\n\r\nThe ratios sampled from the two original datasets to the output dataset are correct. However, the length of the output dataset is 37, which is too big. I think it should be only large enough to make the smaller dataset similar in size to the bigger dataset. Any solution for this? Many thanks!\r\n\r\n", "Hi @ymoslem, it's a great question and yes, it's normal to have two different-sized datasets to interleave!\r\n\r\nMy recommendation here would be to either use probabilities more biased towards the large model (e.g `[0.8, 0.2]`) so that the big dataset is exhausted more quickly, or to not use probabilities altogether - in that case, `new_d` length will be 16 (`nb_datasets*len(largest_dataset)`).\r\n\r\nLet me know if I need to be clearer!\r\n ", "@ylacombe Many thanks for your prompt response! As we needed to implement certain oversampling experiments, we ended up using Pandas.\r\n\r\nConsidering each dataset a class with a distinct \"label\":\r\n```python\r\nimport pandas as pd\r\n\r\ndef oversample(df):\r\n classes = df.label.value_counts().to_dict()\r\n most = max(classes.values())\r\n classes_list = []\r\n for key in classes:\r\n classes_list.append(df[df['label'] == key])\r\n classes_sample = []\r\n for i in range(1,len(classes_list)):\r\n classes_sample.append(classes_list[i].sample(most, replace=True))\r\n df_maybe = pd.concat(classes_sample)\r\n final_df = pd.concat([df_maybe,classes_list[0]], axis=0)\r\n final_df = final_df.reset_index(drop=True)\r\n return final_df\r\n```\r\n[Reference](https://medium.com/analytics-vidhya/undersampling-and-oversampling-an-old-and-a-new-approach-4f984a0e8392)" ]
"2022-08-11T16:24:51Z"
"2023-07-11T15:57:48Z"
"2022-08-24T16:46:07Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4831.diff", "html_url": "https://github.com/huggingface/datasets/pull/4831", "merged_at": "2022-08-24T16:46:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/4831.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4831" }
Hello everyone, Here is a proposal to improve `interleave_datasets` function. Following Issue #3064, and @lhoestq [comment](https://github.com/huggingface/datasets/issues/3064#issuecomment-1022333385), I propose here a code that performs oversampling when interleaving a `Dataset` list. I have myself encountered this problem while trying to implement training on a multilingual dataset following a training strategy similar to that of [XLSUM paper](https://arxiv.org/pdf/2106.13822.pdf), a multilingual abstract summary dataset where the multilingual training dataset is created by sampling from the languages following a smoothing strategy. The main idea is to sample languages that have a low number of samples more frequently than other languages. As in Issue #3064, the current default strategy is a undersampling strategy, which stops as soon as a dataset runs out of samples. The new `all_exhausted` strategy stops building the new dataset as soon as all samples in each dataset have been added at least once. How does it work in practice: - if ``probabilities`` is `None` and the strategy is `all_exhausted`, it simply performs a round robin interleaving that stops when the longest dataset is out of samples. Here the new dataset length will be $maxLengthDataset*nbDataset$. - if ``probabilities`` is not `None` and the strategy is `all_exhausted`, it keeps trace of the datasets which were out of samples but continues to add them to the new dataset, and stops as soons as every dataset runs out of samples at least once. - In the other cases, it is supposed to keep the same behaviour as before. Except that this time, when probabilities are precised, it really stops AS SOON AS a dataset is out of samples. More on the last sentence: The previous example of `interleave_datasets` was: >>> from datasets import Dataset, interleave_datasets >>> d1 = Dataset.from_dict({"a": [0, 1, 2]}) >>> d2 = Dataset.from_dict({"a": [10, 11, 12]}) >>> d3 = Dataset.from_dict({"a": [20, 21, 22]}) >>> dataset = interleave_datasets([d1, d2, d3]) >>> dataset["a"] [0, 10, 20, 1, 11, 21, 2, 12, 22] >>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42) >>> dataset["a"] [10, 0, 11, 1, 2, 20, 12] With my implementation, `dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42)` gives: >>> dataset["a"] [10, 0, 11, 1, 2] because `d1` is already out of samples just after `2` is added. Example of the results of applying the different strategies: >>> from datasets import Dataset, interleave_datasets >>> d1 = Dataset.from_dict({"a": [0, 1, 2]}) >>> d2 = Dataset.from_dict({"a": [10, 11, 12]}) >>> d3 = Dataset.from_dict({"a": [20, 21, 22]}) >>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42, stopping_strategy="all_exhausted") >>> dataset["a"] [10, 0, 11, 1, 2, 20, 12, 10, 0, 1, 2, 21, 0, 11, 1, 2, 0, 1, 12, 2, 10, 0, 22] >>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42) >>> dataset["a"] [10, 0, 11, 1, 2] >>> dataset = interleave_datasets([d1, d2, d3]) >>> dataset["a"] [0, 10, 20, 1, 11, 21, 2, 12, 22] >>> dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted") >>> dataset["a"] [0, 10, 20, 1, 11, 21, 2, 12, 22] >>> d1 = Dataset.from_dict({"a": [0, 1, 2]}) >>> d2 = Dataset.from_dict({"a": [10, 11, 12, 13]}) >>> d3 = Dataset.from_dict({"a": [20, 21, 22, 23, 24]}) >>> dataset = interleave_datasets([d1, d2, d3]) >>> dataset["a"] [0, 10, 20, 1, 11, 21, 2, 12, 22] >>> dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted") >>> dataset["a"] [0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 0, 24] >>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42) >>> dataset["a"] [10, 0, 11, 1, 2] >>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42, stopping_strategy="all_exhausted") >>> dataset["a"] [10, 0, 11, 1, 2, 20, 12, 13, ..., 0, 1, 2, 0, 24] **Final note:** I've been using that code for a research project involving a large-scale multilingual dataset. One should be careful when using oversampling to avoid to avoid exploding the size of the dataset. For example, if a very large data set has a low probability of being sampled, the final dataset may be several times the size of that large data set.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4831/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4831/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1068
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1068/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1068/comments
https://api.github.com/repos/huggingface/datasets/issues/1068/events
https://github.com/huggingface/datasets/pull/1068
756,417,337
MDExOlB1bGxSZXF1ZXN0NTMxOTY1MDk0
1,068
Add Pubmed (citation + abstract) dataset (2020).
{ "avatar_url": "https://avatars.githubusercontent.com/u/204321?v=4", "events_url": "https://api.github.com/users/Narsil/events{/privacy}", "followers_url": "https://api.github.com/users/Narsil/followers", "following_url": "https://api.github.com/users/Narsil/following{/other_user}", "gists_url": "https://api.github.com/users/Narsil/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Narsil", "id": 204321, "login": "Narsil", "node_id": "MDQ6VXNlcjIwNDMyMQ==", "organizations_url": "https://api.github.com/users/Narsil/orgs", "received_events_url": "https://api.github.com/users/Narsil/received_events", "repos_url": "https://api.github.com/users/Narsil/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Narsil/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Narsil/subscriptions", "type": "User", "url": "https://api.github.com/users/Narsil" }
[]
closed
false
null
[]
null
[ "LGTM! ftp addition looks fine but maybe have a look @thomwolf ?", "It's not finished yet, I need to run the tests on the full dataset (it was running this weekend, there is an error somewhere deep)\r\n", "@yjernite Ready for review !\r\n@thomwolf \r\n\r\nSo I tried to follow closely the original format that means I still had to drop information (namely tags on elements are simply discarded for now but they don't seem to carry critical information).\r\nSome elements are also discarded they tend to not come up often:\r\n - The most notable is Author affiliation, which seems to be all over the place in terms of what it look meaning it's hard to actually get a consistent format.\r\n - Journal is the same, all the elements in there can be wildly different so I decided to drop it for now instead of trying to figure out a way to have a common presentation. (the DOI and medline ID are present so it can be recovered).\r\n\r\nI think this PR could go as it but we probably should add a way to get easier information to use with a config.\r\nFor instance `{\"title\": \"string\", \"abstract\": \"string\", \"authors\": List[str], \"substances\": List[str]}` maybe ? (substances for instance is a tricky one, some substances only have an international identifier, some have simply a common name, some both)\r\n\r\nIt's relatively easy to do I think it's mostly discarding other fields and renaming some deep structure into a flat one.", "Look ok to me but @lhoestq is the master on the Download Manager side" ]
"2020-12-03T17:54:10Z"
"2020-12-23T09:52:07Z"
"2020-12-23T09:52:07Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1068.diff", "html_url": "https://github.com/huggingface/datasets/pull/1068", "merged_at": "2020-12-23T09:52:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/1068.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1068" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1068/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1068/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5226
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5226/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5226/comments
https://api.github.com/repos/huggingface/datasets/issues/5226/events
https://github.com/huggingface/datasets/issues/5226
1,444,385,148
I_kwDODunzps5WF5F8
5,226
Q: Memory release when removing the column?
{ "avatar_url": "https://avatars.githubusercontent.com/u/43239645?v=4", "events_url": "https://api.github.com/users/bayartsogt-ya/events{/privacy}", "followers_url": "https://api.github.com/users/bayartsogt-ya/followers", "following_url": "https://api.github.com/users/bayartsogt-ya/following{/other_user}", "gists_url": "https://api.github.com/users/bayartsogt-ya/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bayartsogt-ya", "id": 43239645, "login": "bayartsogt-ya", "node_id": "MDQ6VXNlcjQzMjM5NjQ1", "organizations_url": "https://api.github.com/users/bayartsogt-ya/orgs", "received_events_url": "https://api.github.com/users/bayartsogt-ya/received_events", "repos_url": "https://api.github.com/users/bayartsogt-ya/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bayartsogt-ya/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bayartsogt-ya/subscriptions", "type": "User", "url": "https://api.github.com/users/bayartsogt-ya" }
[]
closed
false
null
[]
null
[ "Hi ! Datasets are memory mapped from your disk, i.e. they're not loaded in RAM. This is possible thanks to the Arrow data format.\r\n\r\nTherefore the column you remove is not in RAM, so removing it doesn't cause the RAM to decrease.", "Thanks for the explanation! @lhoestq \r\nI wonder since it is memory mapped, can we reduce or remove this memory map?", "Yes you can `del common_voice` for example or wait for it to be garbage collected" ]
"2022-11-10T18:35:27Z"
"2022-11-29T15:10:10Z"
"2022-11-29T15:10:10Z"
NONE
null
null
null
### Describe the bug How do I release memory when I use methods like `.remove_columns()` or `clear()` in notebooks? ```python from datasets import load_dataset common_voice = load_dataset("mozilla-foundation/common_voice_11_0", "ja", use_auth_token=True) # check memory -> RAM Used (GB): 0.704 / Total (GB) 33.670 common_voice = common_voice.remove_columns(column_names=common_voice.column_names['train']) common_voice.clear() # check memory -> RAM Used (GB): 0.705 / Total (GB) 33.670 ``` I tried `gc.collect()` but did not help ### Steps to reproduce the bug 1. load dataset 2. remove all the columns 3. check memory is reduced or not [link to reproduce](https://www.kaggle.com/code/bayartsogtya/huggingface-dataset-memory-issue/notebook?scriptVersionId=110630567) ### Expected behavior Memory released when I remove the column ### Environment info - `datasets` version: 2.1.0 - Platform: Linux-5.15.65+-x86_64-with-debian-bullseye-sid - Python version: 3.7.12 - PyArrow version: 8.0.0 - Pandas version: 1.3.5
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5226/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5226/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5949
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5949/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5949/comments
https://api.github.com/repos/huggingface/datasets/issues/5949/events
https://github.com/huggingface/datasets/pull/5949
1,754,843,717
PR_kwDODunzps5S4oPC
5,949
Replace metadata utils with `huggingface_hub`'s RepoCard API
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006635 / 0.011353 (-0.004718) | 0.004439 / 0.011008 (-0.006570) | 0.107831 / 0.038508 (0.069323) | 0.035664 / 0.023109 (0.012555) | 0.393733 / 0.275898 (0.117835) | 0.418336 / 0.323480 (0.094856) | 0.005739 / 0.007986 (-0.002247) | 0.005737 / 0.004328 (0.001408) | 0.079820 / 0.004250 (0.075569) | 0.045402 / 0.037052 (0.008349) | 0.396108 / 0.258489 (0.137619) | 0.422951 / 0.293841 (0.129110) | 0.030506 / 0.128546 (-0.098040) | 0.009785 / 0.075646 (-0.065861) | 0.375302 / 0.419271 (-0.043969) | 0.054355 / 0.043533 (0.010823) | 0.399652 / 0.255139 (0.144513) | 0.410825 / 0.283200 (0.127625) | 0.109238 / 0.141683 (-0.032445) | 1.687532 / 1.452155 (0.235378) | 1.736829 / 1.492716 (0.244113) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226514 / 0.018006 (0.208508) | 0.487010 / 0.000490 (0.486520) | 0.006436 / 0.000200 (0.006236) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029097 / 0.037411 (-0.008315) | 0.122979 / 0.014526 (0.108453) | 0.129454 / 0.176557 (-0.047103) | 0.194006 / 0.737135 (-0.543129) | 0.137968 / 0.296338 (-0.158370) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.466425 / 0.215209 (0.251216) | 4.627307 / 2.077655 (2.549652) | 2.108840 / 1.504120 (0.604720) | 1.882547 / 1.541195 (0.341353) | 1.891077 / 1.468490 (0.422587) | 0.590646 / 4.584777 (-3.994131) | 4.176918 / 3.745712 (0.431205) | 2.071475 / 5.269862 (-3.198386) | 1.173815 / 4.565676 (-3.391862) | 0.075330 / 0.424275 (-0.348945) | 0.012944 / 0.007607 (0.005337) | 0.587080 / 0.226044 (0.361036) | 5.827053 / 2.268929 (3.558125) | 2.694258 / 55.444624 (-52.750366) | 2.276997 / 6.876477 (-4.599480) | 2.329678 / 2.142072 (0.187605) | 0.721860 / 4.805227 (-4.083367) | 0.159238 / 6.500664 (-6.341426) | 0.073013 / 0.075469 (-0.002456) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.345396 / 1.841788 (-0.496391) | 16.619283 / 8.074308 (8.544975) | 14.754754 / 10.191392 (4.563362) | 0.180784 / 0.680424 (-0.499639) | 0.020376 / 0.534201 (-0.513825) | 0.451010 / 0.579283 (-0.128273) | 0.481524 / 0.434364 (0.047160) | 0.564777 / 0.540337 (0.024440) | 0.683232 / 1.386936 (-0.703704) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007243 / 0.011353 (-0.004110) | 0.005262 / 0.011008 (-0.005746) | 0.084090 / 0.038508 (0.045581) | 0.037429 / 0.023109 (0.014320) | 0.404038 / 0.275898 (0.128140) | 0.445040 / 0.323480 (0.121560) | 0.006220 / 0.007986 (-0.001766) | 0.004256 / 0.004328 (-0.000072) | 0.083794 / 0.004250 (0.079544) | 0.052655 / 0.037052 (0.015603) | 0.414083 / 0.258489 (0.155594) | 0.458190 / 0.293841 (0.164349) | 0.032719 / 0.128546 (-0.095828) | 0.010063 / 0.075646 (-0.065583) | 0.092281 / 0.419271 (-0.326990) | 0.053888 / 0.043533 (0.010355) | 0.407813 / 0.255139 (0.152674) | 0.431692 / 0.283200 (0.148493) | 0.119799 / 0.141683 (-0.021884) | 1.709853 / 1.452155 (0.257698) | 1.771592 / 1.492716 (0.278876) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246540 / 0.018006 (0.228534) | 0.483199 / 0.000490 (0.482709) | 0.002514 / 0.000200 (0.002315) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031576 / 0.037411 (-0.005835) | 0.130020 / 0.014526 (0.115495) | 0.140285 / 0.176557 (-0.036272) | 0.196164 / 0.737135 (-0.540972) | 0.143924 / 0.296338 (-0.152414) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488549 / 0.215209 (0.273340) | 4.888055 / 2.077655 (2.810400) | 2.389163 / 1.504120 (0.885043) | 2.184626 / 1.541195 (0.643431) | 2.260227 / 1.468490 (0.791737) | 0.601331 / 4.584777 (-3.983446) | 4.386159 / 3.745712 (0.640447) | 3.345814 / 5.269862 (-1.924048) | 1.734360 / 4.565676 (-2.831317) | 0.073199 / 0.424275 (-0.351076) | 0.012397 / 0.007607 (0.004790) | 0.601411 / 0.226044 (0.375366) | 6.135000 / 2.268929 (3.866072) | 2.930169 / 55.444624 (-52.514456) | 2.532631 / 6.876477 (-4.343845) | 2.619351 / 2.142072 (0.477279) | 0.740954 / 4.805227 (-4.064274) | 0.162936 / 6.500664 (-6.337728) | 0.073885 / 0.075469 (-0.001585) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.502493 / 1.841788 (-0.339294) | 17.026756 / 8.074308 (8.952448) | 15.880958 / 10.191392 (5.689566) | 0.167261 / 0.680424 (-0.513163) | 0.020347 / 0.534201 (-0.513854) | 0.452902 / 0.579283 (-0.126381) | 0.481614 / 0.434364 (0.047250) | 0.539893 / 0.540337 (-0.000445) | 0.653401 / 1.386936 (-0.733535) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6a5781212e968e2515afdf29370a6eab6f657120 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008268 / 0.011353 (-0.003084) | 0.005538 / 0.011008 (-0.005470) | 0.126136 / 0.038508 (0.087628) | 0.046100 / 0.023109 (0.022991) | 0.366882 / 0.275898 (0.090984) | 0.408912 / 0.323480 (0.085432) | 0.007090 / 0.007986 (-0.000895) | 0.004820 / 0.004328 (0.000491) | 0.091432 / 0.004250 (0.087181) | 0.058390 / 0.037052 (0.021338) | 0.368787 / 0.258489 (0.110298) | 0.419429 / 0.293841 (0.125588) | 0.034958 / 0.128546 (-0.093588) | 0.010526 / 0.075646 (-0.065120) | 0.463063 / 0.419271 (0.043791) | 0.070544 / 0.043533 (0.027011) | 0.366182 / 0.255139 (0.111043) | 0.390851 / 0.283200 (0.107652) | 0.128377 / 0.141683 (-0.013306) | 1.819385 / 1.452155 (0.367231) | 1.928834 / 1.492716 (0.436117) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228413 / 0.018006 (0.210407) | 0.485511 / 0.000490 (0.485021) | 0.005395 / 0.000200 (0.005195) | 0.000119 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035209 / 0.037411 (-0.002203) | 0.144492 / 0.014526 (0.129967) | 0.150467 / 0.176557 (-0.026089) | 0.223861 / 0.737135 (-0.513274) | 0.156363 / 0.296338 (-0.139975) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.517751 / 0.215209 (0.302542) | 5.150438 / 2.077655 (3.072783) | 2.483601 / 1.504120 (0.979481) | 2.279786 / 1.541195 (0.738592) | 2.374510 / 1.468490 (0.906020) | 0.637547 / 4.584777 (-3.947230) | 4.845393 / 3.745712 (1.099681) | 2.241554 / 5.269862 (-3.028307) | 1.290105 / 4.565676 (-3.275572) | 0.079791 / 0.424275 (-0.344484) | 0.014915 / 0.007607 (0.007308) | 0.640468 / 0.226044 (0.414423) | 6.394810 / 2.268929 (4.125881) | 3.012748 / 55.444624 (-52.431876) | 2.625565 / 6.876477 (-4.250912) | 2.792435 / 2.142072 (0.650363) | 0.782284 / 4.805227 (-4.022944) | 0.171628 / 6.500664 (-6.329036) | 0.081714 / 0.075469 (0.006245) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.592411 / 1.841788 (-0.249377) | 18.999604 / 8.074308 (10.925295) | 18.469946 / 10.191392 (8.278554) | 0.200878 / 0.680424 (-0.479546) | 0.021595 / 0.534201 (-0.512606) | 0.519247 / 0.579283 (-0.060036) | 0.534940 / 0.434364 (0.100576) | 0.656325 / 0.540337 (0.115987) | 0.789658 / 1.386936 (-0.597278) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008093 / 0.011353 (-0.003260) | 0.005524 / 0.011008 (-0.005484) | 0.092339 / 0.038508 (0.053831) | 0.045619 / 0.023109 (0.022510) | 0.449376 / 0.275898 (0.173478) | 0.478587 / 0.323480 (0.155107) | 0.006978 / 0.007986 (-0.001007) | 0.004622 / 0.004328 (0.000294) | 0.090618 / 0.004250 (0.086368) | 0.059321 / 0.037052 (0.022269) | 0.450989 / 0.258489 (0.192500) | 0.491652 / 0.293841 (0.197811) | 0.033308 / 0.128546 (-0.095238) | 0.010677 / 0.075646 (-0.064969) | 0.099836 / 0.419271 (-0.319435) | 0.055937 / 0.043533 (0.012404) | 0.440560 / 0.255139 (0.185421) | 0.475305 / 0.283200 (0.192105) | 0.130829 / 0.141683 (-0.010854) | 1.857943 / 1.452155 (0.405789) | 1.989534 / 1.492716 (0.496818) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244715 / 0.018006 (0.226709) | 0.482866 / 0.000490 (0.482377) | 0.001100 / 0.000200 (0.000900) | 0.000095 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036288 / 0.037411 (-0.001124) | 0.147903 / 0.014526 (0.133377) | 0.154141 / 0.176557 (-0.022416) | 0.221863 / 0.737135 (-0.515272) | 0.162319 / 0.296338 (-0.134019) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.536972 / 0.215209 (0.321763) | 5.382866 / 2.077655 (3.305211) | 2.719575 / 1.504120 (1.215456) | 2.516596 / 1.541195 (0.975401) | 2.699602 / 1.468490 (1.231112) | 0.639886 / 4.584777 (-3.944891) | 5.109746 / 3.745712 (1.364034) | 2.260206 / 5.269862 (-3.009656) | 1.305506 / 4.565676 (-3.260170) | 0.080262 / 0.424275 (-0.344013) | 0.014801 / 0.007607 (0.007194) | 0.661228 / 0.226044 (0.435184) | 6.596485 / 2.268929 (4.327557) | 3.226114 / 55.444624 (-52.218510) | 2.859776 / 6.876477 (-4.016701) | 3.059355 / 2.142072 (0.917282) | 0.793413 / 4.805227 (-4.011814) | 0.176521 / 6.500664 (-6.324143) | 0.084062 / 0.075469 (0.008593) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.642085 / 1.841788 (-0.199703) | 20.355459 / 8.074308 (12.281151) | 17.979620 / 10.191392 (7.788228) | 0.229329 / 0.680424 (-0.451094) | 0.025681 / 0.534201 (-0.508520) | 0.534142 / 0.579283 (-0.045141) | 0.623439 / 0.434364 (0.189075) | 0.621938 / 0.540337 (0.081601) | 0.759038 / 1.386936 (-0.627898) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6a98ff43225df344139023a5b7eb9caef610b677 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007703 / 0.011353 (-0.003649) | 0.005362 / 0.011008 (-0.005646) | 0.113111 / 0.038508 (0.074602) | 0.038891 / 0.023109 (0.015782) | 0.348938 / 0.275898 (0.073040) | 0.398079 / 0.323480 (0.074599) | 0.006707 / 0.007986 (-0.001278) | 0.004489 / 0.004328 (0.000160) | 0.087194 / 0.004250 (0.082943) | 0.054268 / 0.037052 (0.017216) | 0.359949 / 0.258489 (0.101460) | 0.402959 / 0.293841 (0.109118) | 0.032508 / 0.128546 (-0.096038) | 0.010224 / 0.075646 (-0.065422) | 0.387007 / 0.419271 (-0.032264) | 0.058971 / 0.043533 (0.015439) | 0.345085 / 0.255139 (0.089946) | 0.384306 / 0.283200 (0.101107) | 0.122253 / 0.141683 (-0.019430) | 1.706353 / 1.452155 (0.254199) | 1.840780 / 1.492716 (0.348063) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254374 / 0.018006 (0.236368) | 0.497387 / 0.000490 (0.496897) | 0.012294 / 0.000200 (0.012094) | 0.000108 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030902 / 0.037411 (-0.006509) | 0.132098 / 0.014526 (0.117573) | 0.140311 / 0.176557 (-0.036245) | 0.205887 / 0.737135 (-0.531249) | 0.143992 / 0.296338 (-0.152347) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.467367 / 0.215209 (0.252158) | 4.669936 / 2.077655 (2.592281) | 2.155358 / 1.504120 (0.651238) | 1.984132 / 1.541195 (0.442937) | 2.102352 / 1.468490 (0.633861) | 0.607014 / 4.584777 (-3.977763) | 4.396479 / 3.745712 (0.650767) | 4.666056 / 5.269862 (-0.603806) | 2.176649 / 4.565676 (-2.389028) | 0.072657 / 0.424275 (-0.351619) | 0.012367 / 0.007607 (0.004759) | 0.569706 / 0.226044 (0.343661) | 5.749083 / 2.268929 (3.480154) | 2.640824 / 55.444624 (-52.803801) | 2.310253 / 6.876477 (-4.566224) | 2.486748 / 2.142072 (0.344676) | 0.737891 / 4.805227 (-4.067336) | 0.163507 / 6.500664 (-6.337157) | 0.075776 / 0.075469 (0.000307) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.362710 / 1.841788 (-0.479078) | 17.010705 / 8.074308 (8.936396) | 15.084231 / 10.191392 (4.892839) | 0.218274 / 0.680424 (-0.462150) | 0.019555 / 0.534201 (-0.514646) | 0.456013 / 0.579283 (-0.123270) | 0.502772 / 0.434364 (0.068408) | 0.581480 / 0.540337 (0.041142) | 0.686952 / 1.386936 (-0.699984) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007976 / 0.011353 (-0.003377) | 0.005141 / 0.011008 (-0.005868) | 0.086629 / 0.038508 (0.048121) | 0.039553 / 0.023109 (0.016444) | 0.433028 / 0.275898 (0.157130) | 0.463444 / 0.323480 (0.139964) | 0.006967 / 0.007986 (-0.001018) | 0.005814 / 0.004328 (0.001485) | 0.086266 / 0.004250 (0.082015) | 0.055384 / 0.037052 (0.018332) | 0.428733 / 0.258489 (0.170243) | 0.475670 / 0.293841 (0.181829) | 0.032872 / 0.128546 (-0.095674) | 0.010664 / 0.075646 (-0.064983) | 0.094357 / 0.419271 (-0.324915) | 0.058386 / 0.043533 (0.014854) | 0.431114 / 0.255139 (0.175975) | 0.441728 / 0.283200 (0.158528) | 0.131942 / 0.141683 (-0.009740) | 1.782214 / 1.452155 (0.330060) | 1.843185 / 1.492716 (0.350469) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.247047 / 0.018006 (0.229041) | 0.488931 / 0.000490 (0.488441) | 0.002657 / 0.000200 (0.002457) | 0.000106 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033893 / 0.037411 (-0.003518) | 0.131021 / 0.014526 (0.116495) | 0.142892 / 0.176557 (-0.033665) | 0.200955 / 0.737135 (-0.536180) | 0.151329 / 0.296338 (-0.145010) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.521138 / 0.215209 (0.305929) | 5.085207 / 2.077655 (3.007552) | 2.652901 / 1.504120 (1.148781) | 2.401545 / 1.541195 (0.860350) | 2.553461 / 1.468490 (1.084971) | 0.615347 / 4.584777 (-3.969430) | 4.448038 / 3.745712 (0.702326) | 2.049997 / 5.269862 (-3.219865) | 1.190602 / 4.565676 (-3.375075) | 0.073356 / 0.424275 (-0.350919) | 0.013685 / 0.007607 (0.006078) | 0.626705 / 0.226044 (0.400660) | 6.391941 / 2.268929 (4.123012) | 3.218864 / 55.444624 (-52.225760) | 2.858808 / 6.876477 (-4.017669) | 3.005808 / 2.142072 (0.863736) | 0.740725 / 4.805227 (-4.064502) | 0.161904 / 6.500664 (-6.338760) | 0.073727 / 0.075469 (-0.001742) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.488623 / 1.841788 (-0.353164) | 17.584367 / 8.074308 (9.510059) | 16.281818 / 10.191392 (6.090426) | 0.164482 / 0.680424 (-0.515942) | 0.020197 / 0.534201 (-0.514003) | 0.456750 / 0.579283 (-0.122533) | 0.501156 / 0.434364 (0.066792) | 0.549779 / 0.540337 (0.009442) | 0.650156 / 1.386936 (-0.736780) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2b6cc63b868ea4ee60502845ebec68abb943958b \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008337 / 0.011353 (-0.003016) | 0.005911 / 0.011008 (-0.005097) | 0.129037 / 0.038508 (0.090529) | 0.046071 / 0.023109 (0.022962) | 0.418657 / 0.275898 (0.142759) | 0.490340 / 0.323480 (0.166860) | 0.006387 / 0.007986 (-0.001598) | 0.004724 / 0.004328 (0.000396) | 0.097953 / 0.004250 (0.093702) | 0.069025 / 0.037052 (0.031972) | 0.431178 / 0.258489 (0.172689) | 0.458363 / 0.293841 (0.164522) | 0.049341 / 0.128546 (-0.079205) | 0.014637 / 0.075646 (-0.061009) | 0.439800 / 0.419271 (0.020529) | 0.069905 / 0.043533 (0.026373) | 0.406775 / 0.255139 (0.151636) | 0.441989 / 0.283200 (0.158790) | 0.046009 / 0.141683 (-0.095674) | 1.847630 / 1.452155 (0.395475) | 1.904067 / 1.492716 (0.411351) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.288305 / 0.018006 (0.270299) | 0.594547 / 0.000490 (0.594058) | 0.005600 / 0.000200 (0.005400) | 0.000106 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033847 / 0.037411 (-0.003564) | 0.125139 / 0.014526 (0.110613) | 0.147982 / 0.176557 (-0.028574) | 0.208396 / 0.737135 (-0.528739) | 0.144005 / 0.296338 (-0.152334) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.669175 / 0.215209 (0.453966) | 6.605289 / 2.077655 (4.527634) | 2.720468 / 1.504120 (1.216348) | 2.341355 / 1.541195 (0.800160) | 2.402069 / 1.468490 (0.933578) | 0.939303 / 4.584777 (-3.645474) | 5.718545 / 3.745712 (1.972833) | 2.856235 / 5.269862 (-2.413627) | 1.821555 / 4.565676 (-2.744121) | 0.105473 / 0.424275 (-0.318802) | 0.014490 / 0.007607 (0.006883) | 0.774349 / 0.226044 (0.548305) | 8.065048 / 2.268929 (5.796120) | 3.508482 / 55.444624 (-51.936143) | 2.822881 / 6.876477 (-4.053596) | 2.962947 / 2.142072 (0.820875) | 1.138944 / 4.805227 (-3.666284) | 0.248414 / 6.500664 (-6.252250) | 0.095665 / 0.075469 (0.020196) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.688231 / 1.841788 (-0.153557) | 18.673305 / 8.074308 (10.598997) | 22.768663 / 10.191392 (12.577271) | 0.211238 / 0.680424 (-0.469186) | 0.031380 / 0.534201 (-0.502821) | 0.517175 / 0.579283 (-0.062108) | 0.626437 / 0.434364 (0.192073) | 0.624225 / 0.540337 (0.083888) | 0.743746 / 1.386936 (-0.643191) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008888 / 0.011353 (-0.002464) | 0.005491 / 0.011008 (-0.005517) | 0.105013 / 0.038508 (0.066505) | 0.049456 / 0.023109 (0.026347) | 0.528989 / 0.275898 (0.253091) | 0.651871 / 0.323480 (0.328391) | 0.006683 / 0.007986 (-0.001302) | 0.004365 / 0.004328 (0.000037) | 0.098161 / 0.004250 (0.093911) | 0.075615 / 0.037052 (0.038563) | 0.543746 / 0.258489 (0.285257) | 0.650855 / 0.293841 (0.357014) | 0.050220 / 0.128546 (-0.078327) | 0.014471 / 0.075646 (-0.061175) | 0.115903 / 0.419271 (-0.303368) | 0.065925 / 0.043533 (0.022392) | 0.527797 / 0.255139 (0.272658) | 0.543834 / 0.283200 (0.260634) | 0.043005 / 0.141683 (-0.098678) | 1.842846 / 1.452155 (0.390691) | 1.970615 / 1.492716 (0.477899) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287350 / 0.018006 (0.269343) | 0.591139 / 0.000490 (0.590649) | 0.006423 / 0.000200 (0.006223) | 0.000107 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034594 / 0.037411 (-0.002818) | 0.137155 / 0.014526 (0.122629) | 0.154662 / 0.176557 (-0.021894) | 0.217834 / 0.737135 (-0.519301) | 0.159642 / 0.296338 (-0.136696) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.664288 / 0.215209 (0.449079) | 6.926912 / 2.077655 (4.849257) | 3.028957 / 1.504120 (1.524837) | 2.625178 / 1.541195 (1.083983) | 2.725316 / 1.468490 (1.256826) | 1.015715 / 4.584777 (-3.569062) | 5.834694 / 3.745712 (2.088982) | 5.105269 / 5.269862 (-0.164593) | 2.316194 / 4.565676 (-2.249483) | 0.113802 / 0.424275 (-0.310473) | 0.014079 / 0.007607 (0.006472) | 0.893727 / 0.226044 (0.667683) | 8.577701 / 2.268929 (6.308772) | 3.706907 / 55.444624 (-51.737717) | 3.087530 / 6.876477 (-3.788947) | 3.295004 / 2.142072 (1.152931) | 1.204172 / 4.805227 (-3.601055) | 0.248720 / 6.500664 (-6.251944) | 0.107208 / 0.075469 (0.031739) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.800058 / 1.841788 (-0.041730) | 19.253646 / 8.074308 (11.179338) | 22.590804 / 10.191392 (12.399412) | 0.270687 / 0.680424 (-0.409737) | 0.028678 / 0.534201 (-0.505522) | 0.534670 / 0.579283 (-0.044613) | 0.642881 / 0.434364 (0.208518) | 0.615521 / 0.540337 (0.075184) | 0.723733 / 1.386936 (-0.663203) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2591cd45a002a06bd551343ec785abf16f1433e2 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.017236 / 0.011353 (0.005883) | 0.005341 / 0.011008 (-0.005667) | 0.131471 / 0.038508 (0.092963) | 0.048868 / 0.023109 (0.025758) | 0.448942 / 0.275898 (0.173044) | 0.498721 / 0.323480 (0.175241) | 0.006825 / 0.007986 (-0.001161) | 0.004587 / 0.004328 (0.000259) | 0.104142 / 0.004250 (0.099891) | 0.075521 / 0.037052 (0.038469) | 0.439538 / 0.258489 (0.181049) | 0.498720 / 0.293841 (0.204879) | 0.051352 / 0.128546 (-0.077194) | 0.015070 / 0.075646 (-0.060576) | 0.441752 / 0.419271 (0.022480) | 0.089166 / 0.043533 (0.045633) | 0.428909 / 0.255139 (0.173770) | 0.446648 / 0.283200 (0.163448) | 0.042371 / 0.141683 (-0.099312) | 1.993948 / 1.452155 (0.541793) | 2.065756 / 1.492716 (0.573039) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257279 / 0.018006 (0.239273) | 0.575453 / 0.000490 (0.574964) | 0.004120 / 0.000200 (0.003920) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034012 / 0.037411 (-0.003399) | 0.141737 / 0.014526 (0.127211) | 0.145241 / 0.176557 (-0.031316) | 0.226196 / 0.737135 (-0.510939) | 0.149526 / 0.296338 (-0.146813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.665762 / 0.215209 (0.450553) | 6.683737 / 2.077655 (4.606083) | 2.869485 / 1.504120 (1.365365) | 2.462808 / 1.541195 (0.921613) | 2.526808 / 1.468490 (1.058318) | 0.957518 / 4.584777 (-3.627259) | 5.926261 / 3.745712 (2.180548) | 5.027822 / 5.269862 (-0.242040) | 2.643185 / 4.565676 (-1.922491) | 0.117014 / 0.424275 (-0.307261) | 0.015142 / 0.007607 (0.007535) | 0.835694 / 0.226044 (0.609650) | 8.427356 / 2.268929 (6.158427) | 3.649597 / 55.444624 (-51.795027) | 2.989607 / 6.876477 (-3.886870) | 3.043160 / 2.142072 (0.901088) | 1.158872 / 4.805227 (-3.646355) | 0.240456 / 6.500664 (-6.260208) | 0.089196 / 0.075469 (0.013726) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.689361 / 1.841788 (-0.152427) | 18.842158 / 8.074308 (10.767850) | 22.604249 / 10.191392 (12.412857) | 0.248487 / 0.680424 (-0.431936) | 0.029668 / 0.534201 (-0.504533) | 0.536283 / 0.579283 (-0.043001) | 0.663253 / 0.434364 (0.228890) | 0.622973 / 0.540337 (0.082635) | 0.735297 / 1.386936 (-0.651639) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009296 / 0.011353 (-0.002057) | 0.005955 / 0.011008 (-0.005053) | 0.105723 / 0.038508 (0.067215) | 0.051184 / 0.023109 (0.028074) | 0.527095 / 0.275898 (0.251197) | 0.631697 / 0.323480 (0.308217) | 0.006577 / 0.007986 (-0.001408) | 0.004452 / 0.004328 (0.000124) | 0.105921 / 0.004250 (0.101670) | 0.071951 / 0.037052 (0.034899) | 0.572518 / 0.258489 (0.314029) | 0.623957 / 0.293841 (0.330116) | 0.050861 / 0.128546 (-0.077686) | 0.014897 / 0.075646 (-0.060749) | 0.122013 / 0.419271 (-0.297258) | 0.067194 / 0.043533 (0.023661) | 0.530352 / 0.255139 (0.275213) | 0.563912 / 0.283200 (0.280712) | 0.034756 / 0.141683 (-0.106927) | 1.961580 / 1.452155 (0.509425) | 2.052412 / 1.492716 (0.559696) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304996 / 0.018006 (0.286990) | 0.584899 / 0.000490 (0.584409) | 0.010444 / 0.000200 (0.010244) | 0.000134 / 0.000054 (0.000080) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032540 / 0.037411 (-0.004871) | 0.137349 / 0.014526 (0.122823) | 0.146233 / 0.176557 (-0.030323) | 0.206978 / 0.737135 (-0.530157) | 0.154380 / 0.296338 (-0.141959) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.705438 / 0.215209 (0.490229) | 7.042159 / 2.077655 (4.964504) | 3.285501 / 1.504120 (1.781381) | 2.904710 / 1.541195 (1.363515) | 2.952838 / 1.468490 (1.484348) | 0.987784 / 4.584777 (-3.596993) | 5.949550 / 3.745712 (2.203838) | 2.927148 / 5.269862 (-2.342714) | 1.870054 / 4.565676 (-2.695622) | 0.119548 / 0.424275 (-0.304727) | 0.014565 / 0.007607 (0.006958) | 0.858311 / 0.226044 (0.632266) | 8.721679 / 2.268929 (6.452750) | 4.100825 / 55.444624 (-51.343800) | 3.358093 / 6.876477 (-3.518383) | 3.499637 / 2.142072 (1.357564) | 1.208932 / 4.805227 (-3.596295) | 0.232961 / 6.500664 (-6.267703) | 0.089727 / 0.075469 (0.014258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.780143 / 1.841788 (-0.061645) | 19.074991 / 8.074308 (11.000683) | 21.218487 / 10.191392 (11.027095) | 0.258690 / 0.680424 (-0.421734) | 0.029514 / 0.534201 (-0.504687) | 0.541764 / 0.579283 (-0.037519) | 0.640603 / 0.434364 (0.206239) | 0.635336 / 0.540337 (0.094999) | 0.756309 / 1.386936 (-0.630627) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1b525c199e6352aa8aac55f1dcddeb55a80db373 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009619 / 0.011353 (-0.001734) | 0.005683 / 0.011008 (-0.005325) | 0.136971 / 0.038508 (0.098463) | 0.051607 / 0.023109 (0.028497) | 0.439716 / 0.275898 (0.163818) | 0.486193 / 0.323480 (0.162713) | 0.006304 / 0.007986 (-0.001681) | 0.004489 / 0.004328 (0.000160) | 0.103837 / 0.004250 (0.099587) | 0.082954 / 0.037052 (0.045901) | 0.447286 / 0.258489 (0.188797) | 0.495434 / 0.293841 (0.201593) | 0.049244 / 0.128546 (-0.079302) | 0.015176 / 0.075646 (-0.060470) | 0.444406 / 0.419271 (0.025134) | 0.074766 / 0.043533 (0.031233) | 0.438585 / 0.255139 (0.183446) | 0.438232 / 0.283200 (0.155032) | 0.043372 / 0.141683 (-0.098311) | 2.057286 / 1.452155 (0.605131) | 2.049540 / 1.492716 (0.556824) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.298038 / 0.018006 (0.280031) | 0.630771 / 0.000490 (0.630281) | 0.008287 / 0.000200 (0.008087) | 0.000123 / 0.000054 (0.000068) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033637 / 0.037411 (-0.003775) | 0.128327 / 0.014526 (0.113801) | 0.150672 / 0.176557 (-0.025885) | 0.228521 / 0.737135 (-0.508614) | 0.142733 / 0.296338 (-0.153606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.629072 / 0.215209 (0.413863) | 6.612047 / 2.077655 (4.534392) | 2.715594 / 1.504120 (1.211474) | 2.327823 / 1.541195 (0.786628) | 2.417508 / 1.468490 (0.949018) | 0.959134 / 4.584777 (-3.625643) | 5.669921 / 3.745712 (1.924209) | 2.977920 / 5.269862 (-2.291941) | 1.814564 / 4.565676 (-2.751112) | 0.120233 / 0.424275 (-0.304042) | 0.015859 / 0.007607 (0.008252) | 0.822618 / 0.226044 (0.596574) | 8.440306 / 2.268929 (6.171377) | 3.721611 / 55.444624 (-51.723013) | 2.954867 / 6.876477 (-3.921610) | 3.135364 / 2.142072 (0.993292) | 1.226475 / 4.805227 (-3.578752) | 0.246658 / 6.500664 (-6.254006) | 0.093920 / 0.075469 (0.018451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.665631 / 1.841788 (-0.176157) | 19.136369 / 8.074308 (11.062061) | 23.659564 / 10.191392 (13.468172) | 0.273430 / 0.680424 (-0.406994) | 0.028180 / 0.534201 (-0.506021) | 0.559588 / 0.579283 (-0.019695) | 0.649203 / 0.434364 (0.214840) | 0.647113 / 0.540337 (0.106776) | 0.737978 / 1.386936 (-0.648958) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009104 / 0.011353 (-0.002249) | 0.006838 / 0.011008 (-0.004171) | 0.104516 / 0.038508 (0.066008) | 0.047986 / 0.023109 (0.024877) | 0.521849 / 0.275898 (0.245951) | 0.586281 / 0.323480 (0.262801) | 0.006225 / 0.007986 (-0.001760) | 0.005713 / 0.004328 (0.001384) | 0.111507 / 0.004250 (0.107257) | 0.072320 / 0.037052 (0.035267) | 0.551061 / 0.258489 (0.292572) | 0.628034 / 0.293841 (0.334193) | 0.055417 / 0.128546 (-0.073129) | 0.019613 / 0.075646 (-0.056034) | 0.123958 / 0.419271 (-0.295314) | 0.066132 / 0.043533 (0.022600) | 0.504461 / 0.255139 (0.249322) | 0.560428 / 0.283200 (0.277229) | 0.036098 / 0.141683 (-0.105585) | 1.927398 / 1.452155 (0.475243) | 2.015952 / 1.492716 (0.523235) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.313065 / 0.018006 (0.295059) | 0.609174 / 0.000490 (0.608684) | 0.008755 / 0.000200 (0.008555) | 0.000120 / 0.000054 (0.000066) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.040042 / 0.037411 (0.002630) | 0.136053 / 0.014526 (0.121527) | 0.143406 / 0.176557 (-0.033150) | 0.213080 / 0.737135 (-0.524055) | 0.154730 / 0.296338 (-0.141609) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.692706 / 0.215209 (0.477497) | 6.952968 / 2.077655 (4.875314) | 3.232023 / 1.504120 (1.727903) | 2.835450 / 1.541195 (1.294256) | 2.933821 / 1.468490 (1.465331) | 0.984712 / 4.584777 (-3.600065) | 6.127651 / 3.745712 (2.381939) | 2.956781 / 5.269862 (-2.313081) | 1.879928 / 4.565676 (-2.685748) | 0.111069 / 0.424275 (-0.313206) | 0.014598 / 0.007607 (0.006991) | 0.871486 / 0.226044 (0.645442) | 8.588500 / 2.268929 (6.319572) | 3.910740 / 55.444624 (-51.533885) | 3.115781 / 6.876477 (-3.760695) | 3.222367 / 2.142072 (1.080294) | 1.229680 / 4.805227 (-3.575547) | 0.232092 / 6.500664 (-6.268572) | 0.097717 / 0.075469 (0.022248) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.774193 / 1.841788 (-0.067595) | 19.863087 / 8.074308 (11.788779) | 24.058856 / 10.191392 (13.867464) | 0.214917 / 0.680424 (-0.465507) | 0.028771 / 0.534201 (-0.505430) | 0.544548 / 0.579283 (-0.034735) | 0.655882 / 0.434364 (0.221518) | 0.629110 / 0.540337 (0.088773) | 0.749246 / 1.386936 (-0.637690) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f4a5ea6a42dcfef1577288b51beeccc0eb124cee \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007075 / 0.011353 (-0.004278) | 0.005195 / 0.011008 (-0.005813) | 0.113043 / 0.038508 (0.074535) | 0.038442 / 0.023109 (0.015333) | 0.336310 / 0.275898 (0.060412) | 0.381888 / 0.323480 (0.058409) | 0.005990 / 0.007986 (-0.001996) | 0.003893 / 0.004328 (-0.000435) | 0.093123 / 0.004250 (0.088872) | 0.058449 / 0.037052 (0.021397) | 0.359463 / 0.258489 (0.100974) | 0.427485 / 0.293841 (0.133644) | 0.041454 / 0.128546 (-0.087092) | 0.013016 / 0.075646 (-0.062630) | 0.372849 / 0.419271 (-0.046422) | 0.059386 / 0.043533 (0.015853) | 0.381398 / 0.255139 (0.126259) | 0.367603 / 0.283200 (0.084403) | 0.033907 / 0.141683 (-0.107775) | 1.628903 / 1.452155 (0.176749) | 1.764131 / 1.492716 (0.271415) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.298329 / 0.018006 (0.280322) | 0.593030 / 0.000490 (0.592540) | 0.007653 / 0.000200 (0.007453) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025445 / 0.037411 (-0.011966) | 0.112062 / 0.014526 (0.097536) | 0.119863 / 0.176557 (-0.056693) | 0.178389 / 0.737135 (-0.558746) | 0.129934 / 0.296338 (-0.166404) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.532834 / 0.215209 (0.317625) | 5.250908 / 2.077655 (3.173253) | 2.086920 / 1.504120 (0.582800) | 1.799745 / 1.541195 (0.258550) | 1.909648 / 1.468490 (0.441158) | 0.825382 / 4.584777 (-3.759395) | 5.268304 / 3.745712 (1.522592) | 2.533347 / 5.269862 (-2.736515) | 1.730187 / 4.565676 (-2.835490) | 0.099824 / 0.424275 (-0.324451) | 0.012969 / 0.007607 (0.005362) | 0.732234 / 0.226044 (0.506189) | 6.989066 / 2.268929 (4.720138) | 2.873486 / 55.444624 (-52.571138) | 2.274351 / 6.876477 (-4.602125) | 2.311060 / 2.142072 (0.168987) | 1.125366 / 4.805227 (-3.679861) | 0.214522 / 6.500664 (-6.286142) | 0.077579 / 0.075469 (0.002110) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.670950 / 1.841788 (-0.170838) | 18.131528 / 8.074308 (10.057220) | 21.277823 / 10.191392 (11.086431) | 0.238807 / 0.680424 (-0.441617) | 0.032251 / 0.534201 (-0.501950) | 0.503859 / 0.579283 (-0.075424) | 0.604825 / 0.434364 (0.170461) | 0.555623 / 0.540337 (0.015286) | 0.647301 / 1.386936 (-0.739635) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010857 / 0.011353 (-0.000496) | 0.005581 / 0.011008 (-0.005427) | 0.094346 / 0.038508 (0.055838) | 0.053084 / 0.023109 (0.029975) | 0.457586 / 0.275898 (0.181688) | 0.545475 / 0.323480 (0.221995) | 0.006761 / 0.007986 (-0.001225) | 0.005094 / 0.004328 (0.000765) | 0.095509 / 0.004250 (0.091258) | 0.077182 / 0.037052 (0.040130) | 0.498717 / 0.258489 (0.240228) | 0.542433 / 0.293841 (0.248592) | 0.051547 / 0.128546 (-0.076999) | 0.014633 / 0.075646 (-0.061014) | 0.106843 / 0.419271 (-0.312428) | 0.068459 / 0.043533 (0.024926) | 0.435793 / 0.255139 (0.180654) | 0.475484 / 0.283200 (0.192285) | 0.039495 / 0.141683 (-0.102188) | 1.684906 / 1.452155 (0.232751) | 1.798693 / 1.492716 (0.305976) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.279853 / 0.018006 (0.261847) | 0.601016 / 0.000490 (0.600526) | 0.002055 / 0.000200 (0.001855) | 0.000219 / 0.000054 (0.000165) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030935 / 0.037411 (-0.006477) | 0.121197 / 0.014526 (0.106671) | 0.143360 / 0.176557 (-0.033197) | 0.200862 / 0.737135 (-0.536274) | 0.138656 / 0.296338 (-0.157683) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.613904 / 0.215209 (0.398695) | 6.155422 / 2.077655 (4.077767) | 2.777238 / 1.504120 (1.273118) | 2.473045 / 1.541195 (0.931851) | 2.604470 / 1.468490 (1.135980) | 0.898871 / 4.584777 (-3.685906) | 5.739666 / 3.745712 (1.993954) | 4.719822 / 5.269862 (-0.550040) | 2.727354 / 4.565676 (-1.838322) | 0.108232 / 0.424275 (-0.316043) | 0.013632 / 0.007607 (0.006025) | 0.771802 / 0.226044 (0.545757) | 7.987466 / 2.268929 (5.718537) | 3.609856 / 55.444624 (-51.834768) | 2.974421 / 6.876477 (-3.902056) | 2.956567 / 2.142072 (0.814495) | 1.093792 / 4.805227 (-3.711435) | 0.213369 / 6.500664 (-6.287295) | 0.084486 / 0.075469 (0.009017) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.693855 / 1.841788 (-0.147933) | 18.055027 / 8.074308 (9.980719) | 21.397964 / 10.191392 (11.206571) | 0.240549 / 0.680424 (-0.439875) | 0.031212 / 0.534201 (-0.502989) | 0.513657 / 0.579283 (-0.065626) | 0.651348 / 0.434364 (0.216985) | 0.603740 / 0.540337 (0.063402) | 0.752287 / 1.386936 (-0.634649) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6f3f38d00dd40a444ae54c18caa28304ae36b9c3 \"CML watermark\")\n" ]
"2023-06-13T13:03:19Z"
"2023-06-27T16:47:51Z"
"2023-06-27T16:38:32Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5949.diff", "html_url": "https://github.com/huggingface/datasets/pull/5949", "merged_at": "2023-06-27T16:38:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/5949.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5949" }
Use `huggingface_hub`'s RepoCard API instead of `DatasetMetadata` for modifying the card's YAML, and deprecate `datasets.utils.metadata` and `datasets.utils.readme`. After removing these modules, we can also delete `datasets.utils.resources` since the moon landing repo now stores its own version of these resources for the metadata UI. PS: this change requires bumping `huggingface_hub` to 0.13.0 (Transformers requires 0.14.0, so should be ok)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5949/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5949/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2239
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2239/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2239/comments
https://api.github.com/repos/huggingface/datasets/issues/2239/events
https://github.com/huggingface/datasets/issues/2239
861,904,306
MDU6SXNzdWU4NjE5MDQzMDY=
2,239
Error loading wikihow dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/4686956?v=4", "events_url": "https://api.github.com/users/odellus/events{/privacy}", "followers_url": "https://api.github.com/users/odellus/followers", "following_url": "https://api.github.com/users/odellus/following{/other_user}", "gists_url": "https://api.github.com/users/odellus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/odellus", "id": 4686956, "login": "odellus", "node_id": "MDQ6VXNlcjQ2ODY5NTY=", "organizations_url": "https://api.github.com/users/odellus/orgs", "received_events_url": "https://api.github.com/users/odellus/received_events", "repos_url": "https://api.github.com/users/odellus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/odellus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/odellus/subscriptions", "type": "User", "url": "https://api.github.com/users/odellus" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Hi @odellus, thanks for reporting.\r\n\r\nThe `wikihow` dataset has 2 versions:\r\n- `all`: Consisting of the concatenation of all paragraphs as the articles and the bold lines as the reference summaries.\r\n- `sep`: Consisting of each paragraph and its summary.\r\n\r\nTherefore, in order to load it, you have to specify which version you would like, for example:\r\n```python\r\ndataset = load_dataset('wikihow', 'all')\r\n```\r\n\r\nPlease, tell me if this solves your problem.", "Good call out. I did try that and that's when it told me to download the\ndataset. Don't believe I have tried it with local files. Will try first\nthing in the morning and get back to you.\n\nOn Mon, Apr 19, 2021, 11:17 PM Albert Villanova del Moral <\n***@***.***> wrote:\n\n> Hi @odellus <https://github.com/odellus>, thanks for reporting.\n>\n> The wikihow dataset has 2 versions:\n>\n> - all: Consisting of the concatenation of all paragraphs as the\n> articles and the bold lines as the reference summaries.\n> - sep: Consisting of each paragraph and its summary.\n>\n> Therefore, in order to load it, you have to specify which version you\n> would like, for example:\n>\n> dataset = load_dataset('wikihow', 'all')\n>\n> Please, tell me if this solves your problem.\n>\n> β€”\n> You are receiving this because you were mentioned.\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/2239#issuecomment-823004146>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ABDYI3HVRTBI2QT3BOG262DTJUL57ANCNFSM43GV5BZQ>\n> .\n>\n", "Hi @odellus, yes you are right.\r\n\r\nDue to the server where the `wikihow` dataset is hosted, the dataset can't be downloaded automatically by `huggingface` and you have to download it manually as you did.\r\n\r\nNevertheless, you have to specify which dataset version you would like to load anyway:\r\n```python\r\ndataset = load_dataset('wikihow', 'all', data_dir='./wikihow')\r\n```\r\nor\r\n```python\r\ndataset = load_dataset('wikihow', 'sep', data_dir='./wikihow')\r\n```\r\nI find that the instructions given by `huggingface` are not clear enough: I am going to fix this.\r\nPlease tell me if this eventually works for you.", "That was it. Thank you Albert!" ]
"2021-04-19T21:02:31Z"
"2021-04-20T16:33:11Z"
"2021-04-20T16:33:11Z"
CONTRIBUTOR
null
null
null
## Describe the bug When attempting to load wikihow into a dataset with ```python from datasets import load_dataset dataset = load_dataset('wikihow', data_dir='./wikihow') ``` I get the message: ``` AttributeError: 'BuilderConfig' object has no attribute 'filename' ``` at the end of a [full stack trace](https://gist.github.com/odellus/602c3b2de52f541d353b1022f320ffc2). ## Steps to reproduce the bug I have followed the instructions for creating a wikihow dataset. The [wikihow dataset site](https://huggingface.co/datasets/wikihow) says to use ```python from datasets import load_dataset dataset = load_dataset('wikihow') ``` to load the dataset. I do so and I get the message ``` AssertionError: The dataset wikihow with config all requires manual data. Please follow the manual download instructions: You need to manually download two wikihow files. An overview of which files to download can be seen at https://github.com/mahnazkoupaee/WikiHow-Dataset. You need to download the following two files manually: 1) https://ucsb.app.box.com/s/ap23l8gafpezf4tq3wapr6u8241zz358 and save the file under <path/to/folder>/wikihowAll.csv 2) https://ucsb.app.box.com/s/7yq601ijl1lzvlfu4rjdbbxforzd2oag and save the file under <path/to/folder>/wikihowSep.csv The <path/to/folder> can e.g. be "~/manual_wikihow_data". Wikihow can then be loaded using the following command `datasets.load_dataset("wikihow", data_dir="<path/to/folder>")`. . Manual data can be loaded with `datasets.load_dataset(wikihow, data_dir='<path/to/manual/data>') ``` So I create a directory `./wikihow` and download `wikihowAll.csv` and `wikihowSep.csv` into the new directory. Then I run ```python from datasets import load_dataset dataset = load_dataset('wikihow', data_dir='./wikihow') ``` that's when I get the [stack trace](https://gist.github.com/odellus/602c3b2de52f541d353b1022f320ffc2) ## Expected results I expected it to load the downloaded files into a dataset. ## Actual results ```python Using custom data configuration default-data_dir=.%2Fwikihow Downloading and preparing dataset wikihow/default (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/azureuser/.cache/huggingface/datasets/wikihow/default-data_dir=.%2Fwikihow/0.0.0/58f42f8f0e4d459811a0f69aaab35870093830ccd58006769e7e1eb3e0e686c2... --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-9-5e4d40142f30> in <module> ----> 1 dataset = load_dataset('wikihow',data_dir='./wikihow') ~/.local/lib/python3.6/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, script_version, use_auth_token, **config_kwargs) 745 try_from_hf_gcs=try_from_hf_gcs, 746 base_path=base_path,--> 747 use_auth_token=use_auth_token, 748 ) 749 ~/.local/lib/python3.6/site-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs) 577 if not downloaded_from_gcs: 578 self._download_and_prepare( --> 579 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 580 ) 581 # Sync info ~/.local/lib/python3.6/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 632 split_dict = SplitDict(dataset_name=self.name) 633 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 634 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 635 636 # Checksums verification ~/.cache/huggingface/modules/datasets_modules/datasets/wikihow/58f42f8f0e4d459811a0f69aaab35870093830ccd58006769e7e1eb3e0e686c2/wikihow.py in _split_generators(self, dl_manager) 132 133 path_to_manual_file = os.path.join( --> 134 os.path.abspath(os.path.expanduser(dl_manager.manual_dir)), self.config.filename 135 ) 136 AttributeError: 'BuilderConfig' object has no attribute 'filename' ``` ## Versions Paste the output of the following code: ```python import datasets import sys import platform print(f""" - Datasets: {datasets.__version__} - Python: {sys.version} - Platform: {platform.platform()} """) ``` ``` - Datasets: 1.5.0 - Python: 3.6.9 (default, Jan 26 2021, 15:33:00) [GCC 8.4.0] - Platform: Linux-5.4.0-1046-azure-x86_64-with-Ubuntu-18.04-bionic ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2239/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2239/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1872
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1872/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1872/comments
https://api.github.com/repos/huggingface/datasets/issues/1872/events
https://github.com/huggingface/datasets/issues/1872
807,711,935
MDU6SXNzdWU4MDc3MTE5MzU=
1,872
Adding a new column to the dataset after set_format was called
{ "avatar_url": "https://avatars.githubusercontent.com/u/2743060?v=4", "events_url": "https://api.github.com/users/villmow/events{/privacy}", "followers_url": "https://api.github.com/users/villmow/followers", "following_url": "https://api.github.com/users/villmow/following{/other_user}", "gists_url": "https://api.github.com/users/villmow/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/villmow", "id": 2743060, "login": "villmow", "node_id": "MDQ6VXNlcjI3NDMwNjA=", "organizations_url": "https://api.github.com/users/villmow/orgs", "received_events_url": "https://api.github.com/users/villmow/received_events", "repos_url": "https://api.github.com/users/villmow/repos", "site_admin": false, "starred_url": "https://api.github.com/users/villmow/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/villmow/subscriptions", "type": "User", "url": "https://api.github.com/users/villmow" }
[]
closed
false
null
[]
null
[ "Hi ! Indeed if you add a column to a formatted dataset, then the new dataset gets a new formatting in which:\r\n```\r\nnew formatted columns = (all columns - previously unformatted columns)\r\n```\r\nTherefore the new column is going to be formatted using the `torch` formatting.\r\n\r\nIf you want your new column to be unformatted you can re-run this line:\r\n```python\r\ndata.set_format(\"torch\", columns=[\"some_integer_column1\", \"some_integer_column2\"], output_all_columns=True)\r\n```", "Hi, thanks that solved my problem. Maybe mention that in the documentation. ", "Ok cool :) \r\nAlso I just did a PR to mention this behavior in the documentation", "Closed by #1888" ]
"2021-02-13T09:14:35Z"
"2021-03-30T14:01:45Z"
"2021-03-30T14:01:45Z"
NONE
null
null
null
Hi, thanks for the nice library. I'm in the process of creating a custom dataset, which has a mix of tensors and lists of strings. I stumbled upon an error and want to know if its a problem on my side. I load some lists of strings and integers, then call `data.set_format("torch", columns=["some_integer_column1", "some_integer_column2"], output_all_columns=True)`. This converts the integer columns into tensors, but keeps the lists of strings as they are. I then call `map` to add a new column to my dataset, which is a **list of strings**. Once I iterate through my dataset, I get an error that the new column can't be converted into a tensor (which is probably caused by `set_format`). Below some pseudo code: ```python def augment_func(sample: Dict) -> Dict: # do something return { "some_integer_column1" : augmented_data["some_integer_column1"], # <-- tensor "some_integer_column2" : augmented_data["some_integer_column2"], # <-- tensor "NEW_COLUMN": targets, # <-- list of strings } data = datasets.load_dataset(__file__, data_dir="...", split="train") data.set_format("torch", columns=["some_integer_column1", "some_integer_column2"], output_all_columns=True) augmented_dataset = data.map(augment_func, batched=False) for sample in augmented_dataset: print(sample) # fails ``` and the exception: ```python Traceback (most recent call last): File "dataset.py", line 487, in <module> main() File "dataset.py", line 471, in main for sample in augmented_dataset: File "lib/python3.8/site-packages/datasets/arrow_dataset.py", line 697, in __iter__ yield self._getitem( File "lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1069, in _getitem outputs = self._convert_outputs( File "lib/python3.8/site-packages/datasets/arrow_dataset.py", line 890, in _convert_outputs v = map_nested(command, v, **map_nested_kwargs) File "lib/python3.8/site-packages/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "lib/python3.8/site-packages/datasets/arrow_dataset.py", line 850, in command return [map_nested(command, i, **map_nested_kwargs) for i in x] File "lib/python3.8/site-packages/datasets/arrow_dataset.py", line 850, in <listcomp> return [map_nested(command, i, **map_nested_kwargs) for i in x] File "lib/python3.8/site-packages/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "lib/python3.8/site-packages/datasets/arrow_dataset.py", line 850, in command return [map_nested(command, i, **map_nested_kwargs) for i in x] File "lib/python3.8/site-packages/datasets/arrow_dataset.py", line 850, in <listcomp> return [map_nested(command, i, **map_nested_kwargs) for i in x] File "lib/python3.8/site-packages/datasets/utils/py_utils.py", line 225, in map_nested return function(data_struct) File "lib/python3.8/site-packages/datasets/arrow_dataset.py", line 851, in command return torch.tensor(x, **format_kwargs) TypeError: new(): invalid data type 'str' ``` Thanks!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/1872/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1872/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4185
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4185/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4185/comments
https://api.github.com/repos/huggingface/datasets/issues/4185/events
https://github.com/huggingface/datasets/issues/4185
1,209,429,743
I_kwDODunzps5IFm7v
4,185
Librispeech documentation, clarification on format
{ "avatar_url": "https://avatars.githubusercontent.com/u/59132?v=4", "events_url": "https://api.github.com/users/albertz/events{/privacy}", "followers_url": "https://api.github.com/users/albertz/followers", "following_url": "https://api.github.com/users/albertz/following{/other_user}", "gists_url": "https://api.github.com/users/albertz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertz", "id": 59132, "login": "albertz", "node_id": "MDQ6VXNlcjU5MTMy", "organizations_url": "https://api.github.com/users/albertz/orgs", "received_events_url": "https://api.github.com/users/albertz/received_events", "repos_url": "https://api.github.com/users/albertz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertz/subscriptions", "type": "User", "url": "https://api.github.com/users/albertz" }
[]
open
false
null
[]
null
[ "(@patrickvonplaten )", "Also cc @lhoestq here", "The documentation in the code is definitely outdated - thanks for letting me know, I'll remove it in https://github.com/huggingface/datasets/pull/4184 .\r\n\r\nYou're exactly right `audio` `array` already decodes the audio file to the correct waveform. This is done on the fly, which is also why one should **not** do `ds[\"audio\"][\"array\"][0]` as this will decode all dataset samples, but instead `ds[0][\"audio\"][\"array\"]` see: https://huggingface.co/docs/datasets/audio_process#audio-datasets\r\n\r\n", "So, again to clarify: On disk, only the raw flac file content is stored? Is this also the case after `save_to_disk`?\r\n\r\nAnd is it simple to also store it re-encoded as ogg or mp3 instead?\r\n", "Hey, \r\n\r\nSorry yeah I was just about to look into this! We actually had an outdated version of Librispeech ASR that didn't save any files, but instead converted the audio files to a byte string, then was then decoded on-the-fly. This however is not very user-friendly so we recently decided to instead show the full path of the audio files with the `path` parameter.\r\n\r\nI'm currently changing this for Librispeech here: https://github.com/huggingface/datasets/pull/4184 .\r\nYou should be able to see the audio file in the original `flac` format under `path` then. I don't think it's a good idea to convert to MP3 out-of-the-box, but we could maybe think about some kind of convert function for audio datasets cc @lhoestq ? ", "> I don't think it's a good idea to convert to MP3 out-of-the-box, but we could maybe think about some kind of convert function for audio datasets cc @lhoestq ?\r\n\r\nSure, I would expect that `load_dataset(\"librispeech_asr\")` would give you the original (not re-encoded) data (flac or already decoded). So such re-encoding logic would be some separate generic function. So I could do sth like `dataset.reencode_as_ogg(**ogg_encode_opts).save_to_disk(...)` or so.\r\n", "A follow-up question: I wonder whether a Parquet dataset is maybe more what we actually want to have? (Following also my comment here: https://github.com/huggingface/datasets/pull/4184#issuecomment-1105045491.) Because I think we actually would prefer to embed the data content in the dataset.\r\n\r\nSo, instead of `save_to_disk`/`load_from_disk`, we would use `to_parquet`,`from_parquet`? Is there any downside? Are arrow files more efficient?\r\n\r\nRelated is also the doc update in #4193.\r\n", "`save_to_disk` saves the dataset as an Arrow file, which is the format we use to load a dataset using memory mapping. This way the dataset does not fill your RAM, but is read from your disk instead.\r\n\r\nTherefore you can directly reload a dataset saved with `save_to_disk` using `load_from_disk`.\r\n\r\nParquet files are used for cold storage: to use memory mapping on a Parquet dataset, you first have to convert it to Arrow. We use Parquet to reduce the I/O when pushing/downloading data from the Hugging face Hub. When you load a Parquet file from the Hub, it is converted to Arrow on the fly during the download." ]
"2022-04-20T09:35:55Z"
"2022-04-21T11:00:53Z"
null
NONE
null
null
null
https://github.com/huggingface/datasets/blob/cd3ce34ab1604118351e1978d26402de57188901/datasets/librispeech_asr/librispeech_asr.py#L53 > Note that in order to limit the required storage for preparing this dataset, the audio > is stored in the .flac format and is not converted to a float32 array. To convert, the audio > file to a float32 array, please make use of the `.map()` function as follows: > > ```python > import soundfile as sf > def map_to_array(batch): > speech_array, _ = sf.read(batch["file"]) > batch["speech"] = speech_array > return batch > dataset = dataset.map(map_to_array, remove_columns=["file"]) > ``` Is this still true? In my case, `ds["train.100"]` returns: ``` Dataset({ features: ['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'], num_rows: 28539 }) ``` and taking the first instance yields: ``` {'file': '374-180298-0000.flac', 'audio': {'path': '374-180298-0000.flac', 'array': array([ 7.01904297e-04, 7.32421875e-04, 7.32421875e-04, ..., -2.74658203e-04, -1.83105469e-04, -3.05175781e-05]), 'sampling_rate': 16000}, 'text': 'CHAPTER SIXTEEN I MIGHT HAVE TOLD YOU OF THE BEGINNING OF THIS LIAISON IN A FEW LINES BUT I WANTED YOU TO SEE EVERY STEP BY WHICH WE CAME I TO AGREE TO WHATEVER MARGUERITE WISHED', 'speaker_id': 374, 'chapter_id': 180298, 'id': '374-180298-0000'} ``` The `audio` `array` seems to be already decoded. So such convert/decode code as mentioned in the doc is wrong? But I wonder, is it actually stored as flac on disk, and the decoding is done on-the-fly? Or was it decoded already during the preparation and is stored as raw samples on disk? Note that I also used `datasets.load_dataset("librispeech_asr", "clean").save_to_disk(...)` and then `datasets.load_from_disk(...)` in this example. Does this change anything on how it is stored on disk? A small related question: Actually I would prefer to even store it as mp3 or ogg on disk. Is this easy to convert?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4185/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4185/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/4313
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4313/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4313/comments
https://api.github.com/repos/huggingface/datasets/issues/4313/events
https://github.com/huggingface/datasets/pull/4313
1,231,764,100
PR_kwDODunzps43m4qB
4,313
Add API code examples for Builder classes
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu" }
[ { "color": "0075ca", "default": true, "description": "Improvements or additions to documentation", "id": 1935892861, "name": "documentation", "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation" } ]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-05-10T22:22:32Z"
"2022-05-12T17:02:43Z"
"2022-05-12T12:36:57Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4313.diff", "html_url": "https://github.com/huggingface/datasets/pull/4313", "merged_at": "2022-05-12T12:36:57Z", "patch_url": "https://github.com/huggingface/datasets/pull/4313.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4313" }
This PR adds API code examples for the Builder classes.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4313/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4313/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2083
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2083/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2083/comments
https://api.github.com/repos/huggingface/datasets/issues/2083/events
https://github.com/huggingface/datasets/issues/2083
835,695,425
MDU6SXNzdWU4MzU2OTU0MjU=
2,083
`concatenate_datasets` throws error when changing the order of datasets to concatenate
{ "avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4", "events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}", "followers_url": "https://api.github.com/users/patrickvonplaten/followers", "following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}", "gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/patrickvonplaten", "id": 23423619, "login": "patrickvonplaten", "node_id": "MDQ6VXNlcjIzNDIzNjE5", "organizations_url": "https://api.github.com/users/patrickvonplaten/orgs", "received_events_url": "https://api.github.com/users/patrickvonplaten/received_events", "repos_url": "https://api.github.com/users/patrickvonplaten/repos", "site_admin": false, "starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions", "type": "User", "url": "https://api.github.com/users/patrickvonplaten" }
[]
closed
false
null
[]
null
[ "Hi,\r\n\r\nthis bug is related to `Dataset.{remove_columns, rename_column, flatten}` not propagating the change to the schema metadata when the info features are updated, so this line is the culprit:\r\n```python\r\ncommon_voice_train = common_voice_train.remove_columns(['client_id', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'])\r\n\r\n``` \r\nThe order is important because the resulting dataset inherits the schema metadata of the first dataset passed to the `concatenate_datasets(...)` function (`pa.concat_tables` [docs](https://arrow.apache.org/docs/python/generated/pyarrow.concat_tables.html)). I'll try to fix this ASAP." ]
"2021-03-19T08:29:48Z"
"2021-04-09T09:25:33Z"
"2021-04-09T09:25:33Z"
MEMBER
null
null
null
Hey, I played around with the `concatenate_datasets(...)` function: https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=concatenate_datasets#datasets.concatenate_datasets and noticed that when the order in which the datasets are concatenated changes an error is thrown where it should not IMO. Here is a google colab to reproduce the error: https://colab.research.google.com/drive/17VTFU4KQ735-waWZJjeOHS6yDTfV5ekK?usp=sharing
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2083/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2083/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2588
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2588/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2588/comments
https://api.github.com/repos/huggingface/datasets/issues/2588/events
https://github.com/huggingface/datasets/pull/2588
936,795,541
MDExOlB1bGxSZXF1ZXN0NjgzNDQ5Njky
2,588
Fix test_is_small_dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
{ "closed_at": "2021-07-21T15:36:49Z", "closed_issues": 29, "created_at": "2021-06-08T18:48:33Z", "creator": { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }, "description": "Next minor release", "due_on": "2021-08-05T07:00:00Z", "html_url": "https://github.com/huggingface/datasets/milestone/6", "id": 6836458, "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/6/labels", "node_id": "MDk6TWlsZXN0b25lNjgzNjQ1OA==", "number": 6, "open_issues": 0, "state": "closed", "title": "1.10", "updated_at": "2021-07-21T15:36:49Z", "url": "https://api.github.com/repos/huggingface/datasets/milestones/6" }
[]
"2021-07-05T07:46:26Z"
"2021-07-12T14:10:11Z"
"2021-07-06T17:09:30Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2588.diff", "html_url": "https://github.com/huggingface/datasets/pull/2588", "merged_at": "2021-07-06T17:09:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/2588.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2588" }
Remove environment variable fixture `env_max_in_memory_dataset_size`. This fixture does not work because env variable is read in datasets.config when first loading datasets, and it is never reread during tests.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2588/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2588/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/838
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/838/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/838/comments
https://api.github.com/repos/huggingface/datasets/issues/838/events
https://github.com/huggingface/datasets/pull/838
740,328,382
MDExOlB1bGxSZXF1ZXN0NTE4ODM0NTE5
838
CNN/Dailymail Dataset Card
{ "avatar_url": "https://avatars.githubusercontent.com/u/26722925?v=4", "events_url": "https://api.github.com/users/mcmillanmajora/events{/privacy}", "followers_url": "https://api.github.com/users/mcmillanmajora/followers", "following_url": "https://api.github.com/users/mcmillanmajora/following{/other_user}", "gists_url": "https://api.github.com/users/mcmillanmajora/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mcmillanmajora", "id": 26722925, "login": "mcmillanmajora", "node_id": "MDQ6VXNlcjI2NzIyOTI1", "organizations_url": "https://api.github.com/users/mcmillanmajora/orgs", "received_events_url": "https://api.github.com/users/mcmillanmajora/received_events", "repos_url": "https://api.github.com/users/mcmillanmajora/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mcmillanmajora/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mcmillanmajora/subscriptions", "type": "User", "url": "https://api.github.com/users/mcmillanmajora" }
[]
closed
false
null
[]
null
[]
"2020-11-10T23:56:43Z"
"2020-11-25T21:09:51Z"
"2020-11-25T21:09:50Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/838.diff", "html_url": "https://github.com/huggingface/datasets/pull/838", "merged_at": "2020-11-25T21:09:50Z", "patch_url": "https://github.com/huggingface/datasets/pull/838.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/838" }
Link to the card page: https://github.com/mcmillanmajora/datasets/tree/cnn_dailymail_card/datasets/cnn_dailymail One of the questions this dataset brings up is how we want to handle versioning of the cards to mirror versions of the dataset. The different versions of this dataset are used for different tasks (which may not be reflected in the versions that we currently have in the repo?), but it's only the structure that's changing rather than the content in this particular case, at least between versions 2.0.0 and 3.0.0.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/838/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/838/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2396
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2396/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2396/comments
https://api.github.com/repos/huggingface/datasets/issues/2396/events
https://github.com/huggingface/datasets/issues/2396
899,016,308
MDU6SXNzdWU4OTkwMTYzMDg=
2,396
strange datasets from OSCAR corpus
{ "avatar_url": "https://avatars.githubusercontent.com/u/50871412?v=4", "events_url": "https://api.github.com/users/jerryIsHere/events{/privacy}", "followers_url": "https://api.github.com/users/jerryIsHere/followers", "following_url": "https://api.github.com/users/jerryIsHere/following{/other_user}", "gists_url": "https://api.github.com/users/jerryIsHere/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jerryIsHere", "id": 50871412, "login": "jerryIsHere", "node_id": "MDQ6VXNlcjUwODcxNDEy", "organizations_url": "https://api.github.com/users/jerryIsHere/orgs", "received_events_url": "https://api.github.com/users/jerryIsHere/received_events", "repos_url": "https://api.github.com/users/jerryIsHere/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jerryIsHere/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jerryIsHere/subscriptions", "type": "User", "url": "https://api.github.com/users/jerryIsHere" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "Hi ! Thanks for reporting\r\ncc @pjox is this an issue from the data ?\r\n\r\nAnyway we should at least mention that OSCAR could contain such contents in the dataset card, you're totally right @jerryIsHere ", "Hi @jerryIsHere , sorry for the late response! Sadly this is normal, the problem comes form fasttext's classifier which we used to create the original corpus. In general the classifier is not really capable of properly recognizing Yue Chineese so the file ends un being just noise from Common Crawl. Some of these problems with OSCAR were already discussed [here](https://arxiv.org/pdf/2103.12028.pdf) but we are working on explicitly documenting the problems by language on our website. In fact, could please you open an issue on [our repo](https://github.com/oscar-corpus/oscar-website/issues) as well so that we can track it?" ]
"2021-05-23T13:06:02Z"
"2021-06-17T13:54:37Z"
null
CONTRIBUTOR
null
null
null
![image](https://user-images.githubusercontent.com/50871412/119260850-4f876b80-bc07-11eb-8894-124302600643.png) ![image](https://user-images.githubusercontent.com/50871412/119260875-675eef80-bc07-11eb-9da4-ee27567054ac.png) From the [official site ](https://oscar-corpus.com/), the Yue Chinese dataset should have 2.2KB data. 7 training instances is obviously not a right number. As I can read Yue Chinese, I call tell the last instance is definitely not something that would appear on Common Crawl. And even if you don't read Yue Chinese, you can tell the first six instance are problematic. (It is embarrassing, as the 7 training instances look exactly like something from a pornographic novel or flitting messages in a chat of a dating app) It might not be the problem of the huggingface/datasets implementation, because when I tried to download the dataset from the official site, I found out that the zip file is corrupted. I will try to inform the host of OSCAR corpus later. Awy a remake about this dataset in huggingface/datasets is needed, perhaps after the host of the dataset fixes the issue. > Hi @jerryIsHere , sorry for the late response! Sadly this is normal, the problem comes form fasttext's classifier which we used to create the original corpus. In general the classifier is not really capable of properly recognizing Yue Chineese so the file ends un being just noise from Common Crawl. Some of these problems with OSCAR were already discussed [here](https://arxiv.org/pdf/2103.12028.pdf) but we are working on explicitly documenting the problems by language on our website. In fact, could please you open an issue on [our repo](https://github.com/oscar-corpus/oscar-website/issues) as well so that we can track it? Thanks a lot, the new post is here: https://github.com/oscar-corpus/oscar-website/issues/11
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2396/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2396/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/1495
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1495/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1495/comments
https://api.github.com/repos/huggingface/datasets/issues/1495/events
https://github.com/huggingface/datasets/pull/1495
763,025,562
MDExOlB1bGxSZXF1ZXN0NTM3NTE2ODE4
1,495
Opus DGT added
{ "avatar_url": "https://avatars.githubusercontent.com/u/22396042?v=4", "events_url": "https://api.github.com/users/rkc007/events{/privacy}", "followers_url": "https://api.github.com/users/rkc007/followers", "following_url": "https://api.github.com/users/rkc007/following{/other_user}", "gists_url": "https://api.github.com/users/rkc007/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rkc007", "id": 22396042, "login": "rkc007", "node_id": "MDQ6VXNlcjIyMzk2MDQy", "organizations_url": "https://api.github.com/users/rkc007/orgs", "received_events_url": "https://api.github.com/users/rkc007/received_events", "repos_url": "https://api.github.com/users/rkc007/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rkc007/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rkc007/subscriptions", "type": "User", "url": "https://api.github.com/users/rkc007" }
[]
closed
false
null
[]
null
[ "merging since the CI is fixed on master" ]
"2020-12-11T23:05:09Z"
"2020-12-17T14:38:41Z"
"2020-12-17T14:38:41Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1495.diff", "html_url": "https://github.com/huggingface/datasets/pull/1495", "merged_at": "2020-12-17T14:38:41Z", "patch_url": "https://github.com/huggingface/datasets/pull/1495.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1495" }
Dataset : http://opus.nlpl.eu/DGT.php
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1495/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1495/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5260
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5260/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5260/comments
https://api.github.com/repos/huggingface/datasets/issues/5260/events
https://github.com/huggingface/datasets/issues/5260
1,453,921,697
I_kwDODunzps5WqRWh
5,260
consumer-finance-complaints dataset not loading
{ "avatar_url": "https://avatars.githubusercontent.com/u/8098496?v=4", "events_url": "https://api.github.com/users/adiprasad/events{/privacy}", "followers_url": "https://api.github.com/users/adiprasad/followers", "following_url": "https://api.github.com/users/adiprasad/following{/other_user}", "gists_url": "https://api.github.com/users/adiprasad/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/adiprasad", "id": 8098496, "login": "adiprasad", "node_id": "MDQ6VXNlcjgwOTg0OTY=", "organizations_url": "https://api.github.com/users/adiprasad/orgs", "received_events_url": "https://api.github.com/users/adiprasad/received_events", "repos_url": "https://api.github.com/users/adiprasad/repos", "site_admin": false, "starred_url": "https://api.github.com/users/adiprasad/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/adiprasad/subscriptions", "type": "User", "url": "https://api.github.com/users/adiprasad" }
[]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Thanks for reporting, @adiprasad.\r\n\r\nWe are having a look at it.", "I have opened an issue in that dataset Community tab on the Hub: https://huggingface.co/datasets/consumer-finance-complaints/discussions/1\r\n\r\nPlease note that in the meantime, you can load the dataset by passing `ignore_verifications=True`:\r\n```python\r\n>>> ds = load_dataset(\"consumer-finance-complaints\", ignore_verifications=True)\r\n>>> ds\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['Date Received', 'Product', 'Sub Product', 'Issue', 'Sub Issue', 'Complaint Text', 'Company Public Response', 'Company', 'State', 'Zip Code', 'Tags', 'Consumer Consent Provided', 'Submitted via', 'Date Sent To Company', 'Company Response To Consumer', 'Timely Response', 'Consumer Disputed', 'Complaint ID'],\r\n num_rows: 3079747\r\n })\r\n})\r\n```", "PR fixing this issue: https://huggingface.co/datasets/consumer-finance-complaints/discussions/2" ]
"2022-11-17T20:10:26Z"
"2022-11-18T10:16:53Z"
null
NONE
null
null
null
### Describe the bug Error during dataset loading ### Steps to reproduce the bug ``` >>> import datasets >>> cf_raw = datasets.load_dataset("consumer-finance-complaints") Downloading builder script: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 8.42k/8.42k [00:00<00:00, 3.33MB/s] Downloading metadata: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5.60k/5.60k [00:00<00:00, 2.90MB/s] Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 16.6k/16.6k [00:00<00:00, 510kB/s] Downloading and preparing dataset consumer-finance-complaints/default to /root/.cache/huggingface/datasets/consumer-finance-complaints/default/0.0.0/30e483d37fb4b25bb98cad1bfd2dc48f6ed6d1f3371eb4568c625a61d1a79b69... Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 511M/511M [00:04<00:00, 103MB/s] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/load.py", line 1741, in load_dataset builder_instance.download_and_prepare( File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare self._download_and_prepare( File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare super()._download_and_prepare( File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 931, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/utils/info_utils.py", line 74, in verify_splits raise NonMatchingSplitsSizesError(str(bad_splits)) datasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=1605177353, num_examples=2455765, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=2043641693, num_examples=3079747, shard_lengths=[721000, 656000, 788000, 846000, 68747], dataset_name='consumer-finance-complaints')}] ``` ### Expected behavior dataset should load ### Environment info >>> datasets.__version__ '2.7.0' Python 3.8.10 "Ubuntu 20.04.4 LTS"
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5260/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5260/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6126
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6126/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6126/comments
https://api.github.com/repos/huggingface/datasets/issues/6126/events
https://github.com/huggingface/datasets/issues/6126
1,839,675,320
I_kwDODunzps5tpze4
6,126
Private datasets do not load when passing token
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Our CI did not catch this issue because with current implementation, stored token in `HfFolder` (which always exists) is used by default.", "I can confirm this and have the same problem (and just went almost crazy because I couldn't figure out the source of this problem because on another computer everything worked well even with `DownloadMode.FORCE_REDOWNLOAD`).", "We are planning to do a patch release today, after the merge of the fix:\r\n- #6127\r\n\r\nIn the meantime, the problem can be circumvented by passing `download_config` instead:\r\n```python\r\nfrom datasets import DownloadConfig, load_dataset\r\n\r\nload_dataset(\"<DATASET-NAME>\", split=\"train\", download_config=DownloadConfig(token=\"<TOKEN>\"))\r\n``` ", "> We are planning to do a patch release today, after the merge of the fix:\r\n> \r\n> * [Fix authentication issues #6127](https://github.com/huggingface/datasets/pull/6127)\r\n> \r\n> \r\n> In the meantime, the problem can be circumvented by passing `download_config` instead:\r\n> \r\n> ```python\r\n> from datasets import DownloadConfig, load_dataset\r\n> \r\n> load_dataset(\"<DATASET-NAME>\", split=\"train\", download_config=DownloadConfig(token=\"<TOKEN>\"))\r\n> ```\r\n\r\nThis did not work for me (there was some other error with the split being an unexpected size 0). Downgrading to 2.13 fixed it...." ]
"2023-08-07T15:06:47Z"
"2023-08-08T15:16:23Z"
"2023-08-08T15:16:23Z"
MEMBER
null
null
null
### Describe the bug Since the release of `datasets` 2.14, private/gated datasets do not load when passing `token`: they raise `EmptyDatasetError`. This is a non-planned backward incompatible breaking change. Note that private datasets do load if instead `download_config` is passed: ```python from datasets import DownloadConfig, load_dataset ds = load_dataset("albertvillanova/tmp-private", split="train", download_config=DownloadConfig(token="<MY-TOKEN>")) ds ``` gives ``` Dataset({ features: ['text'], num_rows: 4 }) ``` ### Steps to reproduce the bug ```python from datasets import load_dataset ds = load_dataset("albertvillanova/tmp-private", split="train", token="<MY-TOKEN>") ``` gives ``` --------------------------------------------------------------------------- EmptyDatasetError Traceback (most recent call last) [<ipython-input-2-25b48732107a>](https://localhost:8080/#) in <cell line: 3>() 1 from datasets import load_dataset 2 ----> 3 ds = load_dataset("albertvillanova/tmp-private", split="train", token="<MY-TOKEN>") 5 frames [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs) 2107 2108 # Create a dataset builder -> 2109 builder_instance = load_dataset_builder( 2110 path=path, 2111 name=name, [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, **config_kwargs) 1793 download_config = download_config.copy() if download_config else DownloadConfig() 1794 download_config.storage_options.update(storage_options) -> 1795 dataset_module = dataset_module_factory( 1796 path, 1797 revision=revision, [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs) 1484 raise ConnectionError(f"Couldn't reach the Hugging Face Hub for dataset '{path}': {e1}") from None 1485 if isinstance(e1, EmptyDatasetError): -> 1486 raise e1 from None 1487 if isinstance(e1, FileNotFoundError): 1488 raise FileNotFoundError( [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs) 1474 download_config=download_config, 1475 download_mode=download_mode, -> 1476 ).get_module() 1477 except ( 1478 Exception [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in get_module(self) 1030 sanitize_patterns(self.data_files) 1031 if self.data_files is not None -> 1032 else get_data_patterns(base_path, download_config=self.download_config) 1033 ) 1034 data_files = DataFilesDict.from_patterns( [/usr/local/lib/python3.10/dist-packages/datasets/data_files.py](https://localhost:8080/#) in get_data_patterns(base_path, download_config) 457 return _get_data_files_patterns(resolver) 458 except FileNotFoundError: --> 459 raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data files") from None 460 461 EmptyDatasetError: The directory at hf://datasets/albertvillanova/tmp-private@79b9e4fe79670a9a050d6ebc385464891915a71d doesn't contain any data files ``` ### Expected behavior The dataset should load. ### Environment info - `datasets` version: 2.14.3 - Platform: Linux-5.15.109+-x86_64-with-glibc2.35 - Python version: 3.10.12 - Huggingface_hub version: 0.16.4 - PyArrow version: 9.0.0 - Pandas version: 1.5.3
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6126/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6126/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3419
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3419/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3419/comments
https://api.github.com/repos/huggingface/datasets/issues/3419/events
https://github.com/huggingface/datasets/issues/3419
1,077,350,974
I_kwDODunzps5ANxI-
3,419
`.to_json` is extremely slow after `.select`
{ "avatar_url": "https://avatars.githubusercontent.com/u/13485709?v=4", "events_url": "https://api.github.com/users/eladsegal/events{/privacy}", "followers_url": "https://api.github.com/users/eladsegal/followers", "following_url": "https://api.github.com/users/eladsegal/following{/other_user}", "gists_url": "https://api.github.com/users/eladsegal/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eladsegal", "id": 13485709, "login": "eladsegal", "node_id": "MDQ6VXNlcjEzNDg1NzA5", "organizations_url": "https://api.github.com/users/eladsegal/orgs", "received_events_url": "https://api.github.com/users/eladsegal/received_events", "repos_url": "https://api.github.com/users/eladsegal/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eladsegal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eladsegal/subscriptions", "type": "User", "url": "https://api.github.com/users/eladsegal" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "Hi ! It's slower indeed because a datasets on which `select`/`shard`/`train_test_split`/`shuffle` has been called has to do additional steps to retrieve the data of the dataset table in the right order.\r\n\r\nIndeed, if you call `dataset.select([0, 5, 10])`, the underlying table of the dataset is not altered to keep the examples at index 0, 5, and 10. Instead, an indices mapping is added on top of the table, that says that the first example is at index 0, the second at index 5 and the last one at index 10.\r\n\r\nTherefore accessing the examples of the dataset is slower because of the additional step that uses the indices mapping.\r\n\r\nThe step that takes the most time is to query the dataset table from a list of indices here:\r\n\r\nhttps://github.com/huggingface/datasets/blob/047dc756ed20fbf06e6bcaf910464aba0e20610a/src/datasets/formatting/formatting.py#L61-L63\r\n\r\nIn your case it can be made significantly faster by checking if the indices are contiguous. If they're contiguous, we could pass a python `slice` or `range` instead of a list of integers to `_query_table`. This way `_query_table` will do only one lookup to get the queried batch instead of `batch_size` lookups.\r\n\r\nGiven that calling `select` with contiguous indices is a common use case I'm in favor of implementing such an optimization :)\r\nLet me know what you think", "Hi, thanks for the response!\r\nI still don't understand why it is so much slower than iterating and saving:\r\n```python\r\nfrom datasets import load_dataset\r\n\r\noriginal = load_dataset(\"squad\", split=\"train\")\r\noriginal.to_json(\"from_original.json\") # Takes 0 seconds\r\n\r\nselected_subset1 = original.select([i for i in range(len(original))])\r\nselected_subset1.to_json(\"from_select1.json\") # Takes 99 seconds\r\n\r\nselected_subset2 = original.select([i for i in range(int(len(original) / 2))])\r\nselected_subset2.to_json(\"from_select2.json\") # Takes 47 seconds\r\n\r\nselected_subset3 = original.select([i for i in range(len(original)) if i % 2 == 0])\r\nselected_subset3.to_json(\"from_select3.json\") # Takes 49 seconds\r\n\r\nimport json\r\nimport time\r\ndef fast_to_json(dataset, path):\r\n start = time.time()\r\n with open(path, mode=\"w\") as f:\r\n for example in dataset:\r\n f.write(json.dumps(example, separators=(',', ':')) + \"\\n\")\r\n end = time.time()\r\n print(f\"Saved {len(dataset)} examples to {path} in {end - start} seconds.\")\r\n\r\nfast_to_json(original, \"from_original_fast.json\")\r\nfast_to_json(selected_subset1, \"from_select1_fast.json\")\r\nfast_to_json(selected_subset2, \"from_select2_fast.json\")\r\nfast_to_json(selected_subset3, \"from_select3_fast.json\")\r\n```\r\n```\r\nSaved 87599 examples to from_original_fast.json in 8 seconds.\r\nSaved 87599 examples to from_select1_fast.json in 10 seconds.\r\nSaved 43799 examples to from_select2_fast.json in 6 seconds.\r\nSaved 43800 examples to from_select3_fast.json in 5 seconds.\r\n```", "There are slight differences between what you're doing and what `to_json` is actually doing.\r\nIn particular `to_json` currently converts batches of rows (as an arrow table) to a pandas dataframe, and then to JSON Lines. From your benchmark it looks like it's faster if we don't use pandas.\r\n\r\nThanks for investigating, I think we can optimize `to_json` significantly thanks to your test.", "Thanks for your observations, @eladsegal! I spent some time with this and tried different approaches. Turns out that https://github.com/huggingface/datasets/blob/bb13373637b1acc55f8a468a8927a56cf4732230/src/datasets/io/json.py#L100 is giving the problem when we use `to_json` after `select`. This is when `indices` parameter in `query_table` is not `None` (if it is `None` then `to_json` should work as expected)\r\n\r\nIn order to circumvent this problem, I found out instead of doing Arrow Table -> Pandas-> JSON we can directly go to JSON by using `to_pydict()` which is a little slower than the current approach but at least `select` works properly now. Lmk what you guys think of it @lhoestq, @eladsegal?", "Sounds good to me ! Feel free to also share your benchmarks for reference @bhavitvyamalik ", "Posting it in @eladsegal's format:\r\n\r\nFor `squad`:\r\nSaving examples using current `to_json` in 3.63 secs\r\nSaving examples to `from_select1_fast.json` in 5.00 secs\r\nSaving examples to `from_select2_fast.json` in 2.45 secs\r\nSaving examples to `from_select3_fast.json` in 2.50 secs\r\n\r\nFor `squad_v2`:\r\nSaving examples using current `to_json` in 5.26 secs\r\nSaving examples to `from_select1_fast.json` in 7.54 secs\r\nSaving examples to `from_select2_fast.json` in 3.80 secs\r\nSaving examples to `from_select3_fast.json` in 3.67 secs" ]
"2021-12-11T01:36:31Z"
"2021-12-21T15:49:07Z"
null
CONTRIBUTOR
null
null
null
## Describe the bug Saving a dataset to JSON with `to_json` is extremely slow after using `.select` on the original dataset. ## Steps to reproduce the bug ```python from datasets import load_dataset original = load_dataset("squad", split="train") original.to_json("from_original.json") # Takes 0 seconds selected_subset1 = original.select([i for i in range(len(original))]) selected_subset1.to_json("from_select1.json") # Takes 212 seconds selected_subset2 = original.select([i for i in range(int(len(original) / 2))]) selected_subset2.to_json("from_select2.json") # Takes 90 seconds ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: master (https://github.com/huggingface/datasets/commit/6090f3cfb5c819f441dd4a4bb635e037c875b044) - Platform: Linux-4.4.0-19041-Microsoft-x86_64-with-glibc2.27 - Python version: 3.9.7 - PyArrow version: 6.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3419/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3419/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/2296
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2296/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2296/comments
https://api.github.com/repos/huggingface/datasets/issues/2296/events
https://github.com/huggingface/datasets/issues/2296
872,974,907
MDU6SXNzdWU4NzI5NzQ5MDc=
2,296
1
{ "avatar_url": "https://avatars.githubusercontent.com/u/82880142?v=4", "events_url": "https://api.github.com/users/zinnyi/events{/privacy}", "followers_url": "https://api.github.com/users/zinnyi/followers", "following_url": "https://api.github.com/users/zinnyi/following{/other_user}", "gists_url": "https://api.github.com/users/zinnyi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zinnyi", "id": 82880142, "login": "zinnyi", "node_id": "MDQ6VXNlcjgyODgwMTQy", "organizations_url": "https://api.github.com/users/zinnyi/orgs", "received_events_url": "https://api.github.com/users/zinnyi/received_events", "repos_url": "https://api.github.com/users/zinnyi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zinnyi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zinnyi/subscriptions", "type": "User", "url": "https://api.github.com/users/zinnyi" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
[]
null
[]
"2021-04-30T17:53:49Z"
"2021-05-03T08:17:31Z"
"2021-05-03T08:17:31Z"
NONE
null
null
null
## Adding a Dataset - **Name:** *name of the dataset* - **Description:** *short description of the dataset (or link to social media or blog post)* - **Paper:** *link to the dataset paper if available* - **Data:** *link to the Github repository or current dataset location* - **Motivation:** *what are some good reasons to have this dataset* Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2296/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2296/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4394
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4394/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4394/comments
https://api.github.com/repos/huggingface/datasets/issues/4394/events
https://github.com/huggingface/datasets/issues/4394
1,245,221,657
I_kwDODunzps5KOJMZ
4,394
trainer became extremely slow after reload dataset by `load_from_disk`
{ "avatar_url": "https://avatars.githubusercontent.com/u/50416856?v=4", "events_url": "https://api.github.com/users/conan1024hao/events{/privacy}", "followers_url": "https://api.github.com/users/conan1024hao/followers", "following_url": "https://api.github.com/users/conan1024hao/following{/other_user}", "gists_url": "https://api.github.com/users/conan1024hao/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/conan1024hao", "id": 50416856, "login": "conan1024hao", "node_id": "MDQ6VXNlcjUwNDE2ODU2", "organizations_url": "https://api.github.com/users/conan1024hao/orgs", "received_events_url": "https://api.github.com/users/conan1024hao/received_events", "repos_url": "https://api.github.com/users/conan1024hao/repos", "site_admin": false, "starred_url": "https://api.github.com/users/conan1024hao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/conan1024hao/subscriptions", "type": "User", "url": "https://api.github.com/users/conan1024hao" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "I tried to make the dataset much more smaller (100000 rows) , then the speed became `33.88it/s` from`8.62s/it`. It's nearly 200 times... Do you have any idea? Thank you!", "Similar issue: https://github.com/huggingface/transformers/issues/8818\r\n\r\nI changed `RandomSampler` to `SequentialSampler` in the `trainer.py`, but the speed didn't become faster.", "I changed\r\n```\r\ntokenized_datasets = load_from_disk(\r\n \"/pathto/dataset\"\r\n )\r\n```\r\nto\r\n```\r\ntokenized_datasets = load_from_disk(\r\n \"/pathto/dataset\", keep_in_memory=True\r\n )\r\n```\r\nand obtained normal speed. It's seems that the problem is on the os's speed limit.", "Hi ! Currently `save_to_disk` saves one big Arrow file, which causes some slow downs. This has been discussed in #3735 and we'll implement sharding pretty soon to solve this\r\n\r\nFor now you can try splitting and saving your dataset in several Arrow files. Then you can load them one by one and use `concatenate_datasets` to have your big dataset again and hopefully with a better speed", "Any update on fixing this? The issue still seems to be present." ]
"2022-05-23T14:04:37Z"
"2023-11-23T07:40:30Z"
null
NONE
null
null
null
## Describe the bug Due to memory problem, I need to save my tokenized datasets locally by CPU and reload it by multi GPU for running training script. However, after I reload it by `load_from_disk` and start training, the speed is extremely slow. It says I need about 1500 hours with 8 A100 cards. Before this, I can run the whole script in one day with a single A100 card. Since I am try to pre-train a BERT, **my dataset is very large(29058165 rows)** ## Steps to reproduce the bug ```python tokenized_datasets.save_to_disk( "/pathto/dataset" ) tokenized_datasets = load_from_disk( "/pathto/dataset" ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"] if training_args.do_train else None, eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, ) train_result = trainer.train(resume_from_checkpoint=checkpoint) ``` ## Expected results Without the save and reload process, I only need about one day to run the whole script with one A100 card. ## Actual results ``` [INFO|trainer.py:1290] 2022-05-23 22:49:46,266 >> ***** Running training ***** [INFO|trainer.py:1291] 2022-05-23 22:49:46,266 >> Num examples = 29058165 [INFO|trainer.py:1292] 2022-05-23 22:49:46,266 >> Num Epochs = 5 [INFO|trainer.py:1293] 2022-05-23 22:49:46,266 >> Instantaneous batch size per device = 16 [INFO|trainer.py:1294] 2022-05-23 22:49:46,266 >> Total train batch size (w. parallel, distributed & accumulation) = 256 [INFO|trainer.py:1295] 2022-05-23 22:49:46,266 >> Gradient Accumulation steps = 2 [INFO|trainer.py:1296] 2022-05-23 22:49:46,266 >> Total optimization steps = 567540 0%| | 1/567540 [00:09<1544:49:04, 9.80s/it] 0%| | 2/567540 [00:17<1320:00:17, 8.37s/it] 0%| | 3/567540 [00:26<1393:10:17, 8.84s/it] 0%| | 4/567540 [00:34<1344:56:33, 8.53s/it] 0%| | 5/567540 [00:43<1359:36:12, 8.62s/it] ``` ## Environment info ``` torch 1.11.0+cu113 torchaudio 0.11.0+cu113 torchvision 0.12.0+cu113 transformers 4.18.0 datasets 2.2.2 ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4394/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4394/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/4270
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4270/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4270/comments
https://api.github.com/repos/huggingface/datasets/issues/4270/events
https://github.com/huggingface/datasets/pull/4270
1,224,244,460
PR_kwDODunzps43PC5V
4,270
Fix style in openbookqa dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-05-03T15:21:34Z"
"2022-05-06T08:38:06Z"
"2022-05-03T16:20:52Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4270.diff", "html_url": "https://github.com/huggingface/datasets/pull/4270", "merged_at": "2022-05-03T16:20:52Z", "patch_url": "https://github.com/huggingface/datasets/pull/4270.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4270" }
CI in PR: - #4259 was green, but after merging it to master, a code quality error appeared.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4270/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4270/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/220
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/220/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/220/comments
https://api.github.com/repos/huggingface/datasets/issues/220/events
https://github.com/huggingface/datasets/pull/220
627,280,683
MDExOlB1bGxSZXF1ZXN0NDI1MTEzMzEy
220
dataset_arcd
{ "avatar_url": "https://avatars.githubusercontent.com/u/13635495?v=4", "events_url": "https://api.github.com/users/tayciryahmed/events{/privacy}", "followers_url": "https://api.github.com/users/tayciryahmed/followers", "following_url": "https://api.github.com/users/tayciryahmed/following{/other_user}", "gists_url": "https://api.github.com/users/tayciryahmed/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tayciryahmed", "id": 13635495, "login": "tayciryahmed", "node_id": "MDQ6VXNlcjEzNjM1NDk1", "organizations_url": "https://api.github.com/users/tayciryahmed/orgs", "received_events_url": "https://api.github.com/users/tayciryahmed/received_events", "repos_url": "https://api.github.com/users/tayciryahmed/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tayciryahmed/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tayciryahmed/subscriptions", "type": "User", "url": "https://api.github.com/users/tayciryahmed" }
[]
closed
false
null
[]
null
[ "you can rebase from master to fix the CI error :)", "Awesome !" ]
"2020-05-29T13:46:50Z"
"2020-05-29T14:58:40Z"
"2020-05-29T14:57:21Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/220.diff", "html_url": "https://github.com/huggingface/datasets/pull/220", "merged_at": "2020-05-29T14:57:21Z", "patch_url": "https://github.com/huggingface/datasets/pull/220.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/220" }
Added Arabic Reading Comprehension Dataset (ARCD): https://arxiv.org/abs/1906.05394
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 1, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/220/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/220/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/550
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/550/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/550/comments
https://api.github.com/repos/huggingface/datasets/issues/550/events
https://github.com/huggingface/datasets/pull/550
689,775,914
MDExOlB1bGxSZXF1ZXN0NDc2NzgyNDY1
550
[BUGFIX] Solving mismatched checksum issue for the LinCE dataset (#539)
{ "avatar_url": "https://avatars.githubusercontent.com/u/5833357?v=4", "events_url": "https://api.github.com/users/gaguilar/events{/privacy}", "followers_url": "https://api.github.com/users/gaguilar/followers", "following_url": "https://api.github.com/users/gaguilar/following{/other_user}", "gists_url": "https://api.github.com/users/gaguilar/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gaguilar", "id": 5833357, "login": "gaguilar", "node_id": "MDQ6VXNlcjU4MzMzNTc=", "organizations_url": "https://api.github.com/users/gaguilar/orgs", "received_events_url": "https://api.github.com/users/gaguilar/received_events", "repos_url": "https://api.github.com/users/gaguilar/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gaguilar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gaguilar/subscriptions", "type": "User", "url": "https://api.github.com/users/gaguilar" }
[]
closed
false
null
[]
null
[ "Thanks a lot for that!\r\nThe line you are mentioning is a bug indeed, do you mind fixing it at the same time?", "No worries! \r\n\r\nI pushed right away the fix, but then I realized that the master branch already had it, so I ended up merging the master branch with lince locally and then overwriting the previous commit in origin/lince. Hopefully, this is not too messy :)\r\n" ]
"2020-09-01T03:27:03Z"
"2020-09-03T09:06:01Z"
"2020-09-03T09:06:01Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/550.diff", "html_url": "https://github.com/huggingface/datasets/pull/550", "merged_at": "2020-09-03T09:06:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/550.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/550" }
Hi, I have added the updated `dataset_infos.json` file for the LinCE benchmark. This update is to fix the mismatched checksum bug #539 for one of the datasets in the LinCE benchmark. To update the file, I run this command from the nlp root directory: ``` python nlp-cli test ./datasets/lince --save_infos --all_configs ``` **NOTE**: I needed to change [this line](https://github.com/huggingface/nlp/blob/master/src/nlp/commands/dummy_data.py#L8) from: `from .utils.logging import get_logger` to `from nlp.utils.logging import get_logger`, otherwise the script was not able to import `get_logger`. However, I did not include that in this PR since that could have been just my environment (and another PR could be fixing this already if it is actually an issue).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/550/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/550/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2402
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2402/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2402/comments
https://api.github.com/repos/huggingface/datasets/issues/2402/events
https://github.com/huggingface/datasets/issues/2402
900,025,329
MDU6SXNzdWU5MDAwMjUzMjk=
2,402
PermissionError on Windows when using temp dir for caching
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[]
"2021-05-24T21:22:59Z"
"2021-05-26T16:39:29Z"
"2021-05-26T16:39:29Z"
CONTRIBUTOR
null
null
null
Currently, the following code raises a PermissionError on master if working on Windows: ```python # run as a script or call exit() in REPL to initiate the temp dir cleanup from datasets import * d = load_dataset("sst", split="train", keep_in_memory=False) set_caching_enabled(False) d.map(lambda ex: ex) ``` Error stack trace: ``` Traceback (most recent call last): File "C:\Users\Mario\Anaconda3\envs\hf-datasets\lib\weakref.py", line 624, in _exitfunc f() File "C:\Users\Mario\Anaconda3\envs\hf-datasets\lib\weakref.py", line 548, in __call__ return info.func(*info.args, **(info.kwargs or {})) File "C:\Users\Mario\Anaconda3\envs\hf-datasets\lib\tempfile.py", line 799, in _cleanup _shutil.rmtree(name) File "C:\Users\Mario\Anaconda3\envs\hf-datasets\lib\shutil.py", line 500, in rmtree return _rmtree_unsafe(path, onerror) File "C:\Users\Mario\Anaconda3\envs\hf-datasets\lib\shutil.py", line 395, in _rmtree_unsafe onerror(os.unlink, fullname, sys.exc_info()) File "C:\Users\Mario\Anaconda3\envs\hf-datasets\lib\shutil.py", line 393, in _rmtree_unsafe os.unlink(fullname) PermissionError: [WinError 5] Access is denied: 'C:\\Users\\Mario\\AppData\\Local\\Temp\\tmp20epyhmq\\cache-87a87ffb5a956e68.arrow' ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2402/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2402/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1064
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1064/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1064/comments
https://api.github.com/repos/huggingface/datasets/issues/1064/events
https://github.com/huggingface/datasets/issues/1064
756,382,186
MDU6SXNzdWU3NTYzODIxODY=
1,064
Not support links with 302 redirect
{ "avatar_url": "https://avatars.githubusercontent.com/u/6429850?v=4", "events_url": "https://api.github.com/users/chameleonTK/events{/privacy}", "followers_url": "https://api.github.com/users/chameleonTK/followers", "following_url": "https://api.github.com/users/chameleonTK/following{/other_user}", "gists_url": "https://api.github.com/users/chameleonTK/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/chameleonTK", "id": 6429850, "login": "chameleonTK", "node_id": "MDQ6VXNlcjY0Mjk4NTA=", "organizations_url": "https://api.github.com/users/chameleonTK/orgs", "received_events_url": "https://api.github.com/users/chameleonTK/received_events", "repos_url": "https://api.github.com/users/chameleonTK/repos", "site_admin": false, "starred_url": "https://api.github.com/users/chameleonTK/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/chameleonTK/subscriptions", "type": "User", "url": "https://api.github.com/users/chameleonTK" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" }, { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Hi !\r\nThis kind of links is now supported by the library since #1316", "> Hi !\r\n> This kind of links is now supported by the library since #1316\r\n\r\nI updated links in TLC datasets to be the github links in this pull request \r\n https://github.com/huggingface/datasets/pull/1737\r\n\r\nEverything works now. Thank you." ]
"2020-12-03T17:04:43Z"
"2021-01-14T02:51:25Z"
"2021-01-14T02:51:25Z"
CONTRIBUTOR
null
null
null
I have an issue adding this download link https://github.com/jitkapat/thailitcorpus/releases/download/v.2.0/tlc_v.2.0.tar.gz it might be because it is not a direct link (it returns 302 and redirects to aws that returns 403 for head requests). ``` r.head("https://github.com/jitkapat/thailitcorpus/releases/download/v.2.0/tlc_v.2.0.tar.gz", allow_redirects=True) # <Response [403]> ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1064/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1064/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3620
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3620/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3620/comments
https://api.github.com/repos/huggingface/datasets/issues/3620/events
https://github.com/huggingface/datasets/pull/3620
1,112,677,252
PR_kwDODunzps4xf1J3
3,620
Add Fon language tag
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[]
"2022-01-24T13:52:26Z"
"2022-02-04T14:04:36Z"
"2022-02-04T14:04:35Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3620.diff", "html_url": "https://github.com/huggingface/datasets/pull/3620", "merged_at": "2022-02-04T14:04:35Z", "patch_url": "https://github.com/huggingface/datasets/pull/3620.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3620" }
Add Fon language tag to resources.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3620/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3620/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3294
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3294/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3294/comments
https://api.github.com/repos/huggingface/datasets/issues/3294/events
https://github.com/huggingface/datasets/issues/3294
1,057,495,473
I_kwDODunzps4_CBmx
3,294
Add Natural Adversarial Objects dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/7246357?v=4", "events_url": "https://api.github.com/users/osanseviero/events{/privacy}", "followers_url": "https://api.github.com/users/osanseviero/followers", "following_url": "https://api.github.com/users/osanseviero/following{/other_user}", "gists_url": "https://api.github.com/users/osanseviero/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/osanseviero", "id": 7246357, "login": "osanseviero", "node_id": "MDQ6VXNlcjcyNDYzNTc=", "organizations_url": "https://api.github.com/users/osanseviero/orgs", "received_events_url": "https://api.github.com/users/osanseviero/received_events", "repos_url": "https://api.github.com/users/osanseviero/repos", "site_admin": false, "starred_url": "https://api.github.com/users/osanseviero/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/osanseviero/subscriptions", "type": "User", "url": "https://api.github.com/users/osanseviero" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" }, { "color": "bfdadc", "default": false, "description": "Vision datasets", "id": 3608941089, "name": "vision", "node_id": "LA_kwDODunzps7XHBIh", "url": "https://api.github.com/repos/huggingface/datasets/labels/vision" } ]
open
false
null
[]
null
[]
"2021-11-18T15:34:44Z"
"2021-12-08T12:00:02Z"
null
MEMBER
null
null
null
## Adding a Dataset - **Name:** Natural Adversarial Objects (NAO) - **Description:** Natural Adversarial Objects (NAO) is a new dataset to evaluate the robustness of object detection models. NAO contains 7,934 images and 9,943 objects that are unmodified and representative of real-world scenarios, but cause state-of-the-art detection models to misclassify with high confidence. - **Paper:** https://arxiv.org/abs/2111.04204v1 - **Data:** https://drive.google.com/drive/folders/15P8sOWoJku6SSEiHLEts86ORfytGezi8 - **Motivation:** interesting object detection dataset useful for miscclassifications cc @NielsRogge Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3294/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3294/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/4591
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4591/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4591/comments
https://api.github.com/repos/huggingface/datasets/issues/4591/events
https://github.com/huggingface/datasets/issues/4591
1,288,021,332
I_kwDODunzps5MxaVU
4,591
Can't push Images to hub with manual Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/15624271?v=4", "events_url": "https://api.github.com/users/cceyda/events{/privacy}", "followers_url": "https://api.github.com/users/cceyda/followers", "following_url": "https://api.github.com/users/cceyda/following{/other_user}", "gists_url": "https://api.github.com/users/cceyda/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cceyda", "id": 15624271, "login": "cceyda", "node_id": "MDQ6VXNlcjE1NjI0Mjcx", "organizations_url": "https://api.github.com/users/cceyda/orgs", "received_events_url": "https://api.github.com/users/cceyda/received_events", "repos_url": "https://api.github.com/users/cceyda/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cceyda/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cceyda/subscriptions", "type": "User", "url": "https://api.github.com/users/cceyda" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" } ]
null
[ "Hi, thanks for reporting! This issue stems from the changes introduced in https://github.com/huggingface/datasets/pull/4282 (cc @lhoestq), in which list casts are ignored if they don't change the list type (required to preserve `null` values). And `push_to_hub` does a special cast to embed external image files but doesn't change the types, hence the failure." ]
"2022-06-29T00:01:23Z"
"2022-07-08T12:01:36Z"
"2022-07-08T12:01:35Z"
CONTRIBUTOR
null
null
null
## Describe the bug If I create a dataset including an 'Image' feature manually, when pushing to hub decoded images are not pushed, instead it looks for image where image local path is/used to be. This doesn't (at least didn't used to) happen with imagefolder. I want to build dataset manually because it is complicated. This happens even though the dataset is looking like decoded images: ![image](https://user-images.githubusercontent.com/15624271/176322689-2cc819cf-9d5c-4a8f-9f3d-83ae8ec06f20.png) and I use `embed_external_files=True` while `push_to_hub` (same with false) ## Steps to reproduce the bug ```python from PIL import Image from datasets import Image as ImageFeature from datasets import Features,Dataset #manually create dataset feats=Features( { "images": [ImageFeature()], #same even if explicitly ImageFeature(decode=True) "input_image": ImageFeature(), } ) test_data={"images":[[Image.open("test.jpg"),Image.open("test.jpg"),Image.open("test.jpg")]], "input_image":[Image.open("test.jpg")]} test_dataset=Dataset.from_dict(test_data,features=feats) print(test_dataset) test_dataset.push_to_hub("ceyda/image_test_public",private=False,token="",embed_external_files=True) # clear cache rm -r ~/.cache/huggingface # remove "test.jpg" # remove to see that it is looking for image on the local path test_dataset=load_dataset("ceyda/image_test_public",use_auth_token="") print(test_dataset) print(test_dataset['train'][0]) ``` ## Expected results should be able to push image bytes if dataset has `Image(decode=True)` ## Actual results errors because it is trying to decode file from the non existing local path. ``` ----> print(test_dataset['train'][0]) File ~/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py:2154, in Dataset.__getitem__(self, key) 2152 def __getitem__(self, key): # noqa: F811 2153 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools).""" -> 2154 return self._getitem( 2155 key, 2156 ) File ~/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py:2139, in Dataset._getitem(self, key, decoded, **kwargs) 2137 formatter = get_formatter(format_type, features=self.features, decoded=decoded, **format_kwargs) 2138 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) -> 2139 formatted_output = format_table( 2140 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns 2141 ) 2142 return formatted_output File ~/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py:532, in format_table(table, key, formatter, format_columns, output_all_columns) 530 python_formatter = PythonFormatter(features=None) 531 if format_columns is None: ... -> 3068 fp = builtins.open(filename, "rb") 3069 exclusive_fp = True 3071 try: FileNotFoundError: [Errno 2] No such file or directory: 'test.jpg' ``` ## Environment info - `datasets` version: 2.3.2 - Platform: Linux-5.4.0-1074-azure-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 8.0.0 - Pandas version: 1.4.2
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4591/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4591/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1687
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1687/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1687/comments
https://api.github.com/repos/huggingface/datasets/issues/1687/events
https://github.com/huggingface/datasets/issues/1687
779,004,894
MDU6SXNzdWU3NzkwMDQ4OTQ=
1,687
Question: Shouldn't .info be a part of DatasetDict?
{ "avatar_url": "https://avatars.githubusercontent.com/u/23721977?v=4", "events_url": "https://api.github.com/users/KennethEnevoldsen/events{/privacy}", "followers_url": "https://api.github.com/users/KennethEnevoldsen/followers", "following_url": "https://api.github.com/users/KennethEnevoldsen/following{/other_user}", "gists_url": "https://api.github.com/users/KennethEnevoldsen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/KennethEnevoldsen", "id": 23721977, "login": "KennethEnevoldsen", "node_id": "MDQ6VXNlcjIzNzIxOTc3", "organizations_url": "https://api.github.com/users/KennethEnevoldsen/orgs", "received_events_url": "https://api.github.com/users/KennethEnevoldsen/received_events", "repos_url": "https://api.github.com/users/KennethEnevoldsen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/KennethEnevoldsen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/KennethEnevoldsen/subscriptions", "type": "User", "url": "https://api.github.com/users/KennethEnevoldsen" }
[]
open
false
null
[]
null
[ "We could do something. There is a part of `.info` which is split specific (cache files, split instructions) but maybe if could be made to work.", "Yes this was kinda the idea I was going for. DatasetDict.info would be the shared info amongs the datasets (maybe even some info on how they differ). " ]
"2021-01-05T13:08:41Z"
"2021-01-07T10:18:06Z"
null
CONTRIBUTOR
null
null
null
Currently, only `Dataset` contains the .info or .features, but as many datasets contains standard splits (train, test) and thus the underlying information is the same (or at least should be) across the datasets. For instance: ``` >>> ds = datasets.load_dataset("conll2002", "es") >>> ds.info Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'DatasetDict' object has no attribute 'info' ``` I could imagine that this wouldn't work for datasets dicts which hold entirely different datasets (multimodal datasets), but it seems odd that splits of the same dataset is treated the same as what is essentially different datasets. Intuitively it would also make sense that if a dataset is supplied via. the load_dataset that is have a common .info which covers the entire dataset. It is entirely possible that I am missing another perspective
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1687/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1687/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/400
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/400/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/400/comments
https://api.github.com/repos/huggingface/datasets/issues/400/events
https://github.com/huggingface/datasets/pull/400
657,975,600
MDExOlB1bGxSZXF1ZXN0NDUwMDA1MDU5
400
Web questions
{ "avatar_url": "https://avatars.githubusercontent.com/u/38249783?v=4", "events_url": "https://api.github.com/users/mariamabarham/events{/privacy}", "followers_url": "https://api.github.com/users/mariamabarham/followers", "following_url": "https://api.github.com/users/mariamabarham/following{/other_user}", "gists_url": "https://api.github.com/users/mariamabarham/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariamabarham", "id": 38249783, "login": "mariamabarham", "node_id": "MDQ6VXNlcjM4MjQ5Nzgz", "organizations_url": "https://api.github.com/users/mariamabarham/orgs", "received_events_url": "https://api.github.com/users/mariamabarham/received_events", "repos_url": "https://api.github.com/users/mariamabarham/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariamabarham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariamabarham/subscriptions", "type": "User", "url": "https://api.github.com/users/mariamabarham" }
[]
closed
false
null
[]
null
[]
"2020-07-16T08:28:29Z"
"2020-07-16T08:50:51Z"
"2020-07-16T08:42:54Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/400.diff", "html_url": "https://github.com/huggingface/datasets/pull/400", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/400.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/400" }
add the WebQuestion dataset #336
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/400/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/400/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6214
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6214/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6214/comments
https://api.github.com/repos/huggingface/datasets/issues/6214/events
https://github.com/huggingface/datasets/issues/6214
1,881,736,469
I_kwDODunzps5wKQUV
6,214
Unpin fsspec < 2023.9.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" } ]
null
[]
"2023-09-05T11:02:58Z"
"2023-09-26T15:32:52Z"
"2023-09-26T15:32:52Z"
MEMBER
null
null
null
Once root issue is fixed, remove temporary pin of fsspec < 2023.9.0 introduced by: - #6210 Related to issue: - #6209 After investigation, I think the root issue is related to the new glob behavior with double asterisk `**` they have introduced in: - https://github.com/fsspec/filesystem_spec/pull/1329
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6214/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6214/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/911
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/911/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/911/comments
https://api.github.com/repos/huggingface/datasets/issues/911/events
https://github.com/huggingface/datasets/issues/911
752,806,215
MDU6SXNzdWU3NTI4MDYyMTU=
911
datasets module not found
{ "avatar_url": "https://avatars.githubusercontent.com/u/15836274?v=4", "events_url": "https://api.github.com/users/sbassam/events{/privacy}", "followers_url": "https://api.github.com/users/sbassam/followers", "following_url": "https://api.github.com/users/sbassam/following{/other_user}", "gists_url": "https://api.github.com/users/sbassam/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sbassam", "id": 15836274, "login": "sbassam", "node_id": "MDQ6VXNlcjE1ODM2Mjc0", "organizations_url": "https://api.github.com/users/sbassam/orgs", "received_events_url": "https://api.github.com/users/sbassam/received_events", "repos_url": "https://api.github.com/users/sbassam/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sbassam/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sbassam/subscriptions", "type": "User", "url": "https://api.github.com/users/sbassam" }
[]
closed
false
null
[]
null
[ "nvm, I'd made an assumption that the library gets installed with transformers. " ]
"2020-11-29T01:24:15Z"
"2020-11-29T14:33:09Z"
"2020-11-29T14:33:09Z"
NONE
null
null
null
Currently, running `from datasets import load_dataset` will throw a `ModuleNotFoundError: No module named 'datasets'` error.
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/911/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/911/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4606
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4606/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4606/comments
https://api.github.com/repos/huggingface/datasets/issues/4606/events
https://github.com/huggingface/datasets/issues/4606
1,290,083,534
I_kwDODunzps5M5RzO
4,606
evaluation result changes after `datasets` version change
{ "avatar_url": "https://avatars.githubusercontent.com/u/70014488?v=4", "events_url": "https://api.github.com/users/thnkinbtfly/events{/privacy}", "followers_url": "https://api.github.com/users/thnkinbtfly/followers", "following_url": "https://api.github.com/users/thnkinbtfly/following{/other_user}", "gists_url": "https://api.github.com/users/thnkinbtfly/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/thnkinbtfly", "id": 70014488, "login": "thnkinbtfly", "node_id": "MDQ6VXNlcjcwMDE0NDg4", "organizations_url": "https://api.github.com/users/thnkinbtfly/orgs", "received_events_url": "https://api.github.com/users/thnkinbtfly/received_events", "repos_url": "https://api.github.com/users/thnkinbtfly/repos", "site_admin": false, "starred_url": "https://api.github.com/users/thnkinbtfly/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/thnkinbtfly/subscriptions", "type": "User", "url": "https://api.github.com/users/thnkinbtfly" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Hi! The GH/no-namespace datasets versioning is synced with the version of the `datasets` lib, which means that the `wikiann` script was modified between the two compared versions. In this scenario, you can ensure reproducibility by pinning the script version, which is done by passing `revision=\"x.y.z\"` (e.g. `revision=\"2.2.0\"`) to `load_dataset.`\r\n" ]
"2022-06-30T12:43:26Z"
"2023-07-25T15:05:26Z"
"2023-07-25T15:05:26Z"
NONE
null
null
null
## Describe the bug evaluation result changes after `datasets` version change ## Steps to reproduce the bug 1. Train a model on WikiAnn 2. reload the ckpt -> test accuracy becomes same as eval accuracy 3. such behavior is gone after downgrading `datasets` https://colab.research.google.com/drive/1kYz7-aZRGdayaq-gDTt30tyEgsKlpYOw?usp=sharing ## Expected results evaluation result shouldn't change before/after `datasets` version changes ## Actual results evaluation result changes before/after `datasets` version changes ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.3.2 - Platform: colab - Python version: 3.7.13 - PyArrow version: 6.0.1 Q. How could the evaluation result change before/after `datasets` version changes?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4606/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4606/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2369
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2369/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2369/comments
https://api.github.com/repos/huggingface/datasets/issues/2369/events
https://github.com/huggingface/datasets/pull/2369
893,554,153
MDExOlB1bGxSZXF1ZXN0NjQ2MDQ5NDM1
2,369
correct labels of conll2003
{ "avatar_url": "https://avatars.githubusercontent.com/u/32632186?v=4", "events_url": "https://api.github.com/users/philschmid/events{/privacy}", "followers_url": "https://api.github.com/users/philschmid/followers", "following_url": "https://api.github.com/users/philschmid/following{/other_user}", "gists_url": "https://api.github.com/users/philschmid/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/philschmid", "id": 32632186, "login": "philschmid", "node_id": "MDQ6VXNlcjMyNjMyMTg2", "organizations_url": "https://api.github.com/users/philschmid/orgs", "received_events_url": "https://api.github.com/users/philschmid/received_events", "repos_url": "https://api.github.com/users/philschmid/repos", "site_admin": false, "starred_url": "https://api.github.com/users/philschmid/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/philschmid/subscriptions", "type": "User", "url": "https://api.github.com/users/philschmid" }
[]
closed
false
null
[]
null
[]
"2021-05-17T17:37:54Z"
"2021-05-18T08:27:42Z"
"2021-05-18T08:27:42Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2369.diff", "html_url": "https://github.com/huggingface/datasets/pull/2369", "merged_at": "2021-05-18T08:27:42Z", "patch_url": "https://github.com/huggingface/datasets/pull/2369.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2369" }
# What does this PR It fixes/extends the `ner_tags` for conll2003 to include all. Paper reference https://arxiv.org/pdf/cs/0306050v1.pdf Model reference https://huggingface.co/elastic/distilbert-base-cased-finetuned-conll03-english/blob/main/config.json
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2369/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2369/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5481
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5481/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5481/comments
https://api.github.com/repos/huggingface/datasets/issues/5481/events
https://github.com/huggingface/datasets/issues/5481
1,560,468,195
I_kwDODunzps5dAtrj
5,481
Load a cached dataset as iterable
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" }, { "color": "BDE59C", "default": false, "description": "Issues a bit more difficult than \"Good First\" issues", "id": 3761482852, "name": "good second issue", "node_id": "LA_kwDODunzps7gM6xk", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20second%20issue" } ]
open
false
null
[]
null
[ "Can I work on this issue? I am pretty new to this.", "Hi ! Sure :) you can comment `#self-assign` to assign yourself to this issue.\r\n\r\nI can give you some pointers to get started:\r\n\r\n`load_dataset` works roughly this way:\r\n1. it instantiate a dataset builder using `load_dataset_builder()`\r\n2. the builder download and prepare the dataset as Arrow files in the cache using `download_and_prepare()`\r\n3. the builder returns a Dataset object with `as_dataset()`\r\n\r\nOne way to approach this would be to implement `as_iterable_dataset()` in `builder.py`.\r\n\r\nAnd similarly to `as_dataset()`, you can use the `ArrowReader`. It has a `get_file_instructions()` method that can be helpful. It gives you the files to read as list of dictionaries with those keys: `filename`, `skip` and `take`.\r\n\r\nThe `skip` and `take` arguments are used in case the user wants to load a subset of the dataset, e.g.\r\n```python\r\nload_dataset(..., split=\"train[:10]\")\r\n```\r\n\r\nLet me know if you have questions or if I can help :)", "This use-case is a bit specific, and `load_dataset` already has enough parameters (plus, `streaming=True` also returns an iterable dataset, so we would have to explain the difference), so I think it would be better to add `IterableDataset.from_file` to the API (more flexible and aligned with the goal from https://github.com/huggingface/datasets/issues/3444) instead.", "> This use-case is a bit specific\r\n\r\nThis allows to use `datasets` for large scale training where map-style datasets are too slow and use too much memory in PyTorch. So I would still consider adding it.\r\n\r\nAlternatively we could add this feature one level bellow:\r\n```python\r\nbuilder = load_dataset_builder(...)\r\nbuilder.download_and_prepare()\r\nids = builder.as_iterable_dataset()\r\n```", "Yes, I see how this can be useful. Still, I think `Dataset.to_iterable` + `IterableDataset.from_file` would be much cleaner in terms of the API design (and more flexible since `load_dataset` can only access the \"initial\" (unprocessed) version of a dataset).\r\n\r\nAnd since it can be tricky to manually find the \"initial\" version of a dataset in the cache, maybe `load_dataset` could return an iterable dataset streamed from the cache if `streaming=True` and the cache is up-to-date. ", "> This allows to use datasets for large scale training where map-style datasets are too slow and use too much memory in PyTorch.\r\n\r\nI second that. e.g. In my last experiment Oscar-en uses 16GB RSS RAM per process and when using multiple processes the host quickly runs out cpu memory. ", ">And since it can be tricky to manually find the \"initial\" version of a dataset in the cache, maybe load_dataset could return an iterable dataset streamed from the cache if streaming=True and the cache is up-to-date.\r\n\r\nThis is exactly the need on JeanZay (HPC) - I have the dataset cache ready, but the compute node is offline, so making streaming work off a local cache would address that need.\r\n\r\nIf you will have a working POC I can be the tester. ", "> Yes, I see how this can be useful. Still, I think Dataset.to_iterable + IterableDataset.from_file would be much cleaner in terms of the API design (and more flexible since load_dataset can only access the \"initial\" (unprocessed) version of a dataset).\r\n\r\nI like `IterableDataset.from_file` as well. On the other hand `Dataset.to_iterable` first requires to load a Dataset object, which can take time depending on your hardware and your dataset size (sometimes 1h+).\r\n\r\n> And since it can be tricky to manually find the \"initial\" version of a dataset in the cache, maybe load_dataset could return an iterable dataset streamed from the cache if streaming=True and the cache is up-to-date.\r\n\r\nThat would definitely do the job. I was suggesting a different parameter just to make explicit the difference between\r\n- streaming from the raw data\r\n- streaming from the local cache\r\n\r\nBut I'd be fine with streaming from cache is the cache is up-to-date since it's always faster. We could log a message as usual to make it explicit that the cache is used", "> I was suggesting a different parameter just to make explicit the difference between\r\n\r\nMosaicML's `streaming` library does the same (tries to stream from the local cache if possible), so logging a message should be explicit enough :).", "Ok ! Sounds good then :)", "Hi Both! It has been a while since my first issue so I am gonna go for this one ! #self-assign", "#self-assign", "I like idea of `IterableDataset.from_file`. ", "https://github.com/huggingface/datasets/pull/5821 should be helpful to implement `IterableDataset.from_file`, since it defines a new ArrowExamplesIterable that takes an Arrow tables generator function (e.g. from a file) and can be used in an IterableDataset", "@lhoestq I have just started working on this issue. ", "@lhoestq Thank you for taking over.", "So what's recommanded usage of `IterableDataset.from_file` and `load_dataset`? How about I have multiple arrow files and `load_dataset` is often convenient to handle that.", "If you have multiple Arrow files you can load them using\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\ndata_files = {\"train\": [\"path/to/0.arrow\", \"path/to/1.arrow\", ..., \"path/to/n.arrow\"]}\r\n\r\nds = load_dataset(\"arrow\", data_files=data_files, streaming=True)\r\n```\r\n\r\nThis is equivalent to calling `IterableDataset.from_file` and `concatenate_datasets`." ]
"2023-01-27T21:43:51Z"
"2023-06-26T10:48:53Z"
null
MEMBER
null
null
null
The idea would be to allow something like ```python ds = load_dataset("c4", "en", as_iterable=True) ``` To be used to train models. It would load an IterableDataset from the cached Arrow files. Cc @stas00 Edit : from the discussions we may load from cache when streaming=True
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 5, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 5, "url": "https://api.github.com/repos/huggingface/datasets/issues/5481/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5481/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6289
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6289/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6289/comments
https://api.github.com/repos/huggingface/datasets/issues/6289/events
https://github.com/huggingface/datasets/pull/6289
1,935,628,506
PR_kwDODunzps5cZiay
6,289
testing doc-builder
{ "avatar_url": "https://avatars.githubusercontent.com/u/11827707?v=4", "events_url": "https://api.github.com/users/mishig25/events{/privacy}", "followers_url": "https://api.github.com/users/mishig25/followers", "following_url": "https://api.github.com/users/mishig25/following{/other_user}", "gists_url": "https://api.github.com/users/mishig25/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mishig25", "id": 11827707, "login": "mishig25", "node_id": "MDQ6VXNlcjExODI3NzA3", "organizations_url": "https://api.github.com/users/mishig25/orgs", "received_events_url": "https://api.github.com/users/mishig25/received_events", "repos_url": "https://api.github.com/users/mishig25/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mishig25/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mishig25/subscriptions", "type": "User", "url": "https://api.github.com/users/mishig25" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006424 / 0.011353 (-0.004929) | 0.003960 / 0.011008 (-0.007048) | 0.084022 / 0.038508 (0.045514) | 0.070770 / 0.023109 (0.047661) | 0.320525 / 0.275898 (0.044627) | 0.354507 / 0.323480 (0.031027) | 0.003939 / 0.007986 (-0.004047) | 0.004161 / 0.004328 (-0.000168) | 0.064754 / 0.004250 (0.060503) | 0.053630 / 0.037052 (0.016578) | 0.323948 / 0.258489 (0.065459) | 0.376908 / 0.293841 (0.083067) | 0.031063 / 0.128546 (-0.097483) | 0.008470 / 0.075646 (-0.067177) | 0.288110 / 0.419271 (-0.131161) | 0.053062 / 0.043533 (0.009529) | 0.328176 / 0.255139 (0.073037) | 0.345203 / 0.283200 (0.062003) | 0.024579 / 0.141683 (-0.117104) | 1.471649 / 1.452155 (0.019495) | 1.561458 / 1.492716 (0.068742) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223591 / 0.018006 (0.205585) | 0.450758 / 0.000490 (0.450269) | 0.003751 / 0.000200 (0.003552) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027859 / 0.037411 (-0.009552) | 0.080607 / 0.014526 (0.066081) | 0.093835 / 0.176557 (-0.082722) | 0.150466 / 0.737135 (-0.586669) | 0.094381 / 0.296338 (-0.201957) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.394011 / 0.215209 (0.178802) | 3.918318 / 2.077655 (1.840664) | 1.928684 / 1.504120 (0.424564) | 1.765944 / 1.541195 (0.224749) | 1.784716 / 1.468490 (0.316226) | 0.487189 / 4.584777 (-4.097588) | 3.537705 / 3.745712 (-0.208008) | 3.312162 / 5.269862 (-1.957699) | 2.024520 / 4.565676 (-2.541156) | 0.057571 / 0.424275 (-0.366704) | 0.007203 / 0.007607 (-0.000404) | 0.467253 / 0.226044 (0.241208) | 4.659934 / 2.268929 (2.391005) | 2.377764 / 55.444624 (-53.066860) | 2.021984 / 6.876477 (-4.854492) | 2.197468 / 2.142072 (0.055395) | 0.586415 / 4.805227 (-4.218812) | 0.136636 / 6.500664 (-6.364028) | 0.060885 / 0.075469 (-0.014584) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.241879 / 1.841788 (-0.599908) | 18.719327 / 8.074308 (10.645019) | 14.408689 / 10.191392 (4.217297) | 0.155778 / 0.680424 (-0.524646) | 0.018475 / 0.534201 (-0.515726) | 0.392316 / 0.579283 (-0.186967) | 0.409803 / 0.434364 (-0.024561) | 0.458701 / 0.540337 (-0.081637) | 0.630561 / 1.386936 (-0.756375) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006541 / 0.011353 (-0.004812) | 0.003915 / 0.011008 (-0.007094) | 0.064292 / 0.038508 (0.025784) | 0.069174 / 0.023109 (0.046065) | 0.402048 / 0.275898 (0.126150) | 0.423960 / 0.323480 (0.100480) | 0.005355 / 0.007986 (-0.002631) | 0.003295 / 0.004328 (-0.001033) | 0.065212 / 0.004250 (0.060962) | 0.054292 / 0.037052 (0.017240) | 0.402930 / 0.258489 (0.144441) | 0.441840 / 0.293841 (0.147999) | 0.032732 / 0.128546 (-0.095814) | 0.008565 / 0.075646 (-0.067081) | 0.070705 / 0.419271 (-0.348567) | 0.047908 / 0.043533 (0.004375) | 0.401400 / 0.255139 (0.146261) | 0.422682 / 0.283200 (0.139483) | 0.022244 / 0.141683 (-0.119439) | 1.532018 / 1.452155 (0.079864) | 1.597955 / 1.492716 (0.105239) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226277 / 0.018006 (0.208271) | 0.475578 / 0.000490 (0.475088) | 0.005456 / 0.000200 (0.005256) | 0.000140 / 0.000054 (0.000085) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033111 / 0.037411 (-0.004300) | 0.093138 / 0.014526 (0.078613) | 0.104619 / 0.176557 (-0.071937) | 0.157972 / 0.737135 (-0.579164) | 0.105017 / 0.296338 (-0.191321) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441771 / 0.215209 (0.226562) | 4.396981 / 2.077655 (2.319326) | 2.410745 / 1.504120 (0.906625) | 2.258359 / 1.541195 (0.717164) | 2.372628 / 1.468490 (0.904138) | 0.491411 / 4.584777 (-4.093366) | 3.650084 / 3.745712 (-0.095628) | 3.279557 / 5.269862 (-1.990304) | 2.011377 / 4.565676 (-2.554300) | 0.058283 / 0.424275 (-0.365992) | 0.007435 / 0.007607 (-0.000172) | 0.507212 / 0.226044 (0.281167) | 5.080104 / 2.268929 (2.811176) | 2.822680 / 55.444624 (-52.621945) | 2.507608 / 6.876477 (-4.368869) | 2.719349 / 2.142072 (0.577277) | 0.586157 / 4.805227 (-4.219071) | 0.132851 / 6.500664 (-6.367813) | 0.059944 / 0.075469 (-0.015525) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.374801 / 1.841788 (-0.466987) | 19.089359 / 8.074308 (11.015051) | 14.525861 / 10.191392 (4.334469) | 0.184758 / 0.680424 (-0.495666) | 0.020206 / 0.534201 (-0.513995) | 0.397309 / 0.579283 (-0.181975) | 0.418120 / 0.434364 (-0.016244) | 0.471817 / 0.540337 (-0.068520) | 0.681691 / 1.386936 (-0.705245) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2076cb857e90cf7a6050bba230f586993c5e034a \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._" ]
"2023-10-10T15:17:29Z"
"2023-10-13T08:57:14Z"
"2023-10-13T08:56:48Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6289.diff", "html_url": "https://github.com/huggingface/datasets/pull/6289", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6289.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6289" }
testing https://github.com/huggingface/doc-builder/pull/426
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6289/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6289/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4958
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4958/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4958/comments
https://api.github.com/repos/huggingface/datasets/issues/4958/events
https://github.com/huggingface/datasets/issues/4958
1,367,695,376
I_kwDODunzps5RhWAQ
4,958
ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/2.4.0/datasets/jsonl/jsonl.py
{ "avatar_url": "https://avatars.githubusercontent.com/u/66322047?v=4", "events_url": "https://api.github.com/users/hasakikiki/events{/privacy}", "followers_url": "https://api.github.com/users/hasakikiki/followers", "following_url": "https://api.github.com/users/hasakikiki/following{/other_user}", "gists_url": "https://api.github.com/users/hasakikiki/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hasakikiki", "id": 66322047, "login": "hasakikiki", "node_id": "MDQ6VXNlcjY2MzIyMDQ3", "organizations_url": "https://api.github.com/users/hasakikiki/orgs", "received_events_url": "https://api.github.com/users/hasakikiki/received_events", "repos_url": "https://api.github.com/users/hasakikiki/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hasakikiki/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hasakikiki/subscriptions", "type": "User", "url": "https://api.github.com/users/hasakikiki" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "I have solved this problem... The extension of the file should be `.json` not `.jsonl`" ]
"2022-09-09T11:29:55Z"
"2022-09-09T11:38:44Z"
"2022-09-09T11:38:44Z"
NONE
null
null
null
Hi, When I use load_dataset from local jsonl files, below error happens, and I type the link into the browser prompting me `404: Not Found`. I download the other `.py` files using the same method and it works. It seems that the server is missing the appropriate file, or it is a problem with the code version. ``` ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/2.3.0/datasets/jsonl/jsonl.py (ConnectionError(MaxRetryError("HTTPSConnectionPool(host='raw.githubusercontent.com', port=443): Max retries exceeded with url: /huggingface/datasets/2.3.0/datasets/jsonl/jsonl.py (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x2b08342004c0>: Failed to establish a new connection: [Errno 101] Network is unreachable'))"))) ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4958/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4958/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5337
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5337/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5337/comments
https://api.github.com/repos/huggingface/datasets/issues/5337/events
https://github.com/huggingface/datasets/issues/5337
1,481,692,156
I_kwDODunzps5YUNP8
5,337
Support webdataset format
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" } ]
null
[ "I like the idea of having `webdataset` as an optional dependency to ensure our loader generates web datasets the same way as the main project.", "Webdataset is the one of the most popular dataset formats for large scale computer vision tasks. Upvote for this issue. ", "Any updates on this?", "We haven't had the bandwidth to implement it so far, but if someone wants to give it a shot please don't hesitate ^^" ]
"2022-12-07T11:32:25Z"
"2023-11-07T10:40:00Z"
null
MEMBER
null
null
null
Webdataset is an efficient format for iterable datasets. It would be nice to support it in `datasets`, as discussed in https://github.com/rom1504/img2dataset/issues/234. In particular it would be awesome to be able to load one using `load_dataset` in streaming mode (either from a local directory, or from a dataset on the Hugging Face Hub). Some datasets on the Hub are already in webdataset format. It terms of implementation, we can have something similar to the Parquet loader. I also think it's fine to have webdataset as an optional dependency.
{ "+1": 3, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/5337/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5337/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/4347
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4347/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4347/comments
https://api.github.com/repos/huggingface/datasets/issues/4347/events
https://github.com/huggingface/datasets/pull/4347
1,235,318,064
PR_kwDODunzps43yihq
4,347
Support remote cache_dir
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "@lhoestq thanks for your review.\r\n\r\nPlease note that `xjoin` cannot be used in this context, as it always returns a POSIX path string and this is not suitable on Windows machines.", "<s>`xjoin` returns windows paths (not posix) on windows, since it just extends`os.path.join` </s>\r\n\r\nActually you are right.\r\n\r\nhttps://github.com/huggingface/datasets/blob/08ec04ccb59630a3029b2ecd8a14d327bddd0c4a/src/datasets/utils/streaming_download_manager.py#L104-L105\r\n\r\nThough this is not an issue because posix paths (as returned by Path().as_posix()) work on windows. That's why we can replace `os.path.join` with `xjoin` in streaming mode. They look like `c:/Program Files/` or something (can't confirm right now, I don't have a windows with me)", "Until now, we have always replaced \"/\" in paths with `os.path.join` (`os.sep`,...) in order to support Windows paths (that contain r\"\\\\\").\r\n\r\nNow, you suggest ignoring this and work with POSIX strings (with \"/\").\r\n\r\nAs an example, when passing `cache_dir=r\"C:\\Users\\Username\\.mycache\"`:\r\n- Until now, it results in `self._cache_downloaded_dir = r\"C:\\Users\\Username\\.mycache\\downloads\"`\r\n- If we use `xjoin`, it will give `self._cache_downloaded_dir = \"C:/Users/Username/.mycache/downloads\"`\r\n\r\nYou say this is OK and we don't care if we work with POSIX strings on Windows machines.\r\n\r\nI'm incorporating your suggested changes then...", "Also note that using `xjoin`, if we pass `cache_dir=\"C:\\\\Users\\\\Username\\\\.mycache\"`, we get:\r\n- `self._cache_dir_root = \"C:\\\\Users\\\\Username\\\\.mycache\"`\r\n- `self._cache_downloaded_dir = \"C:/Users/Username/.mycache/downloads\"`", "It looks like it broke the CI on windows :/ maybe this was not a good idea, sorry" ]
"2022-05-13T14:26:35Z"
"2022-05-25T16:35:23Z"
"2022-05-25T16:27:03Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4347.diff", "html_url": "https://github.com/huggingface/datasets/pull/4347", "merged_at": "2022-05-25T16:27:03Z", "patch_url": "https://github.com/huggingface/datasets/pull/4347.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4347" }
This PR implements complete support for remote `cache_dir`. Before, the support was just partial. This is useful to create datasets using Apache Beam (parallel data processing) builder with `cache_dir` in a remote bucket, e.g., for Wikipedia dataset.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4347/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4347/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2611
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2611/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2611/comments
https://api.github.com/repos/huggingface/datasets/issues/2611/events
https://github.com/huggingface/datasets/pull/2611
940,307,053
MDExOlB1bGxSZXF1ZXN0Njg2Mzk5MjU3
2,611
More consistent naming
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[]
"2021-07-09T00:09:17Z"
"2021-07-13T17:13:19Z"
"2021-07-13T16:08:30Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2611.diff", "html_url": "https://github.com/huggingface/datasets/pull/2611", "merged_at": "2021-07-13T16:08:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/2611.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2611" }
As per @stas00's suggestion in #2500, this PR inserts a space between the logo and the lib name (`πŸ€—Datasets` -> `πŸ€— Datasets`) for consistency with the Transformers lib. Additionally, more consistent names are used for Datasets Hub, etc.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 2, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/2611/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2611/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6418
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6418/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6418/comments
https://api.github.com/repos/huggingface/datasets/issues/6418/events
https://github.com/huggingface/datasets/pull/6418
1,993,224,629
PR_kwDODunzps5fb7lu
6,418
Remove token value from warnings
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005135 / 0.011353 (-0.006218) | 0.002950 / 0.011008 (-0.008058) | 0.062316 / 0.038508 (0.023808) | 0.030068 / 0.023109 (0.006959) | 0.251998 / 0.275898 (-0.023900) | 0.274806 / 0.323480 (-0.048674) | 0.003067 / 0.007986 (-0.004919) | 0.003082 / 0.004328 (-0.001247) | 0.048503 / 0.004250 (0.044253) | 0.045167 / 0.037052 (0.008114) | 0.254277 / 0.258489 (-0.004212) | 0.290528 / 0.293841 (-0.003313) | 0.023666 / 0.128546 (-0.104880) | 0.007049 / 0.075646 (-0.068597) | 0.202367 / 0.419271 (-0.216905) | 0.056291 / 0.043533 (0.012758) | 0.251923 / 0.255139 (-0.003216) | 0.273595 / 0.283200 (-0.009605) | 0.019065 / 0.141683 (-0.122618) | 1.100832 / 1.452155 (-0.351322) | 1.266758 / 1.492716 (-0.225959) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094311 / 0.018006 (0.076305) | 0.303199 / 0.000490 (0.302709) | 0.000238 / 0.000200 (0.000039) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019413 / 0.037411 (-0.017999) | 0.062618 / 0.014526 (0.048092) | 0.072850 / 0.176557 (-0.103707) | 0.119124 / 0.737135 (-0.618012) | 0.074044 / 0.296338 (-0.222294) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.273660 / 0.215209 (0.058451) | 2.682371 / 2.077655 (0.604716) | 1.426041 / 1.504120 (-0.078079) | 1.317186 / 1.541195 (-0.224009) | 1.332385 / 1.468490 (-0.136106) | 0.394599 / 4.584777 (-4.190178) | 2.368167 / 3.745712 (-1.377545) | 2.683728 / 5.269862 (-2.586134) | 1.668348 / 4.565676 (-2.897329) | 0.046177 / 0.424275 (-0.378098) | 0.004833 / 0.007607 (-0.002774) | 0.331413 / 0.226044 (0.105369) | 3.278984 / 2.268929 (1.010055) | 1.797600 / 55.444624 (-53.647024) | 1.492202 / 6.876477 (-5.384274) | 1.536039 / 2.142072 (-0.606034) | 0.470601 / 4.805227 (-4.334626) | 0.100833 / 6.500664 (-6.399831) | 0.042787 / 0.075469 (-0.032682) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.959036 / 1.841788 (-0.882752) | 11.632956 / 8.074308 (3.558648) | 10.384574 / 10.191392 (0.193182) | 0.127477 / 0.680424 (-0.552946) | 0.014072 / 0.534201 (-0.520129) | 0.269534 / 0.579283 (-0.309749) | 0.259753 / 0.434364 (-0.174611) | 0.313450 / 0.540337 (-0.226888) | 0.431799 / 1.386936 (-0.955137) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004964 / 0.011353 (-0.006389) | 0.002906 / 0.011008 (-0.008102) | 0.048145 / 0.038508 (0.009637) | 0.056457 / 0.023109 (0.033348) | 0.274131 / 0.275898 (-0.001767) | 0.298534 / 0.323480 (-0.024946) | 0.004145 / 0.007986 (-0.003841) | 0.002415 / 0.004328 (-0.001913) | 0.048558 / 0.004250 (0.044308) | 0.039031 / 0.037052 (0.001978) | 0.278948 / 0.258489 (0.020459) | 0.312358 / 0.293841 (0.018517) | 0.024902 / 0.128546 (-0.103645) | 0.007286 / 0.075646 (-0.068360) | 0.053839 / 0.419271 (-0.365433) | 0.032510 / 0.043533 (-0.011023) | 0.272023 / 0.255139 (0.016884) | 0.293420 / 0.283200 (0.010221) | 0.018932 / 0.141683 (-0.122750) | 1.122792 / 1.452155 (-0.329362) | 1.167385 / 1.492716 (-0.325331) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094574 / 0.018006 (0.076567) | 0.303810 / 0.000490 (0.303321) | 0.000227 / 0.000200 (0.000027) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021675 / 0.037411 (-0.015737) | 0.070289 / 0.014526 (0.055763) | 0.080345 / 0.176557 (-0.096211) | 0.120220 / 0.737135 (-0.616915) | 0.084080 / 0.296338 (-0.212259) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300134 / 0.215209 (0.084925) | 2.945831 / 2.077655 (0.868176) | 1.605303 / 1.504120 (0.101183) | 1.480135 / 1.541195 (-0.061059) | 1.526039 / 1.468490 (0.057549) | 0.398264 / 4.584777 (-4.186512) | 2.461391 / 3.745712 (-1.284321) | 2.559929 / 5.269862 (-2.709933) | 1.541391 / 4.565676 (-3.024286) | 0.045319 / 0.424275 (-0.378957) | 0.004834 / 0.007607 (-0.002773) | 0.352186 / 0.226044 (0.126141) | 3.500108 / 2.268929 (1.231180) | 1.966394 / 55.444624 (-53.478230) | 1.675500 / 6.876477 (-5.200977) | 1.683134 / 2.142072 (-0.458938) | 0.465085 / 4.805227 (-4.340142) | 0.097235 / 6.500664 (-6.403429) | 0.040764 / 0.075469 (-0.034705) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982813 / 1.841788 (-0.858975) | 12.382529 / 8.074308 (4.308221) | 11.082660 / 10.191392 (0.891268) | 0.129113 / 0.680424 (-0.551310) | 0.015718 / 0.534201 (-0.518483) | 0.272776 / 0.579283 (-0.306507) | 0.275513 / 0.434364 (-0.158850) | 0.304933 / 0.540337 (-0.235404) | 0.414591 / 1.386936 (-0.972345) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8723b129a64928eba40baf70ffd462060ade9f97 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004400 / 0.011353 (-0.006953) | 0.002580 / 0.011008 (-0.008428) | 0.060975 / 0.038508 (0.022467) | 0.029337 / 0.023109 (0.006228) | 0.248643 / 0.275898 (-0.027255) | 0.274476 / 0.323480 (-0.049004) | 0.003925 / 0.007986 (-0.004061) | 0.002332 / 0.004328 (-0.001997) | 0.049501 / 0.004250 (0.045251) | 0.042730 / 0.037052 (0.005678) | 0.255823 / 0.258489 (-0.002666) | 0.281748 / 0.293841 (-0.012093) | 0.023118 / 0.128546 (-0.105428) | 0.006957 / 0.075646 (-0.068690) | 0.201630 / 0.419271 (-0.217641) | 0.054258 / 0.043533 (0.010725) | 0.252289 / 0.255139 (-0.002850) | 0.267561 / 0.283200 (-0.015639) | 0.016903 / 0.141683 (-0.124780) | 1.104322 / 1.452155 (-0.347833) | 1.160027 / 1.492716 (-0.332689) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096340 / 0.018006 (0.078333) | 0.305187 / 0.000490 (0.304697) | 0.000222 / 0.000200 (0.000022) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018733 / 0.037411 (-0.018678) | 0.062382 / 0.014526 (0.047856) | 0.072309 / 0.176557 (-0.104248) | 0.119772 / 0.737135 (-0.617364) | 0.074655 / 0.296338 (-0.221683) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286150 / 0.215209 (0.070941) | 2.770328 / 2.077655 (0.692673) | 1.494593 / 1.504120 (-0.009527) | 1.358611 / 1.541195 (-0.182583) | 1.396308 / 1.468490 (-0.072182) | 0.394806 / 4.584777 (-4.189971) | 2.349100 / 3.745712 (-1.396613) | 2.600541 / 5.269862 (-2.669321) | 1.568975 / 4.565676 (-2.996701) | 0.046212 / 0.424275 (-0.378063) | 0.004821 / 0.007607 (-0.002786) | 0.332286 / 0.226044 (0.106242) | 3.302643 / 2.268929 (1.033714) | 1.838992 / 55.444624 (-53.605633) | 1.571919 / 6.876477 (-5.304557) | 1.574956 / 2.142072 (-0.567117) | 0.464156 / 4.805227 (-4.341071) | 0.097983 / 6.500664 (-6.402681) | 0.042243 / 0.075469 (-0.033226) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.941675 / 1.841788 (-0.900113) | 11.450326 / 8.074308 (3.376017) | 10.169943 / 10.191392 (-0.021449) | 0.137879 / 0.680424 (-0.542545) | 0.013765 / 0.534201 (-0.520436) | 0.268633 / 0.579283 (-0.310650) | 0.265083 / 0.434364 (-0.169281) | 0.302099 / 0.540337 (-0.238238) | 0.423033 / 1.386936 (-0.963903) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004998 / 0.011353 (-0.006355) | 0.003174 / 0.011008 (-0.007834) | 0.047924 / 0.038508 (0.009416) | 0.057598 / 0.023109 (0.034489) | 0.278823 / 0.275898 (0.002925) | 0.334349 / 0.323480 (0.010869) | 0.004053 / 0.007986 (-0.003932) | 0.002554 / 0.004328 (-0.001774) | 0.047797 / 0.004250 (0.043547) | 0.039802 / 0.037052 (0.002749) | 0.278295 / 0.258489 (0.019806) | 0.319597 / 0.293841 (0.025757) | 0.024802 / 0.128546 (-0.103744) | 0.007362 / 0.075646 (-0.068284) | 0.066983 / 0.419271 (-0.352288) | 0.032707 / 0.043533 (-0.010826) | 0.277350 / 0.255139 (0.022211) | 0.296829 / 0.283200 (0.013629) | 0.017902 / 0.141683 (-0.123781) | 1.129765 / 1.452155 (-0.322390) | 1.201940 / 1.492716 (-0.290777) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095631 / 0.018006 (0.077625) | 0.296999 / 0.000490 (0.296510) | 0.000234 / 0.000200 (0.000034) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021547 / 0.037411 (-0.015865) | 0.070003 / 0.014526 (0.055477) | 0.083173 / 0.176557 (-0.093384) | 0.121676 / 0.737135 (-0.615459) | 0.082974 / 0.296338 (-0.213364) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298982 / 0.215209 (0.083773) | 2.918666 / 2.077655 (0.841011) | 1.582054 / 1.504120 (0.077934) | 1.463804 / 1.541195 (-0.077391) | 1.484384 / 1.468490 (0.015893) | 0.399443 / 4.584777 (-4.185334) | 2.393515 / 3.745712 (-1.352197) | 2.533004 / 5.269862 (-2.736858) | 1.490411 / 4.565676 (-3.075266) | 0.045274 / 0.424275 (-0.379002) | 0.004783 / 0.007607 (-0.002824) | 0.350510 / 0.226044 (0.124465) | 3.437927 / 2.268929 (1.168998) | 1.940115 / 55.444624 (-53.504509) | 1.662025 / 6.876477 (-5.214452) | 1.640621 / 2.142072 (-0.501452) | 0.464014 / 4.805227 (-4.341214) | 0.095506 / 6.500664 (-6.405158) | 0.040172 / 0.075469 (-0.035297) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975618 / 1.841788 (-0.866169) | 12.561067 / 8.074308 (4.486759) | 11.408037 / 10.191392 (1.216645) | 0.130699 / 0.680424 (-0.549725) | 0.016796 / 0.534201 (-0.517405) | 0.271130 / 0.579283 (-0.308153) | 0.283506 / 0.434364 (-0.150857) | 0.304482 / 0.540337 (-0.235856) | 0.413673 / 1.386936 (-0.973263) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#723038a73248dd12dc0673d2b341e9295c441ea3 \"CML watermark\")\n" ]
"2023-11-14T17:34:06Z"
"2023-11-14T22:26:04Z"
"2023-11-14T22:19:45Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6418.diff", "html_url": "https://github.com/huggingface/datasets/pull/6418", "merged_at": "2023-11-14T22:19:45Z", "patch_url": "https://github.com/huggingface/datasets/pull/6418.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6418" }
Fix #6412
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6418/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6418/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4141
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4141/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4141/comments
https://api.github.com/repos/huggingface/datasets/issues/4141/events
https://github.com/huggingface/datasets/issues/4141
1,199,610,885
I_kwDODunzps5HgJwF
4,141
Why is the dataset not visible under the dataset preview section?
{ "avatar_url": "https://avatars.githubusercontent.com/u/75028682?v=4", "events_url": "https://api.github.com/users/Nid989/events{/privacy}", "followers_url": "https://api.github.com/users/Nid989/followers", "following_url": "https://api.github.com/users/Nid989/following{/other_user}", "gists_url": "https://api.github.com/users/Nid989/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Nid989", "id": 75028682, "login": "Nid989", "node_id": "MDQ6VXNlcjc1MDI4Njgy", "organizations_url": "https://api.github.com/users/Nid989/orgs", "received_events_url": "https://api.github.com/users/Nid989/received_events", "repos_url": "https://api.github.com/users/Nid989/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Nid989/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Nid989/subscriptions", "type": "User", "url": "https://api.github.com/users/Nid989" }
[ { "color": "E5583E", "default": false, "description": "Related to the dataset viewer on huggingface.co", "id": 3470211881, "name": "dataset-viewer", "node_id": "LA_kwDODunzps7O1zsp", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer" } ]
closed
false
null
[]
null
[]
"2022-04-11T08:36:42Z"
"2022-04-11T18:55:32Z"
"2022-04-11T17:09:49Z"
NONE
null
null
null
## Dataset viewer issue for '*name of the dataset*' **Link:** *link to the dataset viewer page* *short description of the issue* Am I the one who added this dataset ? Yes-No
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4141/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4141/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1097
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1097/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1097/comments
https://api.github.com/repos/huggingface/datasets/issues/1097/events
https://github.com/huggingface/datasets/pull/1097
756,955,729
MDExOlB1bGxSZXF1ZXN0NTMyNDExNzQ4
1,097
Add MSRA NER labels
{ "avatar_url": "https://avatars.githubusercontent.com/u/22514219?v=4", "events_url": "https://api.github.com/users/JetRunner/events{/privacy}", "followers_url": "https://api.github.com/users/JetRunner/followers", "following_url": "https://api.github.com/users/JetRunner/following{/other_user}", "gists_url": "https://api.github.com/users/JetRunner/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JetRunner", "id": 22514219, "login": "JetRunner", "node_id": "MDQ6VXNlcjIyNTE0MjE5", "organizations_url": "https://api.github.com/users/JetRunner/orgs", "received_events_url": "https://api.github.com/users/JetRunner/received_events", "repos_url": "https://api.github.com/users/JetRunner/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JetRunner/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JetRunner/subscriptions", "type": "User", "url": "https://api.github.com/users/JetRunner" }
[]
closed
false
null
[]
null
[]
"2020-12-04T09:38:16Z"
"2020-12-04T13:31:59Z"
"2020-12-04T13:31:58Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1097.diff", "html_url": "https://github.com/huggingface/datasets/pull/1097", "merged_at": "2020-12-04T13:31:58Z", "patch_url": "https://github.com/huggingface/datasets/pull/1097.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1097" }
Fixes #940
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1097/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1097/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/32
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/32/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/32/comments
https://api.github.com/repos/huggingface/datasets/issues/32/events
https://github.com/huggingface/datasets/pull/32
610,715,580
MDExOlB1bGxSZXF1ZXN0NDEyMTAzMzIx
32
Fix map caching notebooks
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2020-05-01T11:55:26Z"
"2020-05-03T12:15:58Z"
"2020-05-03T12:15:57Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/32.diff", "html_url": "https://github.com/huggingface/datasets/pull/32", "merged_at": "2020-05-03T12:15:57Z", "patch_url": "https://github.com/huggingface/datasets/pull/32.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/32" }
Previously, caching results with `.map()` didn't work in notebooks. To reuse a result, `.map()` serializes the functions with `dill.dumps` and then it hashes it. The problem is that when using `dill.dumps` to serialize a function, it also saves its origin (filename + line no.) and the origin of all the `globals` this function needs. However for notebooks and shells, the filename looks like \<ipython-input-13-9ed2afe61d25\> and the line no. changes often. To fix the problem, I added a new dispatch function for code objects that ignore the origin of the code if it comes from a notebook or a python shell. I tested these cases in a notebook: - lambda functions - named functions - methods - classmethods - staticmethods - classes that implement `__call__` The caching now works as expected for all of them :) I also tested the caching in the demo notebook and it works fine !
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/32/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/32/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5584
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5584/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5584/comments
https://api.github.com/repos/huggingface/datasets/issues/5584/events
https://github.com/huggingface/datasets/issues/5584
1,601,821,808
I_kwDODunzps5fedxw
5,584
Unable to load coyo700M dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/3059998?v=4", "events_url": "https://api.github.com/users/manuaero/events{/privacy}", "followers_url": "https://api.github.com/users/manuaero/followers", "following_url": "https://api.github.com/users/manuaero/following{/other_user}", "gists_url": "https://api.github.com/users/manuaero/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/manuaero", "id": 3059998, "login": "manuaero", "node_id": "MDQ6VXNlcjMwNTk5OTg=", "organizations_url": "https://api.github.com/users/manuaero/orgs", "received_events_url": "https://api.github.com/users/manuaero/received_events", "repos_url": "https://api.github.com/users/manuaero/repos", "site_admin": false, "starred_url": "https://api.github.com/users/manuaero/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/manuaero/subscriptions", "type": "User", "url": "https://api.github.com/users/manuaero" }
[]
closed
false
null
[]
null
[ "Hi @manuaero \r\n\r\nThank you for your interest in the COYO dataset.\r\n\r\nOur dataset provides the img-url and alt-text in the form of a parquet, so to utilize the coyo dataset you will need to download it directly.\r\n\r\nWe provide a [guide](https://github.com/kakaobrain/coyo-dataset/blob/main/download/README.md) to download, so check it out.\r\n\r\nThank you." ]
"2023-02-27T19:35:03Z"
"2023-02-28T07:27:59Z"
"2023-02-28T07:27:58Z"
NONE
null
null
null
### Describe the bug Seeing this error when downloading https://huggingface.co/datasets/kakaobrain/coyo-700m: ```ArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.``` Full stack trace ```Downloading and preparing dataset parquet/kakaobrain--coyo-700m to /root/.cache/huggingface/datasets/kakaobrain___parquet/kakaobrain--coyo-700m-ae729692ae3e0073/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec... Downloading data files: 100% 1/1 [00:00<00:00, 63.35it/s] Extracting data files: 100% 1/1 [00:00<00:00, 5.00it/s] --------------------------------------------------------------------------- ArrowInvalid Traceback (most recent call last) [/usr/local/lib/python3.8/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id) 1859 _time = time.time() -> 1860 for _, table in generator: 1861 if max_shard_size is not None and writer._num_bytes > max_shard_size: 9 frames ArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file. The above exception was the direct cause of the following exception: DatasetGenerationError Traceback (most recent call last) [/usr/local/lib/python3.8/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id) 1890 if isinstance(e, SchemaInferenceError) and e.__context__ is not None: 1891 e = e.__context__ -> 1892 raise DatasetGenerationError("An error occurred while generating the dataset") from e 1893 1894 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths) DatasetGenerationError: An error occurred while generating the dataset``` ### Steps to reproduce the bug ``` from datasets import load_dataset hf_dataset = load_dataset("kakaobrain/coyo-700m") ``` ### Expected behavior The above commands load the dataset successfully. Or handles exception and continue loading the remainder. ### Environment info colab. any
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5584/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5584/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1279
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1279/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1279/comments
https://api.github.com/repos/huggingface/datasets/issues/1279/events
https://github.com/huggingface/datasets/pull/1279
759,108,726
MDExOlB1bGxSZXF1ZXN0NTM0MTU4OTY5
1,279
added para_pat
{ "avatar_url": "https://avatars.githubusercontent.com/u/19718818?v=4", "events_url": "https://api.github.com/users/bhavitvyamalik/events{/privacy}", "followers_url": "https://api.github.com/users/bhavitvyamalik/followers", "following_url": "https://api.github.com/users/bhavitvyamalik/following{/other_user}", "gists_url": "https://api.github.com/users/bhavitvyamalik/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bhavitvyamalik", "id": 19718818, "login": "bhavitvyamalik", "node_id": "MDQ6VXNlcjE5NzE4ODE4", "organizations_url": "https://api.github.com/users/bhavitvyamalik/orgs", "received_events_url": "https://api.github.com/users/bhavitvyamalik/received_events", "repos_url": "https://api.github.com/users/bhavitvyamalik/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bhavitvyamalik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bhavitvyamalik/subscriptions", "type": "User", "url": "https://api.github.com/users/bhavitvyamalik" }
[]
closed
false
null
[]
null
[ "Updated with Translation feature type. Working on dataset tags and README", "merging since the CI is fixed on master" ]
"2020-12-08T06:28:47Z"
"2020-12-14T13:41:17Z"
"2020-12-14T13:41:17Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1279.diff", "html_url": "https://github.com/huggingface/datasets/pull/1279", "merged_at": "2020-12-14T13:41:17Z", "patch_url": "https://github.com/huggingface/datasets/pull/1279.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1279" }
Dataset link : https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632 Working on README.md currently
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1279/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1279/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4064
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4064/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4064/comments
https://api.github.com/repos/huggingface/datasets/issues/4064/events
https://github.com/huggingface/datasets/pull/4064
1,186,650,321
PR_kwDODunzps41UqXS
4,064
Contributing MedMCQA dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/17107749?v=4", "events_url": "https://api.github.com/users/monk1337/events{/privacy}", "followers_url": "https://api.github.com/users/monk1337/followers", "following_url": "https://api.github.com/users/monk1337/following{/other_user}", "gists_url": "https://api.github.com/users/monk1337/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/monk1337", "id": 17107749, "login": "monk1337", "node_id": "MDQ6VXNlcjE3MTA3NzQ5", "organizations_url": "https://api.github.com/users/monk1337/orgs", "received_events_url": "https://api.github.com/users/monk1337/received_events", "repos_url": "https://api.github.com/users/monk1337/repos", "site_admin": false, "starred_url": "https://api.github.com/users/monk1337/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/monk1337/subscriptions", "type": "User", "url": "https://api.github.com/users/monk1337" }
[]
closed
false
null
[]
null
[ "@lhoestq Could you please take a look?\r\nThank you!!", "Hi, thank you for the modifications and suggestions. Please check the changes.", "Can you run `make style` to fix the code formatting please ?\r\n\r\nOh and was wrong with the dummy_data.zip file, it must actually be placed at `datasets/medmcqa/dummy/1.1.0/dummy_data.zip` - sorry about that\r\n\r\nCan you also set the class label names to `names=[\"a\", \"b\", \"c\", \"d\"]` to make it explicit which label corresponds to each answer ? You might have to regenerate `dataset_infos.json` after that", "Hi, \r\n\r\n1) Changed the dummy data folder\r\n\r\n2) The labels are not ['a', 'b', 'c', 'd'] rather the labels are [1,2,3,4] where 1 represents the 1'st option, 2nd represents 2nd option so on, and its int.\r\n\r\nI tried changing to ['a','b','c','d'] and while generating `dataset_infos.json` getting this error :\r\n\r\n`ValueError: Class label 4 greater than configured num_classes 4`\r\nPlease check.", "@lhoestq [lhoestq](https://github.com/lhoestq) Please check", "You have this error because we expect the labels to start at 0, not 1. I think you just need to pass `int(data[\"cop\"]) - 1` when generating the examples.\r\n\r\nSorry for the delay in responding btw", "@lhoestq I corrected that but here is another issue I am facing while generating `dataset_infos.json`\r\n\r\nI am using `\" \"` if it's test set and otherwise it's the correct option\r\n\r\nhttps://github.com/monk1337/datasets/blob/179f81d48cdd3093302e498babce04c0bf1e33b3/datasets/medmcqa/medmcqa.py#L111\r\n` \"cop\": \"\" if split == \"test\" else int(data[\"cop\"]) -1,\r\n`\r\n\r\nbut while running this command :\r\n\r\n`datasets-cli test datasets/medmcqa --save_infos --all_configs\r\n`\r\n\r\ngiving this error:\r\n\r\n```\r\n/content/datasets# datasets-cli test datasets/medmcqa --save_infos --all_configs\r\nUsing custom data configuration default\r\nTesting builder 'default' (1/1)\r\nDownloading and preparing dataset med_mcqa/default (download: 52.72 MiB, generated: 128.73 MiB, post-processed: Unknown size, total: 181.46 MiB) to /root/.cache/huggingface/datasets/med_mcqa/default/1.1.0/4c8e418778967b6d9603f79bbfc4fdfbcfffc389664d9aeb85e102cfde418043...\r\nTraceback (most recent call last): \r\n File \"/usr/local/bin/datasets-cli\", line 33, in <module>\r\n sys.exit(load_entry_point('datasets', 'console_scripts', 'datasets-cli')())\r\n File \"/content/datasets/src/datasets/commands/datasets_cli.py\", line 33, in main\r\n service.run()\r\n File \"/content/datasets/src/datasets/commands/test.py\", line 162, in run\r\n try_from_hf_gcs=False,\r\n File \"/content/datasets/src/datasets/builder.py\", line 606, in download_and_prepare\r\n dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n File \"/content/datasets/src/datasets/builder.py\", line 1104, in _download_and_prepare\r\n super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos)\r\n File \"/content/datasets/src/datasets/builder.py\", line 694, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/content/datasets/src/datasets/builder.py\", line 1095, in _prepare_split\r\n example = self.info.features.encode_example(record)\r\n File \"/content/datasets/src/datasets/features/features.py\", line 1356, in encode_example\r\n return encode_nested_example(self, example)\r\n File \"/content/datasets/src/datasets/features/features.py\", line 1007, in encode_nested_example\r\n return {k: encode_nested_example(sub_schema, sub_obj) for k, (sub_schema, sub_obj) in zip_dict(schema, obj)}\r\n File \"/content/datasets/src/datasets/features/features.py\", line 1007, in <dictcomp>\r\n return {k: encode_nested_example(sub_schema, sub_obj) for k, (sub_schema, sub_obj) in zip_dict(schema, obj)}\r\n File \"/content/datasets/src/datasets/features/features.py\", line 1052, in encode_nested_example\r\n return schema.encode_example(obj) if obj is not None else None\r\n File \"/content/datasets/src/datasets/features/features.py\", line 897, in encode_example\r\n example_data = self.str2int(example_data)\r\n File \"/content/datasets/src/datasets/features/features.py\", line 854, in str2int\r\n output.append(self._str2int[str(value)])\r\nKeyError: ''\r\n```", "Hey ! You can use this instead:\r\n`\"cop\": -1 if split == \"test\" else int(data[\"cop\"]) -1`", "@lhoestq Thank you for your assistance, and I have updated the `dataset_infos.json` without any error. All the issues are resolved. Please review and approve if it's ready to merge.", "Thanks ! There are two things to fic the CI:\r\n1. run `make style` to fix code formatting\r\n2. fix the dummy_data.zip file. Currently it's created from a directory called \"dummy\" that contains the JSON file, but it should be called \"dummy_data\" instead", "@lhoestq Please check if anything else needs to be done :) ", "Let me gently remind you that you can check the CI before pinging reviewers, this way you can know if something needs to be fixed right away.\r\n\r\nRight now, if you check the CI, you will see that you didn't fix the code formatting, and that you didn't fix the dummy data.\r\n\r\nLet me take a look", "_The documentation is not available anymore as the PR was closed or merged._", "Hi @lhoestq, I am sorry if I pinged multiple times; I have already corrected the dummy_data file issues and format issue before pinging for the merge request, as you commented last time\r\n\r\n_fix the dummy_data.zip file. Currently, it's created from a directory called \"dummy\" that contains the JSON file, but it should be called \"dummy_data\" instead._\r\n\r\nI fixed the file name and location.\r\n\r\nAnd I also ran the commands last time.\r\n\r\n```\r\nmake style\r\nflake8 datasets\r\n```\r\nPlease let me know if anything else needs to be changed.", "Thanks a lot @monk1337 ! :)" ]
"2022-03-30T15:42:47Z"
"2022-05-06T09:40:40Z"
"2022-05-06T08:42:56Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4064.diff", "html_url": "https://github.com/huggingface/datasets/pull/4064", "merged_at": "2022-05-06T08:42:56Z", "patch_url": "https://github.com/huggingface/datasets/pull/4064.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4064" }
Adding MedMCQA dataset ( https://paperswithcode.com/dataset/medmcqa ) **Name**: MedMCQA **Description**: MedMCQA is a large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address real-world medical entrance exam questions. MedMCQA has more than 194k high-quality AIIMS & NEET PG entrance exam MCQs covering 2.4k healthcare topics and 21 medical subjects are collected with an average token length of 12.77 and high topical diversity. The dataset contains questions about the following topics: Anesthesia, Anatomy, Biochemistry, Dental, ENT, Forensic Medicine (FM), Obstetrics and Gynecology (O&G), Medicine, Microbiology, Ophthalmology, Orthopedics Pathology, Pediatrics, Pharmacology, Physiology, Psychiatry, Radiology Skin, Preventive & Social Medicine (PSM), and Surgery **Code**: https://github.com/medmcqa/medmcqa All files are at place : **a dataset script** : medmcqa.py **a dataset card with tags and information** : README.md. **a metadata file** : dataset_infos.json **a dummy-data file** : Please help to generate this file, I was facing ` raise JSONDecodeError("Extra data", s, end)` error
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4064/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4064/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5781
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5781/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5781/comments
https://api.github.com/repos/huggingface/datasets/issues/5781/events
https://github.com/huggingface/datasets/issues/5781
1,679,580,460
I_kwDODunzps5kHF0s
5,781
Error using `load_datasets`
{ "avatar_url": "https://avatars.githubusercontent.com/u/61463108?v=4", "events_url": "https://api.github.com/users/gjyoungjr/events{/privacy}", "followers_url": "https://api.github.com/users/gjyoungjr/followers", "following_url": "https://api.github.com/users/gjyoungjr/following{/other_user}", "gists_url": "https://api.github.com/users/gjyoungjr/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gjyoungjr", "id": 61463108, "login": "gjyoungjr", "node_id": "MDQ6VXNlcjYxNDYzMTA4", "organizations_url": "https://api.github.com/users/gjyoungjr/orgs", "received_events_url": "https://api.github.com/users/gjyoungjr/received_events", "repos_url": "https://api.github.com/users/gjyoungjr/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gjyoungjr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gjyoungjr/subscriptions", "type": "User", "url": "https://api.github.com/users/gjyoungjr" }
[]
closed
false
null
[]
null
[ "It looks like an issue with your installation of scipy, can you try reinstalling it ?", "Sorry for the late reply, but that worked @lhoestq . Thanks for the assist." ]
"2023-04-22T15:10:44Z"
"2023-05-02T23:41:25Z"
"2023-05-02T23:41:25Z"
NONE
null
null
null
### Describe the bug I tried to load a dataset using the `datasets` library in a conda jupyter notebook and got the below error. ``` ImportError: dlopen(/Users/gilbertyoung/miniforge3/envs/review_sense/lib/python3.8/site-packages/scipy/sparse/linalg/_isolve/_iterative.cpython-38-darwin.so, 0x0002): Library not loaded: @rpath/liblapack.3.dylib Referenced from: <65B094A2-59D7-31AC-A966-4DB9E11D2A15> /Users/gilbertyoung/miniforge3/envs/review_sense/lib/python3.8/site-packages/scipy/sparse/linalg/_isolve/_iterative.cpython-38-darwin.so Reason: tried: '/Users/gilbertyoung/miniforge3/envs/review_sense/lib/python3.8/site-packages/scipy/sparse/linalg/_isolve/liblapack.3.dylib' (no such file), '/Users/gilbertyoung/miniforge3/envs/review_sense/lib/python3.8/site-packages/scipy/sparse/linalg/_isolve/../../../../../../liblapack.3.dylib' (no such file), '/Users/gilbertyoung/miniforge3/envs/review_sense/lib/python3.8/site-packages/scipy/sparse/linalg/_isolve/liblapack.3.dylib' (no such file), '/Users/gilbertyoung/miniforge3/envs/review_sense/lib/python3.8/site-packages/scipy/sparse/linalg/_isolve/../../../../../../liblapack.3.dylib' (no such file), '/Users/gilbertyoung/miniforge3/envs/review_sense/bin/../lib/liblapack.3.dylib' (no such file), '/Users/gilbertyoung/miniforge3/envs/review_sense/bin/../lib/liblapack.3.dylib' (no such file), '/usr/local/lib/liblapack.3.dylib' (no such file), '/usr/lib/liblapack.3.dylib' (no such file, not in dyld cache) ``` ### Steps to reproduce the bug Run the `load_datasets` function ### Expected behavior I expected the dataset to be loaded into my notebook. ### Environment info name: review_sense channels: - apple - conda-forge dependencies: - python=3.8 - pip>=19.0 - jupyter - tensorflow-deps #- scikit-learn #- scipy - pandas - pandas-datareader - matplotlib - pillow - tqdm - requests - h5py - pyyaml - flask - boto3 - ipykernel - seaborn - pip: - tensorflow-macos==2.9 - tensorflow-metal==0.5.0 - bayesian-optimization - gym - kaggle - huggingface_hub - datasets - numpy - huggingface
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5781/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5781/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6118
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6118/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6118/comments
https://api.github.com/repos/huggingface/datasets/issues/6118/events
https://github.com/huggingface/datasets/issues/6118
1,835,940,417
I_kwDODunzps5tbjpB
6,118
IterableDataset.from_generator() fails with pickle error when provided a generator or iterator
{ "avatar_url": "https://avatars.githubusercontent.com/u/1281051?v=4", "events_url": "https://api.github.com/users/finkga/events{/privacy}", "followers_url": "https://api.github.com/users/finkga/followers", "following_url": "https://api.github.com/users/finkga/following{/other_user}", "gists_url": "https://api.github.com/users/finkga/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/finkga", "id": 1281051, "login": "finkga", "node_id": "MDQ6VXNlcjEyODEwNTE=", "organizations_url": "https://api.github.com/users/finkga/orgs", "received_events_url": "https://api.github.com/users/finkga/received_events", "repos_url": "https://api.github.com/users/finkga/repos", "site_admin": false, "starred_url": "https://api.github.com/users/finkga/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/finkga/subscriptions", "type": "User", "url": "https://api.github.com/users/finkga" }
[]
open
false
null
[]
null
[ "Hi! `IterableDataset.from_generator` expects a generator function, not the object (to be consistent with `Dataset.from_generator`).\r\n\r\nYou can fix the above snippet as follows:\r\n```python\r\ntrain_dataset = IterableDataset.from_generator(line_generator, fn_kwargs={\"files\": model_training_files})\r\n```", "to anyone reaching this issue, the argument is `gen_kwargs`:\r\n```py\r\ntrain_dataset = IterableDataset.from_generator(line_generator, gen_kwargs={\"files\": model_training_files})\r\n```" ]
"2023-08-04T01:45:04Z"
"2023-12-04T09:28:50Z"
null
NONE
null
null
null
### Describe the bug **Description** Providing a generator in an instantiation of IterableDataset.from_generator() fails with `TypeError: cannot pickle 'generator' object` when the generator argument is supplied with a generator. **Code example** ``` def line_generator(files: List[Path]): if isinstance(files, str): files = [Path(files)] for file in files: if isinstance(file, str): file = Path(file) yield from open(file,'r').readlines() ... model_training_files = ['file1.txt', 'file2.txt', 'file3.txt'] train_dataset = IterableDataset.from_generator(generator=line_generator(model_training_files)) ``` **Traceback** Traceback (most recent call last): File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.9/lib/python3.9/contextlib.py", line 135, in __exit__ self.gen.throw(type, value, traceback) File "/Users/d3p692/code/clem_bert/venv/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 691, in _no_cache_fields yield File "/Users/d3p692/code/clem_bert/venv/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 701, in dumps dump(obj, file) File "/Users/d3p692/code/clem_bert/venv/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 676, in dump Pickler(file, recurse=True).dump(obj) File "/Users/d3p692/code/clem_bert/venv/lib/python3.9/site-packages/dill/_dill.py", line 394, in dump StockPickler.dump(self, obj) File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.9/lib/python3.9/pickle.py", line 487, in dump self.save(obj) File "/Users/d3p692/code/clem_bert/venv/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 666, in save dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File "/Users/d3p692/code/clem_bert/venv/lib/python3.9/site-packages/dill/_dill.py", line 388, in save StockPickler.save(self, obj, save_persistent_id) File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.9/lib/python3.9/pickle.py", line 560, in save f(self, obj) # Call unbound method with explicit self File "/Users/d3p692/code/clem_bert/venv/lib/python3.9/site-packages/dill/_dill.py", line 1186, in save_module_dict StockPickler.save_dict(pickler, obj) File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.9/lib/python3.9/pickle.py", line 971, in save_dict self._batch_setitems(obj.items()) File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.9/lib/python3.9/pickle.py", line 997, in _batch_setitems save(v) File "/Users/d3p692/code/clem_bert/venv/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 666, in save dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File "/Users/d3p692/code/clem_bert/venv/lib/python3.9/site-packages/dill/_dill.py", line 388, in save StockPickler.save(self, obj, save_persistent_id) File "/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.9/lib/python3.9/pickle.py", line 578, in save rv = reduce(self.proto) TypeError: cannot pickle 'generator' object ### Steps to reproduce the bug 1. Create a set of text files to iterate over. 2. Create a generator that returns the lines in each file until all files are exhausted. 3. Instantiate the dataset over the generator by instantiating an IterableDataset.from_generator(). 4. Wait for the explosion. ### Expected behavior I would expect that since the function claims to accept a generator that there would be no crash. Instead, I would expect the dataset to return all the lines in the files as queued up in the `line_generator()` function. ### Environment info datasets.__version__ == '2.13.1' Python 3.9.6 Platform: Darwin WE35261 22.5.0 Darwin Kernel Version 22.5.0: Thu Jun 8 22:22:22 PDT 2023; root:xnu-8796.121.3~7/RELEASE_X86_64 x86_64
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6118/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6118/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/2272
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2272/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2272/comments
https://api.github.com/repos/huggingface/datasets/issues/2272/events
https://github.com/huggingface/datasets/issues/2272
869,017,977
MDU6SXNzdWU4NjkwMTc5Nzc=
2,272
Bug in Dataset.class_encode_column
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "This has been fixed in this commit: https://github.com/huggingface/datasets/pull/2254/commits/88676c930216cd4cc31741b99827b477d2b46cb6\r\n\r\nIt was introduced in #2246 : using map with `input_columns` doesn't return the other columns anymore" ]
"2021-04-27T16:13:18Z"
"2021-04-30T12:54:27Z"
"2021-04-30T12:54:27Z"
MEMBER
null
null
null
## Describe the bug All the rest of the columns except the one passed to `Dataset.class_encode_column` are discarded. ## Expected results All the original columns should be kept. This needs regression tests.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2272/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2272/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/129
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/129/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/129/comments
https://api.github.com/repos/huggingface/datasets/issues/129/events
https://github.com/huggingface/datasets/issues/129
618,997,725
MDU6SXNzdWU2MTg5OTc3MjU=
129
[Feature request] Add Google Natural Question dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/1175888?v=4", "events_url": "https://api.github.com/users/elyase/events{/privacy}", "followers_url": "https://api.github.com/users/elyase/followers", "following_url": "https://api.github.com/users/elyase/following{/other_user}", "gists_url": "https://api.github.com/users/elyase/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/elyase", "id": 1175888, "login": "elyase", "node_id": "MDQ6VXNlcjExNzU4ODg=", "organizations_url": "https://api.github.com/users/elyase/orgs", "received_events_url": "https://api.github.com/users/elyase/received_events", "repos_url": "https://api.github.com/users/elyase/repos", "site_admin": false, "starred_url": "https://api.github.com/users/elyase/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elyase/subscriptions", "type": "User", "url": "https://api.github.com/users/elyase" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
[]
null
[ "Indeed, I think this one is almost ready cc @lhoestq ", "I'm doing the latest adjustments to make the processing of the dataset run on Dataflow", "Is there an update to this? It will be very beneficial for the QA community!", "Still work in progress :)\r\nThe idea is to have the dataset already processed somewhere so that the user only have to download the processed files. I'm also doing it for wikipedia.", "Super appreciate your hard work !!\r\nI'll cross my fingers and hope easily loadable wikipedia dataset will come soon. ", "Quick update on NQ: due to some limitations I met using apache beam + parquet I was not able to use the dataset in a nested parquet structure in python to convert it to our Apache Arrow format yet.\r\nHowever we had planned to change this conversion step anyways so we'll make just sure that it enables to process and convert the NQ dataset to arrow.", "NQ was added in #427 πŸŽ‰" ]
"2020-05-15T14:14:20Z"
"2020-07-23T13:21:29Z"
"2020-07-23T13:21:29Z"
NONE
null
null
null
Would be great to have https://github.com/google-research-datasets/natural-questions as an alternative to SQuAD.
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/129/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/129/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4857
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4857/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4857/comments
https://api.github.com/repos/huggingface/datasets/issues/4857/events
https://github.com/huggingface/datasets/issues/4857
1,340,397,153
I_kwDODunzps5P5NZh
4,857
No preprocessed wikipedia is working on huggingface/datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/30733039?v=4", "events_url": "https://api.github.com/users/aninrusimha/events{/privacy}", "followers_url": "https://api.github.com/users/aninrusimha/followers", "following_url": "https://api.github.com/users/aninrusimha/following{/other_user}", "gists_url": "https://api.github.com/users/aninrusimha/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/aninrusimha", "id": 30733039, "login": "aninrusimha", "node_id": "MDQ6VXNlcjMwNzMzMDM5", "organizations_url": "https://api.github.com/users/aninrusimha/orgs", "received_events_url": "https://api.github.com/users/aninrusimha/received_events", "repos_url": "https://api.github.com/users/aninrusimha/repos", "site_admin": false, "starred_url": "https://api.github.com/users/aninrusimha/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/aninrusimha/subscriptions", "type": "User", "url": "https://api.github.com/users/aninrusimha" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Thanks for reporting @aninrusimha.\r\n\r\nPlease, note that the preprocessed datasets are still available, as described in the dataset card, e.g.: https://huggingface.co/datasets/wikipedia\r\n```python\r\nds = load_dataset(\"wikipedia\", \"20220301.en\")\r\n``` ", "This is working now, but I was getting an error a few days ago when running an existing script. Unfortunately I did not do a proper bug report, but for some reason I was unable to load the dataset due to a request being made to the wikimedia website. However, its working now. Thanks for the reply!" ]
"2022-08-16T13:55:33Z"
"2022-08-17T13:35:08Z"
"2022-08-17T13:35:08Z"
NONE
null
null
null
## Describe the bug 20220301 wikipedia dump has been deprecated, so now there is no working wikipedia dump on huggingface https://huggingface.co/datasets/wikipedia https://dumps.wikimedia.org/enwiki/
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4857/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4857/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/783
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/783/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/783/comments
https://api.github.com/repos/huggingface/datasets/issues/783/events
https://github.com/huggingface/datasets/pull/783
733,536,254
MDExOlB1bGxSZXF1ZXN0NTEzMzAwODUz
783
updated links to v1.3 of quail, fixed the description
{ "avatar_url": "https://avatars.githubusercontent.com/u/1450322?v=4", "events_url": "https://api.github.com/users/annargrs/events{/privacy}", "followers_url": "https://api.github.com/users/annargrs/followers", "following_url": "https://api.github.com/users/annargrs/following{/other_user}", "gists_url": "https://api.github.com/users/annargrs/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/annargrs", "id": 1450322, "login": "annargrs", "node_id": "MDQ6VXNlcjE0NTAzMjI=", "organizations_url": "https://api.github.com/users/annargrs/orgs", "received_events_url": "https://api.github.com/users/annargrs/received_events", "repos_url": "https://api.github.com/users/annargrs/repos", "site_admin": false, "starred_url": "https://api.github.com/users/annargrs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/annargrs/subscriptions", "type": "User", "url": "https://api.github.com/users/annargrs" }
[]
closed
false
null
[]
null
[ "we're using quail 1.3 now thanks.\r\nclosing this one" ]
"2020-10-30T21:47:33Z"
"2020-11-29T23:05:19Z"
"2020-11-29T23:05:18Z"
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/783.diff", "html_url": "https://github.com/huggingface/datasets/pull/783", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/783.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/783" }
updated links to v1.3 of quail, fixed the description
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/783/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/783/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2735
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2735/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2735/comments
https://api.github.com/repos/huggingface/datasets/issues/2735/events
https://github.com/huggingface/datasets/issues/2735
956,889,365
MDU6SXNzdWU5NTY4ODkzNjU=
2,735
Add Open Buildings dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
open
false
null
[]
null
[]
"2021-07-30T16:08:39Z"
"2021-07-31T05:01:25Z"
null
MEMBER
null
null
null
## Adding a Dataset - **Name:** Open Buildings - **Description:** A dataset of building footprints to support social good applications. Building footprints are useful for a range of important applications, from population estimation, urban planning and humanitarian response, to environmental and climate science. This large-scale open dataset contains the outlines of buildings derived from high-resolution satellite imagery in order to support these types of uses. The project being based in Ghana, the current focus is on the continent of Africa. See: "Mapping Africa's Buildings with Satellite Imagery" https://ai.googleblog.com/2021/07/mapping-africas-buildings-with.html - **Paper:** https://arxiv.org/abs/2107.12283 - **Data:** https://sites.research.google/open-buildings/ - **Motivation:** *what are some good reasons to have this dataset* Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Reported by: @osanseviero
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2735/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2735/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/631
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/631/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/631/comments
https://api.github.com/repos/huggingface/datasets/issues/631/events
https://github.com/huggingface/datasets/pull/631
701,711,255
MDExOlB1bGxSZXF1ZXN0NDg3MTE3OTA0
631
Fix text delimiter
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "Which OS are you using ?@abhi1nandy2", "> Which OS are you using ?\r\n\r\nPRETTY_NAME=\"Debian GNU/Linux 9 (stretch)\"\r\nNAME=\"Debian GNU/Linux\"\r\nVERSION_ID=\"9\"\r\nVERSION=\"9 (stretch)\"\r\nVERSION_CODENAME=stretch\r\nID=debian\r\nHOME_URL=\"https://www.debian.org/\"\r\nSUPPORT_URL=\"https://www.debian.org/support\"\r\nBUG_REPORT_URL=\"https://bugs.debian.org/\"", "Do you mind sharing the data you used (or part of it), so I can try to reproduce ?\r\nOr at least some info about the text file you're using ? (size, n of lines, encoding)", "Lot of data, difficult to share. There are 46 shards, each having about 256000 lines. using `file` command gives this - `ASCII text, with very long lines`.", "Ok I see, no problem :) \r\nI'll see what I can do\r\n\r\nCould you just test with one single dummy text file with a few lines to see if you're having the issue ?\r\nAlso which version of `datasets` do you have ?" ]
"2020-09-15T08:08:42Z"
"2020-09-22T15:03:06Z"
"2020-09-15T08:26:25Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/631.diff", "html_url": "https://github.com/huggingface/datasets/pull/631", "merged_at": "2020-09-15T08:26:25Z", "patch_url": "https://github.com/huggingface/datasets/pull/631.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/631" }
I changed the delimiter in the `text` dataset script. It should fix the `pyarrow.lib.ArrowInvalid: CSV parse error` from #622 I changed the delimiter to an unused ascii character that is not present in text files : `\b`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/631/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/631/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5046
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5046/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5046/comments
https://api.github.com/repos/huggingface/datasets/issues/5046/events
https://github.com/huggingface/datasets/issues/5046
1,391,372,519
I_kwDODunzps5S7qjn
5,046
Audiofolder creates empty Dataset if files same level as metadata
{ "avatar_url": "https://avatars.githubusercontent.com/u/577139?v=4", "events_url": "https://api.github.com/users/msis/events{/privacy}", "followers_url": "https://api.github.com/users/msis/followers", "following_url": "https://api.github.com/users/msis/following{/other_user}", "gists_url": "https://api.github.com/users/msis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/msis", "id": 577139, "login": "msis", "node_id": "MDQ6VXNlcjU3NzEzOQ==", "organizations_url": "https://api.github.com/users/msis/orgs", "received_events_url": "https://api.github.com/users/msis/received_events", "repos_url": "https://api.github.com/users/msis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/msis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/msis/subscriptions", "type": "User", "url": "https://api.github.com/users/msis" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" }, { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" }, { "color": "DF8D62", "default": false, "description": "", "id": 4614514401, "name": "hacktoberfest", "node_id": "LA_kwDODunzps8AAAABEwvm4Q", "url": "https://api.github.com/repos/huggingface/datasets/labels/hacktoberfest" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/9295277?v=4", "events_url": "https://api.github.com/users/riccardobucco/events{/privacy}", "followers_url": "https://api.github.com/users/riccardobucco/followers", "following_url": "https://api.github.com/users/riccardobucco/following{/other_user}", "gists_url": "https://api.github.com/users/riccardobucco/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/riccardobucco", "id": 9295277, "login": "riccardobucco", "node_id": "MDQ6VXNlcjkyOTUyNzc=", "organizations_url": "https://api.github.com/users/riccardobucco/orgs", "received_events_url": "https://api.github.com/users/riccardobucco/received_events", "repos_url": "https://api.github.com/users/riccardobucco/repos", "site_admin": false, "starred_url": "https://api.github.com/users/riccardobucco/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/riccardobucco/subscriptions", "type": "User", "url": "https://api.github.com/users/riccardobucco" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/9295277?v=4", "events_url": "https://api.github.com/users/riccardobucco/events{/privacy}", "followers_url": "https://api.github.com/users/riccardobucco/followers", "following_url": "https://api.github.com/users/riccardobucco/following{/other_user}", "gists_url": "https://api.github.com/users/riccardobucco/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/riccardobucco", "id": 9295277, "login": "riccardobucco", "node_id": "MDQ6VXNlcjkyOTUyNzc=", "organizations_url": "https://api.github.com/users/riccardobucco/orgs", "received_events_url": "https://api.github.com/users/riccardobucco/received_events", "repos_url": "https://api.github.com/users/riccardobucco/repos", "site_admin": false, "starred_url": "https://api.github.com/users/riccardobucco/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/riccardobucco/subscriptions", "type": "User", "url": "https://api.github.com/users/riccardobucco" } ]
null
[ "Hi! Unfortunately, I can't reproduce this behavior. Instead, I get `ValueError: audio at 2063_fe9936e7-62b2-4e62-a276-acbd344480ce_1.wav doesn't have metadata in /audio-data/metadata.csv`, which can be fixed by removing the `./` from the file name.\r\n\r\n(Link to a Colab that tries to reproduce this behavior: https://colab.research.google.com/drive/1IhQzULYi0Van1xLrN_SddBX1JF7mLZZK?usp=sharing)", "I think we can make the file name matching part more robust by replacing `file_name` with `os.path.normpath(file_name)`, to ignore \"./\" among other things, in these two places:\r\n* https://github.com/huggingface/datasets/blob/85cd129bde605cd9acacdff0d065fc02e39e09b1/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py#L319\r\n* https://github.com/huggingface/datasets/blob/85cd129bde605cd9acacdff0d065fc02e39e09b1/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py#L388", "@mariosasko Some tests failed (see my PR). Any thoughts on that?", "Yes, I mentioned the solution in my review.", "I realized what I was doing wrong.\r\n\r\nThe documentation puts the files in a subfolder.\r\nOnce I have done that, it worked.\r\n\r\nBut l agree that this should be handled better if possible." ]
"2022-09-29T19:17:23Z"
"2022-10-28T13:05:07Z"
"2022-10-28T13:05:07Z"
NONE
null
null
null
## Describe the bug When audio files are at the same level as the metadata (`metadata.csv` or `metadata.jsonl` ), the `load_dataset` returns a `DatasetDict` with no rows but the correct columns. https://github.com/huggingface/datasets/blob/1ea4d091b7a4b83a85b2eeb8df65115d39af3766/docs/source/audio_dataset.mdx?plain=1#L88 ## Steps to reproduce the bug `metadata.csv`: ```csv file_name,duration,transcription ./2063_fe9936e7-62b2-4e62-a276-acbd344480ce_1.wav,10.768,hello ``` ```python >>> audio_dataset = load_dataset("audiofolder", data_dir="/audio-data/") >>> audio_dataset DatasetDict({ train: Dataset({ features: ['audio', 'duration', 'transcription'], num_rows: 0 }) validation: Dataset({ features: ['audio', 'duration', 'transcription'], num_rows: 0 }) }) ``` I've tried, with no success,: - setting `split` to something else so I don't get a `DatasetDict`, - removing the `./`, - using `.jsonl`. ## Expected results ``` Dataset({ features: ['audio', 'duration', 'transcription'], num_rows: 1 }) ``` ## Actual results ``` DatasetDict({ train: Dataset({ features: ['audio', 'duration', 'transcription'], num_rows: 0 }) validation: Dataset({ features: ['audio', 'duration', 'transcription'], num_rows: 0 }) }) ``` ## Environment info - `datasets` version: 2.5.1 - Platform: Linux-5.13.0-1025-aws-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 9.0.0 - Pandas version: 1.5.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5046/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5046/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/791
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/791/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/791/comments
https://api.github.com/repos/huggingface/datasets/issues/791/events
https://github.com/huggingface/datasets/pull/791
734,656,518
MDExOlB1bGxSZXF1ZXN0NTE0MTg0MzU5
791
add amazon reviews
{ "avatar_url": "https://avatars.githubusercontent.com/u/9353833?v=4", "events_url": "https://api.github.com/users/joeddav/events{/privacy}", "followers_url": "https://api.github.com/users/joeddav/followers", "following_url": "https://api.github.com/users/joeddav/following{/other_user}", "gists_url": "https://api.github.com/users/joeddav/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/joeddav", "id": 9353833, "login": "joeddav", "node_id": "MDQ6VXNlcjkzNTM4MzM=", "organizations_url": "https://api.github.com/users/joeddav/orgs", "received_events_url": "https://api.github.com/users/joeddav/received_events", "repos_url": "https://api.github.com/users/joeddav/repos", "site_admin": false, "starred_url": "https://api.github.com/users/joeddav/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/joeddav/subscriptions", "type": "User", "url": "https://api.github.com/users/joeddav" }
[]
closed
false
null
[]
null
[ "@patrickvonplaten Yeah this is adapted from tfds so a lot is just how they wrote the code. Addressed your comments and also simplified the weird `AmazonUSReviewsConfig` definition. Will merge once tests pass.", "Thanks for checking this one :) \r\nLooks good to me \r\n\r\nJust one question : is there a particular reason to use `names=[\"Y\", \"N\"]` in this order ? Usually the positive label is at index 1 and the negative one at index 0 for binary classification", "> is there a particular reason to use `names=[\"Y\", \"N\"]` in this order ? Usually the positive label is at index 1 and the negative one at index 0 for binary classification\r\n\r\nHmm that's a good point. I'll submit a quick fix.\r\n\r\n" ]
"2020-11-02T16:42:57Z"
"2020-11-03T20:15:06Z"
"2020-11-03T16:43:57Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/791.diff", "html_url": "https://github.com/huggingface/datasets/pull/791", "merged_at": "2020-11-03T16:43:57Z", "patch_url": "https://github.com/huggingface/datasets/pull/791.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/791" }
Adds the Amazon US Reviews dataset as requested in #353. Converted from [TensorFlow Datasets](https://www.tensorflow.org/datasets/catalog/amazon_us_reviews). cc @clmnt @sshleifer
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 2, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/791/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/791/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3879
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3879/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3879/comments
https://api.github.com/repos/huggingface/datasets/issues/3879/events
https://github.com/huggingface/datasets/pull/3879
1,164,311,612
PR_kwDODunzps40MP7f
3,879
SQuAD v2 metric: create README.md
{ "avatar_url": "https://avatars.githubusercontent.com/u/14205986?v=4", "events_url": "https://api.github.com/users/sashavor/events{/privacy}", "followers_url": "https://api.github.com/users/sashavor/followers", "following_url": "https://api.github.com/users/sashavor/following{/other_user}", "gists_url": "https://api.github.com/users/sashavor/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sashavor", "id": 14205986, "login": "sashavor", "node_id": "MDQ6VXNlcjE0MjA1OTg2", "organizations_url": "https://api.github.com/users/sashavor/orgs", "received_events_url": "https://api.github.com/users/sashavor/received_events", "repos_url": "https://api.github.com/users/sashavor/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sashavor/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sashavor/subscriptions", "type": "User", "url": "https://api.github.com/users/sashavor" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_3879). All of your documentation changes will be reflected on that endpoint." ]
"2022-03-09T18:47:56Z"
"2022-03-10T16:48:59Z"
"2022-03-10T16:48:59Z"
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3879.diff", "html_url": "https://github.com/huggingface/datasets/pull/3879", "merged_at": "2022-03-10T16:48:58Z", "patch_url": "https://github.com/huggingface/datasets/pull/3879.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3879" }
Proposing SQuAD v2 metric card
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3879/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3879/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5106
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5106/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5106/comments
https://api.github.com/repos/huggingface/datasets/issues/5106/events
https://github.com/huggingface/datasets/pull/5106
1,406,635,758
PR_kwDODunzps5ArM6G
5,106
Fix task template reload from dict
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "> Just wondering if there might be other data classes default values missed that could cause an issue... Apart from feature-like classes and tasks, I don't see any others though...\r\n\r\nI think we're good ! `asdict` is used on the DatasetInfo attributes like features, tasks etc. and they all support dict conversion properly now\r\n\r\n> And a question: but this information about the tasks is no longer being saved as YAML tags in the dataset card; won't be a problem with current datasets using task templates (with this information in their metadata JSON) once we replace the JSON by the YAML tags (which do not have this information about the task templates)?\r\n\r\nIn the long run we'll use the train_eval_index YAML tags instead, but I agree when removing the JSON files we should try to not break existing code that may rely on this" ]
"2022-10-12T18:33:49Z"
"2022-10-13T09:59:07Z"
"2022-10-13T09:56:51Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5106.diff", "html_url": "https://github.com/huggingface/datasets/pull/5106", "merged_at": "2022-10-13T09:56:51Z", "patch_url": "https://github.com/huggingface/datasets/pull/5106.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5106" }
Since #4926 the JSON dumps are simplified and it made task template dicts empty by default. I fixed this by always including the task name which is needed to reload a task from a dict
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5106/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5106/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4677
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4677/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4677/comments
https://api.github.com/repos/huggingface/datasets/issues/4677/events
https://github.com/huggingface/datasets/issues/4677
1,302,258,440
I_kwDODunzps5NnuMI
4,677
Random 400 Client Error when pushing dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/577139?v=4", "events_url": "https://api.github.com/users/msis/events{/privacy}", "followers_url": "https://api.github.com/users/msis/followers", "following_url": "https://api.github.com/users/msis/following{/other_user}", "gists_url": "https://api.github.com/users/msis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/msis", "id": 577139, "login": "msis", "node_id": "MDQ6VXNlcjU3NzEzOQ==", "organizations_url": "https://api.github.com/users/msis/orgs", "received_events_url": "https://api.github.com/users/msis/received_events", "repos_url": "https://api.github.com/users/msis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/msis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/msis/subscriptions", "type": "User", "url": "https://api.github.com/users/msis" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "did you ever fix this? I'm experiencing the same", "I am having the same issue. Even the simple example from the documentation gives me the 400 Error\r\n\r\n\r\n> from datasets import load_dataset\r\n> \r\n> dataset = load_dataset(\"stevhliu/demo\")\r\n> dataset.push_to_hub(\"processed_demo\")\r\n\r\n\r\n`requests.exceptions.HTTPError: 400 Client Error: Bad Request for url: https://huggingface.co/api/datasets/REDACTED/commit/main (Request ID: e-tPnYTiCdB5KPmSL86dQ)`\r\n\r\nI \"fixed\" it by initializing a new virtual environment with only datasets==2.5.2 installed.\r\n\r\nThe workaround consists of saving to disk then loading from disk and pushing to hub but from the new clean virtual environment." ]
"2022-07-12T15:56:44Z"
"2023-02-07T13:54:10Z"
"2023-02-07T13:54:10Z"
NONE
null
null
null
## Describe the bug When pushing a dataset, the client errors randomly with `Bad Request for url:...`. At the next call, a new parquet file is created for each shard. The client may fail at any random shard. ## Steps to reproduce the bug ```python dataset.push_to_hub("ORG/DATASET", private=True, branch="main") ``` ## Expected results Push all the dataset to the Hub with no duplicates. If it fails, it should retry or fail, but continue from the last failed shard. ## Actual results ``` --------------------------------------------------------------------------- HTTPError Traceback (most recent call last) testing.ipynb Cell 29 in <cell line: 1>() ----> [1](testing.ipynb?line=0) dataset.push_to_hub("ORG/DATASET", private=True, branch="main") File ~/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py:4297, in Dataset.push_to_hub(self, repo_id, split, private, token, branch, max_shard_size, shard_size, embed_external_files) 4291 warnings.warn( 4292 "'shard_size' was renamed to 'max_shard_size' in version 2.1.1 and will be removed in 2.4.0.", 4293 FutureWarning, 4294 ) 4295 max_shard_size = shard_size -> 4297 repo_id, split, uploaded_size, dataset_nbytes, repo_files, deleted_size = self._push_parquet_shards_to_hub( 4298 repo_id=repo_id, 4299 split=split, 4300 private=private, 4301 token=token, 4302 branch=branch, 4303 max_shard_size=max_shard_size, 4304 embed_external_files=embed_external_files, 4305 ) 4306 organization, dataset_name = repo_id.split("/") 4307 info_to_dump = self.info.copy() File ~/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py:4195, in Dataset._push_parquet_shards_to_hub(self, repo_id, split, private, token, branch, max_shard_size, embed_external_files) 4193 shard.to_parquet(buffer) 4194 uploaded_size += buffer.tell() -> 4195 _retry( 4196 api.upload_file, 4197 func_kwargs=dict( 4198 path_or_fileobj=buffer.getvalue(), 4199 path_in_repo=shard_path_in_repo, 4200 repo_id=repo_id, 4201 token=token, 4202 repo_type="dataset", 4203 revision=branch, 4204 identical_ok=False, 4205 ), 4206 exceptions=HTTPError, 4207 status_codes=[504], 4208 base_wait_time=2.0, 4209 max_retries=5, 4210 max_wait_time=20.0, 4211 ) 4212 shards_path_in_repo.append(shard_path_in_repo) 4214 # Cleanup to remove unused files File ~/.local/lib/python3.9/site-packages/datasets/utils/file_utils.py:284, in _retry(func, func_args, func_kwargs, exceptions, status_codes, max_retries, base_wait_time, max_wait_time) 282 except exceptions as err: 283 if retry >= max_retries or (status_codes and err.response.status_code not in status_codes): --> 284 raise err 285 else: 286 sleep_time = min(max_wait_time, base_wait_time * 2**retry) # Exponential backoff File ~/.local/lib/python3.9/site-packages/datasets/utils/file_utils.py:281, in _retry(func, func_args, func_kwargs, exceptions, status_codes, max_retries, base_wait_time, max_wait_time) 279 while True: 280 try: --> 281 return func(*func_args, **func_kwargs) 282 except exceptions as err: 283 if retry >= max_retries or (status_codes and err.response.status_code not in status_codes): File ~/.local/lib/python3.9/site-packages/huggingface_hub/hf_api.py:1967, in HfApi.upload_file(self, path_or_fileobj, path_in_repo, repo_id, token, repo_type, revision, identical_ok, commit_message, commit_description, create_pr) 1957 commit_message = ( 1958 commit_message 1959 if commit_message is not None 1960 else f"Upload {path_in_repo} with huggingface_hub" 1961 ) 1962 operation = CommitOperationAdd( 1963 path_or_fileobj=path_or_fileobj, 1964 path_in_repo=path_in_repo, 1965 ) -> 1967 pr_url = self.create_commit( 1968 repo_id=repo_id, 1969 repo_type=repo_type, 1970 operations=[operation], 1971 commit_message=commit_message, 1972 commit_description=commit_description, 1973 token=token, 1974 revision=revision, 1975 create_pr=create_pr, 1976 ) 1977 if pr_url is not None: 1978 re_match = re.match(REGEX_DISCUSSION_URL, pr_url) File ~/.local/lib/python3.9/site-packages/huggingface_hub/hf_api.py:1844, in HfApi.create_commit(self, repo_id, operations, commit_message, commit_description, token, repo_type, revision, create_pr, num_threads) 1836 commit_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/commit/{revision}" 1838 commit_resp = requests.post( 1839 url=commit_url, 1840 headers={"Authorization": f"Bearer {token}"}, 1841 json=commit_payload, 1842 params={"create_pr": 1} if create_pr else None, 1843 ) -> 1844 _raise_for_status(commit_resp) 1845 return commit_resp.json().get("pullRequestUrl", None) File ~/.local/lib/python3.9/site-packages/huggingface_hub/utils/_errors.py:84, in _raise_for_status(request) 76 if request.status_code == 401: 77 # The repo was not found and the user is not Authenticated 78 raise RepositoryNotFoundError( 79 f"401 Client Error: Repository Not Found for url: {request.url}. If the" 80 " repo is private, make sure you are authenticated. (Request ID:" 81 f" {request_id})" 82 ) ---> 84 _raise_with_request_id(request) File ~/.local/lib/python3.9/site-packages/huggingface_hub/utils/_errors.py:95, in _raise_with_request_id(request) 92 if request_id is not None and len(e.args) > 0 and isinstance(e.args[0], str): 93 e.args = (e.args[0] + f" (Request ID: {request_id})",) + e.args[1:] ---> 95 raise e File ~/.local/lib/python3.9/site-packages/huggingface_hub/utils/_errors.py:90, in _raise_with_request_id(request) 88 request_id = request.headers.get("X-Request-Id") 89 try: ---> 90 request.raise_for_status() 91 except Exception as e: 92 if request_id is not None and len(e.args) > 0 and isinstance(e.args[0], str): File ~/.local/lib/python3.9/site-packages/requests/models.py:1021, in Response.raise_for_status(self) 1016 http_error_msg = ( 1017 f"{self.status_code} Server Error: {reason} for url: {self.url}" 1018 ) 1020 if http_error_msg: -> 1021 raise HTTPError(http_error_msg, response=self) HTTPError: 400 Client Error: Bad Request for url: https://huggingface.co/api/datasets/ORG/DATASET/commit/main (Request ID: a_F0IQAHJdxGKVRYyu1cF) ``` ## Environment info - `datasets` version: 2.3.2 - Platform: Linux-5.13.0-1025-aws-x86_64-with-glibc2.31 - Python version: 3.9.4 - PyArrow version: 8.0.0 - Pandas version: 1.4.3
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4677/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4677/timeline
null
not_planned
false
https://api.github.com/repos/huggingface/datasets/issues/2641
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2641/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2641/comments
https://api.github.com/repos/huggingface/datasets/issues/2641/events
https://github.com/huggingface/datasets/issues/2641
943,838,085
MDU6SXNzdWU5NDM4MzgwODU=
2,641
load_dataset("financial_phrasebank") NonMatchingChecksumError
{ "avatar_url": "https://avatars.githubusercontent.com/u/13956255?v=4", "events_url": "https://api.github.com/users/courtmckay/events{/privacy}", "followers_url": "https://api.github.com/users/courtmckay/followers", "following_url": "https://api.github.com/users/courtmckay/following{/other_user}", "gists_url": "https://api.github.com/users/courtmckay/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/courtmckay", "id": 13956255, "login": "courtmckay", "node_id": "MDQ6VXNlcjEzOTU2MjU1", "organizations_url": "https://api.github.com/users/courtmckay/orgs", "received_events_url": "https://api.github.com/users/courtmckay/received_events", "repos_url": "https://api.github.com/users/courtmckay/repos", "site_admin": false, "starred_url": "https://api.github.com/users/courtmckay/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/courtmckay/subscriptions", "type": "User", "url": "https://api.github.com/users/courtmckay" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Hi! It's probably because this dataset is stored on google drive and it has a per day quota limit. It should work if you retry, I was able to initiate the download.\r\n\r\nSimilar issue [here](https://github.com/huggingface/datasets/issues/2646)", "Hi ! Loading the dataset works on my side as well.\r\nFeel free to try again and let us know if it works for you know", "Thank you! I've been trying periodically for the past month, and no luck yet with this particular dataset. Just tried again and still hitting the checksum error.\r\n\r\nCode:\r\n\r\n`dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\") `\r\n\r\nTraceback:\r\n\r\n```\r\n---------------------------------------------------------------------------\r\nNonMatchingChecksumError Traceback (most recent call last)\r\n<ipython-input-2-55cc2144f31e> in <module>\r\n----> 1 dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\")\r\n\r\n/opt/conda/lib/python3.7/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, script_version, use_auth_token, task, streaming, **config_kwargs)\r\n 859 ignore_verifications=ignore_verifications,\r\n 860 try_from_hf_gcs=try_from_hf_gcs,\r\n--> 861 use_auth_token=use_auth_token,\r\n 862 )\r\n 863 \r\n\r\n/opt/conda/lib/python3.7/site-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs)\r\n 582 if not downloaded_from_gcs:\r\n 583 self._download_and_prepare(\r\n--> 584 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n 585 )\r\n 586 # Sync info\r\n\r\n/opt/conda/lib/python3.7/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)\r\n 642 if verify_infos:\r\n 643 verify_checksums(\r\n--> 644 self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), \"dataset source files\"\r\n 645 )\r\n 646 \r\n\r\n/opt/conda/lib/python3.7/site-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name)\r\n 38 if len(bad_urls) > 0:\r\n 39 error_msg = \"Checksums didn't match\" + for_verification_name + \":\\n\"\r\n---> 40 raise NonMatchingChecksumError(error_msg + str(bad_urls))\r\n 41 logger.info(\"All the checksums matched successfully\" + for_verification_name)\r\n 42 \r\n\r\nNonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://www.researchgate.net/profile/Pekka_Malo/publication/251231364_FinancialPhraseBank-v10/data/0c96051eee4fb1d56e000000/FinancialPhraseBank-v10.zip']\r\n```", "Fixed once data files are hosted on the Hub:\r\n- #4598" ]
"2021-07-13T21:21:49Z"
"2022-08-04T08:30:08Z"
"2022-08-04T08:30:08Z"
NONE
null
null
null
## Describe the bug Attempting to download the financial_phrasebank dataset results in a NonMatchingChecksumError ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("financial_phrasebank", 'sentences_allagree') ``` ## Expected results I expect to see the financial_phrasebank dataset downloaded successfully ## Actual results NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://www.researchgate.net/profile/Pekka_Malo/publication/251231364_FinancialPhraseBank-v10/data/0c96051eee4fb1d56e000000/FinancialPhraseBank-v10.zip'] ## Environment info - `datasets` version: 1.9.0 - Platform: Linux-4.14.232-177.418.amzn2.x86_64-x86_64-with-debian-10.6 - Python version: 3.7.10 - PyArrow version: 4.0.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2641/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2641/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4728
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4728/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4728/comments
https://api.github.com/repos/huggingface/datasets/issues/4728/events
https://github.com/huggingface/datasets/issues/4728
1,312,897,454
I_kwDODunzps5OQTmu
4,728
load_dataset gives "403" error when using Financial Phrasebank
{ "avatar_url": "https://avatars.githubusercontent.com/u/2209134?v=4", "events_url": "https://api.github.com/users/rohitvincent/events{/privacy}", "followers_url": "https://api.github.com/users/rohitvincent/followers", "following_url": "https://api.github.com/users/rohitvincent/following{/other_user}", "gists_url": "https://api.github.com/users/rohitvincent/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rohitvincent", "id": 2209134, "login": "rohitvincent", "node_id": "MDQ6VXNlcjIyMDkxMzQ=", "organizations_url": "https://api.github.com/users/rohitvincent/orgs", "received_events_url": "https://api.github.com/users/rohitvincent/received_events", "repos_url": "https://api.github.com/users/rohitvincent/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rohitvincent/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rohitvincent/subscriptions", "type": "User", "url": "https://api.github.com/users/rohitvincent" }
[]
closed
false
null
[]
null
[ "Hi @rohitvincent, thanks for reporting.\r\n\r\nUnfortunately I'm not able to reproduce your issue:\r\n```python\r\nIn [2]: from datasets import load_dataset, DownloadMode\r\n ...: load_dataset(path='financial_phrasebank',name='sentences_allagree', download_mode=\"force_redownload\")\r\nDownloading builder script: 6.04kB [00:00, 2.87MB/s] \r\nDownloading metadata: 13.7kB [00:00, 7.24MB/s] \r\nDownloading and preparing dataset financial_phrasebank/sentences_allagree (download: 665.91 KiB, generated: 296.26 KiB, post-processed: Unknown size, total: 962.17 KiB) to .../.cache/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141...\r\nDownloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 682k/682k [00:00<00:00, 7.66MB/s]\r\nDataset financial_phrasebank downloaded and prepared to .../.cache/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141. Subsequent calls will reuse this data.\r\n100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 918.80it/s]\r\nOut[2]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['sentence', 'label'],\r\n num_rows: 2264\r\n })\r\n})\r\n```\r\n\r\nAre you able to access the link? https://www.researchgate.net/profile/Pekka-Malo/publication/251231364_FinancialPhraseBank-v10/data/0c96051eee4fb1d56e000000/FinancialPhraseBank-v10.zip", "Yes was able to download from the link manually. But still, get the same error when I use load_dataset.", "Fixed once data files are hosted on the Hub:\r\n- #4598" ]
"2022-07-21T08:43:32Z"
"2022-08-04T08:32:35Z"
"2022-08-04T08:32:35Z"
NONE
null
null
null
I tried both codes below to download the financial phrasebank dataset (https://huggingface.co/datasets/financial_phrasebank) with the sentences_allagree subset. However, the code gives a 403 error when executed from multiple machines locally or on the cloud. ``` from datasets import load_dataset, DownloadMode load_dataset(path='financial_phrasebank',name='sentences_allagree',download_mode=DownloadMode.FORCE_REDOWNLOAD) ``` ``` from datasets import load_dataset, DownloadMode load_dataset(path='financial_phrasebank',name='sentences_allagree') ``` **Error** ConnectionError: Couldn't reach https://www.researchgate.net/profile/Pekka_Malo/publication/251231364_FinancialPhraseBank-v10/data/0c96051eee4fb1d56e000000/FinancialPhraseBank-v10.zip (error 403)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4728/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4728/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4444
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4444/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4444/comments
https://api.github.com/repos/huggingface/datasets/issues/4444/events
https://github.com/huggingface/datasets/pull/4444
1,259,738,209
PR_kwDODunzps45D2XX
4,444
Fix kwargs in docstrings
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-06-03T10:29:02Z"
"2022-06-03T11:01:28Z"
"2022-06-03T10:52:46Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4444.diff", "html_url": "https://github.com/huggingface/datasets/pull/4444", "merged_at": "2022-06-03T10:52:46Z", "patch_url": "https://github.com/huggingface/datasets/pull/4444.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4444" }
To fix the rendering of `**kwargs` in docstrings, a parentheses must be added afterwards. See: - huggingface/doc-builder/issues/235
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4444/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4444/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/374
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/374/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/374/comments
https://api.github.com/repos/huggingface/datasets/issues/374/events
https://github.com/huggingface/datasets/pull/374
654,895,066
MDExOlB1bGxSZXF1ZXN0NDQ3NTMxMzUy
374
Add dataset post processing for faiss indexes
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "I changed the `wiki_dpr` script to ignore the last 24 examples for now. Hopefully we'll have the full version soon.\r\nThe datasets_infos.json and the data on GCS are updated.\r\n\r\nAnd I also added a check to make sure we don't have post processing resources in sub-directories.", "I added a dummy config that can be loaded with:\r\n```python\r\nwiki = load_dataset(\"wiki_dpr\", \"dummy_psgs_w100_no_embeddings\", with_index=True, split=\"train\")\r\n```\r\nIt's only 6MB of arrow files and 30MB of index" ]
"2020-07-10T16:25:59Z"
"2020-07-13T13:44:03Z"
"2020-07-13T13:44:01Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/374.diff", "html_url": "https://github.com/huggingface/datasets/pull/374", "merged_at": "2020-07-13T13:44:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/374.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/374" }
# Post processing of datasets for faiss indexes Now that we can have datasets with embeddings (see `wiki_pr` for example), we can allow users to load the dataset + get the Faiss index that comes with it to do nearest neighbors queries. ## Implementation proposition - Faiss indexes have to be added to the `nlp.Dataset` object, and therefore it's in a different scope that what are doing the `_split_generators` and `_generate_examples` methods of `nlp.DatasetBuilder`. Therefore I added a new method for post processing of the `nlp.Dataset` object called `_post_process` (name could change) - The role of `_post_process` is to apply dataset transforms (filter/map etc.) or indexing functions (add_faiss_index) to modify/enrich the `nlp.Dataset` object. It is not part of the `download_and_prepare` process (that is focused on arrow files creation) so the post processing is run inside the `as_dataset` method. - `_post_process` can generate new files (cached files from dataset transforms or serialized faiss indexes) and their names are defined by `_post_processing_resources` - as we know what are the post processing resources, we can download them automatically from google storage instead of computing them if they're available (as we do for arrow files) I'd happy to discuss these choices ! ## The `wiki_dpr` index It takes 1h20 and ~7GB of memory to compute. The final index is 1.42GB and takes ~1.5GB of memory. This is pretty cool given that a naive flat index would take 170GB of memory to store the 21M vectors of dim 768. I couldn't use directly the Faiss `index_factory` as I needed to set the metric to inner product. ## Example of usage ```python import nlp dset = nlp.load_dataset( "wiki_dpr", "psgs_w100_with_nq_embeddings", split="train", with_index=True ) print(len(dset), dset.list_indexes()) # (21015300, ['embeddings']) ``` (it also works with the dataset configuration without the embeddings because I added the index file in google storage for this one too) ## Demo You can also check a demo on google colab that shows how to use it with the DPRQuestionEncoder from transformers: https://colab.research.google.com/drive/1FakNU8W5EPMcWff7iP1H6REg3XSS0YLp?usp=sharing
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/374/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/374/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5529
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5529/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5529/comments
https://api.github.com/repos/huggingface/datasets/issues/5529/events
https://github.com/huggingface/datasets/pull/5529
1,582,501,233
PR_kwDODunzps5J26Fq
5,529
Fix `datasets.load_from_disk`, `DatasetDict.load_from_disk` and `Dataset.load_from_disk`
{ "avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4", "events_url": "https://api.github.com/users/alvarobartt/events{/privacy}", "followers_url": "https://api.github.com/users/alvarobartt/followers", "following_url": "https://api.github.com/users/alvarobartt/following{/other_user}", "gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alvarobartt", "id": 36760800, "login": "alvarobartt", "node_id": "MDQ6VXNlcjM2NzYwODAw", "organizations_url": "https://api.github.com/users/alvarobartt/orgs", "received_events_url": "https://api.github.com/users/alvarobartt/received_events", "repos_url": "https://api.github.com/users/alvarobartt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions", "type": "User", "url": "https://api.github.com/users/alvarobartt" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Hmm, should this also be updated in `Dataset.load_from_disk` and `DatasetDict.load_from_disk`? https://github.com/huggingface/datasets/pull/5466 As there the paths are joined using `Path(..., ...)` and it won't work on Windows OS according to that PR, right?", "Hi, @lhoestq could you review this PR? Thank you in advance and sorry for the ping πŸ€— ", "Besides that, I was also thinking of adding a `skip_validation` boolean arg in both `Dataset.load_from_disk` and `DatasetDict.load_from_disk` to avoid duplicating those calls too when those functions are called from `datasets.load_from_disk`.\r\n\r\nSo that `skip_validation` is set to `False` by default, but passed as `True` if called from `datasets.load_from_disk`, and that just affects the file checking part of the code on both functions, do you agree @lhoestq?", "I think we should always verify", "> I think we should always verify\r\n\r\nBut with the current way we're also verifying twice right? First on `datasets.load_from_disk` then on `Dataset.load_from_disk`, right?\r\n\r\nMaybe a warning before calling either `Dataset.load_from_disk` or `DatasetDict.load_from_disk` is enough?\r\n\r\ne.g. **\"Consider using `Dataset.load_from_disk` instead to avoid `fsspec` from verifying the presence of `dataset_info.json` and `state.json` in the remote filesystem twice.\"** to be showed just when `fs` is remote.", "I don't think it's worth adding a new argument just for that. Usually we keep the set of arguments to the strict minimum", "> I don't think it's worth adding a new argument just for that. Usually we keep the set of arguments to the strict minimum\r\n\r\nWhat about the warning?\r\n\r\nAnyway, if you don't think that's worth it feel free to merge πŸ‘πŸ» ", "> What about the warning?\r\n\r\nWe may show warnings for suggestions, but only if the user does a very unoptimized thing. Here we're not at that level ^^'", "Thanks for the explanation and feedback @lhoestq πŸ€— ", "> Thank you :) Added my last suggestions:\r\n\r\nThanks for the feedback, I agree with everything besides one nit! πŸ‘πŸ» ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011556 / 0.011353 (0.000203) | 0.006213 / 0.011008 (-0.004796) | 0.132390 / 0.038508 (0.093882) | 0.034609 / 0.023109 (0.011500) | 0.361156 / 0.275898 (0.085258) | 0.402524 / 0.323480 (0.079044) | 0.009138 / 0.007986 (0.001152) | 0.005728 / 0.004328 (0.001399) | 0.115406 / 0.004250 (0.111156) | 0.041440 / 0.037052 (0.004388) | 0.370232 / 0.258489 (0.111742) | 0.409944 / 0.293841 (0.116103) | 0.053803 / 0.128546 (-0.074744) | 0.022029 / 0.075646 (-0.053617) | 0.400325 / 0.419271 (-0.018946) | 0.055324 / 0.043533 (0.011791) | 0.368699 / 0.255139 (0.113560) | 0.391836 / 0.283200 (0.108636) | 0.099356 / 0.141683 (-0.042327) | 1.687881 / 1.452155 (0.235726) | 1.752202 / 1.492716 (0.259485) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.012992 / 0.018006 (-0.005014) | 0.518756 / 0.000490 (0.518267) | 0.004702 / 0.000200 (0.004502) | 0.000105 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028371 / 0.037411 (-0.009041) | 0.127058 / 0.014526 (0.112532) | 0.136908 / 0.176557 (-0.039649) | 0.210168 / 0.737135 (-0.526968) | 0.139600 / 0.296338 (-0.156738) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.570901 / 0.215209 (0.355692) | 5.967213 / 2.077655 (3.889558) | 2.286745 / 1.504120 (0.782626) | 1.950682 / 1.541195 (0.409487) | 2.062536 / 1.468490 (0.594046) | 1.255671 / 4.584777 (-3.329106) | 5.454951 / 3.745712 (1.709238) | 3.076429 / 5.269862 (-2.193433) | 2.082871 / 4.565676 (-2.482806) | 0.150069 / 0.424275 (-0.274206) | 0.014864 / 0.007607 (0.007257) | 0.774672 / 0.226044 (0.548627) | 7.873992 / 2.268929 (5.605064) | 3.196165 / 55.444624 (-52.248459) | 2.366854 / 6.876477 (-4.509623) | 2.407381 / 2.142072 (0.265309) | 1.419130 / 4.805227 (-3.386097) | 0.249210 / 6.500664 (-6.251454) | 0.088648 / 0.075469 (0.013179) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.528368 / 1.841788 (-0.313420) | 17.554000 / 8.074308 (9.479692) | 20.773300 / 10.191392 (10.581908) | 0.216903 / 0.680424 (-0.463521) | 0.046544 / 0.534201 (-0.487657) | 0.538238 / 0.579283 (-0.041045) | 0.673926 / 0.434364 (0.239562) | 0.656108 / 0.540337 (0.115770) | 0.774026 / 1.386936 (-0.612910) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010177 / 0.011353 (-0.001176) | 0.006334 / 0.011008 (-0.004675) | 0.100097 / 0.038508 (0.061589) | 0.039996 / 0.023109 (0.016887) | 0.420225 / 0.275898 (0.144327) | 0.437694 / 0.323480 (0.114214) | 0.007987 / 0.007986 (0.000002) | 0.005782 / 0.004328 (0.001454) | 0.106421 / 0.004250 (0.102171) | 0.046993 / 0.037052 (0.009941) | 0.397304 / 0.258489 (0.138815) | 0.441780 / 0.293841 (0.147939) | 0.064594 / 0.128546 (-0.063952) | 0.020823 / 0.075646 (-0.054823) | 0.108854 / 0.419271 (-0.310417) | 0.076457 / 0.043533 (0.032924) | 0.401712 / 0.255139 (0.146573) | 0.459292 / 0.283200 (0.176093) | 0.125044 / 0.141683 (-0.016639) | 1.765531 / 1.452155 (0.313377) | 1.845429 / 1.492716 (0.352713) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225549 / 0.018006 (0.207543) | 0.524402 / 0.000490 (0.523913) | 0.006994 / 0.000200 (0.006794) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033787 / 0.037411 (-0.003624) | 0.144895 / 0.014526 (0.130369) | 0.147185 / 0.176557 (-0.029371) | 0.228227 / 0.737135 (-0.508908) | 0.164967 / 0.296338 (-0.131371) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.628242 / 0.215209 (0.413033) | 6.348176 / 2.077655 (4.270522) | 2.615832 / 1.504120 (1.111712) | 2.217481 / 1.541195 (0.676286) | 2.287058 / 1.468490 (0.818568) | 1.322854 / 4.584777 (-3.261923) | 5.547831 / 3.745712 (1.802119) | 3.199467 / 5.269862 (-2.070395) | 2.135297 / 4.565676 (-2.430380) | 0.165134 / 0.424275 (-0.259141) | 0.014753 / 0.007607 (0.007146) | 0.778579 / 0.226044 (0.552535) | 7.982329 / 2.268929 (5.713401) | 3.331712 / 55.444624 (-52.112913) | 2.642606 / 6.876477 (-4.233871) | 2.699362 / 2.142072 (0.557290) | 1.572268 / 4.805227 (-3.232959) | 0.273348 / 6.500664 (-6.227316) | 0.082975 / 0.075469 (0.007506) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.730421 / 1.841788 (-0.111367) | 18.154495 / 8.074308 (10.080187) | 20.969885 / 10.191392 (10.778493) | 0.233652 / 0.680424 (-0.446772) | 0.026609 / 0.534201 (-0.507592) | 0.546874 / 0.579283 (-0.032410) | 0.602891 / 0.434364 (0.168527) | 0.641073 / 0.540337 (0.100736) | 0.772138 / 1.386936 (-0.614798) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#20703458e3c42ee7bfc1a26e47805c0db4dda2d6 \"CML watermark\")\n" ]
"2023-02-13T14:54:55Z"
"2023-02-23T18:14:32Z"
"2023-02-23T18:05:26Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5529.diff", "html_url": "https://github.com/huggingface/datasets/pull/5529", "merged_at": "2023-02-23T18:05:26Z", "patch_url": "https://github.com/huggingface/datasets/pull/5529.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5529" }
## What's in this PR? After playing around a little bit with πŸ€—`datasets` in Google Cloud Storage (GCS), I found out some things that should be fixed IMO in the code: * `datasets.load_from_disk` is not checking whether `state.json` is there too when trying to load a `Dataset`, just `dataset_info.json` is checked * `DatasetDict.load_from_disk` is not checking whether `state.json` is there too when redirecting the user to load it as `datasets.load_from_disk`, just `dataset_info.json` is checked, which is misleading, as it won't be loadable that way either * `Dataset.load_from_disk` is missing the `extract_path_from_uri` call before checking in the `fs` whether `dataset_info.json` and `dataset_dict.json` exist, which when using `gcsfs` leads to 400 error code (not blocking) due to `gcsfs.retry.HttpError: Invalid bucket name: 'gs:', 400` * And, finally, the exception messages are a little bit misleading / incomplete IMO so I've tried to include all the relevant information in the messages to avoid issues when interpreting the exceptions
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5529/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5529/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2316
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2316/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2316/comments
https://api.github.com/repos/huggingface/datasets/issues/2316/events
https://github.com/huggingface/datasets/issues/2316
875,756,353
MDU6SXNzdWU4NzU3NTYzNTM=
2,316
Incorrect version specification for pyarrow
{ "avatar_url": "https://avatars.githubusercontent.com/u/32267027?v=4", "events_url": "https://api.github.com/users/cemilcengiz/events{/privacy}", "followers_url": "https://api.github.com/users/cemilcengiz/followers", "following_url": "https://api.github.com/users/cemilcengiz/following{/other_user}", "gists_url": "https://api.github.com/users/cemilcengiz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cemilcengiz", "id": 32267027, "login": "cemilcengiz", "node_id": "MDQ6VXNlcjMyMjY3MDI3", "organizations_url": "https://api.github.com/users/cemilcengiz/orgs", "received_events_url": "https://api.github.com/users/cemilcengiz/received_events", "repos_url": "https://api.github.com/users/cemilcengiz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cemilcengiz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cemilcengiz/subscriptions", "type": "User", "url": "https://api.github.com/users/cemilcengiz" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Fixed by #2317." ]
"2021-05-04T19:15:11Z"
"2021-05-05T10:10:03Z"
"2021-05-05T10:10:03Z"
CONTRIBUTOR
null
null
null
## Describe the bug The pyarrow dependency is incorrectly specified in setup.py file, in [this line](https://github.com/huggingface/datasets/blob/3a3e5a4da20bfcd75f8b6a6869b240af8feccc12/setup.py#L77). Also as a snippet: ```python "pyarrow>=1.0.0<4.0.0", ``` ## Steps to reproduce the bug ```bash pip install "pyarrow>=1.0.0<4.0.0" ``` ## Expected results It is expected to get a pyarrow version between 1.0.0 (inclusive) and 4.0.0 (exclusive). ## Actual results pip ignores the specified versions since there is a missing comma between the lower and upper limits. Therefore, pip installs the latest pyarrow version from PYPI, which is 4.0.0. This is especially problematic since "conda env export" fails due to incorrect version specification. Here is the conda error as well: ```bash conda env export InvalidVersionSpec: Invalid version '1.0.0<4.0.0': invalid character(s) ``` ## Fix suggestion Put a comma between the version limits which means replacing the line in setup.py file with the following: ```python "pyarrow>=1.0.0,<4.0.0", ``` ## Versions Paste the output of the following code: ```python - Datasets: 1.6.2 - Python: 3.7.10 (default, Feb 26 2021, 18:47:35) [GCC 7.3.0] - Platform: Linux-5.4.0-42-generic-x86_64-with-debian-buster-sid ```
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2316/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2316/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1843
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1843/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1843/comments
https://api.github.com/repos/huggingface/datasets/issues/1843/events
https://github.com/huggingface/datasets/issues/1843
803,565,393
MDU6SXNzdWU4MDM1NjUzOTM=
1,843
MustC Speech Translation
{ "avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4", "events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}", "followers_url": "https://api.github.com/users/patrickvonplaten/followers", "following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}", "gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/patrickvonplaten", "id": 23423619, "login": "patrickvonplaten", "node_id": "MDQ6VXNlcjIzNDIzNjE5", "organizations_url": "https://api.github.com/users/patrickvonplaten/orgs", "received_events_url": "https://api.github.com/users/patrickvonplaten/received_events", "repos_url": "https://api.github.com/users/patrickvonplaten/repos", "site_admin": false, "starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions", "type": "User", "url": "https://api.github.com/users/patrickvonplaten" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" }, { "color": "d93f0b", "default": false, "description": "", "id": 2725241052, "name": "speech", "node_id": "MDU6TGFiZWwyNzI1MjQxMDUy", "url": "https://api.github.com/repos/huggingface/datasets/labels/speech" } ]
open
false
null
[]
null
[ "Hi @patrickvonplaten I would like to work on this dataset. \r\n\r\nThanks! ", "That's awesome! Actually, I just noticed that this dataset might become a bit too big!\r\n\r\nMuST-C is the main dataset used for IWSLT19 and should probably be added as a standalone dataset. Would you be interested also in adding `datasets/MuST-C` instead?\r\n\r\nDescription: \r\n_MuST-C is a multilingual speech translation corpus whose size and quality facilitates the training of end-to-end systems for speech translation from English into several languages. For each target language, MuST-C comprises several hundred hours of audio recordings from English TED Talks, which are automatically aligned at the sentence level with their manual transcriptions and translations._\r\n\r\nPaper: https://www.aclweb.org/anthology/N19-1202.pdf\r\n\r\nDataset: https://ict.fbk.eu/must-c/ (One needs to fill out a short from to download the data, but it's very easy).\r\n\r\nIt would be awesome if you're interested in adding this datates. I'm very happy to guide you through the PR! I think the easiest way to start would probably be to read [this README on how to add a dataset](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md) and open a PR. Think you can copy & paste some code from:\r\n\r\n- Librispeech_asr: https://github.com/huggingface/datasets/blob/master/datasets/librispeech_asr/librispeech_asr.py\r\n- Flores Translation: https://github.com/huggingface/datasets/blob/master/datasets/flores/flores.py\r\n\r\nThink all the rest can be handled on the PR :-) ", "Hi @patrickvonplaten \r\nI have tried downloading this dataset, but the connection seems to reset all the time. I have tried it via the browser, wget, and using gdown . But it gives me an error message. _\"The server is busy or down, pls try again\"_ (rephrasing the message here)\r\n\r\nI have completed adding 4 datasets in the previous data sprint (including the IWSLT dataset #1676 ) ...so just checking if you are able to download it at your end. Otherwise will write to the dataset authors to update the links. \r\n\r\n\r\n\r\n\r\n", "Let me check tomorrow! Thanks for leaving this message!", "cc @patil-suraj for notification ", "@skyprince999, I think I'm getting the same error you're getting :-/\r\n\r\n```\r\nSorry, you can't view or download this file at this time.\r\n\r\nToo many users have viewed or downloaded this file recently. Please try accessing the file again later. If the file you are trying to access is particularly large or is shared with many people, it may take up to 24 hours to be able to view or download the file. If you still can't access a file after 24 hours, contact your domain administrator.\r\n```\r\n\r\nIt would be great if you could write the authors to see whether they can fix it.\r\nAlso cc @lhoestq - do you think we could mirror the dataset? ", "Also there are huge those datasets. Think downloading MuST-C v1.2 amounts to ~ 1000GB... because there are 14 possible configs each around 60-70GB. I think users mostly will only use one of the 14 configs so that they would only need, in theory, will have to download ~60GB which is ok. But I think this functionality doesn't exist yet in `datasets` no? cc @lhoestq ", "> Also cc @lhoestq - do you think we could mirror the dataset?\r\n\r\nYes we can mirror it if the authors are fine with it. You can create a dataset repo on huggingface.co (possibly under the relevant org) and add the mirrored data files.\r\n\r\n> I think users mostly will only use one of the 14 configs so that they would only need, in theory, will have to download ~60GB which is ok. But I think this functionality doesn't exist yet in datasets no? cc @lhoestq\r\n\r\nIf there are different download links for each configuration we can make the dataset builder download only the files related to the requested configuration.", "I have written to the dataset authors, highlighting this issue. Waiting for their response. \r\n\r\nUpdate on 25th Feb: \r\nThe authors have replied back, they are updating the download link and will revert back shortly! \r\n\r\n```\r\nfirst of all thanks a lot for being interested in MuST-C and for building the data-loader.\r\n\r\nBefore answering your request, I'd like to clarify that the creation, maintenance, and expansion of MuST-c are not supported by any funded project, so this means that we need to find economic support for all these activities. This also includes permanently moving all the data to AWS or GCP. We are working at this with the goal of facilitating the use of MuST-C, but this is not something that can happen today. We hope to have some news ASAP and you will be among the first to be informed.\r\n\r\nI hope you understand our situation.\r\n```\r\n\r\n", "Awesome, actually @lhoestq let's just ask the authors if we should host the dataset no? They could just use our links then as well for their website - what do you think? Is it fine to use our AWS dataset storage also as external links? ", "Yes definitely. Shall we suggest them to create a dataset repository under their org on huggingface.co ? @julien-c \r\nThe dataset is around 1TB", "Sounds good! \r\n\r\nOrder of magnitude is storage costs ~$20 per TB per month (not including bandwidth). \r\n\r\nHappy to provide this to the community as I feel this is an important dataset. Let us know what the authors want to do!\r\n\r\n", "Great! @skyprince999, do you think you could ping the authors here or link to this thread? I think it could be a cool idea to host the dataset on our side then", "Done. They replied back, and they want to have a call over a meet/ skype. Is that possible ? \r\nBtw @patrickvonplaten you are looped in that email (_pls check you gmail account_) ", "Hello! Any news on this?", "@gegallego there were some concerns regarding dataset usage & attribution by a for-profit company, so couldn't take it forward. Also the download links were unstable. \r\nBut I guess if you want to test the fairseq benchmarks, you can connect with them directly for downloading the dataset. ", "Yes, that dataset is not easy to download... I had to copy it to my Google Drive and use `rsync` to be able to download it.\r\nHowever, we could add the dataset with a manual download, right?", "yes that is possible. I couldn't unfortunately complete this PR, If you would like to add it, please feel free to do it. " ]
"2021-02-08T13:27:45Z"
"2021-05-14T14:53:34Z"
null
MEMBER
null
null
null
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1843/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1843/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/2690
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2690/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2690/comments
https://api.github.com/repos/huggingface/datasets/issues/2690/events
https://github.com/huggingface/datasets/pull/2690
949,574,500
MDExOlB1bGxSZXF1ZXN0Njk0MjU5MDc1
2,690
Docs details
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[]
closed
false
null
[]
null
[ "Thanks for all the comments and for the corrections in the docs !\r\n\r\nAbout all the points you mentioned:\r\n\r\n> * the code samples assume the expected libraries have already been installed. Maybe add a section at start, or add it to every code sample. Something like `pip install datasets transformers torch 'datasets[streaming]'` (maybe just link to https://huggingface.co/docs/datasets/installation.html + a one-liner that installs all the requirements / alternatively a requirements.txt file)\r\n\r\nYes good idea\r\n\r\n> * \"If you’d like to play with the examples, you must install it from source.\" in https://huggingface.co/docs/datasets/installation.html: it's not clear to me what this means (what are these \"examples\"?)\r\n\r\nIt refers to examples scripts inside the git repository of the library, see the `examples` folder in the `transformers` repo.\r\nWe don't have examples yet in the git repo of `datasets` as in transformers. So currently there are no examples. Maybe we can just remove this sentence from the docs for now\r\n\r\n> * in https://huggingface.co/docs/datasets/loading_datasets.html: \"or AWS bucket if it’s not already stored in the library\". It's the only place in the doc (aside from the docstring https://huggingface.co/docs/datasets/package_reference/loading_methods.html?highlight=aws bucket#datasets.list_datasets) where the \"AWS bucket\" is mentioned. It's not easy to understand what this means. Maybe explain more, and link to https://s3.amazonaws.com/datasets.huggingface.co and/or https://huggingface.co/docs/datasets/filesystems.html.\r\n\r\nThis is outdated and must be replaced by\r\n```\r\nor from the Hugging Face Hub if it’s not already stored in the library\r\n```\r\n\r\n> * example in https://huggingface.co/docs/datasets/loading_datasets.html#manually-downloading-files is obsoleted by [Enable auto-download for PAN-X / Wikiann domain in XTREMEΒ #2326](https://github.com/huggingface/datasets/pull/2326). Also: see [xtreme / pan-x cannot be downloadedΒ #2691](https://github.com/huggingface/datasets/issues/2691) for a bug on this specific dataset.\r\n\r\nWe can replace the `XTREME` `PANX` dataste by `matinf` instead for example\r\n\r\n> * in https://huggingface.co/docs/datasets/loading_datasets.html#manually-downloading-files the doc says \"After you’ve downloaded the files, you can point to the folder hosting them locally with the data_dir argument as follows:\", but the following example does not show how to use `data_dir`\r\n\r\nLet's add `data_dir=\"path/to/your/downloaded/data\"` for example\r\n\r\n> * in https://huggingface.co/docs/datasets/loading_datasets.html#csv-files, it would be nice to have an URL to the csv loader reference (but I'm not sure there is one in the API reference). This comment applies in many places in the doc: I would want the API reference to contain doc for all the code/functions/classes... and I would want a lot more links inside the doc pointing to the API entries.\r\n\r\nCurrently there's no documentation for the CSV loader config. Maybe we can add the docstrings to the `CsvConfig` class to explain the parameters and how it works, and then redirect to the doc of this class in this section of the documentation.\r\n\r\n> * in the API reference (docstrings) I would prefer \"SOURCE\" to link to github instead of a copy of the code inside the docs site (eg. https://github.com/huggingface/datasets/blob/master/src/datasets/load.py#L711 instead of https://huggingface.co/docs/datasets/_modules/datasets/load.html#load_dataset)\r\n\r\nThis is the same as in `transformers`, not sure if this is a big issue\r\n\r\n> * it seems like not all the API is exposed in the doc. For example, there is no doc for [`disable_progress_bar`](https://github.com/huggingface/datasets/search?q=disable_progress_bar), see https://huggingface.co/docs/datasets/search.html?q=disable_progress_bar, even if the code contains docstrings. Does it mean that the function is not officially supported? (otherwise, maybe it also deserves a mention in https://huggingface.co/docs/datasets/package_reference/logging_methods.html)\r\n\r\nThe function `disable_progress_bar` should definitely be in the docs, thanks. We can add it to the logging methods\r\n\r\n> * in https://huggingface.co/docs/datasets/loading_datasets.html?highlight=most%20efficient%20format%20have%20json%20files%20consisting%20multiple%20json%20objects#json-files, \"The most efficient format is to have JSON files consisting of multiple JSON objects, one per line, representing individual data rows:\", maybe link to https://en.wikipedia.org/wiki/JSON_streaming#Line-delimited_JSON and give it a name (\"line-delimited JSON\"? \"JSON Lines\" as in https://huggingface.co/docs/datasets/processing.html#exporting-a-dataset-to-csv-json-parquet-or-to-python-objects ?)\r\n\r\nYes good idea !\r\n\r\n> * in https://huggingface.co/docs/datasets/loading_datasets.html, for the local files sections, it would be nice to provide sample csv / json / text files to download, so that it's easier for the reader to try to load them (instead: they won't try)\r\n\r\nSure why not. Moreover the csv loader now supports remote files so you could just run the code pass an an URL to the sample csv file.\r\n\r\n> * the doc explains how to shard a dataset, but does not explain why and when a dataset should be sharded (I have no idea... for [parallelizing](https://huggingface.co/docs/datasets/processing.html#multiprocessing)?). It does neither give an idea of the number of shards a dataset typically should have and why.\r\n\r\nThis can be used for distributed processing or just to use a percentage of the data. We can definitely give example of use cases\r\n\r\n> * the code example in https://huggingface.co/docs/datasets/processing.html#mapping-in-a-distributed-setting does not work, because `training_args` has not been defined before in the doc.\r\n\r\n`training_args` comes from `transformers`, it's a practical way to define all your arguments to train a model. Maybe we can just import it from `transformers` and use it with the default values\r\n\r\n" ]
"2021-07-21T10:43:14Z"
"2021-07-27T18:40:54Z"
"2021-07-27T18:40:54Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2690.diff", "html_url": "https://github.com/huggingface/datasets/pull/2690", "merged_at": "2021-07-27T18:40:53Z", "patch_url": "https://github.com/huggingface/datasets/pull/2690.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2690" }
Some comments here: - the code samples assume the expected libraries have already been installed. Maybe add a section at start, or add it to every code sample. Something like `pip install datasets transformers torch 'datasets[streaming]'` (maybe just link to https://huggingface.co/docs/datasets/installation.html + a one-liner that installs all the requirements / alternatively a requirements.txt file) - "If you’d like to play with the examples, you must install it from source." in https://huggingface.co/docs/datasets/installation.html: it's not clear to me what this means (what are these "examples"?) - in https://huggingface.co/docs/datasets/loading_datasets.html: "or AWS bucket if it’s not already stored in the library". It's the only place in the doc (aside from the docstring https://huggingface.co/docs/datasets/package_reference/loading_methods.html?highlight=aws bucket#datasets.list_datasets) where the "AWS bucket" is mentioned. It's not easy to understand what this means. Maybe explain more, and link to https://s3.amazonaws.com/datasets.huggingface.co and/or https://huggingface.co/docs/datasets/filesystems.html. - example in https://huggingface.co/docs/datasets/loading_datasets.html#manually-downloading-files is obsoleted by https://github.com/huggingface/datasets/pull/2326. Also: see https://github.com/huggingface/datasets/issues/2691 for a bug on this specific dataset. - in https://huggingface.co/docs/datasets/loading_datasets.html#manually-downloading-files the doc says "After you’ve downloaded the files, you can point to the folder hosting them locally with the data_dir argument as follows:", but the following example does not show how to use `data_dir` - in https://huggingface.co/docs/datasets/loading_datasets.html#csv-files, it would be nice to have an URL to the csv loader reference (but I'm not sure there is one in the API reference). This comment applies in many places in the doc: I would want the API reference to contain doc for all the code/functions/classes... and I would want a lot more links inside the doc pointing to the API entries. - in the API reference (docstrings) I would prefer "SOURCE" to link to github instead of a copy of the code inside the docs site (eg. https://github.com/huggingface/datasets/blob/master/src/datasets/load.py#L711 instead of https://huggingface.co/docs/datasets/_modules/datasets/load.html#load_dataset) - it seems like not all the API is exposed in the doc. For example, there is no doc for [`disable_progress_bar`](https://github.com/huggingface/datasets/search?q=disable_progress_bar), see https://huggingface.co/docs/datasets/search.html?q=disable_progress_bar, even if the code contains docstrings. Does it mean that the function is not officially supported? (otherwise, maybe it also deserves a mention in https://huggingface.co/docs/datasets/package_reference/logging_methods.html) - in https://huggingface.co/docs/datasets/loading_datasets.html?highlight=most%20efficient%20format%20have%20json%20files%20consisting%20multiple%20json%20objects#json-files, "The most efficient format is to have JSON files consisting of multiple JSON objects, one per line, representing individual data rows:", maybe link to https://en.wikipedia.org/wiki/JSON_streaming#Line-delimited_JSON and give it a name ("line-delimited JSON"? "JSON Lines" as in https://huggingface.co/docs/datasets/processing.html#exporting-a-dataset-to-csv-json-parquet-or-to-python-objects ?) - in https://huggingface.co/docs/datasets/loading_datasets.html, for the local files sections, it would be nice to provide sample csv / json / text files to download, so that it's easier for the reader to try to load them (instead: they won't try) - the doc explains how to shard a dataset, but does not explain why and when a dataset should be sharded (I have no idea... for [parallelizing](https://huggingface.co/docs/datasets/processing.html#multiprocessing)?). It does neither give an idea of the number of shards a dataset typically should have and why. - the code example in https://huggingface.co/docs/datasets/processing.html#mapping-in-a-distributed-setting does not work, because `training_args` has not been defined before in the doc.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2690/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2690/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/907
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/907/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/907/comments
https://api.github.com/repos/huggingface/datasets/issues/907/events
https://github.com/huggingface/datasets/pull/907
752,422,351
MDExOlB1bGxSZXF1ZXN0NTI4NzQ4ODMx
907
Remove os.path.join from all URLs
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[]
"2020-11-27T18:55:30Z"
"2020-11-29T22:48:20Z"
"2020-11-29T22:48:19Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/907.diff", "html_url": "https://github.com/huggingface/datasets/pull/907", "merged_at": "2020-11-29T22:48:19Z", "patch_url": "https://github.com/huggingface/datasets/pull/907.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/907" }
Remove `os.path.join` from all URLs in dataset scripts.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/907/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/907/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6444
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6444/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6444/comments
https://api.github.com/repos/huggingface/datasets/issues/6444/events
https://github.com/huggingface/datasets/pull/6444
2,006,842,179
PR_kwDODunzps5gKG_e
6,444
Remove `Table.__getstate__` and `Table.__setstate__`
{ "avatar_url": "https://avatars.githubusercontent.com/u/36994684?v=4", "events_url": "https://api.github.com/users/LZHgrla/events{/privacy}", "followers_url": "https://api.github.com/users/LZHgrla/followers", "following_url": "https://api.github.com/users/LZHgrla/following{/other_user}", "gists_url": "https://api.github.com/users/LZHgrla/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/LZHgrla", "id": 36994684, "login": "LZHgrla", "node_id": "MDQ6VXNlcjM2OTk0Njg0", "organizations_url": "https://api.github.com/users/LZHgrla/orgs", "received_events_url": "https://api.github.com/users/LZHgrla/received_events", "repos_url": "https://api.github.com/users/LZHgrla/repos", "site_admin": false, "starred_url": "https://api.github.com/users/LZHgrla/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LZHgrla/subscriptions", "type": "User", "url": "https://api.github.com/users/LZHgrla" }
[]
closed
false
null
[]
null
[ "Thanks for working on this! The [issue](https://bugs.python.org/issue24658) with pickling objects larger than 4GB seems to be patched in Python 3.8 (the minimal supported version was 3.6 at the time of implementing this), so a simple solution would be removing the `Table.__setstate__` and `Table.__getstate__` overrides.", "@mariosasko \r\nCool!\r\nI removed these overrides, and it worked.\r\n\r\nAll modifications are committed. Ready for review!", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005251 / 0.011353 (-0.006102) | 0.003804 / 0.011008 (-0.007204) | 0.063143 / 0.038508 (0.024635) | 0.059409 / 0.023109 (0.036300) | 0.255319 / 0.275898 (-0.020579) | 0.279194 / 0.323480 (-0.044285) | 0.004643 / 0.007986 (-0.003343) | 0.002560 / 0.004328 (-0.001768) | 0.047490 / 0.004250 (0.043240) | 0.039034 / 0.037052 (0.001982) | 0.257352 / 0.258489 (-0.001137) | 0.293029 / 0.293841 (-0.000812) | 0.027548 / 0.128546 (-0.100998) | 0.011307 / 0.075646 (-0.064339) | 0.210325 / 0.419271 (-0.208946) | 0.035161 / 0.043533 (-0.008372) | 0.253491 / 0.255139 (-0.001648) | 0.272085 / 0.283200 (-0.011115) | 0.018924 / 0.141683 (-0.122759) | 1.111148 / 1.452155 (-0.341007) | 1.178076 / 1.492716 (-0.314641) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092447 / 0.018006 (0.074441) | 0.303680 / 0.000490 (0.303190) | 0.000208 / 0.000200 (0.000008) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019087 / 0.037411 (-0.018325) | 0.062663 / 0.014526 (0.048137) | 0.074651 / 0.176557 (-0.101905) | 0.121334 / 0.737135 (-0.615802) | 0.076703 / 0.296338 (-0.219636) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286505 / 0.215209 (0.071295) | 2.804942 / 2.077655 (0.727287) | 1.481930 / 1.504120 (-0.022190) | 1.369485 / 1.541195 (-0.171710) | 1.424467 / 1.468490 (-0.044023) | 0.556810 / 4.584777 (-4.027967) | 2.416338 / 3.745712 (-1.329374) | 2.901869 / 5.269862 (-2.367992) | 1.827007 / 4.565676 (-2.738669) | 0.062252 / 0.424275 (-0.362024) | 0.005076 / 0.007607 (-0.002531) | 0.343850 / 0.226044 (0.117805) | 3.377611 / 2.268929 (1.108683) | 1.860214 / 55.444624 (-53.584410) | 1.595146 / 6.876477 (-5.281331) | 1.627234 / 2.142072 (-0.514838) | 0.651027 / 4.805227 (-4.154200) | 0.119214 / 6.500664 (-6.381450) | 0.043342 / 0.075469 (-0.032127) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.942863 / 1.841788 (-0.898924) | 12.484633 / 8.074308 (4.410324) | 10.560668 / 10.191392 (0.369276) | 0.144647 / 0.680424 (-0.535777) | 0.014734 / 0.534201 (-0.519466) | 0.286575 / 0.579283 (-0.292708) | 0.270913 / 0.434364 (-0.163451) | 0.323792 / 0.540337 (-0.216545) | 0.419186 / 1.386936 (-0.967750) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005315 / 0.011353 (-0.006038) | 0.003548 / 0.011008 (-0.007460) | 0.049271 / 0.038508 (0.010763) | 0.055198 / 0.023109 (0.032089) | 0.275940 / 0.275898 (0.000042) | 0.307637 / 0.323480 (-0.015843) | 0.003997 / 0.007986 (-0.003988) | 0.002544 / 0.004328 (-0.001785) | 0.050381 / 0.004250 (0.046130) | 0.041158 / 0.037052 (0.004105) | 0.281519 / 0.258489 (0.023030) | 0.308085 / 0.293841 (0.014244) | 0.030464 / 0.128546 (-0.098083) | 0.010690 / 0.075646 (-0.064957) | 0.057458 / 0.419271 (-0.361814) | 0.032814 / 0.043533 (-0.010719) | 0.282435 / 0.255139 (0.027296) | 0.301342 / 0.283200 (0.018142) | 0.017556 / 0.141683 (-0.124127) | 1.159423 / 1.452155 (-0.292732) | 1.177344 / 1.492716 (-0.315372) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091086 / 0.018006 (0.073079) | 0.305316 / 0.000490 (0.304826) | 0.000218 / 0.000200 (0.000019) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021832 / 0.037411 (-0.015579) | 0.071055 / 0.014526 (0.056529) | 0.082982 / 0.176557 (-0.093574) | 0.119966 / 0.737135 (-0.617169) | 0.083539 / 0.296338 (-0.212800) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302501 / 0.215209 (0.087292) | 2.936347 / 2.077655 (0.858692) | 1.601658 / 1.504120 (0.097538) | 1.467267 / 1.541195 (-0.073928) | 1.514656 / 1.468490 (0.046166) | 0.563934 / 4.584777 (-4.020843) | 2.513715 / 3.745712 (-1.231997) | 2.813014 / 5.269862 (-2.456847) | 1.773243 / 4.565676 (-2.792433) | 0.063208 / 0.424275 (-0.361067) | 0.004979 / 0.007607 (-0.002628) | 0.360694 / 0.226044 (0.134650) | 3.520578 / 2.268929 (1.251650) | 1.975369 / 55.444624 (-53.469255) | 1.691257 / 6.876477 (-5.185220) | 1.730872 / 2.142072 (-0.411200) | 0.655366 / 4.805227 (-4.149861) | 0.146043 / 6.500664 (-6.354621) | 0.041386 / 0.075469 (-0.034083) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.979840 / 1.841788 (-0.861948) | 12.456924 / 8.074308 (4.382616) | 10.938595 / 10.191392 (0.747203) | 0.133853 / 0.680424 (-0.546571) | 0.015744 / 0.534201 (-0.518457) | 0.289585 / 0.579283 (-0.289698) | 0.291143 / 0.434364 (-0.143221) | 0.328109 / 0.540337 (-0.212228) | 0.561897 / 1.386936 (-0.825039) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#05ec66cc1abc20bd13d02c681b7be372ae084a4f \"CML watermark\")\n" ]
"2023-11-22T17:55:10Z"
"2023-11-23T15:19:43Z"
"2023-11-23T15:13:28Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6444.diff", "html_url": "https://github.com/huggingface/datasets/pull/6444", "merged_at": "2023-11-23T15:13:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/6444.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6444" }
When using distributed training, the code of `os.remove(filename)` may be executed separately by each rank, leading to `FileNotFoundError: [Errno 2] No such file or directory: '/tmp/tmprxxxxxxx.arrow'` ```python from torch import distributed as dist if dist.get_rank() == 0: dataset = process_dataset(*args, **kwargs) objects = [dataset] else: objects = [None] dist.broadcast_object_list(objects, src=0) dataset = objects[0] ```
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6444/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6444/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2214
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2214/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2214/comments
https://api.github.com/repos/huggingface/datasets/issues/2214/events
https://github.com/huggingface/datasets/issues/2214
856,333,657
MDU6SXNzdWU4NTYzMzM2NTc=
2,214
load_metric error: module 'datasets.utils.file_utils' has no attribute 'add_start_docstrings'
{ "avatar_url": "https://avatars.githubusercontent.com/u/414788?v=4", "events_url": "https://api.github.com/users/nsaphra/events{/privacy}", "followers_url": "https://api.github.com/users/nsaphra/followers", "following_url": "https://api.github.com/users/nsaphra/following{/other_user}", "gists_url": "https://api.github.com/users/nsaphra/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nsaphra", "id": 414788, "login": "nsaphra", "node_id": "MDQ6VXNlcjQxNDc4OA==", "organizations_url": "https://api.github.com/users/nsaphra/orgs", "received_events_url": "https://api.github.com/users/nsaphra/received_events", "repos_url": "https://api.github.com/users/nsaphra/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nsaphra/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nsaphra/subscriptions", "type": "User", "url": "https://api.github.com/users/nsaphra" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Hi @nsaphra, thanks for reporting.\r\n\r\nThis issue was fixed in `datasets` version 1.3.0. Could you please update `datasets` and tell me if the problem persists?\r\n```shell\r\npip install -U datasets\r\n```", "There might be a bug in the conda version of `datasets` 1.2.1 where the datasets/metric scripts are downloaded from `master` instead of the `1.2.1` repo.\r\n\r\nYou can try setting the env var `HF_SCRIPTS_VERSION=\"1.2.1\"` as a workaround. Let me know if that helps.", "I just faced the same issue. I was using 1.2.1 from conda and received the same AttributeError complaining about 'add_start_docstrings'. Uninstalling the conda installed datasets and then installing the latest datasets (version 1.5.0) using pip install solved the issue for me. I don't like mixing up conda and pip installs in the same environments but this will have to do for now, until 1.5.0 is made available through conda.", "Yep, seems to have fixed things! The conda package could really do with an update. Thanks!" ]
"2021-04-12T20:26:01Z"
"2021-04-23T15:20:02Z"
"2021-04-23T15:20:02Z"
NONE
null
null
null
I'm having the same problem as [Notebooks issue 10](https://github.com/huggingface/notebooks/issues/10) on datasets 1.2.1, and it seems to be an issue with the datasets package. ```python >>> from datasets import load_metric >>> metric = load_metric("glue", "sst2") Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/ext3/miniconda3/lib/python3.8/site-packages/datasets-1.2.1-py3.8.egg/datasets/load.py", line 502, in load_metric File "/ext3/miniconda3/lib/python3.8/site-packages/datasets-1.2.1-py3.8.egg/datasets/load.py", line 66, in import_main_class File "/ext3/miniconda3/lib/python3.8/importlib/__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 1014, in _gcd_import File "<frozen importlib._bootstrap>", line 991, in _find_and_load File "<frozen importlib._bootstrap>", line 975, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 671, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 783, in exec_module File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "/home/ns4008/.cache/huggingface/modules/datasets_modules/metrics/glue/e4606ab9804a36bcd5a9cebb2cb65bb14b6ac78ee9e6d5981fa679a495dd55de/glue.py", line 105, in <module> @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) AttributeError: module 'datasets.utils.file_utils' has no attribute 'add_start_docstrings' ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2214/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2214/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6400
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6400/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6400/comments
https://api.github.com/repos/huggingface/datasets/issues/6400/events
https://github.com/huggingface/datasets/issues/6400
1,988,571,317
I_kwDODunzps52hzC1
6,400
Safely load datasets by disabling execution of dataset loading script
{ "avatar_url": "https://avatars.githubusercontent.com/u/14367635?v=4", "events_url": "https://api.github.com/users/irenedea/events{/privacy}", "followers_url": "https://api.github.com/users/irenedea/followers", "following_url": "https://api.github.com/users/irenedea/following{/other_user}", "gists_url": "https://api.github.com/users/irenedea/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/irenedea", "id": 14367635, "login": "irenedea", "node_id": "MDQ6VXNlcjE0MzY3NjM1", "organizations_url": "https://api.github.com/users/irenedea/orgs", "received_events_url": "https://api.github.com/users/irenedea/received_events", "repos_url": "https://api.github.com/users/irenedea/repos", "site_admin": false, "starred_url": "https://api.github.com/users/irenedea/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/irenedea/subscriptions", "type": "User", "url": "https://api.github.com/users/irenedea" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" } ]
null
[ "great idea IMO\r\n\r\nthis could be a `trust_remote_code=True` flag like in transformers. We could also default to loading the Parquet conversion rather than executing code (for dataset repos that have both)", "@julien-c that would be great!" ]
"2023-11-10T23:48:29Z"
"2023-11-15T14:46:43Z"
null
NONE
null
null
null
### Feature request Is there a way to disable execution of dataset loading script using `load_dataset`? This is a security vulnerability that could lead to arbitrary code execution. Any suggested workarounds are welcome as well. ### Motivation This is a security vulnerability that could lead to arbitrary code execution. ### Your contribution n/a
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6400/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6400/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/2373
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2373/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2373/comments
https://api.github.com/repos/huggingface/datasets/issues/2373/events
https://github.com/huggingface/datasets/issues/2373
894,499,909
MDU6SXNzdWU4OTQ0OTk5MDk=
2,373
Loading dataset from local path
{ "avatar_url": "https://avatars.githubusercontent.com/u/34172905?v=4", "events_url": "https://api.github.com/users/kolakows/events{/privacy}", "followers_url": "https://api.github.com/users/kolakows/followers", "following_url": "https://api.github.com/users/kolakows/following{/other_user}", "gists_url": "https://api.github.com/users/kolakows/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kolakows", "id": 34172905, "login": "kolakows", "node_id": "MDQ6VXNlcjM0MTcyOTA1", "organizations_url": "https://api.github.com/users/kolakows/orgs", "received_events_url": "https://api.github.com/users/kolakows/received_events", "repos_url": "https://api.github.com/users/kolakows/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kolakows/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kolakows/subscriptions", "type": "User", "url": "https://api.github.com/users/kolakows" }
[]
closed
false
null
[]
null
[ "Version below works, checked again in the docs, and data_files should be a path.\r\n```\r\nds = datasets.load_dataset('my_script.py', \r\n data_files='/data/dir/corpus.txt', \r\n cache_dir='.')\r\n```" ]
"2021-05-18T15:20:50Z"
"2021-05-18T15:36:36Z"
"2021-05-18T15:36:35Z"
NONE
null
null
null
I'm trying to load a local dataset with the code below ``` ds = datasets.load_dataset('my_script.py', data_files='corpus.txt', data_dir='/data/dir', cache_dir='.') ``` But internally a BuilderConfig is created, which tries to use getmtime on the data_files string, without using data_dir. Is this a bug or am I not using the load_dataset correctly? https://github.com/huggingface/datasets/blob/bc61954083f74e6460688202e9f77dde2475319c/src/datasets/builder.py#L153
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2373/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2373/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6160
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6160/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6160/comments
https://api.github.com/repos/huggingface/datasets/issues/6160/events
https://github.com/huggingface/datasets/pull/6160
1,855,760,543
PR_kwDODunzps5YMtLQ
6,160
Fix Parquet loading with `columns`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008368 / 0.011353 (-0.002985) | 0.004754 / 0.011008 (-0.006254) | 0.096646 / 0.038508 (0.058138) | 0.088980 / 0.023109 (0.065871) | 0.374532 / 0.275898 (0.098633) | 0.404840 / 0.323480 (0.081360) | 0.006026 / 0.007986 (-0.001960) | 0.005716 / 0.004328 (0.001387) | 0.076297 / 0.004250 (0.072047) | 0.072335 / 0.037052 (0.035283) | 0.379435 / 0.258489 (0.120946) | 0.423449 / 0.293841 (0.129608) | 0.041344 / 0.128546 (-0.087202) | 0.009758 / 0.075646 (-0.065889) | 0.341550 / 0.419271 (-0.077721) | 0.068559 / 0.043533 (0.025026) | 0.368313 / 0.255139 (0.113174) | 0.415147 / 0.283200 (0.131947) | 0.028692 / 0.141683 (-0.112990) | 1.816198 / 1.452155 (0.364044) | 1.983351 / 1.492716 (0.490635) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222712 / 0.018006 (0.204706) | 0.517850 / 0.000490 (0.517360) | 0.004436 / 0.000200 (0.004236) | 0.000094 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033168 / 0.037411 (-0.004243) | 0.101353 / 0.014526 (0.086827) | 0.113235 / 0.176557 (-0.063322) | 0.180308 / 0.737135 (-0.556827) | 0.114604 / 0.296338 (-0.181734) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.454415 / 0.215209 (0.239206) | 4.500355 / 2.077655 (2.422701) | 2.188223 / 1.504120 (0.684103) | 1.974256 / 1.541195 (0.433061) | 2.067331 / 1.468490 (0.598841) | 0.572982 / 4.584777 (-4.011795) | 4.239160 / 3.745712 (0.493448) | 3.836812 / 5.269862 (-1.433049) | 2.367022 / 4.565676 (-2.198655) | 0.066886 / 0.424275 (-0.357389) | 0.009111 / 0.007607 (0.001504) | 0.539881 / 0.226044 (0.313837) | 5.362247 / 2.268929 (3.093319) | 2.784044 / 55.444624 (-52.660580) | 2.320975 / 6.876477 (-4.555502) | 2.543108 / 2.142072 (0.401036) | 0.685751 / 4.805227 (-4.119477) | 0.156840 / 6.500664 (-6.343824) | 0.071764 / 0.075469 (-0.003705) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.549830 / 1.841788 (-0.291958) | 22.799622 / 8.074308 (14.725314) | 16.750692 / 10.191392 (6.559300) | 0.196192 / 0.680424 (-0.484232) | 0.024518 / 0.534201 (-0.509683) | 0.479302 / 0.579283 (-0.099981) | 0.522256 / 0.434364 (0.087892) | 0.545809 / 0.540337 (0.005471) | 0.748437 / 1.386936 (-0.638499) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007789 / 0.011353 (-0.003564) | 0.004563 / 0.011008 (-0.006445) | 0.074631 / 0.038508 (0.036123) | 0.086892 / 0.023109 (0.063783) | 0.427014 / 0.275898 (0.151116) | 0.463257 / 0.323480 (0.139777) | 0.005987 / 0.007986 (-0.001999) | 0.003803 / 0.004328 (-0.000526) | 0.074799 / 0.004250 (0.070549) | 0.063473 / 0.037052 (0.026420) | 0.429905 / 0.258489 (0.171416) | 0.468967 / 0.293841 (0.175127) | 0.036768 / 0.128546 (-0.091778) | 0.009675 / 0.075646 (-0.065971) | 0.082546 / 0.419271 (-0.336725) | 0.058027 / 0.043533 (0.014494) | 0.429813 / 0.255139 (0.174674) | 0.449200 / 0.283200 (0.166001) | 0.026713 / 0.141683 (-0.114969) | 1.812022 / 1.452155 (0.359867) | 1.847305 / 1.492716 (0.354589) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.320383 / 0.018006 (0.302377) | 0.485995 / 0.000490 (0.485505) | 0.024365 / 0.000200 (0.024165) | 0.000156 / 0.000054 (0.000101) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036341 / 0.037411 (-0.001071) | 0.104635 / 0.014526 (0.090110) | 0.119456 / 0.176557 (-0.057101) | 0.182042 / 0.737135 (-0.555093) | 0.118944 / 0.296338 (-0.177395) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.506410 / 0.215209 (0.291201) | 5.061119 / 2.077655 (2.983465) | 2.756557 / 1.504120 (1.252437) | 2.546504 / 1.541195 (1.005309) | 2.585509 / 1.468490 (1.117019) | 0.564291 / 4.584777 (-4.020486) | 4.281219 / 3.745712 (0.535507) | 3.919439 / 5.269862 (-1.350423) | 2.588788 / 4.565676 (-1.976889) | 0.066900 / 0.424275 (-0.357375) | 0.008680 / 0.007607 (0.001073) | 0.598435 / 0.226044 (0.372390) | 5.976054 / 2.268929 (3.707125) | 3.260211 / 55.444624 (-52.184414) | 2.874597 / 6.876477 (-4.001880) | 3.105769 / 2.142072 (0.963697) | 0.692938 / 4.805227 (-4.112289) | 0.157777 / 6.500664 (-6.342887) | 0.073128 / 0.075469 (-0.002341) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.559380 / 1.841788 (-0.282408) | 22.986540 / 8.074308 (14.912232) | 16.305564 / 10.191392 (6.114172) | 0.174939 / 0.680424 (-0.505485) | 0.021932 / 0.534201 (-0.512269) | 0.468162 / 0.579283 (-0.111121) | 0.472610 / 0.434364 (0.038246) | 0.574574 / 0.540337 (0.034237) | 0.783505 / 1.386936 (-0.603431) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#550923b5d6ae64eb20b8f66da843395e9fa404ac \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012553 / 0.011353 (0.001201) | 0.005358 / 0.011008 (-0.005650) | 0.108338 / 0.038508 (0.069830) | 0.101105 / 0.023109 (0.077995) | 0.416808 / 0.275898 (0.140910) | 0.454599 / 0.323480 (0.131119) | 0.006665 / 0.007986 (-0.001321) | 0.004186 / 0.004328 (-0.000143) | 0.084900 / 0.004250 (0.080649) | 0.062881 / 0.037052 (0.025829) | 0.424423 / 0.258489 (0.165934) | 0.482651 / 0.293841 (0.188810) | 0.055740 / 0.128546 (-0.072807) | 0.014469 / 0.075646 (-0.061177) | 0.383267 / 0.419271 (-0.036005) | 0.067487 / 0.043533 (0.023955) | 0.414983 / 0.255139 (0.159844) | 0.459437 / 0.283200 (0.176237) | 0.038679 / 0.141683 (-0.103004) | 1.828002 / 1.452155 (0.375847) | 1.951946 / 1.492716 (0.459230) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.288033 / 0.018006 (0.270027) | 0.603536 / 0.000490 (0.603046) | 0.004874 / 0.000200 (0.004674) | 0.000138 / 0.000054 (0.000084) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031988 / 0.037411 (-0.005423) | 0.095807 / 0.014526 (0.081281) | 0.113459 / 0.176557 (-0.063098) | 0.182012 / 0.737135 (-0.555123) | 0.113121 / 0.296338 (-0.183217) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.620709 / 0.215209 (0.405500) | 6.096569 / 2.077655 (4.018915) | 2.754612 / 1.504120 (1.250492) | 2.449786 / 1.541195 (0.908591) | 2.470694 / 1.468490 (1.002204) | 0.837016 / 4.584777 (-3.747761) | 5.237290 / 3.745712 (1.491578) | 4.713220 / 5.269862 (-0.556642) | 3.020934 / 4.565676 (-1.544743) | 0.096892 / 0.424275 (-0.327383) | 0.009423 / 0.007607 (0.001816) | 0.720313 / 0.226044 (0.494269) | 7.369673 / 2.268929 (5.100744) | 3.550384 / 55.444624 (-51.894241) | 2.868868 / 6.876477 (-4.007609) | 3.081469 / 2.142072 (0.939397) | 1.042968 / 4.805227 (-3.762259) | 0.232530 / 6.500664 (-6.268134) | 0.080805 / 0.075469 (0.005336) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.645777 / 1.841788 (-0.196011) | 24.590862 / 8.074308 (16.516554) | 21.315496 / 10.191392 (11.124104) | 0.228796 / 0.680424 (-0.451628) | 0.028479 / 0.534201 (-0.505722) | 0.494413 / 0.579283 (-0.084870) | 0.582773 / 0.434364 (0.148409) | 0.552575 / 0.540337 (0.012238) | 0.787217 / 1.386936 (-0.599719) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008743 / 0.011353 (-0.002609) | 0.005253 / 0.011008 (-0.005755) | 0.083766 / 0.038508 (0.045257) | 0.086305 / 0.023109 (0.063195) | 0.520171 / 0.275898 (0.244273) | 0.565812 / 0.323480 (0.242332) | 0.006465 / 0.007986 (-0.001520) | 0.004585 / 0.004328 (0.000257) | 0.085344 / 0.004250 (0.081094) | 0.063418 / 0.037052 (0.026366) | 0.519759 / 0.258489 (0.261270) | 0.552770 / 0.293841 (0.258929) | 0.049439 / 0.128546 (-0.079107) | 0.017564 / 0.075646 (-0.058082) | 0.092713 / 0.419271 (-0.326559) | 0.065837 / 0.043533 (0.022305) | 0.516133 / 0.255139 (0.260994) | 0.539813 / 0.283200 (0.256613) | 0.036531 / 0.141683 (-0.105152) | 1.919275 / 1.452155 (0.467121) | 2.039987 / 1.492716 (0.547271) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.297978 / 0.018006 (0.279972) | 0.608243 / 0.000490 (0.607753) | 0.006611 / 0.000200 (0.006411) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033909 / 0.037411 (-0.003503) | 0.106370 / 0.014526 (0.091844) | 0.119032 / 0.176557 (-0.057524) | 0.180319 / 0.737135 (-0.556816) | 0.122826 / 0.296338 (-0.173513) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.639265 / 0.215209 (0.424056) | 6.248430 / 2.077655 (4.170775) | 2.944760 / 1.504120 (1.440640) | 2.654005 / 1.541195 (1.112811) | 2.733625 / 1.468490 (1.265134) | 0.837172 / 4.584777 (-3.747605) | 5.245084 / 3.745712 (1.499372) | 4.722614 / 5.269862 (-0.547248) | 3.008286 / 4.565676 (-1.557391) | 0.102340 / 0.424275 (-0.321935) | 0.009433 / 0.007607 (0.001826) | 0.762991 / 0.226044 (0.536946) | 7.385020 / 2.268929 (5.116092) | 3.787648 / 55.444624 (-51.656977) | 3.234345 / 6.876477 (-3.642132) | 3.394444 / 2.142072 (1.252371) | 1.023472 / 4.805227 (-3.781756) | 0.208199 / 6.500664 (-6.292465) | 0.081513 / 0.075469 (0.006043) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.795864 / 1.841788 (-0.045923) | 25.270852 / 8.074308 (17.196544) | 23.356413 / 10.191392 (13.165021) | 0.228002 / 0.680424 (-0.452422) | 0.031851 / 0.534201 (-0.502350) | 0.499424 / 0.579283 (-0.079859) | 0.588027 / 0.434364 (0.153664) | 0.581746 / 0.540337 (0.041408) | 0.814183 / 1.386936 (-0.572753) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#33ee536876a667403ee44574bd685073261c4903 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006477 / 0.011353 (-0.004876) | 0.003878 / 0.011008 (-0.007130) | 0.084085 / 0.038508 (0.045577) | 0.071297 / 0.023109 (0.048188) | 0.309176 / 0.275898 (0.033278) | 0.342830 / 0.323480 (0.019350) | 0.005189 / 0.007986 (-0.002796) | 0.003263 / 0.004328 (-0.001065) | 0.063920 / 0.004250 (0.059670) | 0.052233 / 0.037052 (0.015180) | 0.324830 / 0.258489 (0.066341) | 0.357956 / 0.293841 (0.064115) | 0.030459 / 0.128546 (-0.098087) | 0.008350 / 0.075646 (-0.067297) | 0.287330 / 0.419271 (-0.131942) | 0.051005 / 0.043533 (0.007473) | 0.309227 / 0.255139 (0.054088) | 0.346184 / 0.283200 (0.062984) | 0.023961 / 0.141683 (-0.117722) | 1.463983 / 1.452155 (0.011829) | 1.573036 / 1.492716 (0.080319) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.205653 / 0.018006 (0.187647) | 0.457336 / 0.000490 (0.456846) | 0.005347 / 0.000200 (0.005147) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028080 / 0.037411 (-0.009332) | 0.081755 / 0.014526 (0.067229) | 0.095716 / 0.176557 (-0.080841) | 0.151340 / 0.737135 (-0.585795) | 0.097174 / 0.296338 (-0.199164) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.390725 / 0.215209 (0.175516) | 3.899114 / 2.077655 (1.821459) | 1.895352 / 1.504120 (0.391232) | 1.716072 / 1.541195 (0.174877) | 1.784952 / 1.468490 (0.316462) | 0.477247 / 4.584777 (-4.107530) | 3.606641 / 3.745712 (-0.139071) | 3.203337 / 5.269862 (-2.066524) | 2.017003 / 4.565676 (-2.548674) | 0.056182 / 0.424275 (-0.368094) | 0.007508 / 0.007607 (-0.000099) | 0.461965 / 0.226044 (0.235921) | 4.605926 / 2.268929 (2.336997) | 2.466695 / 55.444624 (-52.977929) | 2.136376 / 6.876477 (-4.740100) | 2.277334 / 2.142072 (0.135261) | 0.576119 / 4.805227 (-4.229109) | 0.131497 / 6.500664 (-6.369167) | 0.060068 / 0.075469 (-0.015401) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262681 / 1.841788 (-0.579107) | 19.411572 / 8.074308 (11.337264) | 14.383421 / 10.191392 (4.192029) | 0.166115 / 0.680424 (-0.514308) | 0.018366 / 0.534201 (-0.515835) | 0.393903 / 0.579283 (-0.185380) | 0.408788 / 0.434364 (-0.025576) | 0.461796 / 0.540337 (-0.078541) | 0.628460 / 1.386936 (-0.758476) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006501 / 0.011353 (-0.004852) | 0.003915 / 0.011008 (-0.007093) | 0.065245 / 0.038508 (0.026737) | 0.073146 / 0.023109 (0.050037) | 0.363537 / 0.275898 (0.087639) | 0.391571 / 0.323480 (0.068092) | 0.005181 / 0.007986 (-0.002805) | 0.003272 / 0.004328 (-0.001056) | 0.065060 / 0.004250 (0.060810) | 0.054302 / 0.037052 (0.017249) | 0.361571 / 0.258489 (0.103082) | 0.400221 / 0.293841 (0.106380) | 0.030762 / 0.128546 (-0.097784) | 0.008449 / 0.075646 (-0.067197) | 0.071148 / 0.419271 (-0.348123) | 0.048111 / 0.043533 (0.004578) | 0.360327 / 0.255139 (0.105188) | 0.379073 / 0.283200 (0.095874) | 0.024367 / 0.141683 (-0.117316) | 1.451080 / 1.452155 (-0.001074) | 1.510818 / 1.492716 (0.018102) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267078 / 0.018006 (0.249072) | 0.454074 / 0.000490 (0.453584) | 0.015055 / 0.000200 (0.014855) | 0.000129 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030916 / 0.037411 (-0.006496) | 0.089212 / 0.014526 (0.074686) | 0.100005 / 0.176557 (-0.076552) | 0.155100 / 0.737135 (-0.582035) | 0.101759 / 0.296338 (-0.194580) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412826 / 0.215209 (0.197616) | 4.122520 / 2.077655 (2.044865) | 2.107870 / 1.504120 (0.603750) | 1.911936 / 1.541195 (0.370741) | 1.984936 / 1.468490 (0.516446) | 0.483835 / 4.584777 (-4.100942) | 3.641860 / 3.745712 (-0.103852) | 3.220540 / 5.269862 (-2.049322) | 2.015521 / 4.565676 (-2.550155) | 0.056913 / 0.424275 (-0.367362) | 0.007285 / 0.007607 (-0.000322) | 0.484886 / 0.226044 (0.258842) | 4.854734 / 2.268929 (2.585805) | 2.593550 / 55.444624 (-52.851074) | 2.233904 / 6.876477 (-4.642572) | 2.438858 / 2.142072 (0.296785) | 0.580880 / 4.805227 (-4.224347) | 0.133891 / 6.500664 (-6.366773) | 0.061678 / 0.075469 (-0.013791) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.336843 / 1.841788 (-0.504944) | 19.731571 / 8.074308 (11.657263) | 14.290228 / 10.191392 (4.098836) | 0.167635 / 0.680424 (-0.512789) | 0.018767 / 0.534201 (-0.515434) | 0.394953 / 0.579283 (-0.184330) | 0.407711 / 0.434364 (-0.026653) | 0.472371 / 0.540337 (-0.067966) | 0.655278 / 1.386936 (-0.731658) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#528b15f775a4724836bdefdc38d932c06484d702 \"CML watermark\")\n" ]
"2023-08-17T21:58:24Z"
"2023-08-17T22:44:59Z"
"2023-08-17T22:36:04Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6160.diff", "html_url": "https://github.com/huggingface/datasets/pull/6160", "merged_at": "2023-08-17T22:36:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/6160.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6160" }
Fix #6149
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6160/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6160/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4787
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4787/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4787/comments
https://api.github.com/repos/huggingface/datasets/issues/4787/events
https://github.com/huggingface/datasets/issues/4787
1,328,243,911
I_kwDODunzps5PK2TH
4,787
NonMatchingChecksumError in mbpp dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[]
"2022-08-04T08:15:51Z"
"2022-08-04T17:21:01Z"
"2022-08-04T17:21:01Z"
MEMBER
null
null
null
## Describe the bug As reported on the Hub [Fix Checksum Mismatch](https://huggingface.co/datasets/mbpp/discussions/1), there is a `NonMatchingChecksumError` when loading mbpp dataset ## Steps to reproduce the bug ```python ds = load_dataset("mbpp", "full") ``` ## Expected results Loading of the dataset without any exception raised. ## Actual results ``` NonMatchingChecksumError Traceback (most recent call last) <ipython-input-1-a3fbdd3ed82e> in <module> ----> 1 ds = load_dataset("mbpp", "full") .../huggingface/datasets/src/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs) 1791 1792 # Download and prepare data -> 1793 builder_instance.download_and_prepare( 1794 download_config=download_config, 1795 download_mode=download_mode, .../huggingface/datasets/src/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs) 702 logger.warning("HF google storage unreachable. Downloading and preparing it from source") 703 if not downloaded_from_gcs: --> 704 self._download_and_prepare( 705 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 706 ) .../huggingface/datasets/src/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos) 1225 1226 def _download_and_prepare(self, dl_manager, verify_infos): -> 1227 super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos) 1228 1229 def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable: .../huggingface/datasets/src/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 773 # Checksums verification 774 if verify_infos and dl_manager.record_checksums: --> 775 verify_checksums( 776 self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), "dataset source files" 777 ) .../huggingface/datasets/src/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 38 if len(bad_urls) > 0: 39 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 40 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 41 logger.info("All the checksums matched successfully" + for_verification_name) 42 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://raw.githubusercontent.com/google-research/google-research/master/mbpp/mbpp.jsonl'] ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4787/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4787/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6265
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6265/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6265/comments
https://api.github.com/repos/huggingface/datasets/issues/6265/events
https://github.com/huggingface/datasets/pull/6265
1,915,651,566
PR_kwDODunzps5bWDfc
6,265
Remove `apache_beam` import in `BeamBasedBuilder._save_info`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005896 / 0.011353 (-0.005457) | 0.003642 / 0.011008 (-0.007366) | 0.081917 / 0.038508 (0.043409) | 0.059513 / 0.023109 (0.036404) | 0.341422 / 0.275898 (0.065524) | 0.359278 / 0.323480 (0.035798) | 0.004707 / 0.007986 (-0.003279) | 0.002938 / 0.004328 (-0.001390) | 0.063095 / 0.004250 (0.058845) | 0.051777 / 0.037052 (0.014725) | 0.321114 / 0.258489 (0.062625) | 0.363823 / 0.293841 (0.069982) | 0.027590 / 0.128546 (-0.100957) | 0.007846 / 0.075646 (-0.067800) | 0.261197 / 0.419271 (-0.158074) | 0.045812 / 0.043533 (0.002279) | 0.319787 / 0.255139 (0.064648) | 0.341839 / 0.283200 (0.058640) | 0.021913 / 0.141683 (-0.119770) | 1.397525 / 1.452155 (-0.054630) | 1.495902 / 1.492716 (0.003186) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224815 / 0.018006 (0.206809) | 0.425780 / 0.000490 (0.425290) | 0.006934 / 0.000200 (0.006734) | 0.000225 / 0.000054 (0.000171) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024342 / 0.037411 (-0.013070) | 0.073923 / 0.014526 (0.059398) | 0.082108 / 0.176557 (-0.094448) | 0.143017 / 0.737135 (-0.594119) | 0.083163 / 0.296338 (-0.213175) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398244 / 0.215209 (0.183035) | 3.957688 / 2.077655 (1.880033) | 1.904615 / 1.504120 (0.400495) | 1.710353 / 1.541195 (0.169158) | 1.798980 / 1.468490 (0.330490) | 0.499307 / 4.584777 (-4.085470) | 3.026734 / 3.745712 (-0.718978) | 2.923940 / 5.269862 (-2.345922) | 1.831870 / 4.565676 (-2.733807) | 0.058551 / 0.424275 (-0.365724) | 0.006403 / 0.007607 (-0.001204) | 0.464164 / 0.226044 (0.238119) | 4.644556 / 2.268929 (2.375628) | 2.341455 / 55.444624 (-53.103169) | 2.004385 / 6.876477 (-4.872092) | 2.051819 / 2.142072 (-0.090253) | 0.585610 / 4.805227 (-4.219617) | 0.124735 / 6.500664 (-6.375929) | 0.061150 / 0.075469 (-0.014319) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224665 / 1.841788 (-0.617122) | 17.476227 / 8.074308 (9.401919) | 13.867617 / 10.191392 (3.676225) | 0.144177 / 0.680424 (-0.536247) | 0.017045 / 0.534201 (-0.517156) | 0.337468 / 0.579283 (-0.241815) | 0.374476 / 0.434364 (-0.059888) | 0.393428 / 0.540337 (-0.146910) | 0.535335 / 1.386936 (-0.851601) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006208 / 0.011353 (-0.005145) | 0.003650 / 0.011008 (-0.007359) | 0.062843 / 0.038508 (0.024335) | 0.062272 / 0.023109 (0.039162) | 0.446336 / 0.275898 (0.170438) | 0.477476 / 0.323480 (0.153996) | 0.004862 / 0.007986 (-0.003124) | 0.002822 / 0.004328 (-0.001506) | 0.063427 / 0.004250 (0.059177) | 0.049023 / 0.037052 (0.011971) | 0.453633 / 0.258489 (0.195144) | 0.486494 / 0.293841 (0.192653) | 0.028634 / 0.128546 (-0.099912) | 0.008187 / 0.075646 (-0.067460) | 0.068846 / 0.419271 (-0.350425) | 0.041104 / 0.043533 (-0.002429) | 0.446646 / 0.255139 (0.191507) | 0.468860 / 0.283200 (0.185660) | 0.020980 / 0.141683 (-0.120703) | 1.455565 / 1.452155 (0.003410) | 1.511142 / 1.492716 (0.018426) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224242 / 0.018006 (0.206236) | 0.408483 / 0.000490 (0.407993) | 0.003495 / 0.000200 (0.003296) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027286 / 0.037411 (-0.010125) | 0.081151 / 0.014526 (0.066625) | 0.096598 / 0.176557 (-0.079959) | 0.146193 / 0.737135 (-0.590942) | 0.092213 / 0.296338 (-0.204125) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463837 / 0.215209 (0.248628) | 4.636820 / 2.077655 (2.559165) | 2.576100 / 1.504120 (1.071980) | 2.396974 / 1.541195 (0.855779) | 2.461526 / 1.468490 (0.993036) | 0.502360 / 4.584777 (-4.082417) | 3.099973 / 3.745712 (-0.645739) | 2.937260 / 5.269862 (-2.332602) | 1.871274 / 4.565676 (-2.694402) | 0.057913 / 0.424275 (-0.366362) | 0.006511 / 0.007607 (-0.001096) | 0.536917 / 0.226044 (0.310873) | 5.396966 / 2.268929 (3.128038) | 3.015646 / 55.444624 (-52.428978) | 2.673793 / 6.876477 (-4.202684) | 2.712376 / 2.142072 (0.570304) | 0.591632 / 4.805227 (-4.213595) | 0.124872 / 6.500664 (-6.375792) | 0.061820 / 0.075469 (-0.013649) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356828 / 1.841788 (-0.484960) | 18.076995 / 8.074308 (10.002687) | 15.116482 / 10.191392 (4.925090) | 0.151375 / 0.680424 (-0.529049) | 0.017867 / 0.534201 (-0.516334) | 0.335012 / 0.579283 (-0.244271) | 0.384137 / 0.434364 (-0.050226) | 0.397792 / 0.540337 (-0.142546) | 0.551521 / 1.386936 (-0.835415) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#46a0506765d0f92916ed5c37eb19e5fa1a77736a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009418 / 0.011353 (-0.001935) | 0.005186 / 0.011008 (-0.005822) | 0.112270 / 0.038508 (0.073761) | 0.114856 / 0.023109 (0.091747) | 0.402267 / 0.275898 (0.126369) | 0.445213 / 0.323480 (0.121733) | 0.005588 / 0.007986 (-0.002398) | 0.004315 / 0.004328 (-0.000013) | 0.083561 / 0.004250 (0.079311) | 0.087319 / 0.037052 (0.050267) | 0.400989 / 0.258489 (0.142500) | 0.455636 / 0.293841 (0.161795) | 0.045168 / 0.128546 (-0.083378) | 0.010939 / 0.075646 (-0.064707) | 0.400120 / 0.419271 (-0.019151) | 0.071599 / 0.043533 (0.028066) | 0.418112 / 0.255139 (0.162973) | 0.443889 / 0.283200 (0.160690) | 0.032433 / 0.141683 (-0.109250) | 1.886313 / 1.452155 (0.434159) | 2.012909 / 1.492716 (0.520193) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.306991 / 0.018006 (0.288985) | 0.590426 / 0.000490 (0.589937) | 0.011811 / 0.000200 (0.011611) | 0.000596 / 0.000054 (0.000542) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.042520 / 0.037411 (0.005108) | 0.129808 / 0.014526 (0.115283) | 0.125481 / 0.176557 (-0.051075) | 0.199181 / 0.737135 (-0.537954) | 0.130426 / 0.296338 (-0.165913) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.526455 / 0.215209 (0.311246) | 5.213304 / 2.077655 (3.135649) | 2.643406 / 1.504120 (1.139286) | 2.611214 / 1.541195 (1.070019) | 2.586730 / 1.468490 (1.118240) | 0.639103 / 4.584777 (-3.945674) | 5.197421 / 3.745712 (1.451709) | 4.634642 / 5.269862 (-0.635220) | 2.741079 / 4.565676 (-1.824598) | 0.073064 / 0.424275 (-0.351211) | 0.009441 / 0.007607 (0.001834) | 0.635984 / 0.226044 (0.409940) | 6.283268 / 2.268929 (4.014339) | 3.337205 / 55.444624 (-52.107419) | 3.192362 / 6.876477 (-3.684114) | 2.910367 / 2.142072 (0.768294) | 0.767937 / 4.805227 (-4.037290) | 0.177467 / 6.500664 (-6.323198) | 0.081162 / 0.075469 (0.005693) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.803717 / 1.841788 (-0.038071) | 26.823235 / 8.074308 (18.748927) | 19.714471 / 10.191392 (9.523079) | 0.204048 / 0.680424 (-0.476376) | 0.025992 / 0.534201 (-0.508209) | 0.521438 / 0.579283 (-0.057845) | 0.596524 / 0.434364 (0.162160) | 0.600763 / 0.540337 (0.060425) | 0.945971 / 1.386936 (-0.440965) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009126 / 0.011353 (-0.002226) | 0.005109 / 0.011008 (-0.005899) | 0.083046 / 0.038508 (0.044538) | 0.115930 / 0.023109 (0.092821) | 0.534311 / 0.275898 (0.258413) | 0.552846 / 0.323480 (0.229366) | 0.007240 / 0.007986 (-0.000746) | 0.004617 / 0.004328 (0.000289) | 0.083927 / 0.004250 (0.079676) | 0.075926 / 0.037052 (0.038873) | 0.534750 / 0.258489 (0.276261) | 0.575122 / 0.293841 (0.281281) | 0.041001 / 0.128546 (-0.087545) | 0.010851 / 0.075646 (-0.064795) | 0.096574 / 0.419271 (-0.322697) | 0.063533 / 0.043533 (0.020001) | 0.546850 / 0.255139 (0.291711) | 0.547122 / 0.283200 (0.263922) | 0.032437 / 0.141683 (-0.109245) | 1.926191 / 1.452155 (0.474036) | 2.029841 / 1.492716 (0.537125) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275582 / 0.018006 (0.257576) | 0.574212 / 0.000490 (0.573722) | 0.006863 / 0.000200 (0.006663) | 0.000236 / 0.000054 (0.000181) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.045340 / 0.037411 (0.007928) | 0.129196 / 0.014526 (0.114670) | 0.136637 / 0.176557 (-0.039920) | 0.200040 / 0.737135 (-0.537096) | 0.136328 / 0.296338 (-0.160011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.612379 / 0.215209 (0.397170) | 5.874664 / 2.077655 (3.797010) | 3.070626 / 1.504120 (1.566506) | 2.999319 / 1.541195 (1.458124) | 3.000571 / 1.468490 (1.532081) | 0.732119 / 4.584777 (-3.852658) | 5.193226 / 3.745712 (1.447514) | 4.714571 / 5.269862 (-0.555291) | 2.870438 / 4.565676 (-1.695239) | 0.075793 / 0.424275 (-0.348482) | 0.009238 / 0.007607 (0.001631) | 0.695192 / 0.226044 (0.469148) | 6.897996 / 2.268929 (4.629067) | 3.923474 / 55.444624 (-51.521150) | 3.458326 / 6.876477 (-3.418151) | 3.331652 / 2.142072 (1.189579) | 0.821132 / 4.805227 (-3.984095) | 0.182252 / 6.500664 (-6.318412) | 0.084730 / 0.075469 (0.009260) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.919861 / 1.841788 (0.078073) | 27.437228 / 8.074308 (19.362920) | 21.109899 / 10.191392 (10.918507) | 0.245998 / 0.680424 (-0.434426) | 0.025817 / 0.534201 (-0.508384) | 0.517757 / 0.579283 (-0.061526) | 0.576375 / 0.434364 (0.142011) | 0.625283 / 0.540337 (0.084945) | 0.956877 / 1.386936 (-0.430059) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8ddee15a8650a0ea52073477036d8c973da50f11 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008099 / 0.011353 (-0.003254) | 0.004815 / 0.011008 (-0.006194) | 0.099657 / 0.038508 (0.061149) | 0.064737 / 0.023109 (0.041628) | 0.461773 / 0.275898 (0.185875) | 0.444810 / 0.323480 (0.121330) | 0.004247 / 0.007986 (-0.003739) | 0.004956 / 0.004328 (0.000628) | 0.068664 / 0.004250 (0.064414) | 0.052039 / 0.037052 (0.014986) | 0.406750 / 0.258489 (0.148261) | 0.452832 / 0.293841 (0.158991) | 0.044518 / 0.128546 (-0.084028) | 0.013220 / 0.075646 (-0.062426) | 0.317713 / 0.419271 (-0.101558) | 0.061897 / 0.043533 (0.018364) | 0.398664 / 0.255139 (0.143525) | 0.531494 / 0.283200 (0.248294) | 0.064033 / 0.141683 (-0.077650) | 1.590385 / 1.452155 (0.138231) | 1.769918 / 1.492716 (0.277202) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230795 / 0.018006 (0.212789) | 0.568797 / 0.000490 (0.568308) | 0.013498 / 0.000200 (0.013298) | 0.000448 / 0.000054 (0.000393) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028394 / 0.037411 (-0.009017) | 0.081973 / 0.014526 (0.067447) | 0.097623 / 0.176557 (-0.078934) | 0.158691 / 0.737135 (-0.578445) | 0.101548 / 0.296338 (-0.194791) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.574459 / 0.215209 (0.359249) | 5.709871 / 2.077655 (3.632217) | 2.521460 / 1.504120 (1.017340) | 2.239463 / 1.541195 (0.698268) | 2.195067 / 1.468490 (0.726577) | 0.792390 / 4.584777 (-3.792387) | 4.841665 / 3.745712 (1.095952) | 4.201620 / 5.269862 (-1.068241) | 2.664081 / 4.565676 (-1.901595) | 0.097661 / 0.424275 (-0.326614) | 0.008428 / 0.007607 (0.000821) | 0.698729 / 0.226044 (0.472684) | 6.908867 / 2.268929 (4.639939) | 3.247480 / 55.444624 (-52.197145) | 2.563921 / 6.876477 (-4.312556) | 2.738249 / 2.142072 (0.596177) | 0.972066 / 4.805227 (-3.833161) | 0.191196 / 6.500664 (-6.309468) | 0.064732 / 0.075469 (-0.010737) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.421910 / 1.841788 (-0.419877) | 20.633538 / 8.074308 (12.559230) | 18.054562 / 10.191392 (7.863170) | 0.194125 / 0.680424 (-0.486299) | 0.028097 / 0.534201 (-0.506104) | 0.417857 / 0.579283 (-0.161426) | 0.518758 / 0.434364 (0.084394) | 0.500199 / 0.540337 (-0.040138) | 0.754662 / 1.386936 (-0.632274) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008452 / 0.011353 (-0.002901) | 0.004646 / 0.011008 (-0.006362) | 0.077286 / 0.038508 (0.038778) | 0.072507 / 0.023109 (0.049398) | 0.439580 / 0.275898 (0.163682) | 0.506166 / 0.323480 (0.182686) | 0.006035 / 0.007986 (-0.001950) | 0.003886 / 0.004328 (-0.000442) | 0.075091 / 0.004250 (0.070841) | 0.063163 / 0.037052 (0.026110) | 0.468550 / 0.258489 (0.210061) | 0.523273 / 0.293841 (0.229432) | 0.048728 / 0.128546 (-0.079818) | 0.012991 / 0.075646 (-0.062655) | 0.087964 / 0.419271 (-0.331308) | 0.058920 / 0.043533 (0.015387) | 0.451247 / 0.255139 (0.196108) | 0.489827 / 0.283200 (0.206628) | 0.031164 / 0.141683 (-0.110519) | 1.675504 / 1.452155 (0.223349) | 1.806098 / 1.492716 (0.313382) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.253567 / 0.018006 (0.235561) | 0.508971 / 0.000490 (0.508481) | 0.010882 / 0.000200 (0.010682) | 0.000111 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029490 / 0.037411 (-0.007921) | 0.090255 / 0.014526 (0.075729) | 0.110075 / 0.176557 (-0.066482) | 0.159375 / 0.737135 (-0.577760) | 0.109313 / 0.296338 (-0.187025) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.580252 / 0.215209 (0.365043) | 5.911741 / 2.077655 (3.834086) | 2.659405 / 1.504120 (1.155285) | 2.344943 / 1.541195 (0.803749) | 2.390748 / 1.468490 (0.922258) | 0.827823 / 4.584777 (-3.756954) | 4.973544 / 3.745712 (1.227832) | 4.300220 / 5.269862 (-0.969642) | 2.826181 / 4.565676 (-1.739495) | 0.101013 / 0.424275 (-0.323263) | 0.008025 / 0.007607 (0.000418) | 0.728414 / 0.226044 (0.502369) | 7.508045 / 2.268929 (5.239117) | 3.687627 / 55.444624 (-51.756997) | 2.902953 / 6.876477 (-3.973524) | 3.094624 / 2.142072 (0.952551) | 1.054696 / 4.805227 (-3.750531) | 0.212297 / 6.500664 (-6.288367) | 0.070211 / 0.075469 (-0.005258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.567117 / 1.841788 (-0.274670) | 21.420746 / 8.074308 (13.346438) | 19.857467 / 10.191392 (9.666075) | 0.228554 / 0.680424 (-0.451870) | 0.032278 / 0.534201 (-0.501923) | 0.459966 / 0.579283 (-0.119317) | 0.541219 / 0.434364 (0.106855) | 0.549599 / 0.540337 (0.009261) | 0.731476 / 1.386936 (-0.655460) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0cc77d7f45c73698c31eab4f8cfff901044d0020 \"CML watermark\")\n" ]
"2023-09-27T13:56:34Z"
"2023-09-28T18:34:02Z"
"2023-09-28T18:23:35Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6265.diff", "html_url": "https://github.com/huggingface/datasets/pull/6265", "merged_at": "2023-09-28T18:23:35Z", "patch_url": "https://github.com/huggingface/datasets/pull/6265.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6265" }
... to avoid an `ImportError` raised in `BeamBasedBuilder._save_info` when `apache_beam` is not installed (e.g., when downloading the processed version of a dataset from the HF GCS) Fix https://github.com/huggingface/datasets/issues/6260
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6265/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6265/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1401
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1401/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1401/comments
https://api.github.com/repos/huggingface/datasets/issues/1401/events
https://github.com/huggingface/datasets/pull/1401
760,525,949
MDExOlB1bGxSZXF1ZXN0NTM1MzQyOTY2
1,401
Add reasoning_bg
{ "avatar_url": "https://avatars.githubusercontent.com/u/1351362?v=4", "events_url": "https://api.github.com/users/saradhix/events{/privacy}", "followers_url": "https://api.github.com/users/saradhix/followers", "following_url": "https://api.github.com/users/saradhix/following{/other_user}", "gists_url": "https://api.github.com/users/saradhix/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/saradhix", "id": 1351362, "login": "saradhix", "node_id": "MDQ6VXNlcjEzNTEzNjI=", "organizations_url": "https://api.github.com/users/saradhix/orgs", "received_events_url": "https://api.github.com/users/saradhix/received_events", "repos_url": "https://api.github.com/users/saradhix/repos", "site_admin": false, "starred_url": "https://api.github.com/users/saradhix/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/saradhix/subscriptions", "type": "User", "url": "https://api.github.com/users/saradhix" }
[]
closed
false
null
[]
null
[ "Hi @saradhix have you had the chance to reduce the size of the dummy data ?\r\n\r\nFeel free to ping me when it's done so we can merge :) ", "@lhoestq I have reduced the size of the dummy data manually and pushed the changes.", "The CI errors are not related to your dataset.\r\nThey're fixed on master, you can ignore them", "merging since the CI is fixed on master" ]
"2020-12-09T17:30:49Z"
"2020-12-17T16:50:43Z"
"2020-12-17T16:50:42Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1401.diff", "html_url": "https://github.com/huggingface/datasets/pull/1401", "merged_at": "2020-12-17T16:50:42Z", "patch_url": "https://github.com/huggingface/datasets/pull/1401.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1401" }
Adding reading comprehension dataset for Bulgarian language
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1401/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1401/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4517
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4517/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4517/comments
https://api.github.com/repos/huggingface/datasets/issues/4517/events
https://github.com/huggingface/datasets/pull/4517
1,273,960,476
PR_kwDODunzps45zBl0
4,517
Add tags for task_ids:summarization-* and task_categories:summarization*
{ "avatar_url": "https://avatars.githubusercontent.com/u/292855?v=4", "events_url": "https://api.github.com/users/hobson/events{/privacy}", "followers_url": "https://api.github.com/users/hobson/followers", "following_url": "https://api.github.com/users/hobson/following{/other_user}", "gists_url": "https://api.github.com/users/hobson/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hobson", "id": 292855, "login": "hobson", "node_id": "MDQ6VXNlcjI5Mjg1NQ==", "organizations_url": "https://api.github.com/users/hobson/orgs", "received_events_url": "https://api.github.com/users/hobson/received_events", "repos_url": "https://api.github.com/users/hobson/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hobson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hobson/subscriptions", "type": "User", "url": "https://api.github.com/users/hobson" }
[]
closed
false
null
[]
null
[ "Associated community discussion is [here](https://huggingface.co/datasets/aeslc/discussions/1).\r\nPaper referenced in the `dataset_infos.json` is [here](https://arxiv.org/pdf/1906.03497.pdf). It mentions the _email-subject-generation_ task, which is not a tag mentioned in any other dataset so it was not added in this pull request. The _summarization_ task is mentioned as a related task.", "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-06-16T18:52:25Z"
"2022-07-08T15:14:23Z"
"2022-07-08T15:02:31Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4517.diff", "html_url": "https://github.com/huggingface/datasets/pull/4517", "merged_at": "2022-07-08T15:02:31Z", "patch_url": "https://github.com/huggingface/datasets/pull/4517.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4517" }
yaml header at top of README.md file was edited to add task tags because I couldn't find the existing tags in the json separate Pull Request will modify dataset_infos.json to add these tags The Enron dataset (dataset id aeslc) is only tagged with: arxiv:1906.03497' languages:en pretty_name:AESLC Using the email subject_line field as a label or target variable it possible to create models for the following task_ids (in order of relevance): 'task_ids:summarization' 'task_ids:summarization-other-conversations-summarization' "task_ids:other-other-query-based-multi-document-summarization" 'task_ids:summarization-other-aspect-based-summarization' 'task_ids:summarization--other-headline-generation' The subject might also be used for the task_category "task_categories:summarization" E-mail chains might be used for the task category "task_categories:dialogue-system"
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4517/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4517/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5290
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5290/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5290/comments
https://api.github.com/repos/huggingface/datasets/issues/5290/events
https://github.com/huggingface/datasets/pull/5290
1,462,716,766
PR_kwDODunzps5DnQsS
5,290
fix error where reading breaks when batch missing an assigned column feature
{ "avatar_url": "https://avatars.githubusercontent.com/u/12104720?v=4", "events_url": "https://api.github.com/users/eunseojo/events{/privacy}", "followers_url": "https://api.github.com/users/eunseojo/followers", "following_url": "https://api.github.com/users/eunseojo/following{/other_user}", "gists_url": "https://api.github.com/users/eunseojo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eunseojo", "id": 12104720, "login": "eunseojo", "node_id": "MDQ6VXNlcjEyMTA0NzIw", "organizations_url": "https://api.github.com/users/eunseojo/orgs", "received_events_url": "https://api.github.com/users/eunseojo/received_events", "repos_url": "https://api.github.com/users/eunseojo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eunseojo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eunseojo/subscriptions", "type": "User", "url": "https://api.github.com/users/eunseojo" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5290). All of your documentation changes will be reflected on that endpoint." ]
"2022-11-24T03:53:46Z"
"2022-11-25T03:21:54Z"
null
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5290.diff", "html_url": "https://github.com/huggingface/datasets/pull/5290", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5290.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5290" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5290/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5290/timeline
null
null
true