url
stringlengths 58
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 72
75
| comments_url
stringlengths 67
70
| events_url
stringlengths 65
68
| html_url
stringlengths 46
51
| id
int64 600M
2.05B
| node_id
stringlengths 18
32
| number
int64 2
6.51k
| title
stringlengths 1
290
| user
dict | labels
listlengths 0
4
| state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
listlengths 0
4
| milestone
dict | comments
sequencelengths 0
30
| created_at
unknown | updated_at
unknown | closed_at
unknown | author_association
stringclasses 3
values | active_lock_reason
float64 | draft
float64 0
1
⌀ | pull_request
dict | body
stringlengths 0
228k
⌀ | reactions
dict | timeline_url
stringlengths 67
70
| performed_via_github_app
float64 | state_reason
stringclasses 3
values | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/4143 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4143/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4143/comments | https://api.github.com/repos/huggingface/datasets/issues/4143/events | https://github.com/huggingface/datasets/issues/4143 | 1,199,937,961 | I_kwDODunzps5HhZmp | 4,143 | Unable to download `Wikepedia` 20220301.en version | {
"avatar_url": "https://avatars.githubusercontent.com/u/37113676?v=4",
"events_url": "https://api.github.com/users/beyondguo/events{/privacy}",
"followers_url": "https://api.github.com/users/beyondguo/followers",
"following_url": "https://api.github.com/users/beyondguo/following{/other_user}",
"gists_url": "https://api.github.com/users/beyondguo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/beyondguo",
"id": 37113676,
"login": "beyondguo",
"node_id": "MDQ6VXNlcjM3MTEzNjc2",
"organizations_url": "https://api.github.com/users/beyondguo/orgs",
"received_events_url": "https://api.github.com/users/beyondguo/received_events",
"repos_url": "https://api.github.com/users/beyondguo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/beyondguo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/beyondguo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/beyondguo"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [
"Hi! We've recently updated the Wikipedia script, so these changes are only available on master and can be fetched as follows:\r\n```python\r\ndataset_wikipedia = load_dataset(\"wikipedia\", \"20220301.en\", revision=\"master\")\r\n```",
"Hi, how can I load the previous \"20200501.en\" version of wikipedia which had been downloaded to the default path? Thanks!",
"@JiaQiSJTU just reinstall the previous verision of the package, e.g. `!pip install -q datasets==1.0.0`"
] | "2022-04-11T13:00:14Z" | "2022-08-17T00:37:55Z" | "2022-04-21T17:04:14Z" | NONE | null | null | null | ## Describe the bug
Unable to download `Wikepedia` dataset, 20220301.en version
## Steps to reproduce the bug
```python
!pip install apache_beam mwparserfromhell
dataset_wikipedia = load_dataset("wikipedia", "20220301.en")
```
## Actual results
```
ValueError: BuilderConfig 20220301.en not found.
Available: ['20200501.aa', '20200501.ab', '20200501.ace', '20200501.ady', '20200501.af', '20200501.ak', '20200501.als', '20200501.am', '20200501.an', '20200501.ang', '20200501.ar', '20200501.arc', '20200501.arz', '20200501.as', '20200501.ast', '20200501.atj', '20200501.av', '20200501.ay', '20200501.az', '20200501.azb', '20200501.ba', '20200501.bar', '20200501.bat-smg', '20200501.bcl', '20200501.be', '20200501.be-x-old', '20200501.bg', '20200501.bh', '20200501.bi', '20200501.bjn', '20200501.bm', '20200501.bn', '20200501.bo', '20200501.bpy', '20200501.br', '20200501.bs', '20200501.bug', '20200501.bxr', '20200501.ca', '20200501.cbk-zam', '20200501.cdo', '20200501.ce', '20200501.ceb', '20200501.ch', '20200501.cho', '20200501.chr', '20200501.chy', '20200501.ckb', '20200501.co', '20200501.cr', '20200501.crh', '20200501.cs', '20200501.csb', '20200501.cu', '20200501.cv', '20200501.cy', '20200501.da', '20200501.de', '20200501.din', '20200501.diq', '20200501.dsb', '20200501.dty', '20200501.dv', '20200501.dz', '20200501.ee', '20200501.el', '20200501.eml', '20200501.en', '20200501.eo', '20200501.es', '20200501.et', '20200501.eu', '20200501.ext', '20200501.fa', '20200501.ff', '20200501.fi', '20200501.fiu-vro', '20200501.fj', '20200501.fo', '20200501.fr', '20200501.frp', '20200501.frr', '20200501.fur', '20200501.fy', '20200501.ga', '20200501.gag', '20200501.gan', '20200501.gd', '20200501.gl', '20200501.glk', '20200501.gn', '20200501.gom', '20200501.gor', '20200501.got', '20200501.gu', '20200501.gv', '20200501.ha', '20200501.hak', '20200501.haw', '20200501.he', '20200501.hi', '20200501.hif', '20200501.ho', '20200501.hr', '20200501.hsb', '20200501.ht', '20200501.hu', '20200501.hy', '20200501.ia', '20200501.id', '20200501.ie', '20200501.ig', '20200501.ii', '20200501.ik', '20200501.ilo', '20200501.inh', '20200501.io', '20200501.is', '20200501.it', '20200501.iu', '20200501.ja', '20200501.jam', '20200501.jbo', '20200501.jv', '20200501.ka', '20200501.kaa', '20200501.kab', '20200501.kbd', '20200501.kbp', '20200501.kg', '20200501.ki', '20200501.kj', '20200501.kk', '20200501.kl', '20200501.km', '20200501.kn', '20200501.ko', '20200501.koi', '20200501.krc', '20200501.ks', '20200501.ksh', '20200501.ku', '20200501.kv', '20200501.kw', '20200501.ky', '20200501.la', '20200501.lad', '20200501.lb', '20200501.lbe', '20200501.lez', '20200501.lfn', '20200501.lg', '20200501.li', '20200501.lij', '20200501.lmo', '20200501.ln', '20200501.lo', '20200501.lrc', '20200501.lt', '20200501.ltg', '20200501.lv', '20200501.mai', '20200501.map-bms', '20200501.mdf', '20200501.mg', '20200501.mh', '20200501.mhr', '20200501.mi', '20200501.min', '20200501.mk', '20200501.ml', '20200501.mn', '20200501.mr', '20200501.mrj', '20200501.ms', '20200501.mt', '20200501.mus', '20200501.mwl', '20200501.my', '20200501.myv', '20200501.mzn', '20200501.na', '20200501.nah', '20200501.nap', '20200501.nds', '20200501.nds-nl', '20200501.ne', '20200501.new', '20200501.ng', '20200501.nl', '20200501.nn', '20200501.no', '20200501.nov', '20200501.nrm', '20200501.nso', '20200501.nv', '20200501.ny', '20200501.oc', '20200501.olo', '20200501.om', '20200501.or', '20200501.os', '20200501.pa', '20200501.pag', '20200501.pam', '20200501.pap', '20200501.pcd', '20200501.pdc', '20200501.pfl', '20200501.pi', '20200501.pih', '20200501.pl', '20200501.pms', '20200501.pnb', '20200501.pnt', '20200501.ps', '20200501.pt', '20200501.qu', '20200501.rm', '20200501.rmy', '20200501.rn', '20200501.ro', '20200501.roa-rup', '20200501.roa-tara', '20200501.ru', '20200501.rue', '20200501.rw', '20200501.sa', '20200501.sah', '20200501.sat', '20200501.sc', '20200501.scn', '20200501.sco', '20200501.sd', '20200501.se', '20200501.sg', '20200501.sh', '20200501.si', '20200501.simple', '20200501.sk', '20200501.sl', '20200501.sm', '20200501.sn', '20200501.so', '20200501.sq', '20200501.sr', '20200501.srn', '20200501.ss', '20200501.st', '20200501.stq', '20200501.su', '20200501.sv', '20200501.sw', '20200501.szl', '20200501.ta', '20200501.tcy', '20200501.te', '20200501.tet', '20200501.tg', '20200501.th', '20200501.ti', '20200501.tk', '20200501.tl', '20200501.tn', '20200501.to', '20200501.tpi', '20200501.tr', '20200501.ts', '20200501.tt', '20200501.tum', '20200501.tw', '20200501.ty', '20200501.tyv', '20200501.udm', '20200501.ug', '20200501.uk', '20200501.ur', '20200501.uz', '20200501.ve', '20200501.vec', '20200501.vep', '20200501.vi', '20200501.vls', '20200501.vo', '20200501.wa', '20200501.war', '20200501.wo', '20200501.wuu', '20200501.xal', '20200501.xh', '20200501.xmf', '20200501.yi', '20200501.yo', '20200501.za', '20200501.zea', '20200501.zh', '20200501.zh-classical', '20200501.zh-min-nan', '20200501.zh-yue', '20200501.zu']
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 2.0.0
- Platform: Ubuntu
- Python version: 3.6
- PyArrow version: 6.0.1 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4143/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4143/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/1586 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1586/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1586/comments | https://api.github.com/repos/huggingface/datasets/issues/1586/events | https://github.com/huggingface/datasets/pull/1586 | 768,864,502 | MDExOlB1bGxSZXF1ZXN0NTQxMTY0MDc2 | 1,586 | added irc disentangle dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/32560035?v=4",
"events_url": "https://api.github.com/users/dhruvjoshi1998/events{/privacy}",
"followers_url": "https://api.github.com/users/dhruvjoshi1998/followers",
"following_url": "https://api.github.com/users/dhruvjoshi1998/following{/other_user}",
"gists_url": "https://api.github.com/users/dhruvjoshi1998/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/dhruvjoshi1998",
"id": 32560035,
"login": "dhruvjoshi1998",
"node_id": "MDQ6VXNlcjMyNTYwMDM1",
"organizations_url": "https://api.github.com/users/dhruvjoshi1998/orgs",
"received_events_url": "https://api.github.com/users/dhruvjoshi1998/received_events",
"repos_url": "https://api.github.com/users/dhruvjoshi1998/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/dhruvjoshi1998/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dhruvjoshi1998/subscriptions",
"type": "User",
"url": "https://api.github.com/users/dhruvjoshi1998"
} | [] | closed | false | null | [] | null | [
"@lhoestq sorry, this was the only way I was able to fix the pull request ",
"@lhoestq Thank you for the feedback. I wondering whether I should be passing an 'id' field in the dictionary since the 'connections' reference the 'id' of the linked messages. This 'id' would just be the same as the id_ that is in the yielded tuple.",
"Yes indeed it would be cool to have the ids in the dictionary. This way the dataset can be shuffled and all without losing information about the connections. Can you add it if you don't mind ?",
"Thanks :) could you also add the ids in the dictionary since they're useful for the connection links ?",
"Thanks !\r\nAlso it looks like the dummy_data.zip were regenerated and are now back to being too big (300KB each).\r\nCan you reduce their sizes ? You can actually just revert to the ones you had before the last commit"
] | "2020-12-16T13:25:58Z" | "2021-01-29T10:28:53Z" | "2021-01-29T10:28:53Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1586.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1586",
"merged_at": "2021-01-29T10:28:53Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1586.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1586"
} | added irc disentanglement dataset | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1586/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1586/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6238 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6238/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6238/comments | https://api.github.com/repos/huggingface/datasets/issues/6238/events | https://github.com/huggingface/datasets/issues/6238 | 1,895,207,828 | I_kwDODunzps5w9pOU | 6,238 | `dataset.filter` ALWAYS removes the first item from the dataset when using batched=True | {
"avatar_url": "https://avatars.githubusercontent.com/u/1330693?v=4",
"events_url": "https://api.github.com/users/Taytay/events{/privacy}",
"followers_url": "https://api.github.com/users/Taytay/followers",
"following_url": "https://api.github.com/users/Taytay/following{/other_user}",
"gists_url": "https://api.github.com/users/Taytay/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Taytay",
"id": 1330693,
"login": "Taytay",
"node_id": "MDQ6VXNlcjEzMzA2OTM=",
"organizations_url": "https://api.github.com/users/Taytay/orgs",
"received_events_url": "https://api.github.com/users/Taytay/received_events",
"repos_url": "https://api.github.com/users/Taytay/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Taytay/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Taytay/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Taytay"
} | [] | closed | false | null | [] | null | [
"`filter` treats the function's output as a (selection) mask - `True` keeps the sample, and `False` drops it. In your case, `bool(0)` evaluates to `False`, so dropping the first sample is the correct behavior.",
"Oh gosh! 🤦 I totally misunderstood the API! My apologies!"
] | "2023-09-13T20:20:37Z" | "2023-09-17T07:05:07Z" | "2023-09-17T07:05:07Z" | NONE | null | null | null | ### Describe the bug
If you call batched=True when calling `filter`, the first item is _always_ filtered out, regardless of the filter condition.
### Steps to reproduce the bug
Here's a minimal example:
```python
def filter_batch_always_true(batch, indices):
print("First index being passed into this filter function: ", indices[0])
return indices # Keep all indices
data = {"value": list(range(10))}
dataset = Dataset.from_dict(data)
filtered_dataset = dataset.filter(filter_batch_always_true, with_indices=True, batched=True)
print("Length of original dataset: ", len(dataset))
print("Length of filtered_dataset: ", len(filtered_dataset))
print("Is equal to original? ", len(filtered_dataset) == len(dataset))
print("First item of filtered dataset: ", filtered_dataset[0])
print("Last item of filtered dataset: ", filtered_dataset[-1])
```
prints:
```
First index being passed into this filter function: 0
Length of original dataset: 10
Length of filtered_dataset: 9
Is equal to original? False
First item of filtered dataset: {'value': 1}
Last item of filtered dataset: {'value': 9}
```
### Expected behavior
Filter should respect the filter condition.
### Environment info
- `datasets` version: 2.14.4
- Platform: macOS-13.5-arm64-arm-64bit
- Python version: 3.9.18
- Huggingface_hub version: 0.17.1
- PyArrow version: 10.0.1
- Pandas version: 2.0.2
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6238/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6238/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/3438 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3438/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3438/comments | https://api.github.com/repos/huggingface/datasets/issues/3438/events | https://github.com/huggingface/datasets/pull/3438 | 1,081,302,203 | PR_kwDODunzps4v52Va | 3,438 | Update supported versions of Python in setup.py | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [] | "2021-12-15T17:30:12Z" | "2021-12-20T14:22:13Z" | "2021-12-20T14:22:12Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3438.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3438",
"merged_at": "2021-12-20T14:22:12Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3438.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3438"
} | Update the list of supported versions of Python in `setup.py` to keep the PyPI project description updated. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3438/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3438/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1767 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1767/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1767/comments | https://api.github.com/repos/huggingface/datasets/issues/1767/events | https://github.com/huggingface/datasets/pull/1767 | 792,068,497 | MDExOlB1bGxSZXF1ZXN0NTYwMDE2MzE2 | 1,767 | Add Librispeech ASR | {
"avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4",
"events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}",
"followers_url": "https://api.github.com/users/patrickvonplaten/followers",
"following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}",
"gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/patrickvonplaten",
"id": 23423619,
"login": "patrickvonplaten",
"node_id": "MDQ6VXNlcjIzNDIzNjE5",
"organizations_url": "https://api.github.com/users/patrickvonplaten/orgs",
"received_events_url": "https://api.github.com/users/patrickvonplaten/received_events",
"repos_url": "https://api.github.com/users/patrickvonplaten/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions",
"type": "User",
"url": "https://api.github.com/users/patrickvonplaten"
} | [] | closed | false | null | [] | null | [
"> Awesome thank you !\r\n> \r\n> The dummy data are quite big but it was expected given that the raw files are flac files.\r\n> Given that the script doesn't even read the flac files I think we can remove them. Or maybe use empty flac files (see [here](https://hydrogenaud.io/index.php?topic=118685.0) for example). What do you think ?\r\n> \r\n> We'll find a better solution to be able to have bigger dummy_data (max 1MB instead of a few KB, maybe using git LFS.\r\n\r\nHmm, I already made the dummy data as small as possible (a single flac filie per split only). I'd like to keep them at least to have complete dummy data and don't think 500KB for all datasets together is a problem (the long-range summarization datasets are similarly heavy). The moment we allow dummy data to be loaded directly for testing, we need the flac files IMO.\r\n\r\nBut I agree that longterm, we need a better solution for the dummy data (maybe stop hosting it on github to not make the repo too heavy)"
] | "2021-01-22T14:54:37Z" | "2021-01-25T20:38:07Z" | "2021-01-25T20:37:42Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1767.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1767",
"merged_at": "2021-01-25T20:37:42Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1767.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1767"
} | This PR adds the librispeech asr dataset: https://www.tensorflow.org/datasets/catalog/librispeech
There are 2 configs: "clean" and "other" whereas there are two "train" datasets for "clean", hence the name "train.100" and "train.360".
As suggested by @lhoestq, due to the enormous size of the dataset in `.arrow` format, the speech files are not directly prepared to a float32-array, but instead just the path to the array file is stored. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1767/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1767/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3775 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3775/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3775/comments | https://api.github.com/repos/huggingface/datasets/issues/3775/events | https://github.com/huggingface/datasets/pull/3775 | 1,146,849,454 | PR_kwDODunzps4zSEd4 | 3,775 | Update gigaword card and info | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [
"I think it actually comes from an issue here:\r\n\r\nhttps://github.com/huggingface/datasets/blob/810b12f763f5cf02f2e43565b8890d278b7398cd/src/datasets/utils/file_utils.py#L575-L579\r\n\r\nand \r\n\r\nhttps://github.com/huggingface/datasets/blob/810b12f763f5cf02f2e43565b8890d278b7398cd/src/datasets/utils/streaming_download_manager.py#L386-L389\r\n\r\nThis code doesn't seem to work anymore. This can probably be fixed with\r\n\r\n```python\r\nif url.startswith(\"https://drive.google.com/\"): \r\n url += \"&confirm=t\"\r\n cookies = response.cookies \r\n```\r\n\r\nbecause Google Drive doesn't return the `download_warning` cookie anymore.",
"Actually it seems that is has been fixed already in https://github.com/huggingface/datasets/pull/3787 :)\r\n\r\nI think it should have fixed the gigaword dataset loading",
"@lhoestq The linked PR indeed fixes the issue. This PR is still worth merging IMO to update `gigaword`'s card."
] | "2022-02-22T12:27:16Z" | "2022-02-28T11:35:24Z" | "2022-02-28T11:35:24Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3775.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3775",
"merged_at": "2022-02-28T11:35:24Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3775.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3775"
} | Reported on the forum: https://discuss.huggingface.co/t/error-loading-dataset/14999 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3775/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3775/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2739 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2739/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2739/comments | https://api.github.com/repos/huggingface/datasets/issues/2739/events | https://github.com/huggingface/datasets/pull/2739 | 957,751,260 | MDExOlB1bGxSZXF1ZXN0NzAxMTI0ODQ3 | 2,739 | Pass tokenize to sacrebleu only if explicitly passed by user | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [] | "2021-08-02T05:09:05Z" | "2021-08-03T04:23:37Z" | "2021-08-03T04:23:37Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2739.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2739",
"merged_at": "2021-08-03T04:23:37Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2739.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2739"
} | Next `sacrebleu` release (v2.0.0) will remove `sacrebleu.DEFAULT_TOKENIZER`: https://github.com/mjpost/sacrebleu/pull/152/files#diff-2553a315bb1f7e68c9c1b00d56eaeb74f5205aeb3a189bc3e527b122c6078795L17-R15
This PR passes `tokenize` to `sacrebleu` only if explicitly passed by the user, otherwise it will not pass it (and `sacrebleu` will use its default, no matter where it is and how it is called).
Close: #2737. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2739/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2739/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5573 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5573/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5573/comments | https://api.github.com/repos/huggingface/datasets/issues/5573/events | https://github.com/huggingface/datasets/pull/5573 | 1,597,400,836 | PR_kwDODunzps5Kop7n | 5,573 | Use soundfile for mp3 decoding instead of torchaudio | {
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"@mariosasko thank you for the review! do you have any idea why `test_hash_torch_tensor` fails on \"ubuntu-latest deps-minimum\"? I removed the `torchaudio<0.12.0` test dependency so it uses the latest `torch` now, might it be connected?",
"@polinaeterna The failure is due to `torch.from_numpy` not being picklable in newer versions of PyTorch. You can replace the current definition of `_save_tensor` in `utils/py_utils.py` with the following one to fix it: \r\n\r\n```python\r\n@pklregister(obj_type)\r\ndef _save_tensor(pickler, obj):\r\n # `torch.from_numpy` is not picklable in `torch>=1.11.0`\r\n def _create_tensor(np_array):\r\n return torch.from_numpy(np_array)\r\n\r\n dill_log(pickler, f\"To: {obj}\")\r\n args = (obj.detach().cpu().numpy(),)\r\n pickler.save_reduce(_create_tensor, args, obj=obj)\r\n dill_log(pickler, \"# To\")\r\n return\r\n```",
"(doing a patch release now - please wait before merging ^^)",
"@mariosasko génial, merci!! i've integrated all your changes, can you pls take a look one more time?",
"Patch release is done (I did it from another branch than `main` anyway)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010927 / 0.011353 (-0.000426) | 0.006232 / 0.011008 (-0.004776) | 0.119815 / 0.038508 (0.081307) | 0.034138 / 0.023109 (0.011029) | 0.349945 / 0.275898 (0.074047) | 0.404967 / 0.323480 (0.081487) | 0.008672 / 0.007986 (0.000687) | 0.005010 / 0.004328 (0.000681) | 0.091931 / 0.004250 (0.087680) | 0.042534 / 0.037052 (0.005482) | 0.374701 / 0.258489 (0.116212) | 0.401027 / 0.293841 (0.107186) | 0.053523 / 0.128546 (-0.075024) | 0.019704 / 0.075646 (-0.055942) | 0.384207 / 0.419271 (-0.035064) | 0.065350 / 0.043533 (0.021817) | 0.375074 / 0.255139 (0.119935) | 0.390458 / 0.283200 (0.107259) | 0.110549 / 0.141683 (-0.031134) | 1.719812 / 1.452155 (0.267657) | 1.748906 / 1.492716 (0.256190) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210051 / 0.018006 (0.192045) | 0.546503 / 0.000490 (0.546013) | 0.004078 / 0.000200 (0.003878) | 0.000111 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030212 / 0.037411 (-0.007199) | 0.121845 / 0.014526 (0.107319) | 0.136309 / 0.176557 (-0.040247) | 0.204667 / 0.737135 (-0.532468) | 0.157327 / 0.296338 (-0.139012) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.672548 / 0.215209 (0.457339) | 6.239409 / 2.077655 (4.161754) | 2.462441 / 1.504120 (0.958322) | 2.063985 / 1.541195 (0.522791) | 2.098858 / 1.468490 (0.630368) | 1.262600 / 4.584777 (-3.322177) | 5.478462 / 3.745712 (1.732750) | 5.454672 / 5.269862 (0.184810) | 2.991866 / 4.565676 (-1.573810) | 0.153415 / 0.424275 (-0.270861) | 0.015061 / 0.007607 (0.007454) | 0.796115 / 0.226044 (0.570071) | 8.206858 / 2.268929 (5.937930) | 3.226395 / 55.444624 (-52.218229) | 2.503522 / 6.876477 (-4.372955) | 2.547489 / 2.142072 (0.405417) | 1.504776 / 4.805227 (-3.300451) | 0.256536 / 6.500664 (-6.244128) | 0.078543 / 0.075469 (0.003073) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.591109 / 1.841788 (-0.250678) | 18.153317 / 8.074308 (10.079008) | 20.465684 / 10.191392 (10.274292) | 0.229808 / 0.680424 (-0.450616) | 0.045263 / 0.534201 (-0.488938) | 0.556760 / 0.579283 (-0.022524) | 0.614985 / 0.434364 (0.180622) | 0.635675 / 0.540337 (0.095337) | 0.729817 / 1.386936 (-0.657119) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011247 / 0.011353 (-0.000106) | 0.006823 / 0.011008 (-0.004185) | 0.101989 / 0.038508 (0.063481) | 0.036077 / 0.023109 (0.012968) | 0.413469 / 0.275898 (0.137571) | 0.505560 / 0.323480 (0.182080) | 0.007506 / 0.007986 (-0.000480) | 0.006369 / 0.004328 (0.002040) | 0.099597 / 0.004250 (0.095346) | 0.058115 / 0.037052 (0.021063) | 0.414735 / 0.258489 (0.156246) | 0.466801 / 0.293841 (0.172960) | 0.064771 / 0.128546 (-0.063775) | 0.021100 / 0.075646 (-0.054546) | 0.135407 / 0.419271 (-0.283864) | 0.068784 / 0.043533 (0.025251) | 0.410467 / 0.255139 (0.155328) | 0.465993 / 0.283200 (0.182794) | 0.119404 / 0.141683 (-0.022279) | 1.767107 / 1.452155 (0.314952) | 1.938342 / 1.492716 (0.445626) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227038 / 0.018006 (0.209032) | 0.511389 / 0.000490 (0.510899) | 0.006723 / 0.000200 (0.006523) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033078 / 0.037411 (-0.004333) | 0.133159 / 0.014526 (0.118633) | 0.147928 / 0.176557 (-0.028629) | 0.214005 / 0.737135 (-0.523130) | 0.151655 / 0.296338 (-0.144683) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.634829 / 0.215209 (0.419620) | 6.578640 / 2.077655 (4.500985) | 2.673598 / 1.504120 (1.169478) | 2.338671 / 1.541195 (0.797476) | 2.389104 / 1.468490 (0.920614) | 1.274938 / 4.584777 (-3.309839) | 5.746524 / 3.745712 (2.000812) | 5.992084 / 5.269862 (0.722222) | 3.092090 / 4.565676 (-1.473587) | 0.150375 / 0.424275 (-0.273900) | 0.015470 / 0.007607 (0.007863) | 0.792962 / 0.226044 (0.566918) | 8.057491 / 2.268929 (5.788563) | 3.483966 / 55.444624 (-51.960659) | 2.715038 / 6.876477 (-4.161438) | 2.747186 / 2.142072 (0.605114) | 1.532951 / 4.805227 (-3.272276) | 0.262214 / 6.500664 (-6.238450) | 0.081308 / 0.075469 (0.005839) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.698448 / 1.841788 (-0.143340) | 18.590002 / 8.074308 (10.515694) | 20.584508 / 10.191392 (10.393116) | 0.227237 / 0.680424 (-0.453187) | 0.028445 / 0.534201 (-0.505756) | 0.527874 / 0.579283 (-0.051409) | 0.602844 / 0.434364 (0.168480) | 0.672948 / 0.540337 (0.132611) | 0.788103 / 1.386936 (-0.598833) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f96547708a889c09ca8a02ed7aadd8c5690503c5 \"CML watermark\")\n"
] | "2023-02-23T19:19:44Z" | "2023-02-28T20:25:14Z" | "2023-02-28T20:16:02Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5573.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5573",
"merged_at": "2023-02-28T20:16:02Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5573.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5573"
} | I've removed `torchaudio` completely and switched to use `soundfile` for everything. With the new version of `soundfile` package this should work smoothly because the `libsndfile` C library is bundled, in Linux wheels too.
Let me know if you think it's too harsh and we should continue to support `torchaudio` decoding.
I decided that we can drop it completely because:
1. it's always something wrong with `torchaudio` (for example recently https://github.com/huggingface/datasets/issues/5488 )
2. the results of mp3 decoding are different depending on `torchaudio` version
3. `soundfile` is slightly faster then the latest `torchaudio`
4. anyway users can pass any custom decoding function with any library they want if needed (worth putting a snippet in the docs).
cc @sanchit-gandhi @vaibhavad | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 3,
"laugh": 0,
"rocket": 0,
"total_count": 3,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5573/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5573/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/628 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/628/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/628/comments | https://api.github.com/repos/huggingface/datasets/issues/628/events | https://github.com/huggingface/datasets/pull/628 | 701,496,053 | MDExOlB1bGxSZXF1ZXN0NDg2OTQyNzgx | 628 | Update docs links in the contribution guideline | {
"avatar_url": "https://avatars.githubusercontent.com/u/9285264?v=4",
"events_url": "https://api.github.com/users/M-Salti/events{/privacy}",
"followers_url": "https://api.github.com/users/M-Salti/followers",
"following_url": "https://api.github.com/users/M-Salti/following{/other_user}",
"gists_url": "https://api.github.com/users/M-Salti/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/M-Salti",
"id": 9285264,
"login": "M-Salti",
"node_id": "MDQ6VXNlcjkyODUyNjQ=",
"organizations_url": "https://api.github.com/users/M-Salti/orgs",
"received_events_url": "https://api.github.com/users/M-Salti/received_events",
"repos_url": "https://api.github.com/users/M-Salti/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/M-Salti/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/M-Salti/subscriptions",
"type": "User",
"url": "https://api.github.com/users/M-Salti"
} | [] | closed | false | null | [] | null | [
"Thanks!"
] | "2020-09-14T23:27:19Z" | "2020-11-02T21:03:23Z" | "2020-09-15T06:19:35Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/628.diff",
"html_url": "https://github.com/huggingface/datasets/pull/628",
"merged_at": "2020-09-15T06:19:35Z",
"patch_url": "https://github.com/huggingface/datasets/pull/628.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/628"
} | Fixed the `add a dataset` and `share a dataset` links in the contribution guideline to refer to the new docs website. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/628/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/628/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3992 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3992/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3992/comments | https://api.github.com/repos/huggingface/datasets/issues/3992/events | https://github.com/huggingface/datasets/issues/3992 | 1,177,946,153 | I_kwDODunzps5GNggp | 3,992 | Image column is not decoded in map when using with with_transform | {
"avatar_url": "https://avatars.githubusercontent.com/u/5902432?v=4",
"events_url": "https://api.github.com/users/phihung/events{/privacy}",
"followers_url": "https://api.github.com/users/phihung/followers",
"following_url": "https://api.github.com/users/phihung/following{/other_user}",
"gists_url": "https://api.github.com/users/phihung/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/phihung",
"id": 5902432,
"login": "phihung",
"node_id": "MDQ6VXNlcjU5MDI0MzI=",
"organizations_url": "https://api.github.com/users/phihung/orgs",
"received_events_url": "https://api.github.com/users/phihung/received_events",
"repos_url": "https://api.github.com/users/phihung/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/phihung/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/phihung/subscriptions",
"type": "User",
"url": "https://api.github.com/users/phihung"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
}
] | null | [
"Hi! This behavior stems from this line: https://github.com/huggingface/datasets/blob/799b817d97590ddc97cbd38d07469403e030de8c/src/datasets/arrow_dataset.py#L1919\r\nBasically, the `Image`/`Audio` columns are decoded only if the `format_type` attribute is `None` (`set_format`/`with_format` and `set_transform`/`with_transform` assign a non-`None` value to it) and the `input_columns` param is not specified (see https://github.com/huggingface/datasets/issues/3756). We will remove these limitations soon.\r\n\r\n\r\n\r\n"
] | "2022-03-23T10:51:13Z" | "2022-12-13T16:59:06Z" | "2022-12-13T16:59:06Z" | NONE | null | null | null | ## Describe the bug
Image column is not _decoded_ in **map** when using with `with_transform`
## Steps to reproduce the bug
```python
from datasets import Image, Dataset
def add_C(batch):
batch["C"] = batch["A"]
return batch
ds = Dataset.from_dict({"A": ["image.png"]}).cast_column("A", Image())
ds = ds.with_transform(lambda x: x) # <= This line causes the problem
ds = ds.map(add_C, batched=True)
print(ds[0])
```
## Expected results
```
{'C': <PIL.PngImagePlugin.PngImageFile>, ...}
```
## Actual results
```
{'C': {'bytes': None, 'path': 'image.png'}, ...}
```
If we remove the `with_transform` line, we get the expected result.
## Environment info
- `datasets` version: 2.0.0
- Platform: Mac OSX
- Python version: 3.8.12
- PyArrow version: 7.0.0
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3992/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3992/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5749 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5749/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5749/comments | https://api.github.com/repos/huggingface/datasets/issues/5749/events | https://github.com/huggingface/datasets/issues/5749 | 1,668,016,321 | I_kwDODunzps5ja-jB | 5,749 | AttributeError: 'Version' object has no attribute 'match' | {
"avatar_url": "https://avatars.githubusercontent.com/u/54584290?v=4",
"events_url": "https://api.github.com/users/gulnaz-zh/events{/privacy}",
"followers_url": "https://api.github.com/users/gulnaz-zh/followers",
"following_url": "https://api.github.com/users/gulnaz-zh/following{/other_user}",
"gists_url": "https://api.github.com/users/gulnaz-zh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/gulnaz-zh",
"id": 54584290,
"login": "gulnaz-zh",
"node_id": "MDQ6VXNlcjU0NTg0Mjkw",
"organizations_url": "https://api.github.com/users/gulnaz-zh/orgs",
"received_events_url": "https://api.github.com/users/gulnaz-zh/received_events",
"repos_url": "https://api.github.com/users/gulnaz-zh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/gulnaz-zh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gulnaz-zh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/gulnaz-zh"
} | [] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | null | [
"I got the same error, and the official website for visual genome is down. Did you solve this problem? ",
"I am in the same situation now :( ",
"Thanks for reporting, @gulnaz-zh.\r\n\r\nI am investigating it.",
"The host server is down: https://visualgenome.org/\r\n\r\nWe are contacting the dataset authors.",
"Apart form data host server being down, there is an additional issue with the `datasets` library introduced by this PR:\r\n- #5238\r\n\r\nI am working to fix it.",
"PR that fixes the AttributeError: https://huggingface.co/datasets/visual_genome/discussions/2",
"For the issue with their data host server being down, I have opened a discussion in the \"Community\" tab of the Hub dataset: https://huggingface.co/datasets/visual_genome/discussions/3\r\nLet's continue the discussion there.",
"The authors just replied to us with their new URL: https://homes.cs.washington.edu/~ranjay/visualgenome/\r\n\r\nWe have fixed the datasets loading script, which is operative again."
] | "2023-04-14T10:48:06Z" | "2023-06-30T11:31:17Z" | "2023-04-18T12:57:08Z" | NONE | null | null | null | ### Describe the bug
When I run
from datasets import load_dataset
data = load_dataset("visual_genome", 'region_descriptions_v1.2.0')
AttributeError: 'Version' object has no attribute 'match'
### Steps to reproduce the bug
from datasets import load_dataset
data = load_dataset("visual_genome", 'region_descriptions_v1.2.0')
### Expected behavior
This is error trace:
Downloading and preparing dataset visual_genome/region_descriptions_v1.2.0 to C:/Users/Acer/.cache/huggingface/datasets/visual_genome/region_descriptions_v1.2.0/1.2.0/136fe5b83f6691884566c5530313288171e053a3b33bfe3ea2e4c8b39abaf7f3...
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[6], line 1
----> 1 data = load_dataset("visual_genome", 'region_descriptions_v1.2.0')
File ~\.conda\envs\aai\Lib\site-packages\datasets\load.py:1791, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)
1788 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES
1790 # Download and prepare data
-> 1791 builder_instance.download_and_prepare(
1792 download_config=download_config,
1793 download_mode=download_mode,
1794 verification_mode=verification_mode,
1795 try_from_hf_gcs=try_from_hf_gcs,
1796 num_proc=num_proc,
1797 storage_options=storage_options,
1798 )
1800 # Build dataset for splits
1801 keep_in_memory = (
1802 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
1803 )
File ~\.conda\envs\aai\Lib\site-packages\datasets\builder.py:891, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)
889 if num_proc is not None:
890 prepare_split_kwargs["num_proc"] = num_proc
--> 891 self._download_and_prepare(
892 dl_manager=dl_manager,
893 verification_mode=verification_mode,
894 **prepare_split_kwargs,
895 **download_and_prepare_kwargs,
896 )
897 # Sync info
898 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
File ~\.conda\envs\aai\Lib\site-packages\datasets\builder.py:1651, in GeneratorBasedBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs)
1650 def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs):
-> 1651 super()._download_and_prepare(
1652 dl_manager,
1653 verification_mode,
1654 check_duplicate_keys=verification_mode == VerificationMode.BASIC_CHECKS
1655 or verification_mode == VerificationMode.ALL_CHECKS,
1656 **prepare_splits_kwargs,
1657 )
File ~\.conda\envs\aai\Lib\site-packages\datasets\builder.py:964, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs)
962 split_dict = SplitDict(dataset_name=self.name)
963 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
--> 964 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
966 # Checksums verification
967 if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums:
File ~\.cache\huggingface\modules\datasets_modules\datasets\visual_genome\136fe5b83f6691884566c5530313288171e053a3b33bfe3ea2e4c8b39abaf7f3\visual_genome.py:377, in VisualGenome._split_generators(self, dl_manager)
375 def _split_generators(self, dl_manager):
376 # Download image meta datas.
--> 377 image_metadatas_dir = dl_manager.download_and_extract(self.config.image_metadata_url)
378 image_metadatas_file = os.path.join(
379 image_metadatas_dir, _get_decompressed_filename_from_url(self.config.image_metadata_url)
380 )
382 # Download annotations
File ~\.cache\huggingface\modules\datasets_modules\datasets\visual_genome\136fe5b83f6691884566c5530313288171e053a3b33bfe3ea2e4c8b39abaf7f3\visual_genome.py:328, in VisualGenomeConfig.image_metadata_url(self)
326 @property
327 def image_metadata_url(self):
--> 328 if not self.version.match(_LATEST_VERSIONS["image_metadata"]):
329 logger.warning(
330 f"Latest image metadata version is {_LATEST_VERSIONS['image_metadata']}. Trying to generate a dataset of version: {self.version}. Please double check that image data are unchanged between the two versions."
331 )
332 return f"{_BASE_ANNOTATION_URL}/image_data.json.zip"
### Environment info
datasets 2.11.0
python 3.11.3 | {
"+1": 3,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 3,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5749/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5749/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/780 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/780/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/780/comments | https://api.github.com/repos/huggingface/datasets/issues/780/events | https://github.com/huggingface/datasets/pull/780 | 732,738,647 | MDExOlB1bGxSZXF1ZXN0NTEyNjM0MzI0 | 780 | Add ASNQ dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/2992022?v=4",
"events_url": "https://api.github.com/users/mkserge/events{/privacy}",
"followers_url": "https://api.github.com/users/mkserge/followers",
"following_url": "https://api.github.com/users/mkserge/following{/other_user}",
"gists_url": "https://api.github.com/users/mkserge/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mkserge",
"id": 2992022,
"login": "mkserge",
"node_id": "MDQ6VXNlcjI5OTIwMjI=",
"organizations_url": "https://api.github.com/users/mkserge/orgs",
"received_events_url": "https://api.github.com/users/mkserge/received_events",
"repos_url": "https://api.github.com/users/mkserge/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mkserge/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mkserge/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mkserge"
} | [] | closed | false | null | [] | null | [
"Very nice !\r\nWhat do the `sentence1` and `sentence2` correspond to exactly ?\r\nAlso maybe you could use the `ClassLabel` feature type for the `label` field (see [snli](https://github.com/huggingface/datasets/blob/master/datasets/snli/snli.py) for example)",
"> What do the `sentence1` and `sentence2` correspond to exactly ?\r\n\r\n`sentence1` is a question, and `sentence2` is a candidate answer sentence. The labels are [1, 2, 3, 4] defining a relation between the answer sentence and the question. For example, label 4 means that the answer sentence is inside the _long_answer_ passage AND that the _short_answer_ is within the answer sentence. All the other labels are the negatives with different characteristics. (the short_answer, long_answer terminology is borrowed from Google's NQ dataset)\r\n\r\nShould I label them simply as `question` and `answer`? I was going more with what I saw in the examples/run_glue.py script, but I realize now there is no restriction around this.\r\n\r\n> Also maybe you could use the `ClassLabel` feature type for the `label` field (see [snli](https://github.com/huggingface/datasets/blob/master/datasets/snli/snli.py) for example)\r\n\r\nI am finding it difficult to assign names to each class, but perhaps it's possible. Here's the description of each class from the paper.\r\n\r\n1. Sentences from the document that are in the long answer but do not contain the annotated short answers. It is possible that these sentences might contain the short answer.\r\n2. Sentences from the document that are not in the long answer but contain the short answer string, that is, such occurrence is purely accidental.\r\n3. Sentences from the document that are neither in the long answer nor contain the short answer.\r\n4. Sentences from the document that are in the long answer and do contain the annotated short answers.\r\n\r\nAny ideas?\r\n\r\n",
"Yes it's better to have explicit feature names. Maybe go with question/answer or question/sentence.\r\nI read in the paper that 1,2 and 3 are considered negative and 4 positive.\r\nWe could have a binary classification label `label` (either positive of negative) and then two boolean fields `short_answser_in_sentence` and `sentence_in_long_answer`. What do you think ?",
"> Yes it's better to have explicit feature names. Maybe go with question/answer or question/sentence.\r\n> I read in the paper that 1,2 and 3 are considered negative and 4 positive.\r\n> We could have a binary classification label `label` (either positive of negative) and then two boolean fields `short_answser_in_sentence` and `sentence_in_long_answer`. What do you think ?\r\n\r\nOk, sounds good. I went with `sentence` to keep it consistent with `short_answer_in_sentence` and `sentence_in_long_answer`. \r\n\r\nI changed it to a ClassLabel with pos and neg classes and added the two above as features. Let me know if this is not what you had in mind.\r\n\r\n"
] | "2020-10-29T23:31:56Z" | "2020-11-10T09:26:23Z" | "2020-11-10T09:26:23Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/780.diff",
"html_url": "https://github.com/huggingface/datasets/pull/780",
"merged_at": "2020-11-10T09:26:23Z",
"patch_url": "https://github.com/huggingface/datasets/pull/780.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/780"
} | This pull request adds the ASNQ dataset. It is a dataset for answer sentence selection derived from Google Natural Questions (NQ) dataset (Kwiatkowski et al. 2019). The dataset details can be found in the paper at https://arxiv.org/abs/1911.04118
The dataset is authored by Siddhant Garg, Thuy Vu and Alessandro Moschitti.
_Please note that I have no affiliation with the authors._
Repo: https://github.com/alexa/wqa_tanda
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/780/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/780/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1930 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1930/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1930/comments | https://api.github.com/repos/huggingface/datasets/issues/1930/events | https://github.com/huggingface/datasets/pull/1930 | 814,055,198 | MDExOlB1bGxSZXF1ZXN0NTc4MTAwNzI0 | 1,930 | updated the wino_bias dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/22306304?v=4",
"events_url": "https://api.github.com/users/JieyuZhao/events{/privacy}",
"followers_url": "https://api.github.com/users/JieyuZhao/followers",
"following_url": "https://api.github.com/users/JieyuZhao/following{/other_user}",
"gists_url": "https://api.github.com/users/JieyuZhao/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/JieyuZhao",
"id": 22306304,
"login": "JieyuZhao",
"node_id": "MDQ6VXNlcjIyMzA2MzA0",
"organizations_url": "https://api.github.com/users/JieyuZhao/orgs",
"received_events_url": "https://api.github.com/users/JieyuZhao/received_events",
"repos_url": "https://api.github.com/users/JieyuZhao/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/JieyuZhao/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/JieyuZhao/subscriptions",
"type": "User",
"url": "https://api.github.com/users/JieyuZhao"
} | [] | closed | false | null | [] | null | [
"Hi @JieyuZhao ! Have you had a chance to add the different configurations ?\r\nThanks again for your help on this !",
"> Hi @JieyuZhao ! Have you had a chance to add the different configurations ?\r\n> Thanks again for your help on this !\r\n\r\nHi @lhoestq Yes, I've updated the code. Now the configuration will have dev/test splits.",
"> Cool thanks !\r\n> This looks perfect this way.\r\n> \r\n> Now we just need to update the dataset_infos.json (it contains the metadata of the dataset) and add dummy data to be able to test this script automatically.\r\n> \r\n> To update the dataset_infos.json you just need delete the current one at `./datasets/wino_biais/dataset_infos.json`, and then run this command:\r\n> \r\n> ```\r\n> datasets-cli test ./datasets/wino_biais --save_infos --all_configs --ignore_verifications\r\n> ```\r\n> \r\n> To add the dummy data there's also a tool to add them automatically.\r\n> First delete the folder at `./datasets/wino_biais/dummy` and then run\r\n> \r\n> ```\r\n> datasets-cli dummy_data ./datasets/wino_biais --auto_generate --match_text_files \"*conll\" --n_lines 15\r\n> ```\r\n> \r\n> Let me know if you have questions :)\r\n> Also don't forget to run `make style` to format the code properly.\r\n\r\nThanks for the instruction! I've updated the metadata and the dummy data and also do the formatting. Please let me know if more is needed. :)"
] | "2021-02-23T03:07:40Z" | "2021-04-07T15:24:56Z" | "2021-04-07T15:24:56Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1930.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1930",
"merged_at": "2021-04-07T15:24:56Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1930.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1930"
} | Updated the wino_bias.py script.
- updated the data_url
- added different configurations for different data splits
- added the coreference_cluster to the data features | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1930/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1930/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1253 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1253/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1253/comments | https://api.github.com/repos/huggingface/datasets/issues/1253/events | https://github.com/huggingface/datasets/pull/1253 | 758,517,391 | MDExOlB1bGxSZXF1ZXN0NTMzNjc4MDE1 | 1,253 | add thainer | {
"avatar_url": "https://avatars.githubusercontent.com/u/15519308?v=4",
"events_url": "https://api.github.com/users/cstorm125/events{/privacy}",
"followers_url": "https://api.github.com/users/cstorm125/followers",
"following_url": "https://api.github.com/users/cstorm125/following{/other_user}",
"gists_url": "https://api.github.com/users/cstorm125/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/cstorm125",
"id": 15519308,
"login": "cstorm125",
"node_id": "MDQ6VXNlcjE1NTE5MzA4",
"organizations_url": "https://api.github.com/users/cstorm125/orgs",
"received_events_url": "https://api.github.com/users/cstorm125/received_events",
"repos_url": "https://api.github.com/users/cstorm125/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/cstorm125/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/cstorm125/subscriptions",
"type": "User",
"url": "https://api.github.com/users/cstorm125"
} | [] | closed | false | null | [] | null | [] | "2020-12-07T13:41:54Z" | "2020-12-08T14:44:49Z" | "2020-12-08T14:44:49Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1253.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1253",
"merged_at": "2020-12-08T14:44:49Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1253.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1253"
} | ThaiNER (v1.3) is a 6,456-sentence named entity recognition dataset created from expanding the 2,258-sentence
[unnamed dataset](http://pioneer.chula.ac.th/~awirote/Data-Nutcha.zip) by
[Tirasaroj and Aroonmanakun (2012)](http://pioneer.chula.ac.th/~awirote/publications/).
It is used to train NER taggers in [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp).
The NER tags are annotated by [Tirasaroj and Aroonmanakun (2012)]((http://pioneer.chula.ac.th/~awirote/publications/))
for 2,258 sentences and the rest by [@wannaphong](https://github.com/wannaphong/).
The POS tags are done by [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)'s `perceptron` engine trained on `orchid_ud`.
[@wannaphong](https://github.com/wannaphong/) is now the only maintainer of this dataset. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1253/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1253/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1231 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1231/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1231/comments | https://api.github.com/repos/huggingface/datasets/issues/1231/events | https://github.com/huggingface/datasets/pull/1231 | 758,121,398 | MDExOlB1bGxSZXF1ZXN0NTMzMzQzMzAz | 1,231 | Add Urdu Sentiment Corpus (USC) | {
"avatar_url": "https://avatars.githubusercontent.com/u/44389205?v=4",
"events_url": "https://api.github.com/users/chaitnayabasava/events{/privacy}",
"followers_url": "https://api.github.com/users/chaitnayabasava/followers",
"following_url": "https://api.github.com/users/chaitnayabasava/following{/other_user}",
"gists_url": "https://api.github.com/users/chaitnayabasava/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/chaitnayabasava",
"id": 44389205,
"login": "chaitnayabasava",
"node_id": "MDQ6VXNlcjQ0Mzg5MjA1",
"organizations_url": "https://api.github.com/users/chaitnayabasava/orgs",
"received_events_url": "https://api.github.com/users/chaitnayabasava/received_events",
"repos_url": "https://api.github.com/users/chaitnayabasava/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/chaitnayabasava/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/chaitnayabasava/subscriptions",
"type": "User",
"url": "https://api.github.com/users/chaitnayabasava"
} | [] | closed | false | null | [] | null | [] | "2020-12-07T03:25:20Z" | "2020-12-07T18:05:16Z" | "2020-12-07T16:43:23Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1231.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1231",
"merged_at": "2020-12-07T16:43:23Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1231.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1231"
} | @lhoestq opened a clean PR containing only relevant files.
old PR #1140 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1231/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1231/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4406 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4406/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4406/comments | https://api.github.com/repos/huggingface/datasets/issues/4406/events | https://github.com/huggingface/datasets/pull/4406 | 1,248,626,622 | PR_kwDODunzps44ePLU | 4,406 | Improve language tag for PIAF dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/58078086?v=4",
"events_url": "https://api.github.com/users/lbourdois/events{/privacy}",
"followers_url": "https://api.github.com/users/lbourdois/followers",
"following_url": "https://api.github.com/users/lbourdois/following{/other_user}",
"gists_url": "https://api.github.com/users/lbourdois/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lbourdois",
"id": 58078086,
"login": "lbourdois",
"node_id": "MDQ6VXNlcjU4MDc4MDg2",
"organizations_url": "https://api.github.com/users/lbourdois/orgs",
"received_events_url": "https://api.github.com/users/lbourdois/received_events",
"repos_url": "https://api.github.com/users/lbourdois/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lbourdois/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lbourdois/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lbourdois"
} | [] | closed | false | null | [] | null | [] | "2022-05-25T19:41:55Z" | "2022-05-27T14:51:23Z" | "2022-05-27T14:51:23Z" | NONE | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4406.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4406",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/4406.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4406"
} | Hi,
As pointed out by @lhoestq in this discussion (https://huggingface.co/datasets/asi/wikitext_fr/discussions/1), it is not yet possible to edit datasets outside of a namespace with the Hub PR feature and that you have to go through GitHub.
This modification should allow better referencing since only the xx language tags are currently taken into account and not the xx-xx. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4406/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4406/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4986 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4986/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4986/comments | https://api.github.com/repos/huggingface/datasets/issues/4986/events | https://github.com/huggingface/datasets/pull/4986 | 1,375,895,035 | PR_kwDODunzps4_GNSd | 4,986 | [doc] Fix broken snippet that had too many quotes | {
"avatar_url": "https://avatars.githubusercontent.com/u/37621491?v=4",
"events_url": "https://api.github.com/users/tomaarsen/events{/privacy}",
"followers_url": "https://api.github.com/users/tomaarsen/followers",
"following_url": "https://api.github.com/users/tomaarsen/following{/other_user}",
"gists_url": "https://api.github.com/users/tomaarsen/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/tomaarsen",
"id": 37621491,
"login": "tomaarsen",
"node_id": "MDQ6VXNlcjM3NjIxNDkx",
"organizations_url": "https://api.github.com/users/tomaarsen/orgs",
"received_events_url": "https://api.github.com/users/tomaarsen/received_events",
"repos_url": "https://api.github.com/users/tomaarsen/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/tomaarsen/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tomaarsen/subscriptions",
"type": "User",
"url": "https://api.github.com/users/tomaarsen"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Spent the day familiarising myself with the huggingface line of products, and happened to run into some small issues here and there. Magically, I've found exactly one small issue in `transformers`, one in `accelerate` and now one in `datasets`, hah!\r\n\r\nAs for this PR, the issue seems solved according to the [new PR documentation](https://moon-ci-docs.huggingface.co/docs/datasets/pr_4986/en/process#map):\r\n![image](https://user-images.githubusercontent.com/37621491/190646405-6afa06fa-9eac-48f6-ab30-2677944fb7b6.png)\r\n"
] | "2022-09-16T12:41:07Z" | "2022-09-16T22:12:21Z" | "2022-09-16T17:32:14Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4986.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4986",
"merged_at": "2022-09-16T17:32:14Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4986.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4986"
} | Hello!
### Pull request overview
* Fix broken snippet in https://huggingface.co/docs/datasets/main/en/process that has too many quotes
### Details
The snippet in question can be found here: https://huggingface.co/docs/datasets/main/en/process#map
This screenshot shows the issue, there is a quote too many, causing the snippet to be colored incorrectly:
![image](https://user-images.githubusercontent.com/37621491/190640627-f7587362-0e44-4464-a5d1-a0b98df6986f.png)
The change speaks for itself.
Thank you for the detailed documentation, by the way.
- Tom Aarsen
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4986/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4986/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2812 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2812/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2812/comments | https://api.github.com/repos/huggingface/datasets/issues/2812/events | https://github.com/huggingface/datasets/issues/2812 | 972,936,889 | MDU6SXNzdWU5NzI5MzY4ODk= | 2,812 | arXiv Dataset verification problem | {
"avatar_url": "https://avatars.githubusercontent.com/u/13485709?v=4",
"events_url": "https://api.github.com/users/eladsegal/events{/privacy}",
"followers_url": "https://api.github.com/users/eladsegal/followers",
"following_url": "https://api.github.com/users/eladsegal/following{/other_user}",
"gists_url": "https://api.github.com/users/eladsegal/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/eladsegal",
"id": 13485709,
"login": "eladsegal",
"node_id": "MDQ6VXNlcjEzNDg1NzA5",
"organizations_url": "https://api.github.com/users/eladsegal/orgs",
"received_events_url": "https://api.github.com/users/eladsegal/received_events",
"repos_url": "https://api.github.com/users/eladsegal/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/eladsegal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/eladsegal/subscriptions",
"type": "User",
"url": "https://api.github.com/users/eladsegal"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
},
{
"color": "2edb81",
"default": false,
"description": "A bug in a dataset script provided in the library",
"id": 2067388877,
"name": "dataset bug",
"node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug"
}
] | open | false | null | [] | null | [] | "2021-08-17T18:01:48Z" | "2022-01-19T14:15:35Z" | null | CONTRIBUTOR | null | null | null | ## Describe the bug
`dataset_infos.json` for `arxiv_dataset` contains a fixed number of training examples, however the data (downloaded from an external source) is updated every week with additional examples.
Therefore, loading the dataset without `ignore_verifications=True` results in a verification error. | {
"+1": 2,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 2,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2812/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2812/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/4442 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4442/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4442/comments | https://api.github.com/repos/huggingface/datasets/issues/4442/events | https://github.com/huggingface/datasets/issues/4442 | 1,258,589,276 | I_kwDODunzps5LBIxc | 4,442 | Dataset Viewer issue for amazon_polarity | {
"avatar_url": "https://avatars.githubusercontent.com/u/26859204?v=4",
"events_url": "https://api.github.com/users/lewtun/events{/privacy}",
"followers_url": "https://api.github.com/users/lewtun/followers",
"following_url": "https://api.github.com/users/lewtun/following{/other_user}",
"gists_url": "https://api.github.com/users/lewtun/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lewtun",
"id": 26859204,
"login": "lewtun",
"node_id": "MDQ6VXNlcjI2ODU5MjA0",
"organizations_url": "https://api.github.com/users/lewtun/orgs",
"received_events_url": "https://api.github.com/users/lewtun/received_events",
"repos_url": "https://api.github.com/users/lewtun/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lewtun/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lewtun/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lewtun"
} | [
{
"color": "E5583E",
"default": false,
"description": "Related to the dataset viewer on huggingface.co",
"id": 3470211881,
"name": "dataset-viewer",
"node_id": "LA_kwDODunzps7O1zsp",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo"
}
] | null | [
"Thanks, looking at it",
"Not sure what happened 😬, but it's fixed"
] | "2022-06-02T19:18:38Z" | "2022-06-07T18:50:37Z" | "2022-06-07T18:50:37Z" | MEMBER | null | null | null | ### Link
https://huggingface.co/datasets/amazon_polarity/viewer/amazon_polarity/test
### Description
For some reason the train split is OK but the test split is not for this dataset:
```
Server error
Status code: 400
Exception: FileNotFoundError
Message: [Errno 2] No such file or directory: '/cache/modules/datasets_modules/datasets/amazon_polarity/__init__.py'
```
### Owner
No | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4442/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4442/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5057 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5057/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5057/comments | https://api.github.com/repos/huggingface/datasets/issues/5057/events | https://github.com/huggingface/datasets/pull/5057 | 1,394,827,216 | PR_kwDODunzps5AD4c6 | 5,057 | Support `converters` in `CsvBuilder` | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | "2022-10-03T14:23:21Z" | "2022-10-04T11:19:28Z" | "2022-10-04T11:17:32Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5057.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5057",
"merged_at": "2022-10-04T11:17:32Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5057.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5057"
} | Add the `converters` param to `CsvBuilder`, to help in situations like [this one](https://discuss.huggingface.co/t/typeerror-in-load-dataset-related-to-a-sequence-of-strings/23545).
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5057/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5057/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1610 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1610/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1610/comments | https://api.github.com/repos/huggingface/datasets/issues/1610/events | https://github.com/huggingface/datasets/issues/1610 | 771,453,599 | MDU6SXNzdWU3NzE0NTM1OTk= | 1,610 | shuffle does not accept seed | {
"avatar_url": "https://avatars.githubusercontent.com/u/6278280?v=4",
"events_url": "https://api.github.com/users/rabeehk/events{/privacy}",
"followers_url": "https://api.github.com/users/rabeehk/followers",
"following_url": "https://api.github.com/users/rabeehk/following{/other_user}",
"gists_url": "https://api.github.com/users/rabeehk/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/rabeehk",
"id": 6278280,
"login": "rabeehk",
"node_id": "MDQ6VXNlcjYyNzgyODA=",
"organizations_url": "https://api.github.com/users/rabeehk/orgs",
"received_events_url": "https://api.github.com/users/rabeehk/received_events",
"repos_url": "https://api.github.com/users/rabeehk/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/rabeehk/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/rabeehk/subscriptions",
"type": "User",
"url": "https://api.github.com/users/rabeehk"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [
"Hi, did you check the doc on `shuffle`?\r\nhttps://huggingface.co/docs/datasets/package_reference/main_classes.html?datasets.Dataset.shuffle#datasets.Dataset.shuffle",
"Hi Thomas\r\nthanks for reponse, yes, I did checked it, but this does not work for me please see \r\n\r\n```\r\n(internship) rkarimi@italix17:/idiap/user/rkarimi/dev$ python \r\nPython 3.7.9 (default, Aug 31 2020, 12:42:55) \r\n[GCC 7.3.0] :: Anaconda, Inc. on linux\r\nType \"help\", \"copyright\", \"credits\" or \"license\" for more information.\r\n>>> import datasets \r\n2020-12-20 01:48:50.766004: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\r\n2020-12-20 01:48:50.766029: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\r\n>>> data = datasets.load_dataset(\"scitail\", \"snli_format\")\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\nReusing dataset scitail (/idiap/temp/rkarimi/cache_home_1/datasets/scitail/snli_format/1.1.0/fd8ccdfc3134ce86eb4ef10ba7f21ee2a125c946e26bb1dd3625fe74f48d3b90)\r\n>>> data.shuffle(seed=2)\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\nTypeError: shuffle() got an unexpected keyword argument 'seed'\r\n\r\n```\r\n\r\ndatasets version\r\n`datasets 1.1.2 <pip>\r\n`\r\n",
"Thanks for reporting ! \r\n\r\nIndeed it looks like an issue with `suffle` on `DatasetDict`. We're going to fix that.\r\nIn the meantime you can shuffle each split (train, validation, test) separately:\r\n```python\r\nshuffled_train_dataset = data[\"train\"].shuffle(seed=42)\r\n```\r\n"
] | "2020-12-19T20:59:39Z" | "2021-01-04T10:00:03Z" | "2021-01-04T10:00:03Z" | CONTRIBUTOR | null | null | null | Hi
I need to shuffle the dataset, but this needs to be based on epoch+seed to be consistent across the cores, when I pass seed to shuffle, this does not accept seed, could you assist me with this? thanks @lhoestq
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1610/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1610/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/1804 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1804/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1804/comments | https://api.github.com/repos/huggingface/datasets/issues/1804/events | https://github.com/huggingface/datasets/pull/1804 | 798,483,881 | MDExOlB1bGxSZXF1ZXN0NTY1MjkzMTc3 | 1,804 | Add SICK dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/36051308?v=4",
"events_url": "https://api.github.com/users/calpt/events{/privacy}",
"followers_url": "https://api.github.com/users/calpt/followers",
"following_url": "https://api.github.com/users/calpt/following{/other_user}",
"gists_url": "https://api.github.com/users/calpt/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/calpt",
"id": 36051308,
"login": "calpt",
"node_id": "MDQ6VXNlcjM2MDUxMzA4",
"organizations_url": "https://api.github.com/users/calpt/orgs",
"received_events_url": "https://api.github.com/users/calpt/received_events",
"repos_url": "https://api.github.com/users/calpt/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/calpt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/calpt/subscriptions",
"type": "User",
"url": "https://api.github.com/users/calpt"
} | [] | closed | false | null | [] | null | [] | "2021-02-01T15:57:44Z" | "2021-02-05T17:46:28Z" | "2021-02-05T15:49:25Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1804.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1804",
"merged_at": "2021-02-05T15:49:25Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1804.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1804"
} | Adds the SICK dataset (http://marcobaroni.org/composes/sick.html).
Closes #1772.
Edit: also closes #1632, which is the original issue requesting the dataset. The newer one is a duplicate. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1804/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1804/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4992 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4992/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4992/comments | https://api.github.com/repos/huggingface/datasets/issues/4992/events | https://github.com/huggingface/datasets/pull/4992 | 1,379,031,842 | PR_kwDODunzps4_QVw4 | 4,992 | Support streaming iwslt2017 dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | "2022-09-20T08:35:41Z" | "2022-09-20T09:27:55Z" | "2022-09-20T09:15:24Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4992.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4992",
"merged_at": "2022-09-20T09:15:24Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4992.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4992"
} | Support streaming iwslt2017 dataset.
Once this PR is merged:
- [x] Remove old ".tgz" data files from the Hub. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4992/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4992/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3685 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3685/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3685/comments | https://api.github.com/repos/huggingface/datasets/issues/3685/events | https://github.com/huggingface/datasets/pull/3685 | 1,126,240,444 | PR_kwDODunzps4yLw3m | 3,685 | Add support for `Audio` and `Image` feature in `push_to_hub` | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [
"> Cool thanks !\r\n> \r\n> Also cc @patrickvonplaten @anton-l it means that when calling push_to_hub, the audio bytes are embedded in the parquet files (we don't upload the audio files themselves)\r\n\r\nJust to verify quickly the size of the dataset doesn't change in this case no? E.g. if a dataset has say 20GB in size when stored in `.mp3` format it could have up to 100GB when stored in WAV. But since we are just taking the bytes here a 20GB .mp3 dataset would also have 20GB when stored in parquet no?",
"@lhoestq I've addressed your comments. Additionally, I've modified `cast_storage` to account for possible null (`None`) values.\r\n\r\n@patrickvonplaten Yes, the dataset size stays the same (at least because Parquet files are compressed).",
"Feel free to merge if it's all good to you :)"
] | "2022-02-07T16:47:16Z" | "2022-02-14T18:14:57Z" | "2022-02-14T18:04:58Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3685.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3685",
"merged_at": "2022-02-14T18:04:58Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3685.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3685"
} | Add support for the `Audio` and the `Image` feature in `push_to_hub`.
The idea is to remove local path information and store file content under "bytes" in the Arrow table before the push.
My initial approach (https://github.com/huggingface/datasets/commit/34c652afeff9686b6b8bf4e703c84d2205d670aa) was to use a map transform similar to [`decode_nested_example`](https://github.com/huggingface/datasets/blob/5e0f6068741464f833ff1802e24ecc2064aaea9f/src/datasets/features/features.py#L1023-L1056) while having decoding turned off, but I wasn't satisfied with the code quality, so I ended up using the `temporary_assignment` decorator to override `cast_storage`, which allows me to directly modify the underlying storage (the final op is similar to `Dataset.cast`) and results in a much simpler code.
Additionally, I added the `allow_cast` flag that can disable this behavior in the situations where it's not needed (e.g. the dataset is already in the correct format for the Hub, etc.)
EDIT:
`allow_cast` renamed to `embed_external_files` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3685/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3685/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3702 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3702/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3702/comments | https://api.github.com/repos/huggingface/datasets/issues/3702/events | https://github.com/huggingface/datasets/pull/3702 | 1,130,666,707 | PR_kwDODunzps4yahKc | 3,702 | Update data URL of lm1b dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/7105134?v=4",
"events_url": "https://api.github.com/users/yazdanbakhsh/events{/privacy}",
"followers_url": "https://api.github.com/users/yazdanbakhsh/followers",
"following_url": "https://api.github.com/users/yazdanbakhsh/following{/other_user}",
"gists_url": "https://api.github.com/users/yazdanbakhsh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/yazdanbakhsh",
"id": 7105134,
"login": "yazdanbakhsh",
"node_id": "MDQ6VXNlcjcxMDUxMzQ=",
"organizations_url": "https://api.github.com/users/yazdanbakhsh/orgs",
"received_events_url": "https://api.github.com/users/yazdanbakhsh/received_events",
"repos_url": "https://api.github.com/users/yazdanbakhsh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/yazdanbakhsh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yazdanbakhsh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/yazdanbakhsh"
} | [
{
"color": "0e8a16",
"default": false,
"description": "Contribution to a dataset script",
"id": 4564477500,
"name": "dataset contribution",
"node_id": "LA_kwDODunzps8AAAABEBBmPA",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution"
}
] | closed | false | null | [] | null | [
"Hi ! I'm getting some 503 from both the http and https addresses. Do you think we could host this data somewhere else ? (please check if there is a license and if it allows redistribution)",
"Both HTTP and HTTPS links are working now.\r\n\r\nWe are closing this PR."
] | "2022-02-10T18:46:30Z" | "2022-09-23T11:52:39Z" | "2022-09-23T11:52:39Z" | NONE | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3702.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3702",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/3702.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3702"
} | The http address doesn't work anymore | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3702/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3702/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3427 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3427/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3427/comments | https://api.github.com/repos/huggingface/datasets/issues/3427/events | https://github.com/huggingface/datasets/pull/3427 | 1,078,782,159 | PR_kwDODunzps4vxb_y | 3,427 | Add The Pile Enron Emails subset | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [] | "2021-12-13T17:14:16Z" | "2021-12-14T17:30:59Z" | "2021-12-14T17:30:57Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3427.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3427",
"merged_at": "2021-12-14T17:30:55Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3427.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3427"
} | Add:
- Enron Emails subset of The Pile: "enron_emails" config
Close bigscience-workshop/data_tooling#310.
CC: @StellaAthena | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3427/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3427/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2570 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2570/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2570/comments | https://api.github.com/repos/huggingface/datasets/issues/2570/events | https://github.com/huggingface/datasets/pull/2570 | 933,402,521 | MDExOlB1bGxSZXF1ZXN0NjgwNjEzNzc0 | 2,570 | Minor fix docs format for bertscore | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [] | "2021-06-30T07:42:12Z" | "2021-06-30T15:31:01Z" | "2021-06-30T15:31:01Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2570.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2570",
"merged_at": "2021-06-30T15:31:01Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2570.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2570"
} | Minor fix docs format for bertscore:
- link to README
- format of KWARGS_DESCRIPTION | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2570/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2570/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5608 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5608/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5608/comments | https://api.github.com/repos/huggingface/datasets/issues/5608/events | https://github.com/huggingface/datasets/issues/5608 | 1,609,996,563 | I_kwDODunzps5f9pkT | 5,608 | audiofolder only creates dataset of 13 rows (files) when the data folder it's reading from has 20,000 mp3 files. | {
"avatar_url": "https://avatars.githubusercontent.com/u/107211437?v=4",
"events_url": "https://api.github.com/users/jcho19/events{/privacy}",
"followers_url": "https://api.github.com/users/jcho19/followers",
"following_url": "https://api.github.com/users/jcho19/following{/other_user}",
"gists_url": "https://api.github.com/users/jcho19/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/jcho19",
"id": 107211437,
"login": "jcho19",
"node_id": "U_kgDOBmPqrQ",
"organizations_url": "https://api.github.com/users/jcho19/orgs",
"received_events_url": "https://api.github.com/users/jcho19/received_events",
"repos_url": "https://api.github.com/users/jcho19/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/jcho19/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jcho19/subscriptions",
"type": "User",
"url": "https://api.github.com/users/jcho19"
} | [] | closed | false | null | [] | null | [
"Hi!\r\n\r\n> naming convention of mp3 files\r\n\r\nYes, this could be the problem. MP3 files should end with `.mp3`/`.MP3` to be recognized as audio files.\r\n\r\nIf the file names are not the culprit, can you paste the audio folder's directory structure to help us reproduce the error (e.g., by running the `tree \"x\"` command)?",
"Hi! I'm sorry, I don't want to reveal my entire dataset, but here's a snippet (all of the mp3 files below are some of the ones not being recognized by audiofolder. Also, for another dataset, audiofolder loaded zero mp3 files because \"train\" was in the name of one of the mp3 files. \r\nmy_dataset\r\n├── data\r\n│ ├── VHA_Innovation_Stories_-_Day_2-123.mp3\r\n│ ├── VHA_Innovation_Stories_-_Day_2-124.mp3\r\n│ ├── ASSOCIATION_OF_GENERAL_PRACTITIONERS_OF_JAMAICA_NEPHROLOGY_CONFERENCE_-_JULY_3,_2022-93.mp3\r\n│ ├── ASSOCIATION_OF_GENERAL_PRACTITIONERS_OF_JAMAICA_NEPHROLOGY_CONFERENCE_-_JULY_3,_2022-94.mp3\r\n│ ├── ASSOCIATION_OF_GENERAL_PRACTITIONERS_OF_JAMAICA_NEPHROLOGY_CONFERENCE_-_JULY_3,_2022-95.mp3\r\n│ ├── Your_Impact\\357\\274\\232_Neurosurgery_equipment-5.mp3\r\n│ └── Your_Impact\\357\\274\\232_Neurosurgery_equipment-6.mp3\r\n└── metadata.csv\r\n\r\nHere's a few of the 13 files recognized by the dataset:\r\nBritish_Heart_Foundation_-_Your_guide_to_a_Coronary_Angiogram,_a_test_for_heart_disease-1.mp3\r\nBritish_Heart_Foundation_-_Your_guide_to_a_Coronary_Angiogram,_a_test_for_heart_disease-2.mp3\r\nBritish_Heart_Foundation_-_Your_guide_to_a_Coronary_Angiogram,_a_test_for_heart_disease-3.mp3\r\nIVP_⧸_IVU_test_Procedure_for_Kidneys_intravenous_pyelogram_-_medical_radiology_X-ray_ivp-1.mp3\r\nIVP_⧸_IVU_test_Procedure_for_Kidneys_intravenous_pyelogram_-_medical_radiology_X-ray_ivp-2.mp3"
] | "2023-03-05T00:14:45Z" | "2023-03-12T00:02:57Z" | "2023-03-12T00:02:57Z" | NONE | null | null | null | ### Describe the bug
x = load_dataset("audiofolder", data_dir="x")
When running this, x is a dataset of 13 rows (files) when it should be 20,000 rows (files) as the data_dir "x" has 20,000 mp3 files. Does anyone know what could possibly cause this (naming convention of mp3 files, etc.)
### Steps to reproduce the bug
x = load_dataset("audiofolder", data_dir="x")
### Expected behavior
x = load_dataset("audiofolder", data_dir="x") should create a dataset of 20,000 rows (files).
### Environment info
- `datasets` version: 2.9.0
- Platform: Linux-3.10.0-1160.80.1.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.9.16
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5608/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5608/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/1633 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1633/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1633/comments | https://api.github.com/repos/huggingface/datasets/issues/1633/events | https://github.com/huggingface/datasets/issues/1633 | 774,422,603 | MDU6SXNzdWU3NzQ0MjI2MDM= | 1,633 | social_i_qa wrong format of labels | {
"avatar_url": "https://avatars.githubusercontent.com/u/10137?v=4",
"events_url": "https://api.github.com/users/ghost/events{/privacy}",
"followers_url": "https://api.github.com/users/ghost/followers",
"following_url": "https://api.github.com/users/ghost/following{/other_user}",
"gists_url": "https://api.github.com/users/ghost/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/ghost",
"id": 10137,
"login": "ghost",
"node_id": "MDQ6VXNlcjEwMTM3",
"organizations_url": "https://api.github.com/users/ghost/orgs",
"received_events_url": "https://api.github.com/users/ghost/received_events",
"repos_url": "https://api.github.com/users/ghost/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/ghost/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ghost/subscriptions",
"type": "User",
"url": "https://api.github.com/users/ghost"
} | [] | closed | false | null | [] | null | [
"@lhoestq, should I raise a PR for this? Just a minor change while reading labels text file",
"Sure feel free to open a PR thanks !"
] | "2020-12-24T13:11:54Z" | "2020-12-30T17:18:49Z" | "2020-12-30T17:18:49Z" | NONE | null | null | null | Hi,
there is extra "\n" in labels of social_i_qa datasets, no big deal, but I was wondering if you could remove it to make it consistent.
so label is 'label': '1\n', not '1'
thanks
```
>>> import datasets
>>> from datasets import load_dataset
>>> dataset = load_dataset(
... 'social_i_qa')
cahce dir /julia/cache/datasets
Downloading: 4.72kB [00:00, 3.52MB/s]
cahce dir /julia/cache/datasets
Downloading: 2.19kB [00:00, 1.81MB/s]
Using custom data configuration default
Reusing dataset social_i_qa (/julia/datasets/social_i_qa/default/0.1.0/4a4190cc2d2482d43416c2167c0c5dccdd769d4482e84893614bd069e5c3ba06)
>>> dataset['train'][0]
{'answerA': 'like attending', 'answerB': 'like staying home', 'answerC': 'a good friend to have', 'context': 'Cameron decided to have a barbecue and gathered her friends together.', 'label': '1\n', 'question': 'How would Others feel as a result?'}
```
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1633/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1633/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/3942 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3942/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3942/comments | https://api.github.com/repos/huggingface/datasets/issues/3942/events | https://github.com/huggingface/datasets/issues/3942 | 1,171,177,122 | I_kwDODunzps5Fzr6i | 3,942 | reddit_tifu dataset: Checksums didn't match for dataset source files | {
"avatar_url": "https://avatars.githubusercontent.com/u/8507585?v=4",
"events_url": "https://api.github.com/users/XingxingZhang/events{/privacy}",
"followers_url": "https://api.github.com/users/XingxingZhang/followers",
"following_url": "https://api.github.com/users/XingxingZhang/following{/other_user}",
"gists_url": "https://api.github.com/users/XingxingZhang/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/XingxingZhang",
"id": 8507585,
"login": "XingxingZhang",
"node_id": "MDQ6VXNlcjg1MDc1ODU=",
"organizations_url": "https://api.github.com/users/XingxingZhang/orgs",
"received_events_url": "https://api.github.com/users/XingxingZhang/received_events",
"repos_url": "https://api.github.com/users/XingxingZhang/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/XingxingZhang/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/XingxingZhang/subscriptions",
"type": "User",
"url": "https://api.github.com/users/XingxingZhang"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
},
{
"color": "cfd3d7",
"default": true,
"description": "This issue or pull request already exists",
"id": 1935892865,
"name": "duplicate",
"node_id": "MDU6TGFiZWwxOTM1ODkyODY1",
"url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate"
}
] | closed | false | null | [] | null | [
"Hi @XingxingZhang, \r\n\r\nWe have already fixed this. You should update `datasets` version to at least 1.18.4:\r\n```shell\r\npip install -U datasets\r\n```\r\nAnd then force the redownload:\r\n```python\r\nload_dataset(\"...\", download_mode=\"force_redownload\")\r\n```\r\n\r\nDuplicate of:\r\n- #3773",
"thanks @albertvillanova . by upgrading to 1.18.4 and using `load_dataset(\"...\", download_mode=\"force_redownload\")` fixed \r\n the bug.\r\n\r\nusing the following as you suggested in another thread can also fixed the bug\r\n```\r\npip install git+https://github.com/huggingface/datasets#egg=datasets\r\n```\r\n",
"The latter solution (installing from GitHub) was proposed because the fix was not released yet. But last week we made the 1.18.4 patch release (with the fix), so no longer necessary to install from GitHub.\r\n\r\nYou can now install from PyPI, as usual:\r\n```shell\r\npip install -U datasets\r\n```\r\n"
] | "2022-03-16T15:23:30Z" | "2022-03-16T15:57:43Z" | "2022-03-16T15:39:25Z" | NONE | null | null | null | ## Describe the bug
When loading the reddit_tifu dataset, it throws the exception "Checksums didn't match for dataset source files"
## Steps to reproduce the bug
```python
import datasets
from datasets import load_dataset
print(datasets.__version__)
# load_dataset('billsum')
load_dataset('reddit_tifu', 'short')
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.17.0
- Platform: mac os
- Python version: Python 3.7.6
- PyArrow version: 3.0.0
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3942/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3942/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/1202 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1202/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1202/comments | https://api.github.com/repos/huggingface/datasets/issues/1202/events | https://github.com/huggingface/datasets/pull/1202 | 757,934,408 | MDExOlB1bGxSZXF1ZXN0NTMzMjAyNjE0 | 1,202 | Medical question pairs | {
"avatar_url": "https://avatars.githubusercontent.com/u/46425391?v=4",
"events_url": "https://api.github.com/users/tuner007/events{/privacy}",
"followers_url": "https://api.github.com/users/tuner007/followers",
"following_url": "https://api.github.com/users/tuner007/following{/other_user}",
"gists_url": "https://api.github.com/users/tuner007/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/tuner007",
"id": 46425391,
"login": "tuner007",
"node_id": "MDQ6VXNlcjQ2NDI1Mzkx",
"organizations_url": "https://api.github.com/users/tuner007/orgs",
"received_events_url": "https://api.github.com/users/tuner007/received_events",
"repos_url": "https://api.github.com/users/tuner007/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/tuner007/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tuner007/subscriptions",
"type": "User",
"url": "https://api.github.com/users/tuner007"
} | [] | closed | false | null | [] | null | [] | "2020-12-06T14:09:07Z" | "2020-12-06T17:41:28Z" | "2020-12-06T17:41:28Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1202.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1202",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/1202.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1202"
} | This dataset consists of 3048 similar and dissimilar medical question pairs hand-generated and labeled by Curai's doctors.
Dataset : https://github.com/curai/medical-question-pair-dataset
Paper : https://drive.google.com/file/d/1CHPGBXkvZuZc8hpr46HeHU6U6jnVze-s/view
**No splits added** | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1202/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1202/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4080 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4080/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4080/comments | https://api.github.com/repos/huggingface/datasets/issues/4080/events | https://github.com/huggingface/datasets/issues/4080 | 1,189,667,296 | I_kwDODunzps5G6OHg | 4,080 | NonMatchingChecksumError for downloading conll2012_ontonotesv5 dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/17963619?v=4",
"events_url": "https://api.github.com/users/richarddwang/events{/privacy}",
"followers_url": "https://api.github.com/users/richarddwang/followers",
"following_url": "https://api.github.com/users/richarddwang/following{/other_user}",
"gists_url": "https://api.github.com/users/richarddwang/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/richarddwang",
"id": 17963619,
"login": "richarddwang",
"node_id": "MDQ6VXNlcjE3OTYzNjE5",
"organizations_url": "https://api.github.com/users/richarddwang/orgs",
"received_events_url": "https://api.github.com/users/richarddwang/received_events",
"repos_url": "https://api.github.com/users/richarddwang/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/richarddwang/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/richarddwang/subscriptions",
"type": "User",
"url": "https://api.github.com/users/richarddwang"
} | [
{
"color": "cfd3d7",
"default": true,
"description": "This issue or pull request already exists",
"id": 1935892865,
"name": "duplicate",
"node_id": "MDU6TGFiZWwxOTM1ODkyODY1",
"url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate"
},
{
"color": "2edb81",
"default": false,
"description": "A bug in a dataset script provided in the library",
"id": 2067388877,
"name": "dataset bug",
"node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | null | [
"Hi @richarddwang,\r\n\r\n\r\nIndeed, we have recently updated the loading script of that dataset (and fixed that bug as well):\r\n- #4002\r\n\r\nThat fix will be available in our next `datasets` library release. In the meantime, you can incorporate that fix by:\r\n- installing `datasets` from our GitHub repo:\r\n```bash\r\npip install git+https://github.com/huggingface/datasets#egg=datasets\r\n```\r\n- forcing the data files to be redownloaded\r\n```python\r\nds = load_dataset('conll2012_ontonotesv5', 'english_v4', split=\"test\", download_mode=\"force_redownload\")\r\n```\r\n\r\nFeel free to re-open this issue if the problem persists. \r\n\r\nDuplicate of:\r\n- #4031"
] | "2022-04-01T11:34:28Z" | "2022-04-01T13:59:10Z" | "2022-04-01T13:59:10Z" | CONTRIBUTOR | null | null | null | ## Steps to reproduce the bug
```python
datasets.load_dataset("conll2012_ontonotesv5", "english_v12")
```
## Actual results
```
Downloading builder script: 32.2kB [00:00, 9.72MB/s]
Downloading metadata: 20.0kB [00:00, 10.4MB/s]
Downloading and preparing dataset conll2012_ontonotesv5/english_v12 (download: 174.83 MiB, generated: 204.29 MiB, post-processed: Unknown size
, total: 379.12 MiB) to ...
Traceback (most recent call last): [315/390]
File "/home/yisiang/lgtn/conll2012/run.py", line 86, in <module>
train()
File "/home/yisiang/lgtn/conll2012/run.py", line 65, in train
trainer.fit(model, datamodule=dm)
File "/home/yisiang/miniconda3/envs/ai/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 740, in fit
self._call_and_handle_interrupt(
File "/home/yisiang/miniconda3/envs/ai/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 685, in _call_and_handle_inte
rrupt
return trainer_fn(*args, **kwargs)
File "/home/yisiang/miniconda3/envs/ai/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 777, in _fit_impl
self._run(model, ckpt_path=ckpt_path)
File "/home/yisiang/miniconda3/envs/ai/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 1131, in _run
self._data_connector.prepare_data()
File "/home/yisiang/miniconda3/envs/ai/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/data_connector.py", line 154, in pre
pare_data
self.trainer.datamodule.prepare_data()
File "/home/yisiang/miniconda3/envs/ai/lib/python3.9/site-packages/pytorch_lightning/core/datamodule.py", line 474, in wrapped_fn
fn(*args, **kwargs)
File "/home/yisiang/lgtn/_abstract_task/data.py", line 43, in prepare_data
raw_dsets = datasets.load_dataset(**load_dataset_kwargs)
File "/home/yisiang/miniconda3/envs/ai/lib/python3.9/site-packages/datasets/load.py", line 1687, in load_dataset
builder_instance.download_and_prepare(
File "/home/yisiang/miniconda3/envs/ai/lib/python3.9/site-packages/datasets/builder.py", line 605, in download_and_prepare
self._download_and_prepare(
File "/home/yisiang/miniconda3/envs/ai/lib/python3.9/site-packages/datasets/builder.py", line 1104, in _download_and_prepare
super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos)
File "/home/yisiang/miniconda3/envs/ai/lib/python3.9/site-packages/datasets/builder.py", line 676, in _download_and_prepare
verify_checksums(
File "/home/yisiang/miniconda3/envs/ai/lib/python3.9/site-packages/datasets/utils/info_utils.py", line 40, in verify_checksums
raise NonMatchingChecksumError(error_msg + str(bad_urls))
datasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files:
['https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/zmycy7t9h9-1.zip']
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 2.0.0 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4080/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4080/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/285 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/285/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/285/comments | https://api.github.com/repos/huggingface/datasets/issues/285/events | https://github.com/huggingface/datasets/pull/285 | 641,360,702 | MDExOlB1bGxSZXF1ZXN0NDM2NjAyMjk4 | 285 | Consistent formatting of citations | {
"avatar_url": "https://avatars.githubusercontent.com/u/38249783?v=4",
"events_url": "https://api.github.com/users/mariamabarham/events{/privacy}",
"followers_url": "https://api.github.com/users/mariamabarham/followers",
"following_url": "https://api.github.com/users/mariamabarham/following{/other_user}",
"gists_url": "https://api.github.com/users/mariamabarham/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariamabarham",
"id": 38249783,
"login": "mariamabarham",
"node_id": "MDQ6VXNlcjM4MjQ5Nzgz",
"organizations_url": "https://api.github.com/users/mariamabarham/orgs",
"received_events_url": "https://api.github.com/users/mariamabarham/received_events",
"repos_url": "https://api.github.com/users/mariamabarham/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariamabarham/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariamabarham/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariamabarham"
} | [] | closed | false | null | [] | null | [
"Circle CI shuold be green :-) "
] | "2020-06-18T16:25:23Z" | "2020-06-22T08:09:25Z" | "2020-06-22T08:09:24Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/285.diff",
"html_url": "https://github.com/huggingface/datasets/pull/285",
"merged_at": "2020-06-22T08:09:23Z",
"patch_url": "https://github.com/huggingface/datasets/pull/285.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/285"
} | #283 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/285/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/285/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6424 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6424/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6424/comments | https://api.github.com/repos/huggingface/datasets/issues/6424/events | https://github.com/huggingface/datasets/pull/6424 | 1,995,224,516 | PR_kwDODunzps5fiwDC | 6,424 | [docs] troubleshooting guide | {
"avatar_url": "https://avatars.githubusercontent.com/u/1065417?v=4",
"events_url": "https://api.github.com/users/MKhalusova/events{/privacy}",
"followers_url": "https://api.github.com/users/MKhalusova/followers",
"following_url": "https://api.github.com/users/MKhalusova/following{/other_user}",
"gists_url": "https://api.github.com/users/MKhalusova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/MKhalusova",
"id": 1065417,
"login": "MKhalusova",
"node_id": "MDQ6VXNlcjEwNjU0MTc=",
"organizations_url": "https://api.github.com/users/MKhalusova/orgs",
"received_events_url": "https://api.github.com/users/MKhalusova/received_events",
"repos_url": "https://api.github.com/users/MKhalusova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/MKhalusova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MKhalusova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/MKhalusova"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6424). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005323 / 0.011353 (-0.006030) | 0.003560 / 0.011008 (-0.007448) | 0.062572 / 0.038508 (0.024064) | 0.049549 / 0.023109 (0.026440) | 0.236522 / 0.275898 (-0.039376) | 0.260601 / 0.323480 (-0.062879) | 0.002887 / 0.007986 (-0.005099) | 0.003225 / 0.004328 (-0.001103) | 0.048210 / 0.004250 (0.043960) | 0.038783 / 0.037052 (0.001731) | 0.242506 / 0.258489 (-0.015983) | 0.273906 / 0.293841 (-0.019935) | 0.027202 / 0.128546 (-0.101344) | 0.010577 / 0.075646 (-0.065069) | 0.211669 / 0.419271 (-0.207603) | 0.035727 / 0.043533 (-0.007806) | 0.242303 / 0.255139 (-0.012836) | 0.260468 / 0.283200 (-0.022732) | 0.020109 / 0.141683 (-0.121573) | 1.089603 / 1.452155 (-0.362552) | 1.149899 / 1.492716 (-0.342817) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088768 / 0.018006 (0.070761) | 0.300300 / 0.000490 (0.299810) | 0.000212 / 0.000200 (0.000013) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018758 / 0.037411 (-0.018653) | 0.060097 / 0.014526 (0.045571) | 0.074060 / 0.176557 (-0.102496) | 0.119977 / 0.737135 (-0.617158) | 0.075298 / 0.296338 (-0.221040) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278640 / 0.215209 (0.063431) | 2.715574 / 2.077655 (0.637919) | 1.466644 / 1.504120 (-0.037476) | 1.344470 / 1.541195 (-0.196725) | 1.386984 / 1.468490 (-0.081506) | 0.575796 / 4.584777 (-4.008981) | 2.392324 / 3.745712 (-1.353388) | 2.826284 / 5.269862 (-2.443578) | 1.758997 / 4.565676 (-2.806679) | 0.062474 / 0.424275 (-0.361801) | 0.004930 / 0.007607 (-0.002678) | 0.332595 / 0.226044 (0.106551) | 3.240076 / 2.268929 (0.971147) | 1.785283 / 55.444624 (-53.659341) | 1.527594 / 6.876477 (-5.348882) | 1.562840 / 2.142072 (-0.579233) | 0.655474 / 4.805227 (-4.149754) | 0.116682 / 6.500664 (-6.383983) | 0.042664 / 0.075469 (-0.032805) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.936306 / 1.841788 (-0.905481) | 11.561239 / 8.074308 (3.486931) | 10.341918 / 10.191392 (0.150526) | 0.140602 / 0.680424 (-0.539822) | 0.013857 / 0.534201 (-0.520344) | 0.294241 / 0.579283 (-0.285042) | 0.268359 / 0.434364 (-0.166005) | 0.326344 / 0.540337 (-0.213993) | 0.430936 / 1.386936 (-0.956000) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005197 / 0.011353 (-0.006156) | 0.003543 / 0.011008 (-0.007465) | 0.049051 / 0.038508 (0.010542) | 0.052742 / 0.023109 (0.029633) | 0.277032 / 0.275898 (0.001134) | 0.300799 / 0.323480 (-0.022681) | 0.003922 / 0.007986 (-0.004064) | 0.002573 / 0.004328 (-0.001755) | 0.047270 / 0.004250 (0.043019) | 0.039782 / 0.037052 (0.002730) | 0.282780 / 0.258489 (0.024291) | 0.308858 / 0.293841 (0.015017) | 0.028641 / 0.128546 (-0.099905) | 0.010516 / 0.075646 (-0.065131) | 0.056367 / 0.419271 (-0.362904) | 0.032346 / 0.043533 (-0.011186) | 0.277591 / 0.255139 (0.022452) | 0.298539 / 0.283200 (0.015339) | 0.018168 / 0.141683 (-0.123515) | 1.104331 / 1.452155 (-0.347823) | 1.187691 / 1.492716 (-0.305025) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089511 / 0.018006 (0.071505) | 0.301309 / 0.000490 (0.300820) | 0.000213 / 0.000200 (0.000013) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021466 / 0.037411 (-0.015945) | 0.069917 / 0.014526 (0.055391) | 0.081105 / 0.176557 (-0.095452) | 0.119619 / 0.737135 (-0.617516) | 0.083928 / 0.296338 (-0.212410) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296471 / 0.215209 (0.081262) | 2.912139 / 2.077655 (0.834484) | 1.588861 / 1.504120 (0.084741) | 1.452148 / 1.541195 (-0.089047) | 1.475388 / 1.468490 (0.006898) | 0.555779 / 4.584777 (-4.028998) | 2.425599 / 3.745712 (-1.320113) | 2.792848 / 5.269862 (-2.477013) | 1.718757 / 4.565676 (-2.846919) | 0.077687 / 0.424275 (-0.346588) | 0.007522 / 0.007607 (-0.000085) | 0.348254 / 0.226044 (0.122210) | 3.439315 / 2.268929 (1.170386) | 1.925907 / 55.444624 (-53.518717) | 1.646163 / 6.876477 (-5.230314) | 1.662148 / 2.142072 (-0.479924) | 0.637277 / 4.805227 (-4.167950) | 0.116159 / 6.500664 (-6.384505) | 0.041518 / 0.075469 (-0.033952) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.966358 / 1.841788 (-0.875430) | 12.125201 / 8.074308 (4.050892) | 10.629939 / 10.191392 (0.438547) | 0.132439 / 0.680424 (-0.547984) | 0.015622 / 0.534201 (-0.518579) | 0.288824 / 0.579283 (-0.290459) | 0.277634 / 0.434364 (-0.156730) | 0.327200 / 0.540337 (-0.213138) | 0.549679 / 1.386936 (-0.837257) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0850f663f5498e0f296461e99a345dfd65e3358f \"CML watermark\")\n"
] | "2023-11-15T17:28:14Z" | "2023-11-30T17:29:55Z" | "2023-11-30T17:23:46Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6424.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6424",
"merged_at": "2023-11-30T17:23:46Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6424.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6424"
} | Hi all! This is a PR adding a troubleshooting guide for Datasets docs.
I went through the library's GitHub Issues and Forum questions and identified a few issues that are common enough that I think it would be valuable to include them in the troubleshooting guide. These are:
- creating a dataset from a folder and not following the required format
- authentication issues when using `push_to_hub`
- `Too Many Requests` with `push_to_hub`
- Pickling issues when using Dataset.from_generator()
There's also a section on asking for help. Please let me know if there are other common issues or advice that we can include here. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 1,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6424/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6424/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4578 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4578/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4578/comments | https://api.github.com/repos/huggingface/datasets/issues/4578/events | https://github.com/huggingface/datasets/issues/4578 | 1,286,086,400 | I_kwDODunzps5MqB8A | 4,578 | [Multi Configs] Use directories to differentiate between subsets/configurations | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | open | false | null | [] | null | [
"I want to be able to create folders in a model.",
"How to set new split names, instead of train/test/validation? For example, I have a local dataset, consists of several subsets, named \"A\", \"B\", and \"C\". How can I create a huggingface dataset, with splits A/B/C ?\r\n\r\nThe document in https://huggingface.co/docs/datasets/dataset_script only tells me how to create datasets with subsets that is hosted on another server. How to do it if my datasets are local?",
"> The document in https://huggingface.co/docs/datasets/dataset_script only tells me how to create datasets with subsets that is hosted on another server. How to do it if my datasets are local?\r\n\r\nIt works the same - you just need to use local paths instead of URLs"
] | "2022-06-27T16:55:11Z" | "2023-06-14T15:43:05Z" | null | MEMBER | null | null | null | Currently to define several subsets/configurations of your dataset, you need to use a dataset script.
However it would be nice to have a no-code way to to this.
For example we could specify different configurations of a dataset (for example, if a dataset contains different languages) with one directory per configuration.
These structures are not supported right now, but would be nice to have:
```
my_dataset_repository/
├── README.md
├── en/
│ ├── train.csv
│ └── test.csv
└── fr/
├── train.csv
└── test.csv
```
Or with one directory per split:
```
my_dataset_repository/
├── README.md
├── en/
│ ├── train/
│ │ ├── shard_0.csv
│ │ └── shard_1.csv
│ └── test/
│ ├── shard_0.csv
│ └── shard_1.csv
└── fr/
├── train/
│ ├── shard_0.csv
│ └── shard_1.csv
└── test/
├── shard_0.csv
└── shard_1.csv
```
cc @stevhliu @albertvillanova
This can be specified in the README as YAML with
```
configs:
- config_name: en
data_dir: en
- config_name: fr
data_dir: fr
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 5,
"heart": 9,
"hooray": 0,
"laugh": 0,
"rocket": 5,
"total_count": 19,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4578/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4578/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6457 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6457/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6457/comments | https://api.github.com/repos/huggingface/datasets/issues/6457/events | https://github.com/huggingface/datasets/issues/6457 | 2,015,650,563 | I_kwDODunzps54JGMD | 6,457 | `TypeError`: huggingface_hub.hf_file_system.HfFileSystem.find() got multiple values for keyword argument 'maxdepth' | {
"avatar_url": "https://avatars.githubusercontent.com/u/79070834?v=4",
"events_url": "https://api.github.com/users/wasertech/events{/privacy}",
"followers_url": "https://api.github.com/users/wasertech/followers",
"following_url": "https://api.github.com/users/wasertech/following{/other_user}",
"gists_url": "https://api.github.com/users/wasertech/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/wasertech",
"id": 79070834,
"login": "wasertech",
"node_id": "MDQ6VXNlcjc5MDcwODM0",
"organizations_url": "https://api.github.com/users/wasertech/orgs",
"received_events_url": "https://api.github.com/users/wasertech/received_events",
"repos_url": "https://api.github.com/users/wasertech/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/wasertech/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wasertech/subscriptions",
"type": "User",
"url": "https://api.github.com/users/wasertech"
} | [] | closed | false | null | [] | null | [
"Updating `fsspec>=2023.10.0` did solve the issue.",
"May be it should be pinned somewhere?",
"> Maybe this should go in datasets directly... anyways you can easily fix this error by updating datasets>=2.15.1.dev0.\r\n\r\n@lhoestq @mariosasko for what I understand this is a bug fixed in `datasets` already, right? No need to do anything in `huggingface_hub`?",
"I've opened a PR with a fix in `huggingface_hub`: https://github.com/huggingface/huggingface_hub/pull/1875",
"Thanks! PR is merged and will be shipped in next release of `huggingface_hub`."
] | "2023-11-29T01:57:36Z" | "2023-11-29T15:39:03Z" | "2023-11-29T02:02:38Z" | NONE | null | null | null | ### Describe the bug
Please see https://github.com/huggingface/huggingface_hub/issues/1872
### Steps to reproduce the bug
Please see https://github.com/huggingface/huggingface_hub/issues/1872
### Expected behavior
Please see https://github.com/huggingface/huggingface_hub/issues/1872
### Environment info
Please see https://github.com/huggingface/huggingface_hub/issues/1872 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6457/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6457/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/2453 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2453/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2453/comments | https://api.github.com/repos/huggingface/datasets/issues/2453/events | https://github.com/huggingface/datasets/pull/2453 | 913,729,258 | MDExOlB1bGxSZXF1ZXN0NjYzNzE3NTk2 | 2,453 | Keep original features order | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | {
"closed_at": "2021-07-09T05:50:07Z",
"closed_issues": 12,
"created_at": "2021-05-31T16:13:06Z",
"creator": {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
},
"description": "Next minor release",
"due_on": "2021-07-08T07:00:00Z",
"html_url": "https://github.com/huggingface/datasets/milestone/5",
"id": 6808903,
"labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/5/labels",
"node_id": "MDk6TWlsZXN0b25lNjgwODkwMw==",
"number": 5,
"open_issues": 0,
"state": "closed",
"title": "1.9",
"updated_at": "2021-07-12T14:12:00Z",
"url": "https://api.github.com/repos/huggingface/datasets/milestones/5"
} | [
"The arrow writer was supposing that the columns were always in the sorted order. I just pushed a fix to reorder the arrays accordingly to the schema. It was failing for many datasets like squad",
"and obviously it broke everything",
"Feel free to revert my commit. I can investigate this in the coming days",
"@lhoestq I do not understand when you say:\r\n> It was failing for many datasets like squad\r\n\r\nAll the tests were green after my last commit.",
"> All the tests were green after my last commit.\r\n\r\nYes but loading the actual squad dataset was failing :/\r\n"
] | "2021-06-07T16:26:38Z" | "2021-06-15T18:05:36Z" | "2021-06-15T15:43:48Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2453.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2453",
"merged_at": "2021-06-15T15:43:48Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2453.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2453"
} | When loading a Dataset from a JSON file whose column names are not sorted alphabetically, we should get the same column name order, whether we pass features (in the same order as in the file) or not.
I found this issue while working on #2366. | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2453/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2453/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1076 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1076/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1076/comments | https://api.github.com/repos/huggingface/datasets/issues/1076/events | https://github.com/huggingface/datasets/pull/1076 | 756,584,328 | MDExOlB1bGxSZXF1ZXN0NTMyMTExNDU5 | 1,076 | quac quac / coin coin | {
"avatar_url": "https://avatars.githubusercontent.com/u/16107619?v=4",
"events_url": "https://api.github.com/users/VictorSanh/events{/privacy}",
"followers_url": "https://api.github.com/users/VictorSanh/followers",
"following_url": "https://api.github.com/users/VictorSanh/following{/other_user}",
"gists_url": "https://api.github.com/users/VictorSanh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/VictorSanh",
"id": 16107619,
"login": "VictorSanh",
"node_id": "MDQ6VXNlcjE2MTA3NjE5",
"organizations_url": "https://api.github.com/users/VictorSanh/orgs",
"received_events_url": "https://api.github.com/users/VictorSanh/received_events",
"repos_url": "https://api.github.com/users/VictorSanh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/VictorSanh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/VictorSanh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/VictorSanh"
} | [] | closed | false | null | [] | null | [
"pan"
] | "2020-12-03T20:55:29Z" | "2020-12-04T16:36:39Z" | "2020-12-04T09:15:20Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1076.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1076",
"merged_at": "2020-12-04T09:15:20Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1076.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1076"
} | Add QUAC (Question Answering in Context)
I linearized most of the dictionnaries to lists.
Referenced to the authors' datasheet for the dataset card.
🦆🦆🦆
Coin coin | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1076/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1076/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3627 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3627/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3627/comments | https://api.github.com/repos/huggingface/datasets/issues/3627/events | https://github.com/huggingface/datasets/pull/3627 | 1,113,556,837 | PR_kwDODunzps4xitGe | 3,627 | Fix host URL in The Pile datasets | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"We should also update the `bookcorpusopen` download url (see #3561) , no? ",
"For `the_pile_openwebtext2` and `the_pile_stack_exchange` I did not regenerate the JSON files, but instead I just changed the download_checksums URL. ",
"Seems like the mystic URL is now broken and the original should be used. ",
"Also if I git clone and edit the repo or reset it before this PR it is still trying to pull using mystic? Why is this? "
] | "2022-01-25T08:11:28Z" | "2022-07-20T20:54:42Z" | "2022-02-14T08:40:58Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/3627.diff",
"html_url": "https://github.com/huggingface/datasets/pull/3627",
"merged_at": "2022-02-14T08:40:58Z",
"patch_url": "https://github.com/huggingface/datasets/pull/3627.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/3627"
} | This PR fixes the host URL in The Pile datasets, once they have mirrored their data in another server.
Fix #3626. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3627/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3627/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6098 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6098/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6098/comments | https://api.github.com/repos/huggingface/datasets/issues/6098/events | https://github.com/huggingface/datasets/pull/6098 | 1,827,655,071 | PR_kwDODunzps5WuCn1 | 6,098 | Expanduser in save_to_disk() | {
"avatar_url": "https://avatars.githubusercontent.com/u/51715864?v=4",
"events_url": "https://api.github.com/users/Unknown3141592/events{/privacy}",
"followers_url": "https://api.github.com/users/Unknown3141592/followers",
"following_url": "https://api.github.com/users/Unknown3141592/following{/other_user}",
"gists_url": "https://api.github.com/users/Unknown3141592/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Unknown3141592",
"id": 51715864,
"login": "Unknown3141592",
"node_id": "MDQ6VXNlcjUxNzE1ODY0",
"organizations_url": "https://api.github.com/users/Unknown3141592/orgs",
"received_events_url": "https://api.github.com/users/Unknown3141592/received_events",
"repos_url": "https://api.github.com/users/Unknown3141592/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Unknown3141592/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Unknown3141592/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Unknown3141592"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"> I am not sure why the case distinction between local and remote filesystems is even necessary for DatasetDict when saving to disk. Imo this could be removed (leaving only fs.makedirs(dataset_dict_path, exist_ok=True)).\r\n\r\nIndeed. But it's better to address this in a separate PR.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007696 / 0.011353 (-0.003656) | 0.004497 / 0.011008 (-0.006511) | 0.099302 / 0.038508 (0.060794) | 0.083360 / 0.023109 (0.060251) | 0.393483 / 0.275898 (0.117585) | 0.450505 / 0.323480 (0.127025) | 0.004610 / 0.007986 (-0.003376) | 0.003637 / 0.004328 (-0.000692) | 0.075752 / 0.004250 (0.071501) | 0.064034 / 0.037052 (0.026982) | 0.397785 / 0.258489 (0.139296) | 0.462948 / 0.293841 (0.169107) | 0.035902 / 0.128546 (-0.092644) | 0.009640 / 0.075646 (-0.066007) | 0.342299 / 0.419271 (-0.076973) | 0.059586 / 0.043533 (0.016053) | 0.404918 / 0.255139 (0.149779) | 0.440889 / 0.283200 (0.157690) | 0.028981 / 0.141683 (-0.112702) | 1.775380 / 1.452155 (0.323226) | 1.866663 / 1.492716 (0.373946) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.249080 / 0.018006 (0.231074) | 0.456460 / 0.000490 (0.455970) | 0.028145 / 0.000200 (0.027945) | 0.000402 / 0.000054 (0.000347) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030373 / 0.037411 (-0.007038) | 0.088562 / 0.014526 (0.074036) | 0.122837 / 0.176557 (-0.053720) | 0.167122 / 0.737135 (-0.570014) | 0.103953 / 0.296338 (-0.192385) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431714 / 0.215209 (0.216505) | 4.182224 / 2.077655 (2.104570) | 2.025650 / 1.504120 (0.521530) | 1.838905 / 1.541195 (0.297710) | 1.868710 / 1.468490 (0.400219) | 0.538422 / 4.584777 (-4.046355) | 4.038941 / 3.745712 (0.293228) | 3.717695 / 5.269862 (-1.552166) | 2.313197 / 4.565676 (-2.252479) | 0.061060 / 0.424275 (-0.363215) | 0.008248 / 0.007607 (0.000641) | 0.497438 / 0.226044 (0.271394) | 4.946663 / 2.268929 (2.677734) | 2.571841 / 55.444624 (-52.872784) | 2.155894 / 6.876477 (-4.720583) | 2.183180 / 2.142072 (0.041107) | 0.639810 / 4.805227 (-4.165417) | 0.153273 / 6.500664 (-6.347391) | 0.068606 / 0.075469 (-0.006863) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.376152 / 1.841788 (-0.465635) | 20.747088 / 8.074308 (12.672780) | 15.200311 / 10.191392 (5.008919) | 0.166380 / 0.680424 (-0.514043) | 0.021417 / 0.534201 (-0.512784) | 0.435677 / 0.579283 (-0.143606) | 0.460412 / 0.434364 (0.026048) | 0.509978 / 0.540337 (-0.030359) | 0.702506 / 1.386936 (-0.684430) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007378 / 0.011353 (-0.003975) | 0.003938 / 0.011008 (-0.007070) | 0.067095 / 0.038508 (0.028587) | 0.082252 / 0.023109 (0.059143) | 0.420317 / 0.275898 (0.144419) | 0.477496 / 0.323480 (0.154017) | 0.006259 / 0.007986 (-0.001727) | 0.003513 / 0.004328 (-0.000816) | 0.072107 / 0.004250 (0.067856) | 0.061737 / 0.037052 (0.024684) | 0.444142 / 0.258489 (0.185653) | 0.488926 / 0.293841 (0.195085) | 0.033623 / 0.128546 (-0.094923) | 0.008091 / 0.075646 (-0.067555) | 0.073997 / 0.419271 (-0.345274) | 0.051295 / 0.043533 (0.007762) | 0.442551 / 0.255139 (0.187412) | 0.462713 / 0.283200 (0.179513) | 0.023115 / 0.141683 (-0.118568) | 1.645759 / 1.452155 (0.193604) | 1.758121 / 1.492716 (0.265405) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233450 / 0.018006 (0.215444) | 0.445384 / 0.000490 (0.444894) | 0.006412 / 0.000200 (0.006212) | 0.000111 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032446 / 0.037411 (-0.004965) | 0.098515 / 0.014526 (0.083989) | 0.109095 / 0.176557 (-0.067462) | 0.167645 / 0.737135 (-0.569490) | 0.110403 / 0.296338 (-0.185936) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.470189 / 0.215209 (0.254980) | 4.663224 / 2.077655 (2.585569) | 2.504474 / 1.504120 (1.000354) | 2.282867 / 1.541195 (0.741673) | 2.331598 / 1.468490 (0.863108) | 0.554421 / 4.584777 (-4.030356) | 4.078657 / 3.745712 (0.332945) | 3.516339 / 5.269862 (-1.753523) | 2.239134 / 4.565676 (-2.326542) | 0.062690 / 0.424275 (-0.361585) | 0.008406 / 0.007607 (0.000799) | 0.533827 / 0.226044 (0.307782) | 5.423984 / 2.268929 (3.155055) | 2.972784 / 55.444624 (-52.471840) | 2.699056 / 6.876477 (-4.177421) | 2.844403 / 2.142072 (0.702331) | 0.639194 / 4.805227 (-4.166033) | 0.142097 / 6.500664 (-6.358567) | 0.064646 / 0.075469 (-0.010823) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.544640 / 1.841788 (-0.297148) | 21.453429 / 8.074308 (13.379121) | 15.610723 / 10.191392 (5.419331) | 0.207796 / 0.680424 (-0.472628) | 0.021912 / 0.534201 (-0.512289) | 0.430472 / 0.579283 (-0.148811) | 0.467530 / 0.434364 (0.033166) | 0.541339 / 0.540337 (0.001002) | 0.721976 / 1.386936 (-0.664960) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#691c4bc65888005f3aadea5c104fdbc87694882d \"CML watermark\")\n"
] | "2023-07-29T20:50:45Z" | "2023-10-27T14:14:11Z" | "2023-10-27T14:04:36Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6098.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6098",
"merged_at": "2023-10-27T14:04:36Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6098.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6098"
} | Fixes #5651. The same problem occurs when loading from disk so I fixed it there too.
I am not sure why the case distinction between local and remote filesystems is even necessary for `DatasetDict` when saving to disk. Imo this could be removed (leaving only `fs.makedirs(dataset_dict_path, exist_ok=True)`). | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6098/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6098/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/493 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/493/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/493/comments | https://api.github.com/repos/huggingface/datasets/issues/493/events | https://github.com/huggingface/datasets/pull/493 | 676,527,351 | MDExOlB1bGxSZXF1ZXN0NDY1ODIxOTA0 | 493 | Fix wmt zh-en url | {
"avatar_url": "https://avatars.githubusercontent.com/u/6045025?v=4",
"events_url": "https://api.github.com/users/sshleifer/events{/privacy}",
"followers_url": "https://api.github.com/users/sshleifer/followers",
"following_url": "https://api.github.com/users/sshleifer/following{/other_user}",
"gists_url": "https://api.github.com/users/sshleifer/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/sshleifer",
"id": 6045025,
"login": "sshleifer",
"node_id": "MDQ6VXNlcjYwNDUwMjU=",
"organizations_url": "https://api.github.com/users/sshleifer/orgs",
"received_events_url": "https://api.github.com/users/sshleifer/received_events",
"repos_url": "https://api.github.com/users/sshleifer/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/sshleifer/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sshleifer/subscriptions",
"type": "User",
"url": "https://api.github.com/users/sshleifer"
} | [] | closed | false | null | [] | null | [
"this doesn't work. I can decompress the file after download locally."
] | "2020-08-11T02:14:52Z" | "2020-08-11T02:22:28Z" | "2020-08-11T02:22:12Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/493.diff",
"html_url": "https://github.com/huggingface/datasets/pull/493",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/493.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/493"
} | I verified that
```
wget https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-zh.tar.gz.00
```
runs in 2 minutes. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/493/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/493/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5642 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5642/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5642/comments | https://api.github.com/repos/huggingface/datasets/issues/5642/events | https://github.com/huggingface/datasets/pull/5642 | 1,626,043,177 | PR_kwDODunzps5MIjw9 | 5,642 | Bump hfh to 0.11.0 | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006334 / 0.011353 (-0.005018) | 0.004447 / 0.011008 (-0.006561) | 0.099287 / 0.038508 (0.060779) | 0.027426 / 0.023109 (0.004317) | 0.322638 / 0.275898 (0.046740) | 0.370501 / 0.323480 (0.047021) | 0.004775 / 0.007986 (-0.003210) | 0.003289 / 0.004328 (-0.001040) | 0.076531 / 0.004250 (0.072280) | 0.037485 / 0.037052 (0.000432) | 0.335634 / 0.258489 (0.077145) | 0.384031 / 0.293841 (0.090190) | 0.031258 / 0.128546 (-0.097288) | 0.011619 / 0.075646 (-0.064027) | 0.326309 / 0.419271 (-0.092963) | 0.042513 / 0.043533 (-0.001020) | 0.340817 / 0.255139 (0.085678) | 0.369846 / 0.283200 (0.086646) | 0.084904 / 0.141683 (-0.056779) | 1.481739 / 1.452155 (0.029584) | 1.566593 / 1.492716 (0.073877) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.186424 / 0.018006 (0.168418) | 0.400879 / 0.000490 (0.400389) | 0.003520 / 0.000200 (0.003320) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023287 / 0.037411 (-0.014124) | 0.097767 / 0.014526 (0.083241) | 0.103271 / 0.176557 (-0.073286) | 0.165414 / 0.737135 (-0.571722) | 0.106437 / 0.296338 (-0.189901) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422711 / 0.215209 (0.207502) | 4.221382 / 2.077655 (2.143727) | 1.906807 / 1.504120 (0.402687) | 1.709595 / 1.541195 (0.168400) | 1.720452 / 1.468490 (0.251962) | 0.699477 / 4.584777 (-3.885300) | 3.415840 / 3.745712 (-0.329873) | 2.835669 / 5.269862 (-2.434192) | 1.501775 / 4.565676 (-3.063901) | 0.082896 / 0.424275 (-0.341379) | 0.012855 / 0.007607 (0.005248) | 0.514373 / 0.226044 (0.288329) | 5.190000 / 2.268929 (2.921071) | 2.302539 / 55.444624 (-53.142086) | 1.963410 / 6.876477 (-4.913067) | 2.020944 / 2.142072 (-0.121128) | 0.805919 / 4.805227 (-3.999308) | 0.150604 / 6.500664 (-6.350060) | 0.065977 / 0.075469 (-0.009492) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206487 / 1.841788 (-0.635300) | 13.631513 / 8.074308 (5.557205) | 13.800258 / 10.191392 (3.608866) | 0.146914 / 0.680424 (-0.533509) | 0.016454 / 0.534201 (-0.517747) | 0.377752 / 0.579283 (-0.201532) | 0.384312 / 0.434364 (-0.050052) | 0.434912 / 0.540337 (-0.105425) | 0.522507 / 1.386936 (-0.864429) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006328 / 0.011353 (-0.005025) | 0.004406 / 0.011008 (-0.006602) | 0.077951 / 0.038508 (0.039443) | 0.026716 / 0.023109 (0.003607) | 0.337303 / 0.275898 (0.061405) | 0.372036 / 0.323480 (0.048556) | 0.004800 / 0.007986 (-0.003185) | 0.003153 / 0.004328 (-0.001175) | 0.076823 / 0.004250 (0.072573) | 0.035873 / 0.037052 (-0.001179) | 0.340243 / 0.258489 (0.081754) | 0.380183 / 0.293841 (0.086342) | 0.032185 / 0.128546 (-0.096361) | 0.011545 / 0.075646 (-0.064101) | 0.086887 / 0.419271 (-0.332384) | 0.041560 / 0.043533 (-0.001973) | 0.338716 / 0.255139 (0.083577) | 0.363080 / 0.283200 (0.079881) | 0.088375 / 0.141683 (-0.053308) | 1.499004 / 1.452155 (0.046850) | 1.585904 / 1.492716 (0.093188) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211645 / 0.018006 (0.193639) | 0.403707 / 0.000490 (0.403218) | 0.000415 / 0.000200 (0.000215) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024972 / 0.037411 (-0.012440) | 0.097996 / 0.014526 (0.083470) | 0.105941 / 0.176557 (-0.070616) | 0.155521 / 0.737135 (-0.581615) | 0.108246 / 0.296338 (-0.188092) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442316 / 0.215209 (0.227107) | 4.417977 / 2.077655 (2.340322) | 2.078324 / 1.504120 (0.574205) | 1.863678 / 1.541195 (0.322483) | 1.917149 / 1.468490 (0.448659) | 0.697628 / 4.584777 (-3.887149) | 3.412810 / 3.745712 (-0.332902) | 1.866473 / 5.269862 (-3.403389) | 1.155923 / 4.565676 (-3.409754) | 0.082831 / 0.424275 (-0.341444) | 0.012367 / 0.007607 (0.004760) | 0.540018 / 0.226044 (0.313974) | 5.420472 / 2.268929 (3.151544) | 2.508540 / 55.444624 (-52.936084) | 2.166397 / 6.876477 (-4.710080) | 2.153486 / 2.142072 (0.011414) | 0.804860 / 4.805227 (-4.000367) | 0.151178 / 6.500664 (-6.349486) | 0.067870 / 0.075469 (-0.007599) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.310387 / 1.841788 (-0.531400) | 13.908916 / 8.074308 (5.834608) | 14.136895 / 10.191392 (3.945503) | 0.139389 / 0.680424 (-0.541035) | 0.016687 / 0.534201 (-0.517514) | 0.379624 / 0.579283 (-0.199659) | 0.382634 / 0.434364 (-0.051730) | 0.439632 / 0.540337 (-0.100706) | 0.524913 / 1.386936 (-0.862023) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f8f2143b4ed39b58ed415029e7838d767662da91 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006365 / 0.011353 (-0.004988) | 0.004457 / 0.011008 (-0.006551) | 0.097989 / 0.038508 (0.059481) | 0.027686 / 0.023109 (0.004577) | 0.357412 / 0.275898 (0.081514) | 0.368573 / 0.323480 (0.045093) | 0.004859 / 0.007986 (-0.003127) | 0.003262 / 0.004328 (-0.001066) | 0.076487 / 0.004250 (0.072237) | 0.035526 / 0.037052 (-0.001527) | 0.332862 / 0.258489 (0.074373) | 0.369334 / 0.293841 (0.075493) | 0.030750 / 0.128546 (-0.097796) | 0.011503 / 0.075646 (-0.064143) | 0.323289 / 0.419271 (-0.095982) | 0.042302 / 0.043533 (-0.001231) | 0.334009 / 0.255139 (0.078870) | 0.354150 / 0.283200 (0.070951) | 0.082895 / 0.141683 (-0.058788) | 1.499727 / 1.452155 (0.047572) | 1.574123 / 1.492716 (0.081407) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192583 / 0.018006 (0.174577) | 0.408136 / 0.000490 (0.407646) | 0.001272 / 0.000200 (0.001072) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022883 / 0.037411 (-0.014528) | 0.095710 / 0.014526 (0.081185) | 0.106545 / 0.176557 (-0.070011) | 0.165784 / 0.737135 (-0.571352) | 0.108594 / 0.296338 (-0.187744) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429483 / 0.215209 (0.214274) | 4.292338 / 2.077655 (2.214683) | 1.917759 / 1.504120 (0.413639) | 1.711489 / 1.541195 (0.170294) | 1.735668 / 1.468490 (0.267178) | 0.707602 / 4.584777 (-3.877175) | 3.369643 / 3.745712 (-0.376070) | 1.874517 / 5.269862 (-3.395344) | 1.248560 / 4.565676 (-3.317117) | 0.083247 / 0.424275 (-0.341028) | 0.012606 / 0.007607 (0.004999) | 0.519342 / 0.226044 (0.293297) | 5.225462 / 2.268929 (2.956533) | 2.433230 / 55.444624 (-53.011394) | 2.006005 / 6.876477 (-4.870471) | 2.093156 / 2.142072 (-0.048916) | 0.809372 / 4.805227 (-3.995855) | 0.151691 / 6.500664 (-6.348973) | 0.066680 / 0.075469 (-0.008789) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.226283 / 1.841788 (-0.615505) | 13.604338 / 8.074308 (5.530030) | 13.953245 / 10.191392 (3.761853) | 0.132904 / 0.680424 (-0.547520) | 0.016420 / 0.534201 (-0.517781) | 0.395316 / 0.579283 (-0.183967) | 0.385003 / 0.434364 (-0.049361) | 0.483303 / 0.540337 (-0.057034) | 0.578459 / 1.386936 (-0.808477) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006218 / 0.011353 (-0.005135) | 0.004451 / 0.011008 (-0.006557) | 0.076892 / 0.038508 (0.038384) | 0.027017 / 0.023109 (0.003908) | 0.356976 / 0.275898 (0.081078) | 0.396083 / 0.323480 (0.072603) | 0.005510 / 0.007986 (-0.002476) | 0.003265 / 0.004328 (-0.001063) | 0.075771 / 0.004250 (0.071521) | 0.037117 / 0.037052 (0.000064) | 0.362181 / 0.258489 (0.103692) | 0.401771 / 0.293841 (0.107931) | 0.032062 / 0.128546 (-0.096484) | 0.011453 / 0.075646 (-0.064194) | 0.085773 / 0.419271 (-0.333498) | 0.041679 / 0.043533 (-0.001854) | 0.355120 / 0.255139 (0.099981) | 0.390170 / 0.283200 (0.106970) | 0.088210 / 0.141683 (-0.053473) | 1.526434 / 1.452155 (0.074279) | 1.586019 / 1.492716 (0.093302) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196836 / 0.018006 (0.178830) | 0.401161 / 0.000490 (0.400671) | 0.002880 / 0.000200 (0.002680) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024445 / 0.037411 (-0.012966) | 0.100187 / 0.014526 (0.085661) | 0.106391 / 0.176557 (-0.070165) | 0.159764 / 0.737135 (-0.577372) | 0.109828 / 0.296338 (-0.186511) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444228 / 0.215209 (0.229018) | 4.420769 / 2.077655 (2.343114) | 2.069437 / 1.504120 (0.565318) | 1.862587 / 1.541195 (0.321392) | 1.934627 / 1.468490 (0.466137) | 0.699681 / 4.584777 (-3.885095) | 3.352540 / 3.745712 (-0.393172) | 2.613172 / 5.269862 (-2.656689) | 1.445116 / 4.565676 (-3.120561) | 0.083086 / 0.424275 (-0.341189) | 0.012715 / 0.007607 (0.005108) | 0.537450 / 0.226044 (0.311405) | 5.403052 / 2.268929 (3.134123) | 2.506703 / 55.444624 (-52.937921) | 2.170198 / 6.876477 (-4.706279) | 2.201909 / 2.142072 (0.059837) | 0.799555 / 4.805227 (-4.005672) | 0.150825 / 6.500664 (-6.349839) | 0.067234 / 0.075469 (-0.008235) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293097 / 1.841788 (-0.548691) | 13.817133 / 8.074308 (5.742825) | 14.247231 / 10.191392 (4.055839) | 0.128422 / 0.680424 (-0.552002) | 0.016541 / 0.534201 (-0.517660) | 0.382466 / 0.579283 (-0.196817) | 0.380560 / 0.434364 (-0.053804) | 0.439061 / 0.540337 (-0.101276) | 0.521865 / 1.386936 (-0.865071) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#69e60be438c334919f590512fd664436bd6b3667 \"CML watermark\")\n",
"I also took the liberty of removing `_hf_hub_fixes.py` completely :)\r\n\r\n> Do you think this is really necessary and convenient? I would naively say that 5% of the users is not a negligible number...\r\n\r\nI think it's ok. Most of them are using old versions of `datasets` anyway.\r\n\r\n",
"merging, but lmk if you have other concerns",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006810 / 0.011353 (-0.004543) | 0.004683 / 0.011008 (-0.006325) | 0.100889 / 0.038508 (0.062381) | 0.030135 / 0.023109 (0.007026) | 0.356407 / 0.275898 (0.080509) | 0.389175 / 0.323480 (0.065695) | 0.005358 / 0.007986 (-0.002627) | 0.004760 / 0.004328 (0.000432) | 0.075904 / 0.004250 (0.071654) | 0.040341 / 0.037052 (0.003288) | 0.357363 / 0.258489 (0.098874) | 0.394185 / 0.293841 (0.100344) | 0.031322 / 0.128546 (-0.097224) | 0.011636 / 0.075646 (-0.064010) | 0.327327 / 0.419271 (-0.091944) | 0.042494 / 0.043533 (-0.001039) | 0.338079 / 0.255139 (0.082940) | 0.363388 / 0.283200 (0.080189) | 0.087102 / 0.141683 (-0.054581) | 1.505686 / 1.452155 (0.053531) | 1.562112 / 1.492716 (0.069396) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203630 / 0.018006 (0.185624) | 0.425986 / 0.000490 (0.425496) | 0.003786 / 0.000200 (0.003586) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024138 / 0.037411 (-0.013274) | 0.101752 / 0.014526 (0.087226) | 0.105436 / 0.176557 (-0.071121) | 0.165385 / 0.737135 (-0.571750) | 0.114510 / 0.296338 (-0.181828) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.447561 / 0.215209 (0.232352) | 4.449212 / 2.077655 (2.371557) | 2.169472 / 1.504120 (0.665352) | 1.989025 / 1.541195 (0.447831) | 2.036267 / 1.468490 (0.567776) | 0.698647 / 4.584777 (-3.886130) | 3.483281 / 3.745712 (-0.262431) | 1.949306 / 5.269862 (-3.320555) | 1.290313 / 4.565676 (-3.275363) | 0.083079 / 0.424275 (-0.341196) | 0.012759 / 0.007607 (0.005152) | 0.540944 / 0.226044 (0.314899) | 5.473391 / 2.268929 (3.204463) | 2.632037 / 55.444624 (-52.812587) | 2.327396 / 6.876477 (-4.549081) | 2.428880 / 2.142072 (0.286808) | 0.808918 / 4.805227 (-3.996309) | 0.153283 / 6.500664 (-6.347381) | 0.068325 / 0.075469 (-0.007145) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212527 / 1.841788 (-0.629260) | 14.306444 / 8.074308 (6.232136) | 14.904980 / 10.191392 (4.713588) | 0.142796 / 0.680424 (-0.537628) | 0.016829 / 0.534201 (-0.517372) | 0.384806 / 0.579283 (-0.194477) | 0.390505 / 0.434364 (-0.043859) | 0.441734 / 0.540337 (-0.098603) | 0.526159 / 1.386936 (-0.860777) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006950 / 0.011353 (-0.004403) | 0.004647 / 0.011008 (-0.006362) | 0.078925 / 0.038508 (0.040417) | 0.028081 / 0.023109 (0.004971) | 0.343420 / 0.275898 (0.067522) | 0.380567 / 0.323480 (0.057087) | 0.005286 / 0.007986 (-0.002700) | 0.004816 / 0.004328 (0.000487) | 0.077332 / 0.004250 (0.073081) | 0.042131 / 0.037052 (0.005078) | 0.345371 / 0.258489 (0.086882) | 0.390232 / 0.293841 (0.096392) | 0.032395 / 0.128546 (-0.096152) | 0.011669 / 0.075646 (-0.063978) | 0.087649 / 0.419271 (-0.331622) | 0.042465 / 0.043533 (-0.001068) | 0.342863 / 0.255139 (0.087724) | 0.368947 / 0.283200 (0.085748) | 0.091725 / 0.141683 (-0.049958) | 1.477435 / 1.452155 (0.025280) | 1.563449 / 1.492716 (0.070733) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208016 / 0.018006 (0.190010) | 0.428387 / 0.000490 (0.427898) | 0.000443 / 0.000200 (0.000243) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026963 / 0.037411 (-0.010449) | 0.103854 / 0.014526 (0.089328) | 0.109068 / 0.176557 (-0.067488) | 0.160107 / 0.737135 (-0.577028) | 0.112843 / 0.296338 (-0.183496) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437161 / 0.215209 (0.221952) | 4.396178 / 2.077655 (2.318523) | 2.067597 / 1.504120 (0.563477) | 1.875247 / 1.541195 (0.334053) | 1.962451 / 1.468490 (0.493961) | 0.701427 / 4.584777 (-3.883350) | 3.459564 / 3.745712 (-0.286148) | 1.959482 / 5.269862 (-3.310380) | 1.191866 / 4.565676 (-3.373810) | 0.083243 / 0.424275 (-0.341032) | 0.012740 / 0.007607 (0.005133) | 0.535236 / 0.226044 (0.309191) | 5.351715 / 2.268929 (3.082786) | 2.490868 / 55.444624 (-52.953756) | 2.195680 / 6.876477 (-4.680797) | 2.233854 / 2.142072 (0.091781) | 0.809041 / 4.805227 (-3.996187) | 0.151498 / 6.500664 (-6.349166) | 0.068297 / 0.075469 (-0.007172) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.303596 / 1.841788 (-0.538192) | 14.712746 / 8.074308 (6.638438) | 14.778412 / 10.191392 (4.587020) | 0.147093 / 0.680424 (-0.533331) | 0.017105 / 0.534201 (-0.517096) | 0.381687 / 0.579283 (-0.197596) | 0.402435 / 0.434364 (-0.031929) | 0.453538 / 0.540337 (-0.086800) | 0.538866 / 1.386936 (-0.848070) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#10f637c3a598c8042865b31f779e315a3da5337e \"CML watermark\")\n"
] | "2023-03-15T18:26:07Z" | "2023-03-20T12:34:09Z" | "2023-03-20T12:26:58Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5642.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5642",
"merged_at": "2023-03-20T12:26:58Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5642.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5642"
} | to fix errors like
```
requests.exceptions.HTTPError: 400 Client Error: Bad Request for url: https://hub-ci.huggingface.co/api/datasets/__DUMMY_TRANSFORMERS_USER__/...
```
(e.g. from this [failing CI](https://github.com/huggingface/datasets/actions/runs/4428956210/jobs/7769160997))
0.11.0 is the current minimum version in `transformers`
around 5% of users are currently using versions `<0.11.0` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5642/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5642/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/643 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/643/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/643/comments | https://api.github.com/repos/huggingface/datasets/issues/643/events | https://github.com/huggingface/datasets/issues/643 | 704,477,164 | MDU6SXNzdWU3MDQ0NzcxNjQ= | 643 | Caching processed dataset at wrong folder | {
"avatar_url": "https://avatars.githubusercontent.com/u/3653789?v=4",
"events_url": "https://api.github.com/users/mrm8488/events{/privacy}",
"followers_url": "https://api.github.com/users/mrm8488/followers",
"following_url": "https://api.github.com/users/mrm8488/following{/other_user}",
"gists_url": "https://api.github.com/users/mrm8488/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mrm8488",
"id": 3653789,
"login": "mrm8488",
"node_id": "MDQ6VXNlcjM2NTM3ODk=",
"organizations_url": "https://api.github.com/users/mrm8488/orgs",
"received_events_url": "https://api.github.com/users/mrm8488/received_events",
"repos_url": "https://api.github.com/users/mrm8488/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mrm8488/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mrm8488/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mrm8488"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [
"Thanks for reporting !\r\nIt uses a temporary file to write the data.\r\nHowever it looks like the temporary file is not placed in the right directory during the processing",
"Well actually I just tested and the temporary file is placed in the same directory, so it should work as expected.\r\nWhich version of `datasets` are you using ?",
"`datasets-1.0.1`\r\nHere you can reproduce it here:\r\nhttps://colab.research.google.com/drive/1O0KcepTFsmpkBbrbLLMq42iwTKmQh8d5?usp=sharing\r\n",
"It looks like a pyarrow issue with google colab.\r\nFor some reason this code increases the disk usage of google colab while it actually writes into google drive:\r\n\r\n```python\r\nimport pyarrow as pa\r\n\r\nstream = pa.OSFile(\"/content/drive/My Drive/path/to/file.arrow\", \"wb\")\r\nwriter = pa.RecordBatchStreamWriter(stream, schema=pa.schema({\"text\": pa.string()}))\r\nwriter.write_table(pa.Table.from_pydict({\"text\": [\"a\"*511 + \"\\n\"] * ((1 << 30) // 512)})) # 1GiB\r\nwriter.close()\r\nstream.close()\r\n```\r\n\r\nMoreover if I `rm` the file on google drive, it frees disk space on google colab.",
"It looks like replacing `pa.OSFile` by `open` fixes it, I'm going to open a PR",
"Ok. Thank you so much!",
"Actually I did more tests it doesn't >.<\r\nI'll let you know if I find a way to fix that",
"Actually I also have the issue when writing a regular text file\r\n\r\n```python\r\nf = open(\"/content/drive/My Drive/path/to/file\", \"w\")\r\nf.write((\"a\"*511 + \"\\n\") * ((1 << 30) // 512)) # 1GiB\r\nf.close()\r\n```\r\n\r\nIs that supposed to happen ?",
"The code you wrote should write a 1GB file in the Google Drive folder. Doesn't it? ",
"Yes it does, but the disk usage of google colab also increases by 1GB",
"I could check it and as you say as I write to te Drive disk the colab disk also increases...",
"To reproduce it: \r\n```bash\r\n!df -h | grep sda1\r\n```\r\n```python\r\nf = open(\"/content/drive/My Drive/test_to_remove.txt\", \"w\")\r\nf.write((\"a\"*511 + \"\\n\") * ((1 << 30) // 512)) # 1GiB\r\nf.write((\"a\"*511 + \"\\n\") * ((1 << 30) // 512)) # 1GiB\r\nf.close()\r\n```\r\n```bash\r\n!ls -lh /content/drive/My\\ Drive/test_to_remove.txt\r\n\r\n!df -h | grep sda1\r\n\r\n!rm -rf /content/drive/My\\ Drive/test_to_remove.txt\r\n\r\n```\r\n[Colab](https://colab.research.google.com/drive/1D0UiweCYQwwWZ65EEhuqqbaDDbhJYXfm?usp=sharing)\r\n\r\n\r\n",
"Apparently, Colab uses a local cache of the data files read/written from Google Drive. See:\r\n- https://github.com/googlecolab/colabtools/issues/2087#issuecomment-860818457\r\n- https://github.com/googlecolab/colabtools/issues/1915#issuecomment-804234540\r\n- https://github.com/googlecolab/colabtools/issues/2147#issuecomment-885052636"
] | "2020-09-18T15:41:26Z" | "2022-02-16T14:53:29Z" | "2022-02-16T14:53:29Z" | CONTRIBUTOR | null | null | null | Hi guys, I run this on my Colab (PRO):
```python
from datasets import load_dataset
dataset = load_dataset('text', data_files='/content/corpus.txt', cache_dir='/content/drive/My Drive', split='train')
def encode(examples):
return tokenizer(examples['text'], truncation=True, padding='max_length')
dataset = dataset.map(encode, batched=True)
```
The file is about 4 GB, so I cannot process it on the Colab HD because there is no enough space. So I decided to mount my Google Drive fs and do it on it.
The dataset is cached in the right place but by processing it (applying `encode` function) seems to use a different folder because Colab HD starts to grow and it crashes when it should be done in the Drive fs.
What gets me crazy, it prints it is processing/encoding the dataset in the right folder:
```
Testing the mapped function outputs
Testing finished, running the mapping function on the dataset
Caching processed dataset at /content/drive/My Drive/text/default-ad3e69d6242ee916/0.0.0/7e13bc0fa76783d4ef197f079dc8acfe54c3efda980f2c9adfab046ede2f0ff7/cache-b16341780a59747d.arrow
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/643/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/643/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5679 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5679/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5679/comments | https://api.github.com/repos/huggingface/datasets/issues/5679/events | https://github.com/huggingface/datasets/issues/5679 | 1,645,184,622 | I_kwDODunzps5iD4Zu | 5,679 | Allow load_dataset to take a working dir for intermediate data | {
"avatar_url": "https://avatars.githubusercontent.com/u/38018689?v=4",
"events_url": "https://api.github.com/users/lu-wang-dl/events{/privacy}",
"followers_url": "https://api.github.com/users/lu-wang-dl/followers",
"following_url": "https://api.github.com/users/lu-wang-dl/following{/other_user}",
"gists_url": "https://api.github.com/users/lu-wang-dl/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lu-wang-dl",
"id": 38018689,
"login": "lu-wang-dl",
"node_id": "MDQ6VXNlcjM4MDE4Njg5",
"organizations_url": "https://api.github.com/users/lu-wang-dl/orgs",
"received_events_url": "https://api.github.com/users/lu-wang-dl/received_events",
"repos_url": "https://api.github.com/users/lu-wang-dl/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lu-wang-dl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lu-wang-dl/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lu-wang-dl"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | open | false | null | [] | null | [
"Hi ! AFAIK a dataset must be present on a local disk to be able to efficiently memory map the datasets Arrow files. What makes you think that it is possible to load from a cloud storage and have good performance ?\r\n\r\nAnyway it's already possible to download_and_prepare a dataset as Arrow files in a cloud storage with:\r\n```python\r\nbuilder = load_dataset_builder(..., cache_dir=\"/temp/dir\")\r\nbuilder.download_and_prepare(\"/cloud_dir\")\r\n```\r\n\r\nbut then \r\n```python\r\nds = builder.as_dataset()\r\n```\r\nwould fail if \"/cloud_dir\" is not a local directory.",
"In my use case, I am trying to mount the S3 bucket as local system with S3FS-FUSE / [goofys](https://github.com/kahing/goofys). I want to use S3 to save the download data and save checkpoint for training for persistent. Setting the s3 location as cache directory is not fast enough. That is why I want to set a work directory for temp data for memory map and only save the final result to s3 cache. ",
"You can try setting `HF_DATASETS_DOWNLOADED_DATASETS_PATH` and `HF_DATASETS_EXTRACTED_DATASETS_PATH` to S3, and `HF_DATASETS_CACHE` to your local disk.\r\n\r\nThis way all your downloaded and extracted data are on your mounted S3, but the datasets Arrow files are on your local disk",
"If we hope to also persist the Arrow files on the mounted S3 but work with the efficiency of local disk, is there any recommended way to do this, other than copying the Arrow files from local disk to S3?"
] | "2023-03-29T07:21:09Z" | "2023-04-12T22:30:25Z" | null | NONE | null | null | null | ### Feature request
As a user, I can set a working dir for intermediate data creation. The processed files will be moved to the cache dir, like
```
load_dataset(…, working_dir=”/temp/dir”, cache_dir=”/cloud_dir”).
```
### Motivation
This will help the use case for using datasets with cloud storage as cache. It will help boost the performance.
### Your contribution
I can provide a PR to fix this if the proposal seems reasonable. | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5679/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5679/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/1428 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1428/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1428/comments | https://api.github.com/repos/huggingface/datasets/issues/1428/events | https://github.com/huggingface/datasets/pull/1428 | 760,736,726 | MDExOlB1bGxSZXF1ZXN0NTM1NTE4MzIy | 1,428 | Add twi wordsim353 | {
"avatar_url": "https://avatars.githubusercontent.com/u/23586676?v=4",
"events_url": "https://api.github.com/users/dadelani/events{/privacy}",
"followers_url": "https://api.github.com/users/dadelani/followers",
"following_url": "https://api.github.com/users/dadelani/following{/other_user}",
"gists_url": "https://api.github.com/users/dadelani/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/dadelani",
"id": 23586676,
"login": "dadelani",
"node_id": "MDQ6VXNlcjIzNTg2Njc2",
"organizations_url": "https://api.github.com/users/dadelani/orgs",
"received_events_url": "https://api.github.com/users/dadelani/received_events",
"repos_url": "https://api.github.com/users/dadelani/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/dadelani/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dadelani/subscriptions",
"type": "User",
"url": "https://api.github.com/users/dadelani"
} | [] | closed | false | null | [] | null | [] | "2020-12-09T22:59:19Z" | "2020-12-11T13:57:32Z" | "2020-12-11T13:57:32Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1428.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1428",
"merged_at": "2020-12-11T13:57:32Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1428.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1428"
} | Add twi WordSim 353 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1428/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1428/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/953 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/953/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/953/comments | https://api.github.com/repos/huggingface/datasets/issues/953/events | https://github.com/huggingface/datasets/pull/953 | 754,359,942 | MDExOlB1bGxSZXF1ZXN0NTMwMjczMzg5 | 953 | added health_fact dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/19718818?v=4",
"events_url": "https://api.github.com/users/bhavitvyamalik/events{/privacy}",
"followers_url": "https://api.github.com/users/bhavitvyamalik/followers",
"following_url": "https://api.github.com/users/bhavitvyamalik/following{/other_user}",
"gists_url": "https://api.github.com/users/bhavitvyamalik/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/bhavitvyamalik",
"id": 19718818,
"login": "bhavitvyamalik",
"node_id": "MDQ6VXNlcjE5NzE4ODE4",
"organizations_url": "https://api.github.com/users/bhavitvyamalik/orgs",
"received_events_url": "https://api.github.com/users/bhavitvyamalik/received_events",
"repos_url": "https://api.github.com/users/bhavitvyamalik/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/bhavitvyamalik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bhavitvyamalik/subscriptions",
"type": "User",
"url": "https://api.github.com/users/bhavitvyamalik"
} | [] | closed | false | null | [] | null | [
"Hi @lhoestq,\r\nInitially I tried int(-1) only in place of nan labels and missing values but I kept on getting this error ```pyarrow.lib.ArrowTypeError: Expected bytes, got a 'int' object``` maybe because I'm sending int values (-1) to objects which are string type"
] | "2020-12-01T12:37:44Z" | "2020-12-01T23:11:33Z" | "2020-12-01T23:11:33Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/953.diff",
"html_url": "https://github.com/huggingface/datasets/pull/953",
"merged_at": "2020-12-01T23:11:33Z",
"patch_url": "https://github.com/huggingface/datasets/pull/953.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/953"
} | Added dataset Explainable Fact-Checking for Public Health Claims (dataset_id: health_fact) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/953/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/953/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2129 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2129/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2129/comments | https://api.github.com/repos/huggingface/datasets/issues/2129/events | https://github.com/huggingface/datasets/issues/2129 | 843,033,656 | MDU6SXNzdWU4NDMwMzM2NTY= | 2,129 | How to train BERT model with next sentence prediction? | {
"avatar_url": "https://avatars.githubusercontent.com/u/836541?v=4",
"events_url": "https://api.github.com/users/jnishi/events{/privacy}",
"followers_url": "https://api.github.com/users/jnishi/followers",
"following_url": "https://api.github.com/users/jnishi/following{/other_user}",
"gists_url": "https://api.github.com/users/jnishi/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/jnishi",
"id": 836541,
"login": "jnishi",
"node_id": "MDQ6VXNlcjgzNjU0MQ==",
"organizations_url": "https://api.github.com/users/jnishi/orgs",
"received_events_url": "https://api.github.com/users/jnishi/received_events",
"repos_url": "https://api.github.com/users/jnishi/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/jnishi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jnishi/subscriptions",
"type": "User",
"url": "https://api.github.com/users/jnishi"
} | [] | closed | false | null | [] | null | [
"Hi !\r\nWe're not using `TextDatasetForNextSentencePrediction` in `datasets`.\r\nAlthough you can probably use the `TextDatasetForNextSentencePrediction.create_examples_from_document` on a dataset to prepare it for next sentence prediction.",
"Thanks.\r\n\r\nDo you mean that `TextDatasetForNextSentencePrediction.create_exapmles_from_document` can be applied to dataset object other than `TextDatasetForNextSentencePrediction` e.g. a `Dataset` object which is loaded by `datasets.load_dataset`?",
"It would probably require a bit of tweaking, but you can apply it to a dataset, yes.\r\nThis should give you a new dataset with sentence pairs you can train a model on.\r\n\r\nYou can find the documentation about dataset processing here:\r\nhttps://huggingface.co/docs/datasets/processing.html#processing-data-with-map",
"Thank you for detail information.\r\n\r\nI'll try to apply `create_examples_from_document` to `Dataset` object.\r\n"
] | "2021-03-29T06:48:03Z" | "2021-04-01T04:58:40Z" | "2021-04-01T04:58:40Z" | NONE | null | null | null | Hello.
I'm trying to pretrain the BERT model with next sentence prediction. Is there any function that supports next sentence prediction
like ` TextDatasetForNextSentencePrediction` of `huggingface/transformers` ?
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2129/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2129/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5647 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5647/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5647/comments | https://api.github.com/repos/huggingface/datasets/issues/5647/events | https://github.com/huggingface/datasets/issues/5647 | 1,628,225,544 | I_kwDODunzps5hDMAI | 5,647 | Make all print statements optional | {
"avatar_url": "https://avatars.githubusercontent.com/u/49101362?v=4",
"events_url": "https://api.github.com/users/gagan3012/events{/privacy}",
"followers_url": "https://api.github.com/users/gagan3012/followers",
"following_url": "https://api.github.com/users/gagan3012/following{/other_user}",
"gists_url": "https://api.github.com/users/gagan3012/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/gagan3012",
"id": 49101362,
"login": "gagan3012",
"node_id": "MDQ6VXNlcjQ5MTAxMzYy",
"organizations_url": "https://api.github.com/users/gagan3012/orgs",
"received_events_url": "https://api.github.com/users/gagan3012/received_events",
"repos_url": "https://api.github.com/users/gagan3012/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/gagan3012/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gagan3012/subscriptions",
"type": "User",
"url": "https://api.github.com/users/gagan3012"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | closed | false | null | [] | null | [
"related to #5444 ",
"We now log these messages instead of printing them (addressed in #6019), so I'm closing this issue."
] | "2023-03-16T20:30:07Z" | "2023-07-21T14:20:25Z" | "2023-07-21T14:20:24Z" | NONE | null | null | null | ### Feature request
Make all print statements optional to speed up the development
### Motivation
Im loading multiple tiny datasets and all the print statements make the loading slower
### Your contribution
I can help contribute | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5647/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5647/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5346 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5346/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5346/comments | https://api.github.com/repos/huggingface/datasets/issues/5346/events | https://github.com/huggingface/datasets/issues/5346 | 1,486,884,983 | I_kwDODunzps5YoBB3 | 5,346 | [Quick poll] Give your opinion on the future of the Hugging Face Open Source ecosystem! | {
"avatar_url": "https://avatars.githubusercontent.com/u/30755778?v=4",
"events_url": "https://api.github.com/users/LysandreJik/events{/privacy}",
"followers_url": "https://api.github.com/users/LysandreJik/followers",
"following_url": "https://api.github.com/users/LysandreJik/following{/other_user}",
"gists_url": "https://api.github.com/users/LysandreJik/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/LysandreJik",
"id": 30755778,
"login": "LysandreJik",
"node_id": "MDQ6VXNlcjMwNzU1Nzc4",
"organizations_url": "https://api.github.com/users/LysandreJik/orgs",
"received_events_url": "https://api.github.com/users/LysandreJik/received_events",
"repos_url": "https://api.github.com/users/LysandreJik/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/LysandreJik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/LysandreJik/subscriptions",
"type": "User",
"url": "https://api.github.com/users/LysandreJik"
} | [] | closed | false | null | [] | null | [
"As the survey is finished, can we close this issue, @LysandreJik ?",
"Yes! I'll post a public summary on the forums shortly.",
"Is the summary available? I would be interested in reading your findings."
] | "2022-12-09T14:48:02Z" | "2023-06-02T20:24:44Z" | "2023-01-25T19:35:40Z" | MEMBER | null | null | null | Thanks to all of you, Datasets is just about to pass 15k stars!
Since the last survey, a lot has happened: the [diffusers](https://github.com/huggingface/diffusers), [evaluate](https://github.com/huggingface/evaluate) and [skops](https://github.com/skops-dev/skops) libraries were born. `timm` joined the Hugging Face ecosystem. There were 25 new releases of `transformers`, 21 new releases of `datasets`, 13 new releases of `accelerate`.
If you have a couple of minutes and want to participate in shaping the future of the ecosystem, please share your thoughts:
[**hf.co/oss-survey**](https://docs.google.com/forms/d/e/1FAIpQLSf4xFQKtpjr6I_l7OfNofqiR8s-WG6tcNbkchDJJf5gYD72zQ/viewform?usp=sf_link)
(please reply in the above feedback form rather than to this thread)
Thank you all on behalf of the HuggingFace team! 🤗 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 3,
"total_count": 3,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5346/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5346/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/2821 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2821/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2821/comments | https://api.github.com/repos/huggingface/datasets/issues/2821/events | https://github.com/huggingface/datasets/issues/2821 | 975,556,032 | MDU6SXNzdWU5NzU1NTYwMzI= | 2,821 | Cannot load linnaeus dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/48327001?v=4",
"events_url": "https://api.github.com/users/NielsRogge/events{/privacy}",
"followers_url": "https://api.github.com/users/NielsRogge/followers",
"following_url": "https://api.github.com/users/NielsRogge/following{/other_user}",
"gists_url": "https://api.github.com/users/NielsRogge/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/NielsRogge",
"id": 48327001,
"login": "NielsRogge",
"node_id": "MDQ6VXNlcjQ4MzI3MDAx",
"organizations_url": "https://api.github.com/users/NielsRogge/orgs",
"received_events_url": "https://api.github.com/users/NielsRogge/received_events",
"repos_url": "https://api.github.com/users/NielsRogge/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/NielsRogge/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NielsRogge/subscriptions",
"type": "User",
"url": "https://api.github.com/users/NielsRogge"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [
"Thanks for reporting ! #2852 fixed this error\r\n\r\nWe'll do a new release of `datasets` soon :)"
] | "2021-08-20T12:15:15Z" | "2021-08-31T13:13:02Z" | "2021-08-31T13:12:09Z" | CONTRIBUTOR | null | null | null | ## Describe the bug
The [linnaeus](https://huggingface.co/datasets/linnaeus) dataset cannot be loaded. To reproduce:
```
from datasets import load_dataset
datasets = load_dataset("linnaeus")
```
This results in:
```
Downloading and preparing dataset linnaeus/linnaeus (download: 17.36 MiB, generated: 8.74 MiB, post-processed: Unknown size, total: 26.10 MiB) to /root/.cache/huggingface/datasets/linnaeus/linnaeus/1.0.0/2ff05dbc256108233262f596e09e322dbc3db067202de14286913607cd9cb704...
---------------------------------------------------------------------------
ConnectionError Traceback (most recent call last)
<ipython-input-4-7ef3a88f6276> in <module>()
1 from datasets import load_dataset
2
----> 3 datasets = load_dataset("linnaeus")
11 frames
/usr/local/lib/python3.7/dist-packages/datasets/utils/file_utils.py in get_from_cache(url, cache_dir, force_download, proxies, etag_timeout, resume_download, user_agent, local_files_only, use_etag, max_retries, use_auth_token)
603 raise FileNotFoundError("Couldn't find file at {}".format(url))
604 _raise_if_offline_mode_is_enabled(f"Tried to reach {url}")
--> 605 raise ConnectionError("Couldn't reach {}".format(url))
606
607 # Try a second time
ConnectionError: Couldn't reach https://drive.google.com/u/0/uc?id=1OletxmPYNkz2ltOr9pyT0b0iBtUWxslh&export=download/
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2821/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2821/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/2973 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2973/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2973/comments | https://api.github.com/repos/huggingface/datasets/issues/2973/events | https://github.com/huggingface/datasets/pull/2973 | 1,007,894,592 | PR_kwDODunzps4sTRvk | 2,973 | Fix JSON metadata of masakhaner dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [] | "2021-09-27T09:09:08Z" | "2021-09-27T12:59:59Z" | "2021-09-27T12:59:59Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2973.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2973",
"merged_at": "2021-09-27T12:59:58Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2973.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2973"
} | Fix #2971. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2973/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2973/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3240 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3240/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3240/comments | https://api.github.com/repos/huggingface/datasets/issues/3240/events | https://github.com/huggingface/datasets/issues/3240 | 1,048,376,021 | I_kwDODunzps4-fPLV | 3,240 | Couldn't reach data file for disaster_response_messages | {
"avatar_url": "https://avatars.githubusercontent.com/u/81331791?v=4",
"events_url": "https://api.github.com/users/pandya6988/events{/privacy}",
"followers_url": "https://api.github.com/users/pandya6988/followers",
"following_url": "https://api.github.com/users/pandya6988/following{/other_user}",
"gists_url": "https://api.github.com/users/pandya6988/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/pandya6988",
"id": 81331791,
"login": "pandya6988",
"node_id": "MDQ6VXNlcjgxMzMxNzkx",
"organizations_url": "https://api.github.com/users/pandya6988/orgs",
"received_events_url": "https://api.github.com/users/pandya6988/received_events",
"repos_url": "https://api.github.com/users/pandya6988/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/pandya6988/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pandya6988/subscriptions",
"type": "User",
"url": "https://api.github.com/users/pandya6988"
} | [
{
"color": "2edb81",
"default": false,
"description": "A bug in a dataset script provided in the library",
"id": 2067388877,
"name": "dataset bug",
"node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug"
}
] | closed | false | null | [] | null | [
"It looks like the dataset isn't available anymore on appen.com\r\n\r\nThe CSV files appear to still be available at https://www.kaggle.com/landlord/multilingual-disaster-response-messages though. It says that the data are under the CC0 license so I guess we can host the dataset elsewhere instead ?"
] | "2021-11-09T09:26:42Z" | "2021-12-14T14:38:29Z" | "2021-12-14T14:38:29Z" | NONE | null | null | null | ## Describe the bug
Following command gives an ConnectionError.
## Steps to reproduce the bug
```python
disaster = load_dataset('disaster_response_messages')
```
## Error
```
ConnectionError: Couldn't reach https://datasets.appen.com/appen_datasets/disaster_response_data/disaster_response_messages_training.csv
```
## Expected results
It should load dataset without an error
## Actual results
Specify the actual results or traceback.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version:
- Platform: Google Colab
- Python version: 3.7
- PyArrow version:
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3240/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3240/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/2352 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2352/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2352/comments | https://api.github.com/repos/huggingface/datasets/issues/2352/events | https://github.com/huggingface/datasets/pull/2352 | 889,810,100 | MDExOlB1bGxSZXF1ZXN0NjQyOTI4NTgz | 2,352 | Set to_json default to JSON lines | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"This is perfect, @albertvillanova - thank you! Tested it to work.\r\n\r\nMight it be a good idea to document the args to `to_json`?\r\n\r\nand also even a very basic progress bar? took 10min for 8M large records for `openwebtext` so perhaps some indication of it's being alive every min or so?",
"@lhoestq I added tests for both `lines` and `orient`."
] | "2021-05-12T08:19:25Z" | "2021-05-21T09:01:14Z" | "2021-05-21T09:01:13Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2352.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2352",
"merged_at": "2021-05-21T09:01:13Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2352.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2352"
} | With this PR, the method `Dataset.to_json`:
- is added to the docs
- defaults to JSON lines | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 1,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2352/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2352/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/104 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/104/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/104/comments | https://api.github.com/repos/huggingface/datasets/issues/104/events | https://github.com/huggingface/datasets/pull/104 | 618,277,081 | MDExOlB1bGxSZXF1ZXN0NDE4MDMzOTY0 | 104 | Add trivia_q | {
"avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4",
"events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}",
"followers_url": "https://api.github.com/users/patrickvonplaten/followers",
"following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}",
"gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/patrickvonplaten",
"id": 23423619,
"login": "patrickvonplaten",
"node_id": "MDQ6VXNlcjIzNDIzNjE5",
"organizations_url": "https://api.github.com/users/patrickvonplaten/orgs",
"received_events_url": "https://api.github.com/users/patrickvonplaten/received_events",
"repos_url": "https://api.github.com/users/patrickvonplaten/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions",
"type": "User",
"url": "https://api.github.com/users/patrickvonplaten"
} | [] | closed | false | null | [] | null | [] | "2020-05-14T14:27:19Z" | "2020-07-12T05:34:20Z" | "2020-05-14T20:23:32Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/104.diff",
"html_url": "https://github.com/huggingface/datasets/pull/104",
"merged_at": "2020-05-14T20:23:32Z",
"patch_url": "https://github.com/huggingface/datasets/pull/104.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/104"
} | Currently tested only for one config to pass tests. Needs to add more dummy data later. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/104/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/104/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4128 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4128/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4128/comments | https://api.github.com/repos/huggingface/datasets/issues/4128/events | https://github.com/huggingface/datasets/pull/4128 | 1,197,326,311 | PR_kwDODunzps4138I6 | 4,128 | More robust `cast_to_python_objects` in `TypedSequence` | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | "2022-04-08T13:33:35Z" | "2022-04-13T14:07:41Z" | "2022-04-13T14:01:16Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4128.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4128",
"merged_at": "2022-04-13T14:01:16Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4128.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4128"
} | Adds a fallback to run an expensive version of `cast_to_python_objects` which exhaustively checks entire lists to avoid the `ArrowInvalid: Could not convert` error in `TypedSequence`. Currently, this error can happen in situations where only some images are decoded in `map`, in which case `cast_to_python_objects` fails to recognize that it needs to cast `PIL.Image` objects if they are not at the beginning of the sequence and stops after the first image dictionary (e.g., if `data` is `[{"bytes": None, "path": "some path"}, PIL.Image(), ...]`)
Fix #4124 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4128/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4128/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1144 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1144/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1144/comments | https://api.github.com/repos/huggingface/datasets/issues/1144/events | https://github.com/huggingface/datasets/pull/1144 | 757,452,831 | MDExOlB1bGxSZXF1ZXN0NTMyODI3OTI4 | 1,144 | Add JFLEG | {
"avatar_url": "https://avatars.githubusercontent.com/u/22435209?v=4",
"events_url": "https://api.github.com/users/j-chim/events{/privacy}",
"followers_url": "https://api.github.com/users/j-chim/followers",
"following_url": "https://api.github.com/users/j-chim/following{/other_user}",
"gists_url": "https://api.github.com/users/j-chim/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/j-chim",
"id": 22435209,
"login": "j-chim",
"node_id": "MDQ6VXNlcjIyNDM1MjA5",
"organizations_url": "https://api.github.com/users/j-chim/orgs",
"received_events_url": "https://api.github.com/users/j-chim/received_events",
"repos_url": "https://api.github.com/users/j-chim/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/j-chim/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/j-chim/subscriptions",
"type": "User",
"url": "https://api.github.com/users/j-chim"
} | [] | closed | false | null | [] | null | [
"Hi @j-chim ! You're right it does feel redundant: your option works better, but I'd even suggest having the references in a Sequence feature, which you can declare as:\r\n```\r\n\t features=datasets.Features(\r\n {\r\n \"sentence\": datasets.Value(\"string\"),\r\n \"corrections\": datasets.Sequence(datasets.Value(\"string\")),\r\n }\r\n ),\r\n```\r\n\r\nTo create the dummy data, you just need to tell the generator which files it should use, which you can do with:\r\n`python datasets-cli dummy_data datasets/<your-dataset-folder> --auto_generate --match_text_files \"train*,dev*,test*\"`\r\n",
"Many thanks for this @yjernite! I've incorporated your feedback and sorted out the dummy data."
] | "2020-12-04T22:36:38Z" | "2020-12-06T18:16:04Z" | "2020-12-06T18:16:04Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1144.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1144",
"merged_at": "2020-12-06T18:16:04Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1144.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1144"
} | This PR adds [JFLEG ](https://www.aclweb.org/anthology/E17-2037/), an English grammatical error correction benchmark.
The tests were successful on real data, although it would be great if I can get some guidance on the **dummy data**. Basically, **for each source sentence there are 4 possible gold standard target sentences**. The original dataset comprise files in a flat structure, labelled by split then by source/target (e.g., dev.src, dev.ref0, ..., dev.ref3). Not sure what is the best way of adding this.
I imagine I can treat each distinct source-target pair as its own split? But having so many copies of the source sentence feels redundant, and it would make it less convenient to end-users who might want to access multiple gold standard targets simultaneously. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1144/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1144/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6473 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6473/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6473/comments | https://api.github.com/repos/huggingface/datasets/issues/6473/events | https://github.com/huggingface/datasets/pull/6473 | 2,026,495,084 | PR_kwDODunzps5hMbvz | 6,473 | Fix CI quality | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6473). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005270 / 0.011353 (-0.006083) | 0.003471 / 0.011008 (-0.007537) | 0.061942 / 0.038508 (0.023434) | 0.052671 / 0.023109 (0.029562) | 0.250541 / 0.275898 (-0.025357) | 0.270677 / 0.323480 (-0.052803) | 0.002933 / 0.007986 (-0.005053) | 0.003264 / 0.004328 (-0.001064) | 0.048055 / 0.004250 (0.043804) | 0.037459 / 0.037052 (0.000407) | 0.254926 / 0.258489 (-0.003563) | 0.292547 / 0.293841 (-0.001294) | 0.027959 / 0.128546 (-0.100587) | 0.010762 / 0.075646 (-0.064884) | 0.204961 / 0.419271 (-0.214310) | 0.035488 / 0.043533 (-0.008045) | 0.254102 / 0.255139 (-0.001037) | 0.273654 / 0.283200 (-0.009546) | 0.018126 / 0.141683 (-0.123556) | 1.082330 / 1.452155 (-0.369825) | 1.147179 / 1.492716 (-0.345538) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093223 / 0.018006 (0.075217) | 0.301912 / 0.000490 (0.301422) | 0.000219 / 0.000200 (0.000019) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018407 / 0.037411 (-0.019004) | 0.060412 / 0.014526 (0.045886) | 0.074063 / 0.176557 (-0.102494) | 0.118743 / 0.737135 (-0.618392) | 0.076484 / 0.296338 (-0.219854) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289929 / 0.215209 (0.074720) | 2.825096 / 2.077655 (0.747442) | 1.511444 / 1.504120 (0.007324) | 1.394812 / 1.541195 (-0.146383) | 1.419751 / 1.468490 (-0.048739) | 0.569995 / 4.584777 (-4.014782) | 2.402586 / 3.745712 (-1.343126) | 2.826223 / 5.269862 (-2.443639) | 1.751554 / 4.565676 (-2.814123) | 0.064266 / 0.424275 (-0.360009) | 0.005047 / 0.007607 (-0.002561) | 0.341513 / 0.226044 (0.115469) | 3.372106 / 2.268929 (1.103177) | 1.872693 / 55.444624 (-53.571931) | 1.588200 / 6.876477 (-5.288276) | 1.630800 / 2.142072 (-0.511272) | 0.654266 / 4.805227 (-4.150961) | 0.124292 / 6.500664 (-6.376372) | 0.042876 / 0.075469 (-0.032593) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.948406 / 1.841788 (-0.893382) | 11.652947 / 8.074308 (3.578639) | 10.218195 / 10.191392 (0.026803) | 0.128447 / 0.680424 (-0.551976) | 0.014092 / 0.534201 (-0.520109) | 0.287631 / 0.579283 (-0.291652) | 0.264843 / 0.434364 (-0.169521) | 0.329997 / 0.540337 (-0.210340) | 0.439597 / 1.386936 (-0.947339) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005418 / 0.011353 (-0.005935) | 0.003589 / 0.011008 (-0.007419) | 0.050074 / 0.038508 (0.011566) | 0.052566 / 0.023109 (0.029456) | 0.293447 / 0.275898 (0.017549) | 0.320518 / 0.323480 (-0.002962) | 0.004094 / 0.007986 (-0.003892) | 0.002690 / 0.004328 (-0.001639) | 0.048200 / 0.004250 (0.043949) | 0.040692 / 0.037052 (0.003640) | 0.297086 / 0.258489 (0.038597) | 0.323827 / 0.293841 (0.029986) | 0.029511 / 0.128546 (-0.099035) | 0.011079 / 0.075646 (-0.064568) | 0.058562 / 0.419271 (-0.360709) | 0.032897 / 0.043533 (-0.010636) | 0.297244 / 0.255139 (0.042105) | 0.316812 / 0.283200 (0.033612) | 0.018468 / 0.141683 (-0.123215) | 1.140948 / 1.452155 (-0.311207) | 1.195453 / 1.492716 (-0.297263) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092677 / 0.018006 (0.074671) | 0.300775 / 0.000490 (0.300285) | 0.000225 / 0.000200 (0.000025) | 0.000054 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021617 / 0.037411 (-0.015794) | 0.077135 / 0.014526 (0.062610) | 0.079848 / 0.176557 (-0.096709) | 0.118475 / 0.737135 (-0.618661) | 0.081174 / 0.296338 (-0.215164) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294424 / 0.215209 (0.079215) | 2.863989 / 2.077655 (0.786334) | 1.590604 / 1.504120 (0.086484) | 1.474345 / 1.541195 (-0.066849) | 1.482120 / 1.468490 (0.013630) | 0.567829 / 4.584777 (-4.016948) | 2.493782 / 3.745712 (-1.251930) | 2.823460 / 5.269862 (-2.446402) | 1.732677 / 4.565676 (-2.833000) | 0.065518 / 0.424275 (-0.358757) | 0.004923 / 0.007607 (-0.002684) | 0.349313 / 0.226044 (0.123268) | 3.428618 / 2.268929 (1.159689) | 1.970641 / 55.444624 (-53.473983) | 1.655884 / 6.876477 (-5.220593) | 1.657151 / 2.142072 (-0.484921) | 0.661208 / 4.805227 (-4.144019) | 0.119129 / 6.500664 (-6.381535) | 0.040770 / 0.075469 (-0.034699) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.964865 / 1.841788 (-0.876923) | 12.050218 / 8.074308 (3.975910) | 10.458749 / 10.191392 (0.267357) | 0.141856 / 0.680424 (-0.538568) | 0.015091 / 0.534201 (-0.519109) | 0.288897 / 0.579283 (-0.290387) | 0.275343 / 0.434364 (-0.159021) | 0.328363 / 0.540337 (-0.211975) | 0.579243 / 1.386936 (-0.807693) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f7721021e284859ea0952444bae6300a0d00794f \"CML watermark\")\n"
] | "2023-12-05T15:36:23Z" | "2023-12-05T18:14:50Z" | "2023-12-05T18:08:41Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6473.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6473",
"merged_at": "2023-12-05T18:08:41Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6473.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6473"
} | Fix #6472. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6473/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6473/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4119 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4119/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4119/comments | https://api.github.com/repos/huggingface/datasets/issues/4119/events | https://github.com/huggingface/datasets/pull/4119 | 1,195,641,298 | PR_kwDODunzps41yXHF | 4,119 | Hotfix failing CI tests on Windows | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | "2022-04-07T07:38:46Z" | "2022-04-07T09:47:24Z" | "2022-04-07T07:57:13Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4119.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4119",
"merged_at": "2022-04-07T07:57:13Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4119.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4119"
} | This PR makes a hotfix for our CI Windows tests: https://app.circleci.com/pipelines/github/huggingface/datasets/11092/workflows/9cfdb1dd-0fec-4fe0-8122-5f533192ebdc/jobs/67414
Fix #4118
I guess this issue is related to this PR:
- huggingface/huggingface_hub#815 | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4119/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4119/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4296 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4296/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4296/comments | https://api.github.com/repos/huggingface/datasets/issues/4296/events | https://github.com/huggingface/datasets/pull/4296 | 1,229,554,645 | PR_kwDODunzps43foZ- | 4,296 | Fix URL query parameters in compression hop path when streaming | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_4296). All of your documentation changes will be reflected on that endpoint."
] | "2022-05-09T11:18:22Z" | "2022-07-06T15:19:53Z" | null | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4296.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4296",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/4296.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4296"
} | Fix #3488. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4296/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4296/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6301 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6301/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6301/comments | https://api.github.com/repos/huggingface/datasets/issues/6301/events | https://github.com/huggingface/datasets/pull/6301 | 1,940,183,999 | PR_kwDODunzps5cpPVh | 6,301 | Unpin `tensorflow` maximum version | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006663 / 0.011353 (-0.004690) | 0.004091 / 0.011008 (-0.006918) | 0.084954 / 0.038508 (0.046445) | 0.071869 / 0.023109 (0.048760) | 0.314706 / 0.275898 (0.038808) | 0.352794 / 0.323480 (0.029314) | 0.004027 / 0.007986 (-0.003959) | 0.003371 / 0.004328 (-0.000957) | 0.065456 / 0.004250 (0.061205) | 0.055828 / 0.037052 (0.018775) | 0.316502 / 0.258489 (0.058013) | 0.377979 / 0.293841 (0.084138) | 0.030870 / 0.128546 (-0.097676) | 0.008616 / 0.075646 (-0.067030) | 0.288625 / 0.419271 (-0.130646) | 0.052314 / 0.043533 (0.008781) | 0.322725 / 0.255139 (0.067586) | 0.351810 / 0.283200 (0.068611) | 0.025726 / 0.141683 (-0.115957) | 1.439308 / 1.452155 (-0.012847) | 1.524484 / 1.492716 (0.031768) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235212 / 0.018006 (0.217206) | 0.444926 / 0.000490 (0.444437) | 0.009887 / 0.000200 (0.009687) | 0.000402 / 0.000054 (0.000347) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028956 / 0.037411 (-0.008455) | 0.084401 / 0.014526 (0.069875) | 0.339686 / 0.176557 (0.163130) | 0.186785 / 0.737135 (-0.550350) | 0.195017 / 0.296338 (-0.101322) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405480 / 0.215209 (0.190271) | 4.024315 / 2.077655 (1.946661) | 2.056398 / 1.504120 (0.552278) | 1.912099 / 1.541195 (0.370904) | 1.950119 / 1.468490 (0.481629) | 0.486071 / 4.584777 (-4.098706) | 3.578501 / 3.745712 (-0.167211) | 3.268980 / 5.269862 (-2.000881) | 2.018114 / 4.565676 (-2.547563) | 0.057440 / 0.424275 (-0.366835) | 0.007281 / 0.007607 (-0.000326) | 0.474760 / 0.226044 (0.248716) | 4.746908 / 2.268929 (2.477979) | 2.550111 / 55.444624 (-52.894513) | 2.171932 / 6.876477 (-4.704544) | 2.392235 / 2.142072 (0.250162) | 0.585940 / 4.805227 (-4.219287) | 0.136445 / 6.500664 (-6.364219) | 0.062125 / 0.075469 (-0.013344) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270763 / 1.841788 (-0.571025) | 19.213516 / 8.074308 (11.139208) | 13.992620 / 10.191392 (3.801228) | 0.167356 / 0.680424 (-0.513068) | 0.018261 / 0.534201 (-0.515940) | 0.392489 / 0.579283 (-0.186794) | 0.418845 / 0.434364 (-0.015519) | 0.461824 / 0.540337 (-0.078513) | 0.649661 / 1.386936 (-0.737275) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006675 / 0.011353 (-0.004678) | 0.003913 / 0.011008 (-0.007096) | 0.064943 / 0.038508 (0.026435) | 0.072426 / 0.023109 (0.049317) | 0.400785 / 0.275898 (0.124887) | 0.434359 / 0.323480 (0.110879) | 0.005370 / 0.007986 (-0.002616) | 0.003290 / 0.004328 (-0.001038) | 0.065035 / 0.004250 (0.060785) | 0.054924 / 0.037052 (0.017872) | 0.404442 / 0.258489 (0.145953) | 0.439027 / 0.293841 (0.145186) | 0.032467 / 0.128546 (-0.096080) | 0.008565 / 0.075646 (-0.067081) | 0.070653 / 0.419271 (-0.348619) | 0.048034 / 0.043533 (0.004501) | 0.400869 / 0.255139 (0.145730) | 0.423048 / 0.283200 (0.139848) | 0.022757 / 0.141683 (-0.118926) | 1.516956 / 1.452155 (0.064801) | 1.581599 / 1.492716 (0.088883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214761 / 0.018006 (0.196755) | 0.440921 / 0.000490 (0.440431) | 0.007538 / 0.000200 (0.007338) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032313 / 0.037411 (-0.005099) | 0.091365 / 0.014526 (0.076839) | 0.106665 / 0.176557 (-0.069891) | 0.158637 / 0.737135 (-0.578498) | 0.104894 / 0.296338 (-0.191445) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432995 / 0.215209 (0.217786) | 4.339911 / 2.077655 (2.262256) | 2.313139 / 1.504120 (0.809019) | 2.142552 / 1.541195 (0.601357) | 2.279275 / 1.468490 (0.810785) | 0.501133 / 4.584777 (-4.083644) | 3.696160 / 3.745712 (-0.049552) | 3.341886 / 5.269862 (-1.927976) | 2.105972 / 4.565676 (-2.459705) | 0.059268 / 0.424275 (-0.365008) | 0.007568 / 0.007607 (-0.000039) | 0.512546 / 0.226044 (0.286502) | 5.130219 / 2.268929 (2.861290) | 2.808292 / 55.444624 (-52.636332) | 2.478721 / 6.876477 (-4.397755) | 2.679341 / 2.142072 (0.537269) | 0.599022 / 4.805227 (-4.206206) | 0.143761 / 6.500664 (-6.356903) | 0.062061 / 0.075469 (-0.013409) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.430507 / 1.841788 (-0.411281) | 20.458085 / 8.074308 (12.383777) | 15.268356 / 10.191392 (5.076964) | 0.163359 / 0.680424 (-0.517065) | 0.020908 / 0.534201 (-0.513293) | 0.396870 / 0.579283 (-0.182413) | 0.432630 / 0.434364 (-0.001733) | 0.475909 / 0.540337 (-0.064429) | 0.681031 / 1.386936 (-0.705905) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fd1dd6aa4c7fa7744c1c1f877573ff59f1529292 \"CML watermark\")\n",
"CI failures are unrelated",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005815 / 0.011353 (-0.005538) | 0.003419 / 0.011008 (-0.007589) | 0.080286 / 0.038508 (0.041778) | 0.056487 / 0.023109 (0.033377) | 0.304414 / 0.275898 (0.028516) | 0.341039 / 0.323480 (0.017559) | 0.004392 / 0.007986 (-0.003594) | 0.002852 / 0.004328 (-0.001477) | 0.062339 / 0.004250 (0.058089) | 0.044683 / 0.037052 (0.007630) | 0.311651 / 0.258489 (0.053162) | 0.357249 / 0.293841 (0.063409) | 0.027300 / 0.128546 (-0.101246) | 0.007963 / 0.075646 (-0.067683) | 0.261948 / 0.419271 (-0.157323) | 0.044952 / 0.043533 (0.001419) | 0.309990 / 0.255139 (0.054851) | 0.340735 / 0.283200 (0.057536) | 0.020786 / 0.141683 (-0.120897) | 1.471378 / 1.452155 (0.019224) | 1.517260 / 1.492716 (0.024543) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245447 / 0.018006 (0.227441) | 0.418967 / 0.000490 (0.418477) | 0.007039 / 0.000200 (0.006840) | 0.000196 / 0.000054 (0.000142) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022880 / 0.037411 (-0.014532) | 0.071862 / 0.014526 (0.057337) | 0.083009 / 0.176557 (-0.093547) | 0.143414 / 0.737135 (-0.593722) | 0.082896 / 0.296338 (-0.213442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.390645 / 0.215209 (0.175436) | 3.888104 / 2.077655 (1.810450) | 1.859572 / 1.504120 (0.355452) | 1.683803 / 1.541195 (0.142608) | 1.697902 / 1.468490 (0.229412) | 0.499537 / 4.584777 (-4.085239) | 3.015832 / 3.745712 (-0.729881) | 2.805696 / 5.269862 (-2.464166) | 1.830408 / 4.565676 (-2.735268) | 0.058191 / 0.424275 (-0.366085) | 0.006357 / 0.007607 (-0.001250) | 0.462486 / 0.226044 (0.236442) | 4.634951 / 2.268929 (2.366022) | 2.309364 / 55.444624 (-53.135260) | 1.979521 / 6.876477 (-4.896956) | 2.080011 / 2.142072 (-0.062062) | 0.593086 / 4.805227 (-4.212141) | 0.124856 / 6.500664 (-6.375808) | 0.060172 / 0.075469 (-0.015297) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251439 / 1.841788 (-0.590349) | 17.068999 / 8.074308 (8.994691) | 13.527209 / 10.191392 (3.335817) | 0.146636 / 0.680424 (-0.533788) | 0.016866 / 0.534201 (-0.517335) | 0.333202 / 0.579283 (-0.246081) | 0.360444 / 0.434364 (-0.073920) | 0.388378 / 0.540337 (-0.151959) | 0.530519 / 1.386936 (-0.856417) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006043 / 0.011353 (-0.005310) | 0.003612 / 0.011008 (-0.007396) | 0.062644 / 0.038508 (0.024135) | 0.056104 / 0.023109 (0.032995) | 0.446328 / 0.275898 (0.170430) | 0.478044 / 0.323480 (0.154564) | 0.004641 / 0.007986 (-0.003345) | 0.002896 / 0.004328 (-0.001432) | 0.062344 / 0.004250 (0.058093) | 0.046339 / 0.037052 (0.009287) | 0.454866 / 0.258489 (0.196377) | 0.484242 / 0.293841 (0.190401) | 0.028602 / 0.128546 (-0.099944) | 0.008075 / 0.075646 (-0.067571) | 0.067980 / 0.419271 (-0.351291) | 0.041339 / 0.043533 (-0.002194) | 0.452911 / 0.255139 (0.197772) | 0.474180 / 0.283200 (0.190981) | 0.019395 / 0.141683 (-0.122288) | 1.432161 / 1.452155 (-0.019993) | 1.505800 / 1.492716 (0.013083) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216983 / 0.018006 (0.198977) | 0.406232 / 0.000490 (0.405743) | 0.005101 / 0.000200 (0.004902) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026295 / 0.037411 (-0.011116) | 0.080490 / 0.014526 (0.065964) | 0.088105 / 0.176557 (-0.088451) | 0.143294 / 0.737135 (-0.593841) | 0.089125 / 0.296338 (-0.207213) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.465512 / 0.215209 (0.250302) | 4.648656 / 2.077655 (2.571002) | 2.598225 / 1.504120 (1.094105) | 2.409588 / 1.541195 (0.868393) | 2.513745 / 1.468490 (1.045255) | 0.507425 / 4.584777 (-4.077352) | 3.130164 / 3.745712 (-0.615548) | 2.836817 / 5.269862 (-2.433045) | 1.836029 / 4.565676 (-2.729647) | 0.058829 / 0.424275 (-0.365446) | 0.006551 / 0.007607 (-0.001056) | 0.537892 / 0.226044 (0.311848) | 5.401079 / 2.268929 (3.132150) | 3.019817 / 55.444624 (-52.424807) | 2.695131 / 6.876477 (-4.181346) | 2.805321 / 2.142072 (0.663248) | 0.595681 / 4.805227 (-4.209546) | 0.124368 / 6.500664 (-6.376296) | 0.060712 / 0.075469 (-0.014757) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.361508 / 1.841788 (-0.480279) | 17.811373 / 8.074308 (9.737065) | 14.482705 / 10.191392 (4.291313) | 0.153193 / 0.680424 (-0.527231) | 0.018347 / 0.534201 (-0.515854) | 0.330900 / 0.579283 (-0.248383) | 0.374948 / 0.434364 (-0.059416) | 0.385615 / 0.540337 (-0.154722) | 0.568077 / 1.386936 (-0.818859) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#18ef408c21f8efbb2142f050a691b5c916455af3 \"CML watermark\")\n"
] | "2023-10-12T14:58:07Z" | "2023-10-12T15:58:20Z" | "2023-10-12T15:49:54Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6301.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6301",
"merged_at": "2023-10-12T15:49:54Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6301.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6301"
} | Removes the temporary pin introduced in #6264 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6301/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6301/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2192 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2192/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2192/comments | https://api.github.com/repos/huggingface/datasets/issues/2192/events | https://github.com/huggingface/datasets/pull/2192 | 853,547,910 | MDExOlB1bGxSZXF1ZXN0NjExNjE5NTY0 | 2,192 | Fix typo in huggingface hub | {
"avatar_url": "https://avatars.githubusercontent.com/u/30755778?v=4",
"events_url": "https://api.github.com/users/LysandreJik/events{/privacy}",
"followers_url": "https://api.github.com/users/LysandreJik/followers",
"following_url": "https://api.github.com/users/LysandreJik/following{/other_user}",
"gists_url": "https://api.github.com/users/LysandreJik/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/LysandreJik",
"id": 30755778,
"login": "LysandreJik",
"node_id": "MDQ6VXNlcjMwNzU1Nzc4",
"organizations_url": "https://api.github.com/users/LysandreJik/orgs",
"received_events_url": "https://api.github.com/users/LysandreJik/received_events",
"repos_url": "https://api.github.com/users/LysandreJik/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/LysandreJik/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/LysandreJik/subscriptions",
"type": "User",
"url": "https://api.github.com/users/LysandreJik"
} | [] | closed | false | null | [] | null | [] | "2021-04-08T14:42:24Z" | "2021-04-08T15:47:41Z" | "2021-04-08T15:47:40Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2192.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2192",
"merged_at": "2021-04-08T15:47:40Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2192.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2192"
} | pip knows how to resolve to `huggingface_hub`, but conda doesn't!
The `packaging` dependency is also required for the build to complete. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2192/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2192/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1137 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1137/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1137/comments | https://api.github.com/repos/huggingface/datasets/issues/1137/events | https://github.com/huggingface/datasets/pull/1137 | 757,358,145 | MDExOlB1bGxSZXF1ZXN0NTMyNzQ4NDAx | 1,137 | add wmt mlqe 2020 shared task | {
"avatar_url": "https://avatars.githubusercontent.com/u/16107619?v=4",
"events_url": "https://api.github.com/users/VictorSanh/events{/privacy}",
"followers_url": "https://api.github.com/users/VictorSanh/followers",
"following_url": "https://api.github.com/users/VictorSanh/following{/other_user}",
"gists_url": "https://api.github.com/users/VictorSanh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/VictorSanh",
"id": 16107619,
"login": "VictorSanh",
"node_id": "MDQ6VXNlcjE2MTA3NjE5",
"organizations_url": "https://api.github.com/users/VictorSanh/orgs",
"received_events_url": "https://api.github.com/users/VictorSanh/received_events",
"repos_url": "https://api.github.com/users/VictorSanh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/VictorSanh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/VictorSanh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/VictorSanh"
} | [] | closed | false | null | [] | null | [
"re-created in #1218 because this was too messy"
] | "2020-12-04T19:45:34Z" | "2020-12-06T19:59:44Z" | "2020-12-06T19:53:46Z" | MEMBER | null | 1 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1137.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1137",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/1137.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1137"
} | First commit for Shared task 1 (wmt_mlqw_task1) of WMT20 MLQE (quality estimation of machine translation)
Note that I copied the tags in the README for only one (of the 7 configurations): `en-de`.
There is one configuration for each pair of languages. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1137/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1137/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/171 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/171/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/171/comments | https://api.github.com/repos/huggingface/datasets/issues/171/events | https://github.com/huggingface/datasets/pull/171 | 621,199,128 | MDExOlB1bGxSZXF1ZXN0NDIwMjk0ODM0 | 171 | fix squad metric format | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"One thing for SQuAD is that I wanted to be able to use the SQuAD dataset directly in the metrics and I'm not sure it will be possible with this format.\r\n\r\n(maybe it's not really possible in general though)",
"This is kinda related to one thing I had in mind which is that we may want to be able to dump our model predictions in a `Dataset` as well so that we don't keep them in memory (and we can export them in a nice format later as well when we will have a serialization formats).\r\n\r\nMaybe this is overkill though, I haven't fully wraped my head around this.",
"I'm also perfectly fine with merging this PR in the current state and working on a larger scope later.",
"This is the format needed to run the official script directly. The format of the squad dataset is different from the input of the metric. \r\n\r\n> One thing for SQuAD is that I wanted to be able to use the SQuAD dataset directly in the metrics and I'm not sure it will be possible with this format.\r\n> \r\n> (maybe it's not really possible in general though)\r\n\r\nOk I see. I'll try to use the same format",
"Ok with this update I changed the format to fit the squad dataset format.\r\nNow you can do:\r\n```python\r\nsquad_dset = nlp.load_dataset(\"squad\")\r\nsquad_metric = nlp.load_metric(\"/Users/quentinlhoest/Desktop/hf/nlp-bis/metrics/squad\")\r\npredictions = [\r\n {\"id\": v[\"id\"], \"prediction_text\": v[\"answers\"][\"text\"][0]} # take first possible answer\r\n for v in squad_dset[\"validation\"]\r\n]\r\nsquad_metric.compute(predictions, squad_dset[\"validation\"])\r\n```"
] | "2020-05-19T18:37:36Z" | "2020-05-22T13:36:50Z" | "2020-05-22T13:36:48Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/171.diff",
"html_url": "https://github.com/huggingface/datasets/pull/171",
"merged_at": "2020-05-22T13:36:48Z",
"patch_url": "https://github.com/huggingface/datasets/pull/171.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/171"
} | The format of the squad metric was wrong.
This should fix #143
I tested with
```python3
predictions = [
{'id': '56be4db0acb8001400a502ec', 'prediction_text': 'Denver Broncos'}
]
references = [
{'answers': [{'text': 'Denver Broncos'}], 'id': '56be4db0acb8001400a502ec'}
]
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/171/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/171/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5053 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5053/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5053/comments | https://api.github.com/repos/huggingface/datasets/issues/5053/events | https://github.com/huggingface/datasets/issues/5053 | 1,393,739,882 | I_kwDODunzps5TEshq | 5,053 | Intermittent JSON parse error when streaming the Pile | {
"avatar_url": "https://avatars.githubusercontent.com/u/77788841?v=4",
"events_url": "https://api.github.com/users/neelnanda-io/events{/privacy}",
"followers_url": "https://api.github.com/users/neelnanda-io/followers",
"following_url": "https://api.github.com/users/neelnanda-io/following{/other_user}",
"gists_url": "https://api.github.com/users/neelnanda-io/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/neelnanda-io",
"id": 77788841,
"login": "neelnanda-io",
"node_id": "MDQ6VXNlcjc3Nzg4ODQx",
"organizations_url": "https://api.github.com/users/neelnanda-io/orgs",
"received_events_url": "https://api.github.com/users/neelnanda-io/received_events",
"repos_url": "https://api.github.com/users/neelnanda-io/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/neelnanda-io/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/neelnanda-io/subscriptions",
"type": "User",
"url": "https://api.github.com/users/neelnanda-io"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | open | false | null | [] | null | [
"Maybe #2838 can help. In this PR we allow to skip bad chunks of JSON data to not crash the training\r\n\r\nDid you have warning messages before the error ?\r\n\r\nsomething like this maybe ?\r\n```\r\n03/24/2022 02:19:46 - WARNING - datasets.utils.streaming_download_manager - Got disconnected from remote data host. Retrying in 5sec [1/20]\r\n03/24/2022 02:20:01 - WARNING - datasets.utils.streaming_download_manager - Got disconnected from remote data host. Retrying in 5sec [2/20]\r\n03/24/2022 02:20:09 - ERROR - datasets.packaged_modules.json.json - Failed to read file 'gzip://file-000000000007.json::https://huggingface.co/datasets/lvwerra/codeparrot-clean-train/resolve/1d740acb9d09cf7a3307553323e2c677a6535407/file-000000000007.json.gz' with error <class 'pyarrow.lib.ArrowInvalid'>: JSON parse error: Invalid value. in row 0\r\n```",
"Ah, thanks! I did get errors like that. Sad that PR wasn't merged in! \r\n\r\nI'm currently just downloading 200GB of the Pile locally to avoid streaming (I have space and it's faster anyway), but that's really useful! I can probably apply the dumb patch of just commenting out the bits that raise the JSON Parse Error lol, based on your code - if I continue the loop should it be fine?",
"Yup you can get some inspiration from this PR. It simply ignores the bad chunks (a chunk is ~a few MBs of data).\r\nWe'll try to merge this PR soon"
] | "2022-10-02T11:56:46Z" | "2022-10-04T17:59:03Z" | null | NONE | null | null | null | ## Describe the bug
I have an intermittent error when streaming the Pile, where I get a JSON parse error which causes my program to crash.
This is intermittent - when I rerun the program with the same random seed it does not crash in the same way. The exact point this happens also varied - it happened to me 11B tokens and 4 days into a training run, and now just happened 2 minutes into one, but I can't reliably reproduce it.
I'm using a remote machine with 8 A6000 GPUs via runpod.io
## Expected results
I have a DataLoader which can iterate through the whole Pile
## Actual results
Stack trace:
```
Failed to read file 'zstd://12.jsonl::https://the-eye.eu/public/AI/pile/train/12.jsonl.zst' with error <class 'pyarrow.lib.ArrowInvalid'>: JSON parse error: Invalid value. in row 0
```
I'm currently using HuggingFace accelerate, which also gave me the following stack trace, but I've also experienced this problem intermittently when using DataParallel, so I don't think it's to do with parallelisation
```
Traceback (most recent call last):
File "ddp_script.py", line 1258, in <module>
main()
File "ddp_script.py", line 1143, in main
for c, batch in tqdm.tqdm(enumerate(data_iter)):
File "/opt/conda/lib/python3.7/site-packages/tqdm/std.py", line 1195, in __iter__
for obj in iterable:
File "/opt/conda/lib/python3.7/site-packages/accelerate/data_loader.py", line 503, in __iter__
next_batch, next_batch_info, next_skip = self._fetch_batches(main_iterator)
File "/opt/conda/lib/python3.7/site-packages/accelerate/data_loader.py", line 454, in _fetch_batches
broadcast_object_list(batch_info)
File "/opt/conda/lib/python3.7/site-packages/accelerate/utils/operations.py", line 333, in broadcast_object_list
torch.distributed.broadcast_object_list(object_list, src=from_process)
File "/opt/conda/lib/python3.7/site-packages/torch/distributed/distributed_c10d.py", line 1900, in broadcast_object_list
object_list[i] = _tensor_to_object(obj_view, obj_size)
File "/opt/conda/lib/python3.7/site-packages/torch/distributed/distributed_c10d.py", line 1571, in _tensor_to_object
return _unpickler(io.BytesIO(buf)).load()
_pickle.UnpicklingError: invalid load key, '@'.
```
## Steps to reproduce the bug
```python
from datasets import load_dataset
dataset = load_dataset(
cfg["dataset_name"], streaming=True, split="train")
dataset = dataset.remove_columns("meta")
dataset = dataset.map(tokenize_and_concatenate, batched=True)
dataset = dataset.with_format(type="torch")
train_data_loader = DataLoader(
dataset, batch_size=cfg["batch_size"], num_workers=3)
for batch in train_data_loader:
continue
```
`tokenize_and_concatenate` is a custom tokenization function I defined on the GPT-NeoX tokenizer to tokenize the text, separated by endoftext tokens, and reshape to have length batch_size, I don't think this is related to tokenization:
```
import numpy as np
import einops
import torch
def tokenize_and_concatenate(examples):
texts = examples["text"]
full_text = tokenizer.eos_token.join(texts)
div = 20
length = len(full_text) // div
text_list = [full_text[i * length: (i + 1) * length]
for i in range(div)]
tokens = tokenizer(text_list, return_tensors="np", padding=True)[
"input_ids"
].flatten()
tokens = tokens[tokens != tokenizer.pad_token_id]
n = len(tokens)
curr_batch_size = n // (seq_len - 1)
tokens = tokens[: (seq_len - 1) * curr_batch_size]
tokens = einops.rearrange(
tokens,
"(batch_size seq) -> batch_size seq",
batch_size=curr_batch_size,
seq=seq_len - 1,
)
prefix = np.ones((curr_batch_size, 1), dtype=np.int64) * \
tokenizer.bos_token_id
return {
"text": np.concatenate([prefix, tokens], axis=1)
}
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 2.4.0
- Platform: Linux-5.4.0-105-generic-x86_64-with-debian-buster-sid
- Python version: 3.7.13
- PyArrow version: 9.0.0
- Pandas version: 1.3.5
ZStandard data:
Version: 0.18.0
Summary: Zstandard bindings for Python
Home-page: https://github.com/indygreg/python-zstandard
Author: Gregory Szorc
Author-email: [email protected]
License: BSD
Location: /opt/conda/lib/python3.7/site-packages
Requires:
Required-by: | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5053/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5053/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5197 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5197/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5197/comments | https://api.github.com/repos/huggingface/datasets/issues/5197/events | https://github.com/huggingface/datasets/pull/5197 | 1,434,676,150 | PR_kwDODunzps5CI0Ac | 5,197 | [zstd] Use max window log size | {
"avatar_url": "https://avatars.githubusercontent.com/u/728699?v=4",
"events_url": "https://api.github.com/users/reyoung/events{/privacy}",
"followers_url": "https://api.github.com/users/reyoung/followers",
"following_url": "https://api.github.com/users/reyoung/following{/other_user}",
"gists_url": "https://api.github.com/users/reyoung/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/reyoung",
"id": 728699,
"login": "reyoung",
"node_id": "MDQ6VXNlcjcyODY5OQ==",
"organizations_url": "https://api.github.com/users/reyoung/orgs",
"received_events_url": "https://api.github.com/users/reyoung/received_events",
"repos_url": "https://api.github.com/users/reyoung/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/reyoung/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/reyoung/subscriptions",
"type": "User",
"url": "https://api.github.com/users/reyoung"
} | [] | open | false | null | [] | null | [
"@albertvillanova Please take a review.",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5197). All of your documentation changes will be reflected on that endpoint."
] | "2022-11-03T13:35:58Z" | "2022-11-03T13:45:19Z" | null | NONE | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5197.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5197",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/5197.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5197"
} | ZstdDecompressor has a parameter `max_window_size` to limit max memory usage when decompressing zstd files. The default `max_window_size` is not enough when files are compressed by `zstd --ultra` flags.
Change `max_window_size` to the zstd's max window size. NOTE, the `zstd.WINDOWLOG_MAX` is the log_2 value of the max window size. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5197/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5197/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/393 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/393/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/393/comments | https://api.github.com/repos/huggingface/datasets/issues/393/events | https://github.com/huggingface/datasets/pull/393 | 657,330,911 | MDExOlB1bGxSZXF1ZXN0NDQ5NDY1MTAz | 393 | Fix extracted files directory for the DownloadManager | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [] | "2020-07-15T12:59:55Z" | "2020-07-17T17:02:16Z" | "2020-07-17T17:02:14Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/393.diff",
"html_url": "https://github.com/huggingface/datasets/pull/393",
"merged_at": "2020-07-17T17:02:14Z",
"patch_url": "https://github.com/huggingface/datasets/pull/393.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/393"
} | The cache dir was often cluttered by extracted files because of the download manager.
For downloaded files, we are using the `downloads` directory to make things easier to navigate, but extracted files were still placed at the root of the cache directory. To fix that I changed the directory for extracted files to cache_dir/downloads/extracted. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/393/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/393/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/544 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/544/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/544/comments | https://api.github.com/repos/huggingface/datasets/issues/544/events | https://github.com/huggingface/datasets/pull/544 | 689,062,519 | MDExOlB1bGxSZXF1ZXN0NDc2MTc4MDM2 | 544 | [Distributed] Fix load_dataset error when multiprocessing + add test | {
"avatar_url": "https://avatars.githubusercontent.com/u/7353373?v=4",
"events_url": "https://api.github.com/users/thomwolf/events{/privacy}",
"followers_url": "https://api.github.com/users/thomwolf/followers",
"following_url": "https://api.github.com/users/thomwolf/following{/other_user}",
"gists_url": "https://api.github.com/users/thomwolf/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/thomwolf",
"id": 7353373,
"login": "thomwolf",
"node_id": "MDQ6VXNlcjczNTMzNzM=",
"organizations_url": "https://api.github.com/users/thomwolf/orgs",
"received_events_url": "https://api.github.com/users/thomwolf/received_events",
"repos_url": "https://api.github.com/users/thomwolf/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/thomwolf/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/thomwolf/subscriptions",
"type": "User",
"url": "https://api.github.com/users/thomwolf"
} | [] | closed | false | null | [] | null | [] | "2020-08-31T09:30:10Z" | "2020-08-31T11:15:11Z" | "2020-08-31T11:15:10Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/544.diff",
"html_url": "https://github.com/huggingface/datasets/pull/544",
"merged_at": "2020-08-31T11:15:10Z",
"patch_url": "https://github.com/huggingface/datasets/pull/544.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/544"
} | Fix #543 + add test | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/544/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/544/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1223 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1223/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1223/comments | https://api.github.com/repos/huggingface/datasets/issues/1223/events | https://github.com/huggingface/datasets/pull/1223 | 758,022,208 | MDExOlB1bGxSZXF1ZXN0NTMzMjY2MDc4 | 1,223 | 🇸🇪 Added Swedish Reviews dataset for sentiment classification in Sw… | {
"avatar_url": "https://avatars.githubusercontent.com/u/6556710?v=4",
"events_url": "https://api.github.com/users/timpal0l/events{/privacy}",
"followers_url": "https://api.github.com/users/timpal0l/followers",
"following_url": "https://api.github.com/users/timpal0l/following{/other_user}",
"gists_url": "https://api.github.com/users/timpal0l/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/timpal0l",
"id": 6556710,
"login": "timpal0l",
"node_id": "MDQ6VXNlcjY1NTY3MTA=",
"organizations_url": "https://api.github.com/users/timpal0l/orgs",
"received_events_url": "https://api.github.com/users/timpal0l/received_events",
"repos_url": "https://api.github.com/users/timpal0l/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/timpal0l/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/timpal0l/subscriptions",
"type": "User",
"url": "https://api.github.com/users/timpal0l"
} | [] | closed | false | null | [] | null | [] | "2020-12-06T21:02:54Z" | "2020-12-08T10:54:56Z" | "2020-12-08T10:54:56Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1223.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1223",
"merged_at": "2020-12-08T10:54:56Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1223.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1223"
} | perhaps: @lhoestq 🤗 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1223/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1223/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1883 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1883/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1883/comments | https://api.github.com/repos/huggingface/datasets/issues/1883/events | https://github.com/huggingface/datasets/pull/1883 | 808,750,623 | MDExOlB1bGxSZXF1ZXN0NTczNzM2NTIz | 1,883 | Add not-in-place implementations for several dataset transforms | {
"avatar_url": "https://avatars.githubusercontent.com/u/33657802?v=4",
"events_url": "https://api.github.com/users/SBrandeis/events{/privacy}",
"followers_url": "https://api.github.com/users/SBrandeis/followers",
"following_url": "https://api.github.com/users/SBrandeis/following{/other_user}",
"gists_url": "https://api.github.com/users/SBrandeis/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/SBrandeis",
"id": 33657802,
"login": "SBrandeis",
"node_id": "MDQ6VXNlcjMzNjU3ODAy",
"organizations_url": "https://api.github.com/users/SBrandeis/orgs",
"received_events_url": "https://api.github.com/users/SBrandeis/received_events",
"repos_url": "https://api.github.com/users/SBrandeis/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/SBrandeis/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SBrandeis/subscriptions",
"type": "User",
"url": "https://api.github.com/users/SBrandeis"
} | [] | closed | false | null | [] | null | [
"@lhoestq I am not sure how to test `dictionary_encode_column` (in-place version was not tested before)",
"I can take a look at dictionary_encode_column tomorrow.\r\nAlthough it's likely that it doesn't work then. It was added at the beginning of the lib and never tested nor used afaik.",
"Now let's update the documentation to use the new methods x)"
] | "2021-02-15T18:44:26Z" | "2021-02-24T14:54:49Z" | "2021-02-24T14:53:26Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1883.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1883",
"merged_at": "2021-02-24T14:53:26Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1883.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1883"
} | Should we deprecate in-place versions of such methods? | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1883/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1883/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4716 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4716/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4716/comments | https://api.github.com/repos/huggingface/datasets/issues/4716/events | https://github.com/huggingface/datasets/pull/4716 | 1,309,455,838 | PR_kwDODunzps47pdbh | 4,716 | Support "tags" yaml tag | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"IMO `DatasetMetadata` shouldn't crash with attributes that it doesn't know, btw",
"Yea this PR is mostly to have a validation that this field contains a list of strings.\r\n\r\nRegarding unknown fields, the tagging app currently returns an error if a field is unknown using the `DatasetMetadata`. We can change that though"
] | "2022-07-19T12:34:31Z" | "2022-07-20T13:44:50Z" | "2022-07-20T13:31:56Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4716.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4716",
"merged_at": "2022-07-20T13:31:56Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4716.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4716"
} | Added the "tags" YAML tag, so that users can specify data domain/topics keywords for dataset search | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4716/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4716/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5606 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5606/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5606/comments | https://api.github.com/repos/huggingface/datasets/issues/5606/events | https://github.com/huggingface/datasets/issues/5606 | 1,608,911,632 | I_kwDODunzps5f5gsQ | 5,606 | Add `Dataset.to_list` to the API | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
},
{
"color": "7057ff",
"default": true,
"description": "Good for newcomers",
"id": 1935892877,
"name": "good first issue",
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/50972773?v=4",
"events_url": "https://api.github.com/users/kyoto7250/events{/privacy}",
"followers_url": "https://api.github.com/users/kyoto7250/followers",
"following_url": "https://api.github.com/users/kyoto7250/following{/other_user}",
"gists_url": "https://api.github.com/users/kyoto7250/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/kyoto7250",
"id": 50972773,
"login": "kyoto7250",
"node_id": "MDQ6VXNlcjUwOTcyNzcz",
"organizations_url": "https://api.github.com/users/kyoto7250/orgs",
"received_events_url": "https://api.github.com/users/kyoto7250/received_events",
"repos_url": "https://api.github.com/users/kyoto7250/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/kyoto7250/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kyoto7250/subscriptions",
"type": "User",
"url": "https://api.github.com/users/kyoto7250"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/50972773?v=4",
"events_url": "https://api.github.com/users/kyoto7250/events{/privacy}",
"followers_url": "https://api.github.com/users/kyoto7250/followers",
"following_url": "https://api.github.com/users/kyoto7250/following{/other_user}",
"gists_url": "https://api.github.com/users/kyoto7250/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/kyoto7250",
"id": 50972773,
"login": "kyoto7250",
"node_id": "MDQ6VXNlcjUwOTcyNzcz",
"organizations_url": "https://api.github.com/users/kyoto7250/orgs",
"received_events_url": "https://api.github.com/users/kyoto7250/received_events",
"repos_url": "https://api.github.com/users/kyoto7250/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/kyoto7250/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kyoto7250/subscriptions",
"type": "User",
"url": "https://api.github.com/users/kyoto7250"
}
] | null | [
"Hello, I have an interest in this issue.\r\nIs the `Dataset.to_dict` you are describing correct in the code here?\r\n\r\nhttps://github.com/huggingface/datasets/blob/35b789e8f6826b6b5a6b48fcc2416c890a1f326a/src/datasets/arrow_dataset.py#L4633-L4667",
"Yes, this is where `Dataset.to_dict` is defined.",
"#self-assign"
] | "2023-03-03T16:17:10Z" | "2023-03-27T13:26:40Z" | "2023-03-27T13:26:40Z" | CONTRIBUTOR | null | null | null | Since there is `Dataset.from_list` in the API, we should also add `Dataset.to_list` to be consistent.
Regarding the implementation, we can re-use `Dataset.to_dict`'s code and replace the `to_pydict` calls with `to_pylist`. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5606/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5606/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5651 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5651/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5651/comments | https://api.github.com/repos/huggingface/datasets/issues/5651/events | https://github.com/huggingface/datasets/issues/5651 | 1,631,967,509 | I_kwDODunzps5hRdkV | 5,651 | expanduser in save_to_disk | {
"avatar_url": "https://avatars.githubusercontent.com/u/42400165?v=4",
"events_url": "https://api.github.com/users/RmZeta2718/events{/privacy}",
"followers_url": "https://api.github.com/users/RmZeta2718/followers",
"following_url": "https://api.github.com/users/RmZeta2718/following{/other_user}",
"gists_url": "https://api.github.com/users/RmZeta2718/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/RmZeta2718",
"id": 42400165,
"login": "RmZeta2718",
"node_id": "MDQ6VXNlcjQyNDAwMTY1",
"organizations_url": "https://api.github.com/users/RmZeta2718/orgs",
"received_events_url": "https://api.github.com/users/RmZeta2718/received_events",
"repos_url": "https://api.github.com/users/RmZeta2718/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/RmZeta2718/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/RmZeta2718/subscriptions",
"type": "User",
"url": "https://api.github.com/users/RmZeta2718"
} | [
{
"color": "7057ff",
"default": true,
"description": "Good for newcomers",
"id": 1935892877,
"name": "good first issue",
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/35114142?v=4",
"events_url": "https://api.github.com/users/benjaminbrown038/events{/privacy}",
"followers_url": "https://api.github.com/users/benjaminbrown038/followers",
"following_url": "https://api.github.com/users/benjaminbrown038/following{/other_user}",
"gists_url": "https://api.github.com/users/benjaminbrown038/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/benjaminbrown038",
"id": 35114142,
"login": "benjaminbrown038",
"node_id": "MDQ6VXNlcjM1MTE0MTQy",
"organizations_url": "https://api.github.com/users/benjaminbrown038/orgs",
"received_events_url": "https://api.github.com/users/benjaminbrown038/received_events",
"repos_url": "https://api.github.com/users/benjaminbrown038/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/benjaminbrown038/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/benjaminbrown038/subscriptions",
"type": "User",
"url": "https://api.github.com/users/benjaminbrown038"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/35114142?v=4",
"events_url": "https://api.github.com/users/benjaminbrown038/events{/privacy}",
"followers_url": "https://api.github.com/users/benjaminbrown038/followers",
"following_url": "https://api.github.com/users/benjaminbrown038/following{/other_user}",
"gists_url": "https://api.github.com/users/benjaminbrown038/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/benjaminbrown038",
"id": 35114142,
"login": "benjaminbrown038",
"node_id": "MDQ6VXNlcjM1MTE0MTQy",
"organizations_url": "https://api.github.com/users/benjaminbrown038/orgs",
"received_events_url": "https://api.github.com/users/benjaminbrown038/received_events",
"repos_url": "https://api.github.com/users/benjaminbrown038/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/benjaminbrown038/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/benjaminbrown038/subscriptions",
"type": "User",
"url": "https://api.github.com/users/benjaminbrown038"
}
] | null | [
"`save_to_disk` should indeed expand `~`. Marking it as a \"good first issue\".",
"#self-assign\r\n\r\nFile path to code: \r\n\r\nhttps://github.com/huggingface/datasets/blob/2.13.0/src/datasets/arrow_dataset.py#L1364\r\n\r\n@RmZeta2718 I created a pull request for this issue. ",
"Hello, \r\nIt says `save_to_disk` is deprecated in 2.8.0, so the alternative to this will be `storage_options`? \r\n\r\nhttps://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.save_to_disk",
"@ashikshafi08 I think you misunderstood the warning. The method `save_to_disk` is not deprecated only the optional parameter `fs`.\r\nAlso @benjaminbrown038 as I cannot find your PR I would like to work on this if you don't mind.",
"@mariosasko It's been several months and the PR is not reviewed. Could you please take a look? I assume this is not complicated and could be merged fairly soon."
] | "2023-03-20T12:02:18Z" | "2023-10-27T14:04:37Z" | "2023-10-27T14:04:37Z" | NONE | null | null | null | ### Describe the bug
save_to_disk() does not expand `~`
1. `dataset = load_datasets("any dataset")`
2. `dataset.save_to_disk("~/data")`
3. a folder named "~" created in current folder
4. FileNotFoundError is raised, because the expanded path does not exist (`/home/<user>/data`)
related issue https://github.com/huggingface/transformers/issues/10628
### Steps to reproduce the bug
As described above.
### Expected behavior
expanduser correctly
### Environment info
- datasets 2.10.1
- python 3.10 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5651/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5651/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/2226 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2226/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2226/comments | https://api.github.com/repos/huggingface/datasets/issues/2226/events | https://github.com/huggingface/datasets/issues/2226 | 859,720,302 | MDU6SXNzdWU4NTk3MjAzMDI= | 2,226 | Batched map fails when removing all columns | {
"avatar_url": "https://avatars.githubusercontent.com/u/2743060?v=4",
"events_url": "https://api.github.com/users/villmow/events{/privacy}",
"followers_url": "https://api.github.com/users/villmow/followers",
"following_url": "https://api.github.com/users/villmow/following{/other_user}",
"gists_url": "https://api.github.com/users/villmow/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/villmow",
"id": 2743060,
"login": "villmow",
"node_id": "MDQ6VXNlcjI3NDMwNjA=",
"organizations_url": "https://api.github.com/users/villmow/orgs",
"received_events_url": "https://api.github.com/users/villmow/received_events",
"repos_url": "https://api.github.com/users/villmow/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/villmow/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/villmow/subscriptions",
"type": "User",
"url": "https://api.github.com/users/villmow"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
}
] | null | [
"I found the problem. I called `set_format` on some columns before. This makes it crash. Here is a complete example to reproduce:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\nsst = load_dataset(\"sst\")\r\nsst.set_format(\"torch\", columns=[\"label\"], output_all_columns=True)\r\nds = sst[\"train\"]\r\n\r\n# crashes\r\nds.map(\r\n lambda x: {\"a\": list(range(20))},\r\n remove_columns=ds.column_names,\r\n load_from_cache_file=False,\r\n num_proc=1,\r\n batched=True,\r\n)\r\n```",
"Thanks for reporting and for providing this code to reproduce the issue, this is really helpful !",
"I merged a fix, it should work on `master` now :)\r\nWe'll do a new release soon !"
] | "2021-04-16T11:17:01Z" | "2022-10-05T17:32:15Z" | "2022-10-05T17:32:15Z" | NONE | null | null | null | Hi @lhoestq ,
I'm hijacking this issue, because I'm currently trying to do the approach you recommend:
> Currently the optimal setup for single-column computations is probably to do something like
>
> ```python
> result = dataset.map(f, input_columns="my_col", remove_columns=dataset.column_names)
> ```
Here is my code: (see edit, in which I added a simplified version
```
This is the error:
```bash
pyarrow.lib.ArrowInvalid: Column 1 named tokens expected length 8964 but got length 1000
```
I wonder why this error occurs, when I delete every column? Can you give me a hint?
### Edit:
I preprocessed my dataset before (using map with the features argument) and saved it to disk. May this be part of the error? I can iterate over the
complete dataset and print every sample before calling map. There seems to be no other problem with the dataset.
I tried to simplify the code that crashes:
```python
# works
log.debug(dataset.column_names)
log.debug(dataset)
for i, sample in enumerate(dataset):
log.debug(i, sample)
# crashes
counted_dataset = dataset.map(
lambda x: {"a": list(range(20))},
input_columns=column,
remove_columns=dataset.column_names,
load_from_cache_file=False,
num_proc=num_workers,
batched=True,
)
```
```
pyarrow.lib.ArrowInvalid: Column 1 named tokens expected length 20 but got length 1000
```
Edit2:
May this be a problem with a schema I set when preprocessing the dataset before? I tried to add the `features` argument to the function and then I get a new error:
```python
# crashes
counted_dataset = dataset.map(
lambda x: {"a": list(range(20))},
input_columns=column,
remove_columns=dataset.column_names,
load_from_cache_file=False,
num_proc=num_workers,
batched=True,
features=datasets.Features(
{
"a": datasets.Sequence(datasets.Value("int32"))
}
)
)
```
```
File "env/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1704, in _map_single
writer.write_batch(batch)
File "env/lib/python3.8/site-packages/datasets/arrow_writer.py", line 312, in write_batch
col_type = schema.field(col).type if schema is not None else None
File "pyarrow/types.pxi", line 1341, in pyarrow.lib.Schema.field
KeyError: 'Column tokens does not exist in schema'
```
_Originally posted by @villmow in https://github.com/huggingface/datasets/issues/2193#issuecomment-820230874_ | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2226/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2226/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/2811 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2811/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2811/comments | https://api.github.com/repos/huggingface/datasets/issues/2811/events | https://github.com/huggingface/datasets/pull/2811 | 972,522,480 | MDExOlB1bGxSZXF1ZXN0NzE0MTAzNDIy | 2,811 | Fix stream oscar | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"One additional note: if we can try to not change the code of oscar.py too often, I'm sure users that have it in their cache directory will be happy to not have to redownload it every time they update the library ;)\r\n\r\n(since changing the code changes the cache directory of the dataset)",
"I don't think this is confusing for users because users don't even know we have patched `open`. The only thing users care is that if the pass `streaming=True`, they want to be able to load the dataset in streaming mode.\r\n\r\nI don't see any other dataset where patching `open` with `fsspec.open`+`compression` is an \"underlying issue\". Are there other datasets where this is an issue?\r\n\r\nThe only dataset where this was an issue is in oscar and the issue is indeed due to the additional `open` you added inside `zip.open`.",
"Closing this one since https://github.com/huggingface/datasets/pull/2822 reverted the change of behavior of `open`"
] | "2021-08-17T10:10:59Z" | "2021-08-26T10:26:15Z" | "2021-08-26T10:26:14Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2811.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2811",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/2811.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2811"
} | Previously, an additional `open` was added to oscar to make it stream-compatible: 587bbb94e891b22863b312b99696e32708c379f4.
This was argued that might be problematic: https://github.com/huggingface/datasets/pull/2786#discussion_r690045921
This PR:
- removes that additional `open`
- patches `gzip.open` with `xopen` + `compression="gzip"` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2811/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2811/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4282 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4282/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4282/comments | https://api.github.com/repos/huggingface/datasets/issues/4282/events | https://github.com/huggingface/datasets/pull/4282 | 1,225,616,545 | PR_kwDODunzps43TZYL | 4,282 | Don't do unnecessary list type casting to avoid replacing None values by empty lists | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Quick question about the message in the warning. You say \"will be fixed in a future major version\" but don't you mean \"will raise an error in a future major version\"?",
"Right ! Good catch, thanks, I updated the message to say \"will raise an error in a future major version\""
] | "2022-05-04T16:37:01Z" | "2022-05-06T10:43:58Z" | "2022-05-06T10:37:00Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4282.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4282",
"merged_at": "2022-05-06T10:37:00Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4282.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4282"
} | In certain cases, `None` values are replaced by empty lists when casting feature types.
It happens every time you cast an array of nested lists like [None, [0, 1, 2, 3]] to a different type (to change the integer precision for example). In this case you'd get [[], [0, 1, 2, 3]] for example. This issue comes from PyArrow, see the discussion in https://github.com/huggingface/datasets/issues/3676
This issue also happens when no type casting is needed, because casting is supposed to be a no-op in this case. But as https://github.com/huggingface/datasets/issues/3676 shown, it's not the case and `None` are replaced by empty lists even if we cast to the exact same type.
In this PR I just workaround this bug in the case where no type casting is needed. In particular, I only call `pa.ListArray.from_arrays` only when necessary.
I also added a warning when some `None` are effectively replaced by empty lists. I wanted to raise an error in this case, but maybe we should wait a major update to do so
This PR fixes this particular case, that is occurring in `run_qa.py` in `transformers`:
```python
from datasets import Dataset
ds = Dataset.from_dict({"a": range(4)})
ds = ds.map(lambda x: {"b": [[None, [0]]]}, batched=True, batch_size=1, remove_columns=["a"])
print(ds.to_pandas())
# before:
# b
# 0 [None, [0]]
# 1 [[], [0]]
# 2 [[], [0]]
# 3 [[], [0]]
#
# now:
# b
# 0 [None, [0]]
# 1 [None, [0]]
# 2 [None, [0]]
# 3 [None, [0]]
```
cc @sgugger | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4282/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4282/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/976 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/976/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/976/comments | https://api.github.com/repos/huggingface/datasets/issues/976/events | https://github.com/huggingface/datasets/pull/976 | 754,826,146 | MDExOlB1bGxSZXF1ZXN0NTMwNjU1NzM5 | 976 | Arabic pos dialect | {
"avatar_url": "https://avatars.githubusercontent.com/u/26722925?v=4",
"events_url": "https://api.github.com/users/mcmillanmajora/events{/privacy}",
"followers_url": "https://api.github.com/users/mcmillanmajora/followers",
"following_url": "https://api.github.com/users/mcmillanmajora/following{/other_user}",
"gists_url": "https://api.github.com/users/mcmillanmajora/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mcmillanmajora",
"id": 26722925,
"login": "mcmillanmajora",
"node_id": "MDQ6VXNlcjI2NzIyOTI1",
"organizations_url": "https://api.github.com/users/mcmillanmajora/orgs",
"received_events_url": "https://api.github.com/users/mcmillanmajora/received_events",
"repos_url": "https://api.github.com/users/mcmillanmajora/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mcmillanmajora/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mcmillanmajora/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mcmillanmajora"
} | [] | closed | false | null | [] | null | [
"looks like this PR includes changes about many other files than the oens for Araboc POS Dialect\r\n\r\nCan you create a another branch and another PR please ?",
"Sorry! I'm not sure how I managed to do that. I'll make a new branch."
] | "2020-12-02T00:21:13Z" | "2020-12-09T17:30:32Z" | "2020-12-09T17:30:32Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/976.diff",
"html_url": "https://github.com/huggingface/datasets/pull/976",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/976.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/976"
} | A README.md and loading script for the Arabic POS Dialect dataset. The README is missing the sections on personal information, biases, and limitations, as it would probably be better for those to be filled by someone who can read the contents of the dataset and is familiar with Arabic NLP. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/976/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/976/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4657 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4657/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4657/comments | https://api.github.com/repos/huggingface/datasets/issues/4657/events | https://github.com/huggingface/datasets/issues/4657 | 1,296,743,133 | I_kwDODunzps5NSrrd | 4,657 | Add SQuAD2.0 Dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/4755430?v=4",
"events_url": "https://api.github.com/users/omarespejel/events{/privacy}",
"followers_url": "https://api.github.com/users/omarespejel/followers",
"following_url": "https://api.github.com/users/omarespejel/following{/other_user}",
"gists_url": "https://api.github.com/users/omarespejel/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/omarespejel",
"id": 4755430,
"login": "omarespejel",
"node_id": "MDQ6VXNlcjQ3NTU0MzA=",
"organizations_url": "https://api.github.com/users/omarespejel/orgs",
"received_events_url": "https://api.github.com/users/omarespejel/received_events",
"repos_url": "https://api.github.com/users/omarespejel/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/omarespejel/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/omarespejel/subscriptions",
"type": "User",
"url": "https://api.github.com/users/omarespejel"
} | [
{
"color": "e99695",
"default": false,
"description": "Requesting to add a new dataset",
"id": 2067376369,
"name": "dataset request",
"node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request"
}
] | closed | false | null | [] | null | [
"Hey, It's already present [here](https://huggingface.co/datasets/squad_v2) ",
"Hi! This dataset is indeed already available on the Hub. Closing."
] | "2022-07-07T03:19:36Z" | "2022-07-12T16:14:52Z" | "2022-07-12T16:14:52Z" | NONE | null | null | null | ## Adding a Dataset
- **Name:** *SQuAD2.0*
- **Description:** *Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.*
- **Paper:** *https://aclanthology.org/P18-2124.pdf*
- **Data:** *https://rajpurkar.github.io/SQuAD-explorer/*
- **Motivation:** *Dataset for training and evaluating models of conversational response*
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4657/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4657/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/1677 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1677/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1677/comments | https://api.github.com/repos/huggingface/datasets/issues/1677/events | https://github.com/huggingface/datasets/pull/1677 | 777,553,383 | MDExOlB1bGxSZXF1ZXN0NTQ3ODE3ODI1 | 1,677 | Switchboard Dialog Act Corpus added under `datasets/swda` | {
"avatar_url": "https://avatars.githubusercontent.com/u/22454783?v=4",
"events_url": "https://api.github.com/users/gmihaila/events{/privacy}",
"followers_url": "https://api.github.com/users/gmihaila/followers",
"following_url": "https://api.github.com/users/gmihaila/following{/other_user}",
"gists_url": "https://api.github.com/users/gmihaila/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/gmihaila",
"id": 22454783,
"login": "gmihaila",
"node_id": "MDQ6VXNlcjIyNDU0Nzgz",
"organizations_url": "https://api.github.com/users/gmihaila/orgs",
"received_events_url": "https://api.github.com/users/gmihaila/received_events",
"repos_url": "https://api.github.com/users/gmihaila/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/gmihaila/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gmihaila/subscriptions",
"type": "User",
"url": "https://api.github.com/users/gmihaila"
} | [] | closed | false | null | [] | null | [
"Need to fix code formatting."
] | "2021-01-03T01:16:42Z" | "2021-01-03T02:55:57Z" | "2021-01-03T02:55:56Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1677.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1677",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/1677.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1677"
} | Pleased to announced that I added my first dataset **Switchboard Dialog Act Corpus**.
I think this is an important datasets to be added since it is the only one related to dialogue act classification.
Hope the pull request is ok. Wasn't able to see any special formatting for the pull request form.
The Switchboard Dialog Act Corpus (SwDA) extends the Switchboard-1 Telephone Speech Corpus, Release 2,
with turn/utterance-level dialog-act tags. The tags summarize syntactic, semantic, and pragmatic information
about the associated turn. The SwDA project was undertaken at UC Boulder in the late 1990s.
[webpage](http://compprag.christopherpotts.net/swda.html)
[repo](https://github.com/NathanDuran/Switchboard-Corpus/raw/master/swda_data/)
Please contact me for any support!
All tests passed and followed all steps in the contribution guide!
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1677/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1677/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2419 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2419/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2419/comments | https://api.github.com/repos/huggingface/datasets/issues/2419/events | https://github.com/huggingface/datasets/pull/2419 | 904,347,339 | MDExOlB1bGxSZXF1ZXN0NjU1NTA1OTM1 | 2,419 | adds license information for DailyDialog. | {
"avatar_url": "https://avatars.githubusercontent.com/u/11574558?v=4",
"events_url": "https://api.github.com/users/aditya2211/events{/privacy}",
"followers_url": "https://api.github.com/users/aditya2211/followers",
"following_url": "https://api.github.com/users/aditya2211/following{/other_user}",
"gists_url": "https://api.github.com/users/aditya2211/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/aditya2211",
"id": 11574558,
"login": "aditya2211",
"node_id": "MDQ6VXNlcjExNTc0NTU4",
"organizations_url": "https://api.github.com/users/aditya2211/orgs",
"received_events_url": "https://api.github.com/users/aditya2211/received_events",
"repos_url": "https://api.github.com/users/aditya2211/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/aditya2211/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/aditya2211/subscriptions",
"type": "User",
"url": "https://api.github.com/users/aditya2211"
} | [] | closed | false | null | [] | null | [
"Thanks! Can you also add it as metadata in the YAML block at the top of the file?\r\n\r\nShould be in the form:\r\n\r\n```\r\nlicenses:\r\n- cc-by-sa-4.0\r\n```",
"seems like we need to add all the other tags ? \r\n``` \r\nif error_messages:\r\n> raise ValueError(\"\\n\".join(error_messages))\r\nE ValueError: The following issues have been found in the dataset cards:\r\nE YAML tags:\r\nE __init__() missing 8 required positional arguments: 'annotations_creators', 'language_creators', 'languages', 'multilinguality', 'size_categories', 'source_datasets', 'task_categories', and 'task_ids'\r\n```",
"I'll let @lhoestq or @yjernite chime in (and maybe complete/merge). Thanks!",
"Looks like CircleCI has an incident. Let's wait for it to be working again and make sure the CI is green",
"The remaining error is unrelated to this PR, merging"
] | "2021-05-27T23:03:42Z" | "2021-05-31T13:16:52Z" | "2021-05-31T13:16:52Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/2419.diff",
"html_url": "https://github.com/huggingface/datasets/pull/2419",
"merged_at": "2021-05-31T13:16:52Z",
"patch_url": "https://github.com/huggingface/datasets/pull/2419.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/2419"
} | {
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2419/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2419/timeline | null | null | true |
|
https://api.github.com/repos/huggingface/datasets/issues/3859 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3859/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3859/comments | https://api.github.com/repos/huggingface/datasets/issues/3859/events | https://github.com/huggingface/datasets/issues/3859 | 1,162,559,333 | I_kwDODunzps5FSz9l | 3,859 | Unable to dowload big_patent (FileNotFoundError) | {
"avatar_url": "https://avatars.githubusercontent.com/u/25265140?v=4",
"events_url": "https://api.github.com/users/slvcsl/events{/privacy}",
"followers_url": "https://api.github.com/users/slvcsl/followers",
"following_url": "https://api.github.com/users/slvcsl/following{/other_user}",
"gists_url": "https://api.github.com/users/slvcsl/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/slvcsl",
"id": 25265140,
"login": "slvcsl",
"node_id": "MDQ6VXNlcjI1MjY1MTQw",
"organizations_url": "https://api.github.com/users/slvcsl/orgs",
"received_events_url": "https://api.github.com/users/slvcsl/received_events",
"repos_url": "https://api.github.com/users/slvcsl/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/slvcsl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/slvcsl/subscriptions",
"type": "User",
"url": "https://api.github.com/users/slvcsl"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
},
{
"color": "cfd3d7",
"default": true,
"description": "This issue or pull request already exists",
"id": 1935892865,
"name": "duplicate",
"node_id": "MDU6TGFiZWwxOTM1ODkyODY1",
"url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate"
}
] | closed | false | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | null | [
"Hi @slvcsl, thanks for reporting.\r\n\r\nYesterday we just made a patch release of our `datasets` library that fixes this issue: version 1.18.4.\r\nhttps://pypi.org/project/datasets/#history\r\n\r\nPlease, feel free to update `datasets` library to the latest version: \r\n```shell\r\npip install -U datasets\r\n```\r\nAnd then you should force redownload of the data file to update your local cache: \r\n```python\r\nds = load_dataset(\"big_patent\", \"g\", split=\"validation\", download_mode=\"force_redownload\")\r\n```\r\n- Note that before the fix, you just downloaded and cached the Google Drive virus scan warning page, instead of the data file\r\n\r\nThis issue was already reported \r\n- #3784\r\n\r\nand its root cause is a change in the Google Drive service. See:\r\n- #3786 \r\n\r\nWe already fixed it. See:\r\n- #3787 \r\n"
] | "2022-03-08T11:47:12Z" | "2022-03-08T13:04:09Z" | "2022-03-08T13:04:04Z" | NONE | null | null | null | ## Describe the bug
I am trying to download some splits of the big_patent dataset, using the following code:
`ds = load_dataset("big_patent", "g", split="validation", download_mode="force_redownload")
`
However, this leads to a FileNotFoundError.
FileNotFoundError Traceback (most recent call last)
[<ipython-input-3-8d8a745706a9>](https://localhost:8080/#) in <module>()
1 from datasets import load_dataset
----> 2 ds = load_dataset("big_patent", "g", split="validation", download_mode="force_redownload")
8 frames
[/usr/local/lib/python3.7/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, script_version, **config_kwargs)
1705 ignore_verifications=ignore_verifications,
1706 try_from_hf_gcs=try_from_hf_gcs,
-> 1707 use_auth_token=use_auth_token,
1708 )
1709
[/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs)
593 if not downloaded_from_gcs:
594 self._download_and_prepare(
--> 595 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
596 )
597 # Sync info
[/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
659 split_dict = SplitDict(dataset_name=self.name)
660 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
--> 661 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
662
663 # Checksums verification
[/root/.cache/huggingface/modules/datasets_modules/datasets/big_patent/bdefa7c0b39fba8bba1c6331b70b738e30d63c8ad4567f983ce315a5fef6131c/big_patent.py](https://localhost:8080/#) in _split_generators(self, dl_manager)
123 split_types = ["train", "val", "test"]
124 extract_paths = dl_manager.extract(
--> 125 {k: os.path.join(dl_path, "bigPatentData", k + ".tar.gz") for k in split_types}
126 )
127 extract_paths = {k: os.path.join(extract_paths[k], k) for k in split_types}
[/usr/local/lib/python3.7/dist-packages/datasets/utils/download_manager.py](https://localhost:8080/#) in extract(self, path_or_paths, num_proc)
282 download_config.extract_compressed_file = True
283 extracted_paths = map_nested(
--> 284 partial(cached_path, download_config=download_config), path_or_paths, num_proc=num_proc, disable_tqdm=False
285 )
286 path_or_paths = NestedDataStructure(path_or_paths)
[/usr/local/lib/python3.7/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, types, disable_tqdm)
260 mapped = [
261 _single_map_nested((function, obj, types, None, True))
--> 262 for obj in utils.tqdm(iterable, disable=disable_tqdm)
263 ]
264 else:
[/usr/local/lib/python3.7/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in <listcomp>(.0)
260 mapped = [
261 _single_map_nested((function, obj, types, None, True))
--> 262 for obj in utils.tqdm(iterable, disable=disable_tqdm)
263 ]
264 else:
[/usr/local/lib/python3.7/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in _single_map_nested(args)
194 # Singleton first to spare some computation
195 if not isinstance(data_struct, dict) and not isinstance(data_struct, types):
--> 196 return function(data_struct)
197
198 # Reduce logging to keep things readable in multiprocessing with tqdm
[/usr/local/lib/python3.7/dist-packages/datasets/utils/file_utils.py](https://localhost:8080/#) in cached_path(url_or_filename, download_config, **download_kwargs)
314 elif is_local_path(url_or_filename):
315 # File, but it doesn't exist.
--> 316 raise FileNotFoundError(f"Local file {url_or_filename} doesn't exist")
317 else:
318 # Something unknown
FileNotFoundError: Local file /root/.cache/huggingface/datasets/downloads/extracted/ad068abb3e11f9f2f5440b62e37eb2b03ee515df9de1637c55cd1793b68668b2/bigPatentData/train.tar.gz doesn't exist
I have tried this in a number of machines, including on Colab, so I think this is not environment dependent.
How do I load the bigPatent dataset? | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3859/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3859/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5072 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5072/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5072/comments | https://api.github.com/repos/huggingface/datasets/issues/5072/events | https://github.com/huggingface/datasets/pull/5072 | 1,397,765,531 | PR_kwDODunzps5ANoo5 | 5,072 | Image & Audio formatting for numpy/torch/tf/jax | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"I just added a consolidation step so that numpy arrays or tensors of images are stacked together if the shapes match, instead of having lists of tensors\r\n\r\nFeel free to review @mariosasko :)",
"I added a few lines in the docs and reverted the ragged numpy array change :)\r\n\r\nready for another review @mariosasko !"
] | "2022-10-05T13:07:03Z" | "2022-10-10T13:24:10Z" | "2022-10-10T13:21:32Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/5072.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5072",
"merged_at": "2022-10-10T13:21:32Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5072.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5072"
} | Added support for image and audio formatting for numpy, torch, tf and jax.
For images, the dtype used is the one of the image (the one returned by PIL.Image), e.g. uint8
I also added support for string, binary and None types. In particular for torch and jax, strings are kept unchanged (previously it was returning an error because you can't create a tensor of strings) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5072/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/5072/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/2850 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/2850/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/2850/comments | https://api.github.com/repos/huggingface/datasets/issues/2850/events | https://github.com/huggingface/datasets/issues/2850 | 982,654,644 | MDU6SXNzdWU5ODI2NTQ2NDQ= | 2,850 | Wound segmentation datasets | {
"avatar_url": "https://avatars.githubusercontent.com/u/7246357?v=4",
"events_url": "https://api.github.com/users/osanseviero/events{/privacy}",
"followers_url": "https://api.github.com/users/osanseviero/followers",
"following_url": "https://api.github.com/users/osanseviero/following{/other_user}",
"gists_url": "https://api.github.com/users/osanseviero/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/osanseviero",
"id": 7246357,
"login": "osanseviero",
"node_id": "MDQ6VXNlcjcyNDYzNTc=",
"organizations_url": "https://api.github.com/users/osanseviero/orgs",
"received_events_url": "https://api.github.com/users/osanseviero/received_events",
"repos_url": "https://api.github.com/users/osanseviero/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/osanseviero/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/osanseviero/subscriptions",
"type": "User",
"url": "https://api.github.com/users/osanseviero"
} | [
{
"color": "e99695",
"default": false,
"description": "Requesting to add a new dataset",
"id": 2067376369,
"name": "dataset request",
"node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request"
},
{
"color": "bfdadc",
"default": false,
"description": "Vision datasets",
"id": 3608941089,
"name": "vision",
"node_id": "LA_kwDODunzps7XHBIh",
"url": "https://api.github.com/repos/huggingface/datasets/labels/vision"
}
] | open | false | null | [] | null | [] | "2021-08-30T10:44:32Z" | "2021-12-08T12:02:00Z" | null | MEMBER | null | null | null | ## Adding a Dataset
- **Name:** Wound segmentation datasets
- **Description:** annotated wound image dataset
- **Paper:** https://www.nature.com/articles/s41598-020-78799-w
- **Data:** https://github.com/uwm-bigdata/wound-segmentation
- **Motivation:** Interesting simple image dataset, useful for segmentation, with visibility due to http://www.miccai.org/special-interest-groups/challenges/ and https://fusc.grand-challenge.org/
Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/2850/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/2850/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6448 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6448/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6448/comments | https://api.github.com/repos/huggingface/datasets/issues/6448/events | https://github.com/huggingface/datasets/pull/6448 | 2,008,614,985 | PR_kwDODunzps5gQBsE | 6,448 | Use parquet export if possible | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005177 / 0.011353 (-0.006176) | 0.003002 / 0.011008 (-0.008006) | 0.061915 / 0.038508 (0.023407) | 0.052065 / 0.023109 (0.028956) | 0.246114 / 0.275898 (-0.029784) | 0.273974 / 0.323480 (-0.049506) | 0.002983 / 0.007986 (-0.005003) | 0.002444 / 0.004328 (-0.001885) | 0.048424 / 0.004250 (0.044174) | 0.039609 / 0.037052 (0.002557) | 0.257771 / 0.258489 (-0.000718) | 0.286228 / 0.293841 (-0.007613) | 0.023925 / 0.128546 (-0.104621) | 0.007248 / 0.075646 (-0.068398) | 0.202205 / 0.419271 (-0.217067) | 0.037124 / 0.043533 (-0.006409) | 0.254872 / 0.255139 (-0.000267) | 0.275252 / 0.283200 (-0.007947) | 0.019251 / 0.141683 (-0.122432) | 1.074921 / 1.452155 (-0.377234) | 1.146515 / 1.492716 (-0.346202) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091998 / 0.018006 (0.073992) | 0.299146 / 0.000490 (0.298656) | 0.000240 / 0.000200 (0.000040) | 0.000054 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019266 / 0.037411 (-0.018145) | 0.062560 / 0.014526 (0.048034) | 0.075012 / 0.176557 (-0.101544) | 0.120077 / 0.737135 (-0.617058) | 0.077851 / 0.296338 (-0.218488) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290629 / 0.215209 (0.075420) | 2.823847 / 2.077655 (0.746192) | 1.516966 / 1.504120 (0.012846) | 1.393383 / 1.541195 (-0.147812) | 1.427688 / 1.468490 (-0.040802) | 0.407456 / 4.584777 (-4.177321) | 2.378280 / 3.745712 (-1.367433) | 2.689800 / 5.269862 (-2.580061) | 1.588037 / 4.565676 (-2.977640) | 0.045837 / 0.424275 (-0.378438) | 0.004884 / 0.007607 (-0.002724) | 0.340464 / 0.226044 (0.114420) | 3.377158 / 2.268929 (1.108230) | 1.897854 / 55.444624 (-53.546771) | 1.588285 / 6.876477 (-5.288191) | 1.651708 / 2.142072 (-0.490364) | 0.482018 / 4.805227 (-4.323209) | 0.101583 / 6.500664 (-6.399081) | 0.042306 / 0.075469 (-0.033163) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.948659 / 1.841788 (-0.893128) | 11.809778 / 8.074308 (3.735470) | 10.481896 / 10.191392 (0.290504) | 0.143538 / 0.680424 (-0.536885) | 0.014105 / 0.534201 (-0.520096) | 0.272278 / 0.579283 (-0.307005) | 0.264241 / 0.434364 (-0.170123) | 0.307187 / 0.540337 (-0.233150) | 0.401270 / 1.386936 (-0.985666) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004831 / 0.011353 (-0.006521) | 0.002896 / 0.011008 (-0.008112) | 0.047479 / 0.038508 (0.008971) | 0.050665 / 0.023109 (0.027555) | 0.275243 / 0.275898 (-0.000655) | 0.296547 / 0.323480 (-0.026933) | 0.004022 / 0.007986 (-0.003963) | 0.002425 / 0.004328 (-0.001904) | 0.047086 / 0.004250 (0.042836) | 0.039611 / 0.037052 (0.002558) | 0.275272 / 0.258489 (0.016783) | 0.302429 / 0.293841 (0.008588) | 0.024308 / 0.128546 (-0.104238) | 0.007167 / 0.075646 (-0.068479) | 0.052825 / 0.419271 (-0.366446) | 0.032319 / 0.043533 (-0.011213) | 0.273334 / 0.255139 (0.018195) | 0.291161 / 0.283200 (0.007961) | 0.017918 / 0.141683 (-0.123764) | 1.110005 / 1.452155 (-0.342150) | 1.176616 / 1.492716 (-0.316100) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092478 / 0.018006 (0.074471) | 0.311431 / 0.000490 (0.310942) | 0.000237 / 0.000200 (0.000037) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021979 / 0.037411 (-0.015432) | 0.080617 / 0.014526 (0.066091) | 0.081534 / 0.176557 (-0.095023) | 0.121073 / 0.737135 (-0.616062) | 0.083235 / 0.296338 (-0.213104) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289527 / 0.215209 (0.074318) | 2.839668 / 2.077655 (0.762013) | 1.601737 / 1.504120 (0.097617) | 1.496028 / 1.541195 (-0.045167) | 1.511933 / 1.468490 (0.043443) | 0.399819 / 4.584777 (-4.184958) | 2.394147 / 3.745712 (-1.351565) | 2.520767 / 5.269862 (-2.749095) | 1.589496 / 4.565676 (-2.976180) | 0.046673 / 0.424275 (-0.377602) | 0.004858 / 0.007607 (-0.002749) | 0.357986 / 0.226044 (0.131941) | 3.376217 / 2.268929 (1.107289) | 1.981853 / 55.444624 (-53.462771) | 1.682240 / 6.876477 (-5.194236) | 1.830643 / 2.142072 (-0.311429) | 0.478286 / 4.805227 (-4.326941) | 0.099589 / 6.500664 (-6.401075) | 0.041173 / 0.075469 (-0.034296) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985160 / 1.841788 (-0.856628) | 12.312963 / 8.074308 (4.238655) | 10.577225 / 10.191392 (0.385833) | 0.130167 / 0.680424 (-0.550257) | 0.016657 / 0.534201 (-0.517544) | 0.271330 / 0.579283 (-0.307953) | 0.276979 / 0.434364 (-0.157385) | 0.304904 / 0.540337 (-0.235434) | 0.412090 / 1.386936 (-0.974846) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1adc80151e892122ecb60f4e0b4572b136b2dd47 \"CML watermark\")\n",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6448). All of your documentation changes will be reflected on that endpoint.",
"hooray! very excited about this",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005039 / 0.011353 (-0.006314) | 0.003577 / 0.011008 (-0.007431) | 0.062892 / 0.038508 (0.024384) | 0.056334 / 0.023109 (0.033225) | 0.252281 / 0.275898 (-0.023617) | 0.274945 / 0.323480 (-0.048535) | 0.003906 / 0.007986 (-0.004080) | 0.002483 / 0.004328 (-0.001845) | 0.049006 / 0.004250 (0.044756) | 0.038375 / 0.037052 (0.001323) | 0.257376 / 0.258489 (-0.001113) | 0.292512 / 0.293841 (-0.001328) | 0.027134 / 0.128546 (-0.101412) | 0.010579 / 0.075646 (-0.065068) | 0.212021 / 0.419271 (-0.207250) | 0.035851 / 0.043533 (-0.007682) | 0.258076 / 0.255139 (0.002937) | 0.271758 / 0.283200 (-0.011442) | 0.018222 / 0.141683 (-0.123461) | 1.120481 / 1.452155 (-0.331674) | 1.187007 / 1.492716 (-0.305710) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094986 / 0.018006 (0.076980) | 0.302121 / 0.000490 (0.301631) | 0.000211 / 0.000200 (0.000011) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019260 / 0.037411 (-0.018152) | 0.062909 / 0.014526 (0.048383) | 0.075644 / 0.176557 (-0.100912) | 0.120966 / 0.737135 (-0.616170) | 0.076678 / 0.296338 (-0.219661) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286754 / 0.215209 (0.071545) | 2.797467 / 2.077655 (0.719812) | 1.436798 / 1.504120 (-0.067322) | 1.315032 / 1.541195 (-0.226163) | 1.367841 / 1.468490 (-0.100649) | 0.578917 / 4.584777 (-4.005860) | 2.439773 / 3.745712 (-1.305939) | 2.932779 / 5.269862 (-2.337082) | 1.843895 / 4.565676 (-2.721782) | 0.063351 / 0.424275 (-0.360925) | 0.004998 / 0.007607 (-0.002610) | 0.347385 / 0.226044 (0.121340) | 3.449969 / 2.268929 (1.181040) | 1.857734 / 55.444624 (-53.586890) | 1.541341 / 6.876477 (-5.335136) | 1.574915 / 2.142072 (-0.567158) | 0.660178 / 4.805227 (-4.145049) | 0.117686 / 6.500664 (-6.382978) | 0.042602 / 0.075469 (-0.032867) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.937735 / 1.841788 (-0.904052) | 11.962091 / 8.074308 (3.887783) | 10.401715 / 10.191392 (0.210323) | 0.142200 / 0.680424 (-0.538224) | 0.014137 / 0.534201 (-0.520064) | 0.289853 / 0.579283 (-0.289430) | 0.267100 / 0.434364 (-0.167264) | 0.323401 / 0.540337 (-0.216936) | 0.418665 / 1.386936 (-0.968271) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005480 / 0.011353 (-0.005873) | 0.003401 / 0.011008 (-0.007607) | 0.049304 / 0.038508 (0.010796) | 0.062043 / 0.023109 (0.038934) | 0.270571 / 0.275898 (-0.005327) | 0.295226 / 0.323480 (-0.028254) | 0.004152 / 0.007986 (-0.003834) | 0.002511 / 0.004328 (-0.001817) | 0.048480 / 0.004250 (0.044229) | 0.043964 / 0.037052 (0.006912) | 0.273545 / 0.258489 (0.015056) | 0.295152 / 0.293841 (0.001311) | 0.029224 / 0.128546 (-0.099322) | 0.010629 / 0.075646 (-0.065018) | 0.057433 / 0.419271 (-0.361839) | 0.033115 / 0.043533 (-0.010418) | 0.269893 / 0.255139 (0.014754) | 0.288658 / 0.283200 (0.005459) | 0.018216 / 0.141683 (-0.123467) | 1.123039 / 1.452155 (-0.329116) | 1.182892 / 1.492716 (-0.309825) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095948 / 0.018006 (0.077942) | 0.305811 / 0.000490 (0.305321) | 0.000221 / 0.000200 (0.000021) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022996 / 0.037411 (-0.014415) | 0.073836 / 0.014526 (0.059310) | 0.082658 / 0.176557 (-0.093899) | 0.121970 / 0.737135 (-0.615166) | 0.086096 / 0.296338 (-0.210242) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291032 / 0.215209 (0.075823) | 2.864613 / 2.077655 (0.786958) | 1.567530 / 1.504120 (0.063410) | 1.460291 / 1.541195 (-0.080903) | 1.527066 / 1.468490 (0.058576) | 0.571160 / 4.584777 (-4.013617) | 2.465261 / 3.745712 (-1.280451) | 2.915547 / 5.269862 (-2.354314) | 1.835822 / 4.565676 (-2.729855) | 0.064328 / 0.424275 (-0.359947) | 0.005061 / 0.007607 (-0.002546) | 0.357105 / 0.226044 (0.131061) | 3.491363 / 2.268929 (1.222435) | 1.943213 / 55.444624 (-53.501412) | 1.675778 / 6.876477 (-5.200699) | 1.719016 / 2.142072 (-0.423057) | 0.658993 / 4.805227 (-4.146235) | 0.122320 / 6.500664 (-6.378344) | 0.049030 / 0.075469 (-0.026439) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.964762 / 1.841788 (-0.877025) | 12.367251 / 8.074308 (4.292943) | 10.886213 / 10.191392 (0.694821) | 0.141533 / 0.680424 (-0.538891) | 0.015646 / 0.534201 (-0.518555) | 0.288583 / 0.579283 (-0.290700) | 0.280353 / 0.434364 (-0.154010) | 0.329095 / 0.540337 (-0.211242) | 0.565118 / 1.386936 (-0.821818) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#493bf695dc3ee6cc81bfd0aae6a38f70547bb752 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006475 / 0.011353 (-0.004878) | 0.004080 / 0.011008 (-0.006928) | 0.066479 / 0.038508 (0.027971) | 0.073270 / 0.023109 (0.050161) | 0.244412 / 0.275898 (-0.031486) | 0.273778 / 0.323480 (-0.049702) | 0.003186 / 0.007986 (-0.004800) | 0.003419 / 0.004328 (-0.000910) | 0.049743 / 0.004250 (0.045492) | 0.043581 / 0.037052 (0.006529) | 0.248215 / 0.258489 (-0.010274) | 0.280873 / 0.293841 (-0.012967) | 0.029282 / 0.128546 (-0.099264) | 0.011241 / 0.075646 (-0.064405) | 0.215031 / 0.419271 (-0.204241) | 0.038764 / 0.043533 (-0.004769) | 0.259363 / 0.255139 (0.004224) | 0.279253 / 0.283200 (-0.003946) | 0.019524 / 0.141683 (-0.122159) | 1.104735 / 1.452155 (-0.347420) | 1.159823 / 1.492716 (-0.332894) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.108383 / 0.018006 (0.090377) | 0.332904 / 0.000490 (0.332415) | 0.000222 / 0.000200 (0.000022) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020693 / 0.037411 (-0.016719) | 0.071764 / 0.014526 (0.057238) | 0.077073 / 0.176557 (-0.099484) | 0.124604 / 0.737135 (-0.612532) | 0.078057 / 0.296338 (-0.218282) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291014 / 0.215209 (0.075805) | 2.865885 / 2.077655 (0.788231) | 1.506141 / 1.504120 (0.002021) | 1.435924 / 1.541195 (-0.105271) | 1.461994 / 1.468490 (-0.006497) | 0.571779 / 4.584777 (-4.012998) | 2.461950 / 3.745712 (-1.283762) | 3.079771 / 5.269862 (-2.190091) | 1.933337 / 4.565676 (-2.632339) | 0.063405 / 0.424275 (-0.360870) | 0.005203 / 0.007607 (-0.002404) | 0.345077 / 0.226044 (0.119032) | 3.487189 / 2.268929 (1.218261) | 1.903733 / 55.444624 (-53.540891) | 1.705596 / 6.876477 (-5.170880) | 1.718849 / 2.142072 (-0.423223) | 0.658745 / 4.805227 (-4.146482) | 0.120847 / 6.500664 (-6.379817) | 0.045670 / 0.075469 (-0.029799) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.965969 / 1.841788 (-0.875819) | 13.520489 / 8.074308 (5.446181) | 12.322363 / 10.191392 (2.130971) | 0.146605 / 0.680424 (-0.533819) | 0.015061 / 0.534201 (-0.519140) | 0.298125 / 0.579283 (-0.281159) | 0.276864 / 0.434364 (-0.157500) | 0.326787 / 0.540337 (-0.213550) | 0.436897 / 1.386936 (-0.950039) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005862 / 0.011353 (-0.005491) | 0.003716 / 0.011008 (-0.007292) | 0.052849 / 0.038508 (0.014341) | 0.072114 / 0.023109 (0.049005) | 0.277800 / 0.275898 (0.001902) | 0.325321 / 0.323480 (0.001841) | 0.004428 / 0.007986 (-0.003557) | 0.002527 / 0.004328 (-0.001801) | 0.048847 / 0.004250 (0.044596) | 0.047355 / 0.037052 (0.010303) | 0.279331 / 0.258489 (0.020842) | 0.310477 / 0.293841 (0.016636) | 0.029661 / 0.128546 (-0.098886) | 0.010812 / 0.075646 (-0.064834) | 0.059803 / 0.419271 (-0.359469) | 0.033554 / 0.043533 (-0.009978) | 0.276890 / 0.255139 (0.021751) | 0.308911 / 0.283200 (0.025712) | 0.020752 / 0.141683 (-0.120931) | 1.120896 / 1.452155 (-0.331259) | 1.186428 / 1.492716 (-0.306288) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.106551 / 0.018006 (0.088545) | 0.354455 / 0.000490 (0.353966) | 0.000353 / 0.000200 (0.000153) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023488 / 0.037411 (-0.013923) | 0.080548 / 0.014526 (0.066022) | 0.084431 / 0.176557 (-0.092126) | 0.140698 / 0.737135 (-0.596438) | 0.085692 / 0.296338 (-0.210647) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.314253 / 0.215209 (0.099044) | 2.993236 / 2.077655 (0.915582) | 1.639013 / 1.504120 (0.134893) | 1.543966 / 1.541195 (0.002771) | 1.567732 / 1.468490 (0.099242) | 0.565857 / 4.584777 (-4.018920) | 2.545339 / 3.745712 (-1.200373) | 3.134546 / 5.269862 (-2.135316) | 1.940350 / 4.565676 (-2.625326) | 0.063847 / 0.424275 (-0.360429) | 0.005079 / 0.007607 (-0.002528) | 0.365762 / 0.226044 (0.139718) | 3.610921 / 2.268929 (1.341993) | 2.035151 / 55.444624 (-53.409473) | 1.773409 / 6.876477 (-5.103068) | 1.790332 / 2.142072 (-0.351741) | 0.683019 / 4.805227 (-4.122209) | 0.119566 / 6.500664 (-6.381099) | 0.043578 / 0.075469 (-0.031891) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.996568 / 1.841788 (-0.845219) | 14.094366 / 8.074308 (6.020058) | 12.433600 / 10.191392 (2.242208) | 0.139835 / 0.680424 (-0.540589) | 0.016454 / 0.534201 (-0.517747) | 0.294073 / 0.579283 (-0.285210) | 0.309032 / 0.434364 (-0.125332) | 0.330699 / 0.540337 (-0.209638) | 0.619392 / 1.386936 (-0.767544) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#026fbce1c93a30188b6d0646bb975da8f56e2a2f \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005389 / 0.011353 (-0.005964) | 0.003209 / 0.011008 (-0.007799) | 0.061610 / 0.038508 (0.023102) | 0.049781 / 0.023109 (0.026672) | 0.240208 / 0.275898 (-0.035690) | 0.263307 / 0.323480 (-0.060173) | 0.002908 / 0.007986 (-0.005078) | 0.002375 / 0.004328 (-0.001953) | 0.047462 / 0.004250 (0.043212) | 0.038643 / 0.037052 (0.001591) | 0.246287 / 0.258489 (-0.012202) | 0.278715 / 0.293841 (-0.015126) | 0.027507 / 0.128546 (-0.101039) | 0.010168 / 0.075646 (-0.065479) | 0.204131 / 0.419271 (-0.215140) | 0.035452 / 0.043533 (-0.008081) | 0.251721 / 0.255139 (-0.003418) | 0.266642 / 0.283200 (-0.016558) | 0.017741 / 0.141683 (-0.123942) | 1.094672 / 1.452155 (-0.357482) | 1.162715 / 1.492716 (-0.330002) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092154 / 0.018006 (0.074148) | 0.301376 / 0.000490 (0.300886) | 0.000217 / 0.000200 (0.000017) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018534 / 0.037411 (-0.018877) | 0.061995 / 0.014526 (0.047469) | 0.072654 / 0.176557 (-0.103903) | 0.119501 / 0.737135 (-0.617635) | 0.073756 / 0.296338 (-0.222583) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280066 / 0.215209 (0.064857) | 2.744207 / 2.077655 (0.666553) | 1.483367 / 1.504120 (-0.020753) | 1.386173 / 1.541195 (-0.155022) | 1.381833 / 1.468490 (-0.086657) | 0.552780 / 4.584777 (-4.031997) | 2.395541 / 3.745712 (-1.350171) | 2.747507 / 5.269862 (-2.522355) | 1.735074 / 4.565676 (-2.830602) | 0.062096 / 0.424275 (-0.362179) | 0.004905 / 0.007607 (-0.002702) | 0.338327 / 0.226044 (0.112283) | 3.365391 / 2.268929 (1.096462) | 1.839663 / 55.444624 (-53.604961) | 1.577535 / 6.876477 (-5.298942) | 1.558054 / 2.142072 (-0.584018) | 0.636520 / 4.805227 (-4.168708) | 0.116182 / 6.500664 (-6.384482) | 0.042078 / 0.075469 (-0.033391) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.938512 / 1.841788 (-0.903276) | 11.455749 / 8.074308 (3.381441) | 10.510985 / 10.191392 (0.319593) | 0.140865 / 0.680424 (-0.539559) | 0.014073 / 0.534201 (-0.520128) | 0.294747 / 0.579283 (-0.284536) | 0.266147 / 0.434364 (-0.168217) | 0.325354 / 0.540337 (-0.214984) | 0.422182 / 1.386936 (-0.964754) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005231 / 0.011353 (-0.006122) | 0.003032 / 0.011008 (-0.007977) | 0.049608 / 0.038508 (0.011099) | 0.051441 / 0.023109 (0.028332) | 0.273812 / 0.275898 (-0.002086) | 0.294318 / 0.323480 (-0.029162) | 0.003958 / 0.007986 (-0.004028) | 0.002384 / 0.004328 (-0.001944) | 0.047942 / 0.004250 (0.043691) | 0.039179 / 0.037052 (0.002127) | 0.277504 / 0.258489 (0.019014) | 0.299713 / 0.293841 (0.005872) | 0.028989 / 0.128546 (-0.099557) | 0.010267 / 0.075646 (-0.065379) | 0.058318 / 0.419271 (-0.360954) | 0.032214 / 0.043533 (-0.011318) | 0.277964 / 0.255139 (0.022825) | 0.293055 / 0.283200 (0.009856) | 0.018532 / 0.141683 (-0.123151) | 1.128620 / 1.452155 (-0.323535) | 1.187365 / 1.492716 (-0.305351) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092137 / 0.018006 (0.074130) | 0.299726 / 0.000490 (0.299236) | 0.000222 / 0.000200 (0.000022) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021342 / 0.037411 (-0.016070) | 0.069943 / 0.014526 (0.055417) | 0.079862 / 0.176557 (-0.096694) | 0.118917 / 0.737135 (-0.618218) | 0.081861 / 0.296338 (-0.214477) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295883 / 0.215209 (0.080674) | 2.881640 / 2.077655 (0.803986) | 1.597705 / 1.504120 (0.093585) | 1.473220 / 1.541195 (-0.067975) | 1.501006 / 1.468490 (0.032516) | 0.559409 / 4.584777 (-4.025368) | 2.442709 / 3.745712 (-1.303003) | 2.742139 / 5.269862 (-2.527723) | 1.726002 / 4.565676 (-2.839674) | 0.062436 / 0.424275 (-0.361840) | 0.004896 / 0.007607 (-0.002711) | 0.349203 / 0.226044 (0.123159) | 3.435175 / 2.268929 (1.166247) | 1.954888 / 55.444624 (-53.489737) | 1.666233 / 6.876477 (-5.210243) | 1.680852 / 2.142072 (-0.461221) | 0.644271 / 4.805227 (-4.160956) | 0.115160 / 6.500664 (-6.385504) | 0.040681 / 0.075469 (-0.034788) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963810 / 1.841788 (-0.877977) | 11.860860 / 8.074308 (3.786552) | 10.541703 / 10.191392 (0.350311) | 0.131532 / 0.680424 (-0.548892) | 0.016790 / 0.534201 (-0.517411) | 0.286695 / 0.579283 (-0.292588) | 0.279628 / 0.434364 (-0.154735) | 0.324622 / 0.540337 (-0.215715) | 0.535507 / 1.386936 (-0.851429) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#11217347e4bcfe1aaf794d164a5dd9f085b2f682 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005672 / 0.011353 (-0.005681) | 0.003411 / 0.011008 (-0.007597) | 0.062528 / 0.038508 (0.024020) | 0.055209 / 0.023109 (0.032100) | 0.248366 / 0.275898 (-0.027532) | 0.279522 / 0.323480 (-0.043957) | 0.002907 / 0.007986 (-0.005079) | 0.002369 / 0.004328 (-0.001959) | 0.047982 / 0.004250 (0.043731) | 0.039009 / 0.037052 (0.001956) | 0.256422 / 0.258489 (-0.002067) | 0.288530 / 0.293841 (-0.005311) | 0.028164 / 0.128546 (-0.100382) | 0.010448 / 0.075646 (-0.065198) | 0.208863 / 0.419271 (-0.210408) | 0.036291 / 0.043533 (-0.007242) | 0.251642 / 0.255139 (-0.003497) | 0.275589 / 0.283200 (-0.007610) | 0.019839 / 0.141683 (-0.121844) | 1.092800 / 1.452155 (-0.359355) | 1.147950 / 1.492716 (-0.344766) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094920 / 0.018006 (0.076914) | 0.303049 / 0.000490 (0.302559) | 0.000199 / 0.000200 (-0.000001) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018820 / 0.037411 (-0.018591) | 0.063319 / 0.014526 (0.048793) | 0.073644 / 0.176557 (-0.102912) | 0.120045 / 0.737135 (-0.617091) | 0.076219 / 0.296338 (-0.220119) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283897 / 0.215209 (0.068688) | 2.822836 / 2.077655 (0.745182) | 1.490505 / 1.504120 (-0.013615) | 1.359777 / 1.541195 (-0.181418) | 1.420536 / 1.468490 (-0.047954) | 0.562308 / 4.584777 (-4.022469) | 2.419249 / 3.745712 (-1.326463) | 2.827620 / 5.269862 (-2.442241) | 1.783171 / 4.565676 (-2.782505) | 0.063206 / 0.424275 (-0.361069) | 0.004966 / 0.007607 (-0.002641) | 0.339647 / 0.226044 (0.113602) | 3.378157 / 2.268929 (1.109229) | 1.873221 / 55.444624 (-53.571403) | 1.606367 / 6.876477 (-5.270109) | 1.624976 / 2.142072 (-0.517096) | 0.652653 / 4.805227 (-4.152574) | 0.117997 / 6.500664 (-6.382667) | 0.041955 / 0.075469 (-0.033514) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.961420 / 1.841788 (-0.880368) | 11.807624 / 8.074308 (3.733316) | 10.668249 / 10.191392 (0.476857) | 0.141855 / 0.680424 (-0.538569) | 0.014451 / 0.534201 (-0.519750) | 0.289706 / 0.579283 (-0.289577) | 0.268392 / 0.434364 (-0.165972) | 0.323435 / 0.540337 (-0.216903) | 0.420667 / 1.386936 (-0.966269) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005382 / 0.011353 (-0.005971) | 0.003361 / 0.011008 (-0.007647) | 0.048420 / 0.038508 (0.009912) | 0.053702 / 0.023109 (0.030593) | 0.286976 / 0.275898 (0.011078) | 0.296708 / 0.323480 (-0.026772) | 0.004013 / 0.007986 (-0.003972) | 0.002444 / 0.004328 (-0.001884) | 0.047797 / 0.004250 (0.043547) | 0.042361 / 0.037052 (0.005309) | 0.277543 / 0.258489 (0.019054) | 0.300736 / 0.293841 (0.006896) | 0.029894 / 0.128546 (-0.098653) | 0.014119 / 0.075646 (-0.061527) | 0.057636 / 0.419271 (-0.361636) | 0.032533 / 0.043533 (-0.010999) | 0.280963 / 0.255139 (0.025824) | 0.291305 / 0.283200 (0.008106) | 0.018391 / 0.141683 (-0.123292) | 1.140042 / 1.452155 (-0.312113) | 1.179485 / 1.492716 (-0.313231) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094668 / 0.018006 (0.076661) | 0.301677 / 0.000490 (0.301187) | 0.000245 / 0.000200 (0.000045) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021376 / 0.037411 (-0.016036) | 0.070628 / 0.014526 (0.056102) | 0.082249 / 0.176557 (-0.094308) | 0.120423 / 0.737135 (-0.616712) | 0.083792 / 0.296338 (-0.212546) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298884 / 0.215209 (0.083675) | 2.931849 / 2.077655 (0.854194) | 1.591888 / 1.504120 (0.087768) | 1.455781 / 1.541195 (-0.085414) | 1.500312 / 1.468490 (0.031822) | 0.558466 / 4.584777 (-4.026311) | 2.450449 / 3.745712 (-1.295263) | 2.842768 / 5.269862 (-2.427094) | 1.755614 / 4.565676 (-2.810062) | 0.063200 / 0.424275 (-0.361075) | 0.005022 / 0.007607 (-0.002585) | 0.358282 / 0.226044 (0.132238) | 3.575392 / 2.268929 (1.306464) | 1.960258 / 55.444624 (-53.484366) | 1.675518 / 6.876477 (-5.200959) | 1.696630 / 2.142072 (-0.445442) | 0.647185 / 4.805227 (-4.158042) | 0.117038 / 6.500664 (-6.383626) | 0.041622 / 0.075469 (-0.033848) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.962503 / 1.841788 (-0.879285) | 12.194950 / 8.074308 (4.120642) | 10.662233 / 10.191392 (0.470841) | 0.131618 / 0.680424 (-0.548806) | 0.016000 / 0.534201 (-0.518201) | 0.291546 / 0.579283 (-0.287737) | 0.279537 / 0.434364 (-0.154827) | 0.328716 / 0.540337 (-0.211622) | 0.547565 / 1.386936 (-0.839371) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4de8f5f09f60613d47b5d7eb901752321c7b6a49 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005209 / 0.011353 (-0.006144) | 0.003017 / 0.011008 (-0.007991) | 0.062017 / 0.038508 (0.023509) | 0.048268 / 0.023109 (0.025158) | 0.246384 / 0.275898 (-0.029514) | 0.270441 / 0.323480 (-0.053039) | 0.002763 / 0.007986 (-0.005222) | 0.003140 / 0.004328 (-0.001188) | 0.048720 / 0.004250 (0.044470) | 0.038175 / 0.037052 (0.001123) | 0.254184 / 0.258489 (-0.004306) | 0.275515 / 0.293841 (-0.018326) | 0.027309 / 0.128546 (-0.101238) | 0.010507 / 0.075646 (-0.065140) | 0.210315 / 0.419271 (-0.208956) | 0.035203 / 0.043533 (-0.008329) | 0.253015 / 0.255139 (-0.002124) | 0.271465 / 0.283200 (-0.011734) | 0.019543 / 0.141683 (-0.122140) | 1.119242 / 1.452155 (-0.332913) | 1.149359 / 1.492716 (-0.343357) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088935 / 0.018006 (0.070928) | 0.293922 / 0.000490 (0.293432) | 0.000202 / 0.000200 (0.000002) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018174 / 0.037411 (-0.019237) | 0.060215 / 0.014526 (0.045689) | 0.072868 / 0.176557 (-0.103689) | 0.117998 / 0.737135 (-0.619137) | 0.074159 / 0.296338 (-0.222179) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289229 / 0.215209 (0.074020) | 2.840414 / 2.077655 (0.762759) | 1.468357 / 1.504120 (-0.035763) | 1.347714 / 1.541195 (-0.193481) | 1.363704 / 1.468490 (-0.104786) | 0.572059 / 4.584777 (-4.012718) | 2.400631 / 3.745712 (-1.345081) | 2.755779 / 5.269862 (-2.514083) | 1.740937 / 4.565676 (-2.824739) | 0.063473 / 0.424275 (-0.360802) | 0.005012 / 0.007607 (-0.002595) | 0.336057 / 0.226044 (0.110012) | 3.382126 / 2.268929 (1.113197) | 1.807838 / 55.444624 (-53.636786) | 1.534594 / 6.876477 (-5.341883) | 1.529951 / 2.142072 (-0.612121) | 0.636661 / 4.805227 (-4.168566) | 0.117090 / 6.500664 (-6.383574) | 0.042310 / 0.075469 (-0.033160) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.924440 / 1.841788 (-0.917347) | 11.120517 / 8.074308 (3.046209) | 10.177210 / 10.191392 (-0.014182) | 0.139060 / 0.680424 (-0.541364) | 0.013818 / 0.534201 (-0.520383) | 0.285634 / 0.579283 (-0.293649) | 0.268657 / 0.434364 (-0.165706) | 0.325842 / 0.540337 (-0.214496) | 0.439902 / 1.386936 (-0.947034) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005202 / 0.011353 (-0.006150) | 0.003002 / 0.011008 (-0.008006) | 0.048729 / 0.038508 (0.010221) | 0.048178 / 0.023109 (0.025069) | 0.288573 / 0.275898 (0.012675) | 0.311122 / 0.323480 (-0.012358) | 0.003953 / 0.007986 (-0.004033) | 0.002544 / 0.004328 (-0.001785) | 0.047762 / 0.004250 (0.043511) | 0.039711 / 0.037052 (0.002658) | 0.308389 / 0.258489 (0.049900) | 0.321913 / 0.293841 (0.028072) | 0.029166 / 0.128546 (-0.099380) | 0.010697 / 0.075646 (-0.064950) | 0.057758 / 0.419271 (-0.361514) | 0.032743 / 0.043533 (-0.010789) | 0.290933 / 0.255139 (0.035794) | 0.309404 / 0.283200 (0.026205) | 0.017691 / 0.141683 (-0.123992) | 1.157713 / 1.452155 (-0.294442) | 1.210485 / 1.492716 (-0.282231) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088959 / 0.018006 (0.070953) | 0.298531 / 0.000490 (0.298041) | 0.000221 / 0.000200 (0.000021) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021129 / 0.037411 (-0.016283) | 0.068419 / 0.014526 (0.053893) | 0.079328 / 0.176557 (-0.097228) | 0.118603 / 0.737135 (-0.618532) | 0.080489 / 0.296338 (-0.215850) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292464 / 0.215209 (0.077254) | 2.898221 / 2.077655 (0.820566) | 1.600868 / 1.504120 (0.096748) | 1.485128 / 1.541195 (-0.056067) | 1.493091 / 1.468490 (0.024600) | 0.576117 / 4.584777 (-4.008660) | 2.450440 / 3.745712 (-1.295273) | 2.746026 / 5.269862 (-2.523836) | 1.722555 / 4.565676 (-2.843122) | 0.062869 / 0.424275 (-0.361406) | 0.004918 / 0.007607 (-0.002689) | 0.348470 / 0.226044 (0.122425) | 3.420267 / 2.268929 (1.151339) | 1.942973 / 55.444624 (-53.501651) | 1.667684 / 6.876477 (-5.208793) | 1.669618 / 2.142072 (-0.472454) | 0.630275 / 4.805227 (-4.174952) | 0.115072 / 6.500664 (-6.385592) | 0.040430 / 0.075469 (-0.035039) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.989827 / 1.841788 (-0.851961) | 11.578068 / 8.074308 (3.503760) | 10.636060 / 10.191392 (0.444668) | 0.131943 / 0.680424 (-0.548481) | 0.015915 / 0.534201 (-0.518286) | 0.287277 / 0.579283 (-0.292006) | 0.279451 / 0.434364 (-0.154913) | 0.325485 / 0.540337 (-0.214852) | 0.544635 / 1.386936 (-0.842301) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f22579be6c73867ac1a3c03e925abaf4872f8437 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005144 / 0.011353 (-0.006209) | 0.003686 / 0.011008 (-0.007322) | 0.064003 / 0.038508 (0.025495) | 0.058962 / 0.023109 (0.035853) | 0.233753 / 0.275898 (-0.042145) | 0.255802 / 0.323480 (-0.067677) | 0.003871 / 0.007986 (-0.004115) | 0.002609 / 0.004328 (-0.001719) | 0.048675 / 0.004250 (0.044425) | 0.037550 / 0.037052 (0.000498) | 0.240658 / 0.258489 (-0.017831) | 0.272303 / 0.293841 (-0.021538) | 0.027455 / 0.128546 (-0.101091) | 0.010706 / 0.075646 (-0.064941) | 0.210878 / 0.419271 (-0.208393) | 0.035763 / 0.043533 (-0.007770) | 0.239937 / 0.255139 (-0.015202) | 0.262520 / 0.283200 (-0.020680) | 0.017676 / 0.141683 (-0.124006) | 1.095036 / 1.452155 (-0.357118) | 1.178318 / 1.492716 (-0.314399) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095310 / 0.018006 (0.077304) | 0.307485 / 0.000490 (0.306995) | 0.000212 / 0.000200 (0.000013) | 0.000047 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018630 / 0.037411 (-0.018781) | 0.060461 / 0.014526 (0.045936) | 0.073117 / 0.176557 (-0.103440) | 0.119737 / 0.737135 (-0.617399) | 0.073909 / 0.296338 (-0.222430) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280938 / 0.215209 (0.065729) | 2.755333 / 2.077655 (0.677679) | 1.468153 / 1.504120 (-0.035967) | 1.350247 / 1.541195 (-0.190948) | 1.379834 / 1.468490 (-0.088656) | 0.564027 / 4.584777 (-4.020750) | 2.387794 / 3.745712 (-1.357918) | 2.768529 / 5.269862 (-2.501333) | 1.761994 / 4.565676 (-2.803682) | 0.062079 / 0.424275 (-0.362196) | 0.005018 / 0.007607 (-0.002589) | 0.337576 / 0.226044 (0.111532) | 3.345347 / 2.268929 (1.076418) | 1.821950 / 55.444624 (-53.622674) | 1.545471 / 6.876477 (-5.331006) | 1.534941 / 2.142072 (-0.607131) | 0.626560 / 4.805227 (-4.178668) | 0.116227 / 6.500664 (-6.384437) | 0.041722 / 0.075469 (-0.033747) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.950480 / 1.841788 (-0.891307) | 11.616355 / 8.074308 (3.542047) | 10.426687 / 10.191392 (0.235295) | 0.129967 / 0.680424 (-0.550457) | 0.013977 / 0.534201 (-0.520224) | 0.287150 / 0.579283 (-0.292133) | 0.264028 / 0.434364 (-0.170336) | 0.325061 / 0.540337 (-0.215277) | 0.441281 / 1.386936 (-0.945655) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005436 / 0.011353 (-0.005917) | 0.003567 / 0.011008 (-0.007441) | 0.055275 / 0.038508 (0.016767) | 0.053216 / 0.023109 (0.030107) | 0.272826 / 0.275898 (-0.003072) | 0.298399 / 0.323480 (-0.025081) | 0.004803 / 0.007986 (-0.003183) | 0.002681 / 0.004328 (-0.001648) | 0.048704 / 0.004250 (0.044453) | 0.040048 / 0.037052 (0.002996) | 0.278200 / 0.258489 (0.019711) | 0.331167 / 0.293841 (0.037326) | 0.029282 / 0.128546 (-0.099265) | 0.010766 / 0.075646 (-0.064881) | 0.057370 / 0.419271 (-0.361902) | 0.032674 / 0.043533 (-0.010859) | 0.269430 / 0.255139 (0.014291) | 0.288256 / 0.283200 (0.005056) | 0.019340 / 0.141683 (-0.122343) | 1.118058 / 1.452155 (-0.334097) | 1.157811 / 1.492716 (-0.334906) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094091 / 0.018006 (0.076085) | 0.301833 / 0.000490 (0.301343) | 0.000216 / 0.000200 (0.000016) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021327 / 0.037411 (-0.016085) | 0.068636 / 0.014526 (0.054110) | 0.080246 / 0.176557 (-0.096311) | 0.120524 / 0.737135 (-0.616611) | 0.082226 / 0.296338 (-0.214113) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293579 / 0.215209 (0.078370) | 2.880281 / 2.077655 (0.802626) | 1.594647 / 1.504120 (0.090528) | 1.477152 / 1.541195 (-0.064043) | 1.498122 / 1.468490 (0.029632) | 0.555073 / 4.584777 (-4.029704) | 2.446743 / 3.745712 (-1.298970) | 2.794971 / 5.269862 (-2.474890) | 1.749730 / 4.565676 (-2.815947) | 0.062537 / 0.424275 (-0.361738) | 0.004908 / 0.007607 (-0.002699) | 0.350772 / 0.226044 (0.124727) | 3.486535 / 2.268929 (1.217607) | 1.957414 / 55.444624 (-53.487210) | 1.669169 / 6.876477 (-5.207308) | 1.682396 / 2.142072 (-0.459676) | 0.627379 / 4.805227 (-4.177848) | 0.117218 / 6.500664 (-6.383446) | 0.041000 / 0.075469 (-0.034469) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.958248 / 1.841788 (-0.883539) | 12.022677 / 8.074308 (3.948369) | 10.331661 / 10.191392 (0.140269) | 0.129765 / 0.680424 (-0.550659) | 0.015073 / 0.534201 (-0.519128) | 0.287212 / 0.579283 (-0.292071) | 0.278310 / 0.434364 (-0.156054) | 0.328155 / 0.540337 (-0.212183) | 0.564990 / 1.386936 (-0.821946) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0c16e56371e50adae771288945e3389cb81a31fd \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005576 / 0.011353 (-0.005777) | 0.003430 / 0.011008 (-0.007578) | 0.062714 / 0.038508 (0.024206) | 0.051240 / 0.023109 (0.028131) | 0.236637 / 0.275898 (-0.039261) | 0.262660 / 0.323480 (-0.060820) | 0.002924 / 0.007986 (-0.005061) | 0.002712 / 0.004328 (-0.001616) | 0.048680 / 0.004250 (0.044430) | 0.038997 / 0.037052 (0.001945) | 0.241426 / 0.258489 (-0.017063) | 0.270652 / 0.293841 (-0.023189) | 0.027355 / 0.128546 (-0.101192) | 0.010640 / 0.075646 (-0.065006) | 0.207754 / 0.419271 (-0.211517) | 0.035921 / 0.043533 (-0.007612) | 0.247645 / 0.255139 (-0.007494) | 0.262933 / 0.283200 (-0.020266) | 0.019658 / 0.141683 (-0.122025) | 1.112576 / 1.452155 (-0.339578) | 1.177362 / 1.492716 (-0.315354) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098100 / 0.018006 (0.080093) | 0.310170 / 0.000490 (0.309680) | 0.000220 / 0.000200 (0.000020) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019626 / 0.037411 (-0.017785) | 0.065468 / 0.014526 (0.050942) | 0.074767 / 0.176557 (-0.101789) | 0.123619 / 0.737135 (-0.613516) | 0.077159 / 0.296338 (-0.219179) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288585 / 0.215209 (0.073376) | 2.771254 / 2.077655 (0.693599) | 1.457091 / 1.504120 (-0.047029) | 1.324341 / 1.541195 (-0.216854) | 1.361960 / 1.468490 (-0.106530) | 0.574197 / 4.584777 (-4.010580) | 2.391440 / 3.745712 (-1.354273) | 2.935060 / 5.269862 (-2.334802) | 1.802792 / 4.565676 (-2.762884) | 0.063530 / 0.424275 (-0.360745) | 0.005129 / 0.007607 (-0.002478) | 0.345977 / 0.226044 (0.119933) | 3.368042 / 2.268929 (1.099113) | 1.789575 / 55.444624 (-53.655050) | 1.509165 / 6.876477 (-5.367312) | 1.579792 / 2.142072 (-0.562280) | 0.652136 / 4.805227 (-4.153091) | 0.117014 / 6.500664 (-6.383650) | 0.042385 / 0.075469 (-0.033084) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963967 / 1.841788 (-0.877821) | 11.847856 / 8.074308 (3.773548) | 10.584088 / 10.191392 (0.392696) | 0.143953 / 0.680424 (-0.536471) | 0.014355 / 0.534201 (-0.519846) | 0.286936 / 0.579283 (-0.292347) | 0.269039 / 0.434364 (-0.165325) | 0.324531 / 0.540337 (-0.215807) | 0.443187 / 1.386936 (-0.943749) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005448 / 0.011353 (-0.005905) | 0.003742 / 0.011008 (-0.007266) | 0.048808 / 0.038508 (0.010300) | 0.055409 / 0.023109 (0.032300) | 0.271574 / 0.275898 (-0.004324) | 0.295599 / 0.323480 (-0.027881) | 0.004208 / 0.007986 (-0.003778) | 0.002683 / 0.004328 (-0.001645) | 0.048813 / 0.004250 (0.044562) | 0.043672 / 0.037052 (0.006620) | 0.282173 / 0.258489 (0.023684) | 0.295447 / 0.293841 (0.001606) | 0.030461 / 0.128546 (-0.098086) | 0.010988 / 0.075646 (-0.064658) | 0.057050 / 0.419271 (-0.362221) | 0.033329 / 0.043533 (-0.010203) | 0.269700 / 0.255139 (0.014561) | 0.287099 / 0.283200 (0.003899) | 0.018203 / 0.141683 (-0.123480) | 1.142584 / 1.452155 (-0.309571) | 1.181848 / 1.492716 (-0.310869) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096958 / 0.018006 (0.078952) | 0.310563 / 0.000490 (0.310074) | 0.000224 / 0.000200 (0.000024) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022213 / 0.037411 (-0.015199) | 0.072054 / 0.014526 (0.057528) | 0.086393 / 0.176557 (-0.090163) | 0.122431 / 0.737135 (-0.614704) | 0.085298 / 0.296338 (-0.211041) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290823 / 0.215209 (0.075614) | 2.838026 / 2.077655 (0.760371) | 1.541425 / 1.504120 (0.037305) | 1.431903 / 1.541195 (-0.109292) | 1.476567 / 1.468490 (0.008077) | 0.557856 / 4.584777 (-4.026920) | 2.449101 / 3.745712 (-1.296611) | 2.924633 / 5.269862 (-2.345229) | 1.824420 / 4.565676 (-2.741256) | 0.063735 / 0.424275 (-0.360540) | 0.005025 / 0.007607 (-0.002582) | 0.349458 / 0.226044 (0.123413) | 3.468627 / 2.268929 (1.199699) | 1.925173 / 55.444624 (-53.519451) | 1.655038 / 6.876477 (-5.221439) | 1.698612 / 2.142072 (-0.443460) | 0.643623 / 4.805227 (-4.161604) | 0.116128 / 6.500664 (-6.384536) | 0.042283 / 0.075469 (-0.033186) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963029 / 1.841788 (-0.878758) | 13.273985 / 8.074308 (5.199677) | 11.400884 / 10.191392 (1.209492) | 0.152635 / 0.680424 (-0.527788) | 0.016442 / 0.534201 (-0.517759) | 0.289272 / 0.579283 (-0.290012) | 0.285286 / 0.434364 (-0.149078) | 0.330028 / 0.540337 (-0.210310) | 0.596500 / 1.386936 (-0.790436) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9c427c4b1dcf84c898ae62dc521bf446bb35e0e7 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005124 / 0.011353 (-0.006229) | 0.003832 / 0.011008 (-0.007176) | 0.062806 / 0.038508 (0.024298) | 0.053137 / 0.023109 (0.030028) | 0.241155 / 0.275898 (-0.034743) | 0.260521 / 0.323480 (-0.062959) | 0.004005 / 0.007986 (-0.003981) | 0.002754 / 0.004328 (-0.001575) | 0.048934 / 0.004250 (0.044684) | 0.039438 / 0.037052 (0.002385) | 0.242534 / 0.258489 (-0.015955) | 0.275498 / 0.293841 (-0.018343) | 0.027338 / 0.128546 (-0.101208) | 0.010809 / 0.075646 (-0.064837) | 0.206986 / 0.419271 (-0.212285) | 0.035614 / 0.043533 (-0.007919) | 0.245780 / 0.255139 (-0.009359) | 0.259793 / 0.283200 (-0.023407) | 0.018108 / 0.141683 (-0.123575) | 1.103412 / 1.452155 (-0.348742) | 1.162940 / 1.492716 (-0.329776) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092463 / 0.018006 (0.074457) | 0.299516 / 0.000490 (0.299026) | 0.000210 / 0.000200 (0.000010) | 0.000047 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018261 / 0.037411 (-0.019150) | 0.060178 / 0.014526 (0.045652) | 0.073043 / 0.176557 (-0.103513) | 0.120541 / 0.737135 (-0.616594) | 0.074972 / 0.296338 (-0.221367) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287288 / 0.215209 (0.072078) | 2.814915 / 2.077655 (0.737260) | 1.520221 / 1.504120 (0.016101) | 1.396045 / 1.541195 (-0.145149) | 1.419662 / 1.468490 (-0.048828) | 0.589247 / 4.584777 (-3.995530) | 2.411101 / 3.745712 (-1.334611) | 2.777709 / 5.269862 (-2.492153) | 1.750386 / 4.565676 (-2.815291) | 0.063734 / 0.424275 (-0.360541) | 0.005021 / 0.007607 (-0.002586) | 0.338817 / 0.226044 (0.112773) | 3.371218 / 2.268929 (1.102289) | 1.892691 / 55.444624 (-53.551934) | 1.599039 / 6.876477 (-5.277438) | 1.574726 / 2.142072 (-0.567346) | 0.665623 / 4.805227 (-4.139604) | 0.118628 / 6.500664 (-6.382036) | 0.041803 / 0.075469 (-0.033666) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.948696 / 1.841788 (-0.893092) | 11.502916 / 8.074308 (3.428608) | 10.301174 / 10.191392 (0.109782) | 0.141752 / 0.680424 (-0.538672) | 0.014064 / 0.534201 (-0.520137) | 0.286701 / 0.579283 (-0.292583) | 0.265805 / 0.434364 (-0.168559) | 0.328420 / 0.540337 (-0.211917) | 0.433619 / 1.386936 (-0.953317) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005262 / 0.011353 (-0.006091) | 0.003361 / 0.011008 (-0.007648) | 0.049525 / 0.038508 (0.011016) | 0.048950 / 0.023109 (0.025841) | 0.273617 / 0.275898 (-0.002281) | 0.296614 / 0.323480 (-0.026866) | 0.004014 / 0.007986 (-0.003971) | 0.002630 / 0.004328 (-0.001698) | 0.048203 / 0.004250 (0.043952) | 0.040912 / 0.037052 (0.003860) | 0.279736 / 0.258489 (0.021247) | 0.301671 / 0.293841 (0.007830) | 0.028546 / 0.128546 (-0.100000) | 0.010440 / 0.075646 (-0.065206) | 0.057869 / 0.419271 (-0.361402) | 0.032876 / 0.043533 (-0.010657) | 0.277649 / 0.255139 (0.022510) | 0.296565 / 0.283200 (0.013365) | 0.017558 / 0.141683 (-0.124125) | 1.155005 / 1.452155 (-0.297149) | 1.204827 / 1.492716 (-0.287889) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093248 / 0.018006 (0.075242) | 0.302721 / 0.000490 (0.302231) | 0.000218 / 0.000200 (0.000018) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021882 / 0.037411 (-0.015530) | 0.068259 / 0.014526 (0.053733) | 0.080982 / 0.176557 (-0.095574) | 0.119386 / 0.737135 (-0.617750) | 0.081745 / 0.296338 (-0.214593) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297812 / 0.215209 (0.082603) | 2.909938 / 2.077655 (0.832283) | 1.603736 / 1.504120 (0.099616) | 1.482989 / 1.541195 (-0.058206) | 1.495107 / 1.468490 (0.026617) | 0.562275 / 4.584777 (-4.022502) | 2.424812 / 3.745712 (-1.320901) | 2.759127 / 5.269862 (-2.510735) | 1.733283 / 4.565676 (-2.832394) | 0.063144 / 0.424275 (-0.361131) | 0.004949 / 0.007607 (-0.002658) | 0.352756 / 0.226044 (0.126711) | 3.496028 / 2.268929 (1.227100) | 1.982804 / 55.444624 (-53.461820) | 1.689787 / 6.876477 (-5.186690) | 1.672699 / 2.142072 (-0.469373) | 0.660169 / 4.805227 (-4.145059) | 0.116535 / 6.500664 (-6.384129) | 0.040616 / 0.075469 (-0.034853) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975055 / 1.841788 (-0.866733) | 11.919295 / 8.074308 (3.844986) | 10.779188 / 10.191392 (0.587796) | 0.143106 / 0.680424 (-0.537318) | 0.015159 / 0.534201 (-0.519041) | 0.289734 / 0.579283 (-0.289549) | 0.278637 / 0.434364 (-0.155727) | 0.328159 / 0.540337 (-0.212178) | 0.570560 / 1.386936 (-0.816376) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#241500208da5fef64ad6ddc1cc5ab2be18f2f76d \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005155 / 0.011353 (-0.006198) | 0.003589 / 0.011008 (-0.007419) | 0.064440 / 0.038508 (0.025932) | 0.051020 / 0.023109 (0.027911) | 0.246099 / 0.275898 (-0.029799) | 0.273383 / 0.323480 (-0.050097) | 0.003984 / 0.007986 (-0.004002) | 0.002791 / 0.004328 (-0.001537) | 0.049076 / 0.004250 (0.044826) | 0.037975 / 0.037052 (0.000922) | 0.253709 / 0.258489 (-0.004780) | 0.281730 / 0.293841 (-0.012111) | 0.028060 / 0.128546 (-0.100486) | 0.010808 / 0.075646 (-0.064838) | 0.206663 / 0.419271 (-0.212609) | 0.035989 / 0.043533 (-0.007544) | 0.252635 / 0.255139 (-0.002504) | 0.280042 / 0.283200 (-0.003158) | 0.016982 / 0.141683 (-0.124700) | 1.098679 / 1.452155 (-0.353475) | 1.157051 / 1.492716 (-0.335666) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098238 / 0.018006 (0.080232) | 0.311990 / 0.000490 (0.311501) | 0.000229 / 0.000200 (0.000029) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018270 / 0.037411 (-0.019141) | 0.062711 / 0.014526 (0.048186) | 0.074381 / 0.176557 (-0.102175) | 0.119946 / 0.737135 (-0.617189) | 0.075013 / 0.296338 (-0.221325) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282106 / 0.215209 (0.066897) | 2.752653 / 2.077655 (0.674999) | 1.488771 / 1.504120 (-0.015349) | 1.372552 / 1.541195 (-0.168643) | 1.390270 / 1.468490 (-0.078220) | 0.558928 / 4.584777 (-4.025849) | 2.411821 / 3.745712 (-1.333891) | 2.771441 / 5.269862 (-2.498421) | 1.747507 / 4.565676 (-2.818169) | 0.061360 / 0.424275 (-0.362915) | 0.004956 / 0.007607 (-0.002652) | 0.332330 / 0.226044 (0.106286) | 3.301405 / 2.268929 (1.032476) | 1.786726 / 55.444624 (-53.657899) | 1.529974 / 6.876477 (-5.346502) | 1.538412 / 2.142072 (-0.603660) | 0.637590 / 4.805227 (-4.167637) | 0.117215 / 6.500664 (-6.383449) | 0.042186 / 0.075469 (-0.033283) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.945574 / 1.841788 (-0.896213) | 11.616152 / 8.074308 (3.541844) | 10.365114 / 10.191392 (0.173722) | 0.130358 / 0.680424 (-0.550066) | 0.013587 / 0.534201 (-0.520614) | 0.306024 / 0.579283 (-0.273259) | 0.270577 / 0.434364 (-0.163787) | 0.340768 / 0.540337 (-0.199569) | 0.460841 / 1.386936 (-0.926095) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005254 / 0.011353 (-0.006099) | 0.003137 / 0.011008 (-0.007871) | 0.048302 / 0.038508 (0.009794) | 0.051952 / 0.023109 (0.028843) | 0.269078 / 0.275898 (-0.006820) | 0.292044 / 0.323480 (-0.031436) | 0.003985 / 0.007986 (-0.004000) | 0.002597 / 0.004328 (-0.001732) | 0.049998 / 0.004250 (0.045747) | 0.040227 / 0.037052 (0.003174) | 0.274714 / 0.258489 (0.016225) | 0.298160 / 0.293841 (0.004319) | 0.028857 / 0.128546 (-0.099690) | 0.010545 / 0.075646 (-0.065101) | 0.057234 / 0.419271 (-0.362038) | 0.032515 / 0.043533 (-0.011018) | 0.271526 / 0.255139 (0.016387) | 0.288556 / 0.283200 (0.005356) | 0.018155 / 0.141683 (-0.123527) | 1.201906 / 1.452155 (-0.250248) | 1.220068 / 1.492716 (-0.272648) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100098 / 0.018006 (0.082092) | 0.311081 / 0.000490 (0.310591) | 0.000231 / 0.000200 (0.000032) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022349 / 0.037411 (-0.015062) | 0.069698 / 0.014526 (0.055172) | 0.081334 / 0.176557 (-0.095222) | 0.120847 / 0.737135 (-0.616289) | 0.082091 / 0.296338 (-0.214248) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293810 / 0.215209 (0.078601) | 2.844191 / 2.077655 (0.766536) | 1.594494 / 1.504120 (0.090374) | 1.486531 / 1.541195 (-0.054664) | 1.506307 / 1.468490 (0.037817) | 0.560247 / 4.584777 (-4.024530) | 2.478309 / 3.745712 (-1.267403) | 2.759024 / 5.269862 (-2.510837) | 1.733063 / 4.565676 (-2.832613) | 0.061838 / 0.424275 (-0.362438) | 0.004869 / 0.007607 (-0.002738) | 0.347267 / 0.226044 (0.121222) | 3.407737 / 2.268929 (1.138808) | 1.944420 / 55.444624 (-53.500204) | 1.660060 / 6.876477 (-5.216417) | 1.704219 / 2.142072 (-0.437854) | 0.646969 / 4.805227 (-4.158258) | 0.115750 / 6.500664 (-6.384914) | 0.041614 / 0.075469 (-0.033855) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.972537 / 1.841788 (-0.869251) | 12.013530 / 8.074308 (3.939222) | 10.650215 / 10.191392 (0.458823) | 0.132877 / 0.680424 (-0.547547) | 0.016828 / 0.534201 (-0.517372) | 0.288321 / 0.579283 (-0.290962) | 0.284203 / 0.434364 (-0.150161) | 0.324016 / 0.540337 (-0.216321) | 0.575403 / 1.386936 (-0.811533) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#17ec1a7a610adba3db44f316a930b979872d4ef7 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005925 / 0.011353 (-0.005427) | 0.005138 / 0.011008 (-0.005870) | 0.069865 / 0.038508 (0.031356) | 0.067181 / 0.023109 (0.044072) | 0.309642 / 0.275898 (0.033743) | 0.302919 / 0.323480 (-0.020561) | 0.003365 / 0.007986 (-0.004620) | 0.003148 / 0.004328 (-0.001180) | 0.054102 / 0.004250 (0.049852) | 0.044196 / 0.037052 (0.007143) | 0.306882 / 0.258489 (0.048393) | 0.315153 / 0.293841 (0.021313) | 0.030458 / 0.128546 (-0.098089) | 0.011773 / 0.075646 (-0.063874) | 0.235075 / 0.419271 (-0.184196) | 0.040840 / 0.043533 (-0.002693) | 0.279897 / 0.255139 (0.024758) | 0.316334 / 0.283200 (0.033135) | 0.020128 / 0.141683 (-0.121555) | 1.237327 / 1.452155 (-0.214828) | 1.290386 / 1.492716 (-0.202331) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.118540 / 0.018006 (0.100534) | 0.363282 / 0.000490 (0.362792) | 0.000266 / 0.000200 (0.000066) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021435 / 0.037411 (-0.015977) | 0.068124 / 0.014526 (0.053598) | 0.082747 / 0.176557 (-0.093809) | 0.137179 / 0.737135 (-0.599956) | 0.084815 / 0.296338 (-0.211523) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.307836 / 0.215209 (0.092626) | 2.983444 / 2.077655 (0.905790) | 1.616430 / 1.504120 (0.112310) | 1.466843 / 1.541195 (-0.074351) | 1.512440 / 1.468490 (0.043950) | 0.652311 / 4.584777 (-3.932466) | 2.676420 / 3.745712 (-1.069292) | 3.265747 / 5.269862 (-2.004115) | 2.028586 / 4.565676 (-2.537090) | 0.071997 / 0.424275 (-0.352278) | 0.007068 / 0.007607 (-0.000539) | 0.367199 / 0.226044 (0.141155) | 3.617970 / 2.268929 (1.349042) | 1.991345 / 55.444624 (-53.453280) | 1.670015 / 6.876477 (-5.206462) | 1.720515 / 2.142072 (-0.421557) | 0.724649 / 4.805227 (-4.080579) | 0.134888 / 6.500664 (-6.365776) | 0.048325 / 0.075469 (-0.027144) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.051058 / 1.841788 (-0.790730) | 13.772809 / 8.074308 (5.698501) | 11.813879 / 10.191392 (1.622487) | 0.160065 / 0.680424 (-0.520359) | 0.016256 / 0.534201 (-0.517945) | 0.320393 / 0.579283 (-0.258890) | 0.314462 / 0.434364 (-0.119901) | 0.371911 / 0.540337 (-0.168427) | 0.506864 / 1.386936 (-0.880072) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005857 / 0.011353 (-0.005496) | 0.004077 / 0.011008 (-0.006931) | 0.056033 / 0.038508 (0.017525) | 0.067622 / 0.023109 (0.044513) | 0.298956 / 0.275898 (0.023058) | 0.323484 / 0.323480 (0.000004) | 0.004825 / 0.007986 (-0.003160) | 0.003120 / 0.004328 (-0.001208) | 0.055227 / 0.004250 (0.050976) | 0.048439 / 0.037052 (0.011387) | 0.303207 / 0.258489 (0.044718) | 0.329478 / 0.293841 (0.035637) | 0.032516 / 0.128546 (-0.096031) | 0.012260 / 0.075646 (-0.063386) | 0.065037 / 0.419271 (-0.354234) | 0.038799 / 0.043533 (-0.004734) | 0.299102 / 0.255139 (0.043963) | 0.318248 / 0.283200 (0.035048) | 0.020190 / 0.141683 (-0.121493) | 1.263479 / 1.452155 (-0.188676) | 1.329788 / 1.492716 (-0.162928) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.119801 / 0.018006 (0.101794) | 0.359618 / 0.000490 (0.359129) | 0.000260 / 0.000200 (0.000060) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026876 / 0.037411 (-0.010535) | 0.080637 / 0.014526 (0.066111) | 0.092260 / 0.176557 (-0.084297) | 0.137260 / 0.737135 (-0.599875) | 0.093309 / 0.296338 (-0.203029) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.329327 / 0.215209 (0.114118) | 3.193014 / 2.077655 (1.115359) | 1.755838 / 1.504120 (0.251718) | 1.612279 / 1.541195 (0.071084) | 1.631958 / 1.468490 (0.163468) | 0.630886 / 4.584777 (-3.953891) | 2.739731 / 3.745712 (-1.005981) | 3.186745 / 5.269862 (-2.083117) | 1.987125 / 4.565676 (-2.578552) | 0.070694 / 0.424275 (-0.353581) | 0.006461 / 0.007607 (-0.001146) | 0.386367 / 0.226044 (0.160323) | 3.815837 / 2.268929 (1.546908) | 2.155904 / 55.444624 (-53.288720) | 1.832575 / 6.876477 (-5.043902) | 1.842097 / 2.142072 (-0.299975) | 0.716394 / 4.805227 (-4.088833) | 0.130796 / 6.500664 (-6.369869) | 0.045674 / 0.075469 (-0.029795) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.109117 / 1.841788 (-0.732671) | 14.116582 / 8.074308 (6.042274) | 11.926356 / 10.191392 (1.734964) | 0.150543 / 0.680424 (-0.529881) | 0.017426 / 0.534201 (-0.516775) | 0.323058 / 0.579283 (-0.256225) | 0.330228 / 0.434364 (-0.104136) | 0.372533 / 0.540337 (-0.167804) | 0.661348 / 1.386936 (-0.725588) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#04ffd22a30ecc7545234559edd9d23c85c6d84d9 \"CML watermark\")\n",
"Thanks for the review, I took your comments into account !",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005477 / 0.011353 (-0.005876) | 0.003509 / 0.011008 (-0.007499) | 0.062884 / 0.038508 (0.024376) | 0.051042 / 0.023109 (0.027933) | 0.285180 / 0.275898 (0.009282) | 0.315353 / 0.323480 (-0.008127) | 0.002943 / 0.007986 (-0.005043) | 0.003286 / 0.004328 (-0.001042) | 0.048885 / 0.004250 (0.044635) | 0.038591 / 0.037052 (0.001539) | 0.288527 / 0.258489 (0.030038) | 0.316102 / 0.293841 (0.022261) | 0.028252 / 0.128546 (-0.100295) | 0.010622 / 0.075646 (-0.065024) | 0.205573 / 0.419271 (-0.213699) | 0.035764 / 0.043533 (-0.007769) | 0.285729 / 0.255139 (0.030590) | 0.304578 / 0.283200 (0.021378) | 0.019862 / 0.141683 (-0.121821) | 1.102866 / 1.452155 (-0.349288) | 1.175161 / 1.492716 (-0.317555) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095253 / 0.018006 (0.077246) | 0.302290 / 0.000490 (0.301800) | 0.000243 / 0.000200 (0.000043) | 0.000061 / 0.000054 (0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018680 / 0.037411 (-0.018731) | 0.060375 / 0.014526 (0.045849) | 0.074033 / 0.176557 (-0.102524) | 0.120290 / 0.737135 (-0.616845) | 0.075350 / 0.296338 (-0.220989) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277617 / 0.215209 (0.062408) | 2.718201 / 2.077655 (0.640546) | 1.462952 / 1.504120 (-0.041168) | 1.339199 / 1.541195 (-0.201996) | 1.375805 / 1.468490 (-0.092685) | 0.559956 / 4.584777 (-4.024821) | 2.373865 / 3.745712 (-1.371847) | 2.795732 / 5.269862 (-2.474129) | 1.755490 / 4.565676 (-2.810186) | 0.062002 / 0.424275 (-0.362273) | 0.004935 / 0.007607 (-0.002672) | 0.334786 / 0.226044 (0.108741) | 3.237499 / 2.268929 (0.968571) | 1.787561 / 55.444624 (-53.657064) | 1.513300 / 6.876477 (-5.363176) | 1.549797 / 2.142072 (-0.592275) | 0.643587 / 4.805227 (-4.161640) | 0.117275 / 6.500664 (-6.383389) | 0.042184 / 0.075469 (-0.033285) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.933366 / 1.841788 (-0.908421) | 11.792282 / 8.074308 (3.717973) | 10.466608 / 10.191392 (0.275216) | 0.142148 / 0.680424 (-0.538275) | 0.014084 / 0.534201 (-0.520117) | 0.287233 / 0.579283 (-0.292050) | 0.266022 / 0.434364 (-0.168342) | 0.326854 / 0.540337 (-0.213483) | 0.451348 / 1.386936 (-0.935588) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005384 / 0.011353 (-0.005969) | 0.003562 / 0.011008 (-0.007446) | 0.049014 / 0.038508 (0.010506) | 0.057480 / 0.023109 (0.034371) | 0.274456 / 0.275898 (-0.001442) | 0.298387 / 0.323480 (-0.025093) | 0.003909 / 0.007986 (-0.004076) | 0.002646 / 0.004328 (-0.001683) | 0.048374 / 0.004250 (0.044124) | 0.040907 / 0.037052 (0.003854) | 0.278267 / 0.258489 (0.019778) | 0.299862 / 0.293841 (0.006021) | 0.029108 / 0.128546 (-0.099439) | 0.010752 / 0.075646 (-0.064894) | 0.057523 / 0.419271 (-0.361749) | 0.032692 / 0.043533 (-0.010841) | 0.276288 / 0.255139 (0.021149) | 0.291572 / 0.283200 (0.008372) | 0.017818 / 0.141683 (-0.123865) | 1.129517 / 1.452155 (-0.322638) | 1.186630 / 1.492716 (-0.306086) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093405 / 0.018006 (0.075399) | 0.301254 / 0.000490 (0.300764) | 0.000225 / 0.000200 (0.000025) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021793 / 0.037411 (-0.015618) | 0.069033 / 0.014526 (0.054508) | 0.083502 / 0.176557 (-0.093055) | 0.122149 / 0.737135 (-0.614986) | 0.083801 / 0.296338 (-0.212537) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.299149 / 0.215209 (0.083940) | 2.936550 / 2.077655 (0.858895) | 1.595766 / 1.504120 (0.091647) | 1.487117 / 1.541195 (-0.054078) | 1.494606 / 1.468490 (0.026116) | 0.569346 / 4.584777 (-4.015431) | 2.445642 / 3.745712 (-1.300070) | 2.805696 / 5.269862 (-2.464165) | 1.743796 / 4.565676 (-2.821881) | 0.062695 / 0.424275 (-0.361580) | 0.004885 / 0.007607 (-0.002723) | 0.354186 / 0.226044 (0.128142) | 3.487926 / 2.268929 (1.218997) | 1.965703 / 55.444624 (-53.478922) | 1.682284 / 6.876477 (-5.194193) | 1.705586 / 2.142072 (-0.436487) | 0.655099 / 4.805227 (-4.150128) | 0.116441 / 6.500664 (-6.384223) | 0.040851 / 0.075469 (-0.034618) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.967361 / 1.841788 (-0.874427) | 12.037718 / 8.074308 (3.963409) | 10.599761 / 10.191392 (0.408369) | 0.143127 / 0.680424 (-0.537297) | 0.015063 / 0.534201 (-0.519138) | 0.286894 / 0.579283 (-0.292389) | 0.301505 / 0.434364 (-0.132859) | 0.324339 / 0.540337 (-0.215999) | 0.591782 / 1.386936 (-0.795154) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b96ff08d4aa6dbafc8a10a9d03dfabe236378bcd \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005337 / 0.011353 (-0.006015) | 0.004074 / 0.011008 (-0.006934) | 0.062653 / 0.038508 (0.024145) | 0.054295 / 0.023109 (0.031186) | 0.248284 / 0.275898 (-0.027614) | 0.271604 / 0.323480 (-0.051876) | 0.003931 / 0.007986 (-0.004055) | 0.002907 / 0.004328 (-0.001422) | 0.047991 / 0.004250 (0.043740) | 0.042842 / 0.037052 (0.005790) | 0.253648 / 0.258489 (-0.004841) | 0.282546 / 0.293841 (-0.011295) | 0.028005 / 0.128546 (-0.100541) | 0.010734 / 0.075646 (-0.064912) | 0.210023 / 0.419271 (-0.209248) | 0.035940 / 0.043533 (-0.007592) | 0.250766 / 0.255139 (-0.004373) | 0.267644 / 0.283200 (-0.015556) | 0.020451 / 0.141683 (-0.121232) | 1.114972 / 1.452155 (-0.337183) | 1.159823 / 1.492716 (-0.332893) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095527 / 0.018006 (0.077521) | 0.303321 / 0.000490 (0.302831) | 0.000216 / 0.000200 (0.000016) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018725 / 0.037411 (-0.018686) | 0.062537 / 0.014526 (0.048011) | 0.073091 / 0.176557 (-0.103466) | 0.119570 / 0.737135 (-0.617565) | 0.074863 / 0.296338 (-0.221476) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284936 / 0.215209 (0.069727) | 2.802498 / 2.077655 (0.724843) | 1.493316 / 1.504120 (-0.010804) | 1.372319 / 1.541195 (-0.168875) | 1.403657 / 1.468490 (-0.064833) | 0.569303 / 4.584777 (-4.015474) | 2.402498 / 3.745712 (-1.343214) | 2.834778 / 5.269862 (-2.435084) | 1.791312 / 4.565676 (-2.774365) | 0.062526 / 0.424275 (-0.361749) | 0.004947 / 0.007607 (-0.002660) | 0.345141 / 0.226044 (0.119097) | 3.371863 / 2.268929 (1.102934) | 1.846023 / 55.444624 (-53.598602) | 1.596368 / 6.876477 (-5.280109) | 1.615902 / 2.142072 (-0.526170) | 0.644333 / 4.805227 (-4.160894) | 0.119460 / 6.500664 (-6.381204) | 0.049122 / 0.075469 (-0.026347) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.951839 / 1.841788 (-0.889948) | 11.677074 / 8.074308 (3.602766) | 10.562586 / 10.191392 (0.371194) | 0.143633 / 0.680424 (-0.536791) | 0.014157 / 0.534201 (-0.520044) | 0.289141 / 0.579283 (-0.290142) | 0.264719 / 0.434364 (-0.169645) | 0.327862 / 0.540337 (-0.212476) | 0.451215 / 1.386936 (-0.935721) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005343 / 0.011353 (-0.006010) | 0.003522 / 0.011008 (-0.007486) | 0.049354 / 0.038508 (0.010846) | 0.051441 / 0.023109 (0.028332) | 0.259350 / 0.275898 (-0.016548) | 0.288946 / 0.323480 (-0.034534) | 0.004052 / 0.007986 (-0.003934) | 0.002690 / 0.004328 (-0.001639) | 0.049996 / 0.004250 (0.045746) | 0.040224 / 0.037052 (0.003171) | 0.264588 / 0.258489 (0.006099) | 0.296474 / 0.293841 (0.002633) | 0.028868 / 0.128546 (-0.099679) | 0.010917 / 0.075646 (-0.064730) | 0.057866 / 0.419271 (-0.361405) | 0.032610 / 0.043533 (-0.010923) | 0.260657 / 0.255139 (0.005518) | 0.276947 / 0.283200 (-0.006253) | 0.018877 / 0.141683 (-0.122806) | 1.126205 / 1.452155 (-0.325949) | 1.206173 / 1.492716 (-0.286543) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094464 / 0.018006 (0.076458) | 0.304473 / 0.000490 (0.303984) | 0.000231 / 0.000200 (0.000031) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021472 / 0.037411 (-0.015939) | 0.070864 / 0.014526 (0.056338) | 0.086607 / 0.176557 (-0.089950) | 0.120679 / 0.737135 (-0.616456) | 0.084271 / 0.296338 (-0.212068) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296448 / 0.215209 (0.081239) | 2.893996 / 2.077655 (0.816341) | 1.573409 / 1.504120 (0.069289) | 1.438799 / 1.541195 (-0.102396) | 1.461241 / 1.468490 (-0.007249) | 0.566737 / 4.584777 (-4.018040) | 2.425709 / 3.745712 (-1.320003) | 2.826764 / 5.269862 (-2.443098) | 1.785330 / 4.565676 (-2.780347) | 0.063721 / 0.424275 (-0.360554) | 0.005158 / 0.007607 (-0.002449) | 0.354961 / 0.226044 (0.128916) | 3.457499 / 2.268929 (1.188570) | 1.931374 / 55.444624 (-53.513251) | 1.646515 / 6.876477 (-5.229962) | 1.629891 / 2.142072 (-0.512182) | 0.648922 / 4.805227 (-4.156305) | 0.114953 / 6.500664 (-6.385711) | 0.040997 / 0.075469 (-0.034472) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.951049 / 1.841788 (-0.890739) | 12.258298 / 8.074308 (4.183990) | 10.663309 / 10.191392 (0.471917) | 0.142933 / 0.680424 (-0.537491) | 0.015927 / 0.534201 (-0.518273) | 0.286914 / 0.579283 (-0.292369) | 0.286600 / 0.434364 (-0.147764) | 0.324464 / 0.540337 (-0.215874) | 0.575075 / 1.386936 (-0.811861) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ed47b9d5e9c6aa03a0aa07d8abfd3fa8241da353 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005298 / 0.011353 (-0.006055) | 0.003645 / 0.011008 (-0.007363) | 0.061629 / 0.038508 (0.023121) | 0.052322 / 0.023109 (0.029212) | 0.242579 / 0.275898 (-0.033319) | 0.263525 / 0.323480 (-0.059955) | 0.002794 / 0.007986 (-0.005192) | 0.002152 / 0.004328 (-0.002177) | 0.048301 / 0.004250 (0.044050) | 0.038177 / 0.037052 (0.001125) | 0.247724 / 0.258489 (-0.010765) | 0.274455 / 0.293841 (-0.019386) | 0.026992 / 0.128546 (-0.101555) | 0.010110 / 0.075646 (-0.065536) | 0.205662 / 0.419271 (-0.213609) | 0.034901 / 0.043533 (-0.008632) | 0.241920 / 0.255139 (-0.013219) | 0.262048 / 0.283200 (-0.021152) | 0.019111 / 0.141683 (-0.122572) | 1.127600 / 1.452155 (-0.324555) | 1.193931 / 1.492716 (-0.298786) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090321 / 0.018006 (0.072315) | 0.299046 / 0.000490 (0.298556) | 0.000197 / 0.000200 (-0.000003) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018278 / 0.037411 (-0.019133) | 0.060114 / 0.014526 (0.045588) | 0.073602 / 0.176557 (-0.102954) | 0.119676 / 0.737135 (-0.617459) | 0.074786 / 0.296338 (-0.221552) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280385 / 0.215209 (0.065176) | 2.764259 / 2.077655 (0.686604) | 1.501027 / 1.504120 (-0.003093) | 1.376900 / 1.541195 (-0.164295) | 1.390587 / 1.468490 (-0.077903) | 0.555180 / 4.584777 (-4.029597) | 2.354307 / 3.745712 (-1.391405) | 2.755862 / 5.269862 (-2.514000) | 1.714771 / 4.565676 (-2.850906) | 0.062507 / 0.424275 (-0.361768) | 0.004974 / 0.007607 (-0.002633) | 0.333900 / 0.226044 (0.107856) | 3.266922 / 2.268929 (0.997994) | 1.805401 / 55.444624 (-53.639223) | 1.526970 / 6.876477 (-5.349507) | 1.539425 / 2.142072 (-0.602647) | 0.629364 / 4.805227 (-4.175863) | 0.114929 / 6.500664 (-6.385735) | 0.041258 / 0.075469 (-0.034211) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.968601 / 1.841788 (-0.873187) | 11.260937 / 8.074308 (3.186629) | 10.393839 / 10.191392 (0.202447) | 0.127988 / 0.680424 (-0.552436) | 0.014564 / 0.534201 (-0.519637) | 0.286560 / 0.579283 (-0.292723) | 0.260493 / 0.434364 (-0.173871) | 0.330949 / 0.540337 (-0.209388) | 0.435798 / 1.386936 (-0.951138) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005232 / 0.011353 (-0.006121) | 0.003030 / 0.011008 (-0.007978) | 0.048513 / 0.038508 (0.010005) | 0.049501 / 0.023109 (0.026392) | 0.270545 / 0.275898 (-0.005353) | 0.289128 / 0.323480 (-0.034352) | 0.003925 / 0.007986 (-0.004061) | 0.002568 / 0.004328 (-0.001761) | 0.047692 / 0.004250 (0.043442) | 0.039854 / 0.037052 (0.002802) | 0.272654 / 0.258489 (0.014165) | 0.296275 / 0.293841 (0.002434) | 0.029027 / 0.128546 (-0.099519) | 0.010335 / 0.075646 (-0.065311) | 0.056726 / 0.419271 (-0.362546) | 0.033257 / 0.043533 (-0.010275) | 0.272672 / 0.255139 (0.017533) | 0.286298 / 0.283200 (0.003098) | 0.017877 / 0.141683 (-0.123806) | 1.150322 / 1.452155 (-0.301833) | 1.221031 / 1.492716 (-0.271685) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102838 / 0.018006 (0.084832) | 0.298810 / 0.000490 (0.298320) | 0.000207 / 0.000200 (0.000007) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021232 / 0.037411 (-0.016180) | 0.067949 / 0.014526 (0.053423) | 0.116487 / 0.176557 (-0.060070) | 0.124035 / 0.737135 (-0.613100) | 0.081075 / 0.296338 (-0.215263) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289098 / 0.215209 (0.073889) | 2.844476 / 2.077655 (0.766821) | 1.609576 / 1.504120 (0.105456) | 1.480453 / 1.541195 (-0.060742) | 1.489672 / 1.468490 (0.021182) | 0.589661 / 4.584777 (-3.995116) | 2.453804 / 3.745712 (-1.291908) | 2.722381 / 5.269862 (-2.547480) | 1.720251 / 4.565676 (-2.845425) | 0.066085 / 0.424275 (-0.358190) | 0.004943 / 0.007607 (-0.002664) | 0.355149 / 0.226044 (0.129104) | 3.444323 / 2.268929 (1.175395) | 1.971157 / 55.444624 (-53.473467) | 1.683029 / 6.876477 (-5.193448) | 1.672798 / 2.142072 (-0.469274) | 0.644812 / 4.805227 (-4.160416) | 0.115098 / 6.500664 (-6.385566) | 0.039883 / 0.075469 (-0.035586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.960454 / 1.841788 (-0.881334) | 11.604732 / 8.074308 (3.530424) | 10.405481 / 10.191392 (0.214089) | 0.129146 / 0.680424 (-0.551278) | 0.014945 / 0.534201 (-0.519256) | 0.286239 / 0.579283 (-0.293044) | 0.281041 / 0.434364 (-0.153323) | 0.320448 / 0.540337 (-0.219890) | 0.554304 / 1.386936 (-0.832632) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b2cfb7859b029654829c4dfee230812ddab1f104 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005510 / 0.011353 (-0.005843) | 0.003575 / 0.011008 (-0.007433) | 0.062232 / 0.038508 (0.023724) | 0.051115 / 0.023109 (0.028006) | 0.250709 / 0.275898 (-0.025189) | 0.274837 / 0.323480 (-0.048642) | 0.002972 / 0.007986 (-0.005014) | 0.002708 / 0.004328 (-0.001621) | 0.048088 / 0.004250 (0.043838) | 0.038588 / 0.037052 (0.001535) | 0.252550 / 0.258489 (-0.005939) | 0.285238 / 0.293841 (-0.008603) | 0.027867 / 0.128546 (-0.100679) | 0.011000 / 0.075646 (-0.064646) | 0.206918 / 0.419271 (-0.212354) | 0.035711 / 0.043533 (-0.007822) | 0.255306 / 0.255139 (0.000167) | 0.298636 / 0.283200 (0.015436) | 0.018222 / 0.141683 (-0.123461) | 1.122276 / 1.452155 (-0.329879) | 1.196471 / 1.492716 (-0.296245) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092072 / 0.018006 (0.074066) | 0.301469 / 0.000490 (0.300979) | 0.000225 / 0.000200 (0.000025) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018672 / 0.037411 (-0.018739) | 0.060235 / 0.014526 (0.045709) | 0.074036 / 0.176557 (-0.102521) | 0.119578 / 0.737135 (-0.617557) | 0.073605 / 0.296338 (-0.222734) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286474 / 0.215209 (0.071264) | 2.779427 / 2.077655 (0.701772) | 1.478746 / 1.504120 (-0.025373) | 1.362692 / 1.541195 (-0.178503) | 1.388194 / 1.468490 (-0.080296) | 0.560707 / 4.584777 (-4.024070) | 2.352846 / 3.745712 (-1.392866) | 2.784400 / 5.269862 (-2.485461) | 1.775642 / 4.565676 (-2.790035) | 0.062324 / 0.424275 (-0.361951) | 0.004938 / 0.007607 (-0.002669) | 0.334149 / 0.226044 (0.108105) | 3.319446 / 2.268929 (1.050517) | 1.810369 / 55.444624 (-53.634255) | 1.559462 / 6.876477 (-5.317014) | 1.611199 / 2.142072 (-0.530873) | 0.655984 / 4.805227 (-4.149244) | 0.118508 / 6.500664 (-6.382156) | 0.043661 / 0.075469 (-0.031808) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.935046 / 1.841788 (-0.906742) | 11.413501 / 8.074308 (3.339192) | 10.392314 / 10.191392 (0.200922) | 0.131507 / 0.680424 (-0.548917) | 0.014827 / 0.534201 (-0.519374) | 0.289069 / 0.579283 (-0.290214) | 0.268288 / 0.434364 (-0.166076) | 0.326843 / 0.540337 (-0.213495) | 0.441283 / 1.386936 (-0.945653) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005375 / 0.011353 (-0.005978) | 0.003549 / 0.011008 (-0.007459) | 0.048996 / 0.038508 (0.010488) | 0.051408 / 0.023109 (0.028298) | 0.272265 / 0.275898 (-0.003633) | 0.293228 / 0.323480 (-0.030252) | 0.004147 / 0.007986 (-0.003839) | 0.002673 / 0.004328 (-0.001655) | 0.048116 / 0.004250 (0.043865) | 0.039926 / 0.037052 (0.002874) | 0.276987 / 0.258489 (0.018498) | 0.302955 / 0.293841 (0.009115) | 0.029488 / 0.128546 (-0.099058) | 0.010797 / 0.075646 (-0.064849) | 0.057552 / 0.419271 (-0.361720) | 0.032827 / 0.043533 (-0.010706) | 0.270888 / 0.255139 (0.015749) | 0.289136 / 0.283200 (0.005937) | 0.018815 / 0.141683 (-0.122868) | 1.148624 / 1.452155 (-0.303530) | 1.191184 / 1.492716 (-0.301532) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091712 / 0.018006 (0.073706) | 0.311198 / 0.000490 (0.310708) | 0.000226 / 0.000200 (0.000026) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022097 / 0.037411 (-0.015314) | 0.070641 / 0.014526 (0.056116) | 0.080084 / 0.176557 (-0.096472) | 0.118998 / 0.737135 (-0.618137) | 0.081827 / 0.296338 (-0.214512) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298599 / 0.215209 (0.083390) | 2.884759 / 2.077655 (0.807105) | 1.630794 / 1.504120 (0.126674) | 1.454309 / 1.541195 (-0.086886) | 1.466795 / 1.468490 (-0.001695) | 0.565405 / 4.584777 (-4.019372) | 2.460883 / 3.745712 (-1.284829) | 2.764193 / 5.269862 (-2.505668) | 1.734270 / 4.565676 (-2.831407) | 0.063408 / 0.424275 (-0.360867) | 0.004887 / 0.007607 (-0.002720) | 0.347762 / 0.226044 (0.121717) | 3.458385 / 2.268929 (1.189457) | 1.965434 / 55.444624 (-53.479190) | 1.671047 / 6.876477 (-5.205430) | 1.665642 / 2.142072 (-0.476430) | 0.640665 / 4.805227 (-4.164562) | 0.116025 / 6.500664 (-6.384639) | 0.040147 / 0.075469 (-0.035322) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982194 / 1.841788 (-0.859593) | 11.983487 / 8.074308 (3.909179) | 10.660605 / 10.191392 (0.469213) | 0.140647 / 0.680424 (-0.539777) | 0.015870 / 0.534201 (-0.518331) | 0.287032 / 0.579283 (-0.292251) | 0.276629 / 0.434364 (-0.157735) | 0.331171 / 0.540337 (-0.209166) | 0.575346 / 1.386936 (-0.811590) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#56433c2f6a42d5fcc5acb46c6275911c29afc371 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005014 / 0.011353 (-0.006339) | 0.003434 / 0.011008 (-0.007574) | 0.063283 / 0.038508 (0.024775) | 0.048068 / 0.023109 (0.024959) | 0.239521 / 0.275898 (-0.036377) | 0.265294 / 0.323480 (-0.058186) | 0.003790 / 0.007986 (-0.004196) | 0.002577 / 0.004328 (-0.001751) | 0.048618 / 0.004250 (0.044368) | 0.037427 / 0.037052 (0.000375) | 0.245263 / 0.258489 (-0.013226) | 0.276618 / 0.293841 (-0.017223) | 0.026615 / 0.128546 (-0.101931) | 0.010378 / 0.075646 (-0.065268) | 0.205670 / 0.419271 (-0.213601) | 0.035076 / 0.043533 (-0.008457) | 0.245062 / 0.255139 (-0.010077) | 0.264584 / 0.283200 (-0.018616) | 0.017760 / 0.141683 (-0.123922) | 1.148061 / 1.452155 (-0.304094) | 1.192762 / 1.492716 (-0.299955) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090870 / 0.018006 (0.072864) | 0.305458 / 0.000490 (0.304968) | 0.000207 / 0.000200 (0.000007) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018597 / 0.037411 (-0.018814) | 0.060349 / 0.014526 (0.045823) | 0.074854 / 0.176557 (-0.101702) | 0.123243 / 0.737135 (-0.613892) | 0.075843 / 0.296338 (-0.220496) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.275855 / 0.215209 (0.060645) | 2.723965 / 2.077655 (0.646311) | 1.436010 / 1.504120 (-0.068110) | 1.323495 / 1.541195 (-0.217700) | 1.356234 / 1.468490 (-0.112256) | 0.564388 / 4.584777 (-4.020389) | 2.390180 / 3.745712 (-1.355532) | 2.782863 / 5.269862 (-2.486998) | 1.765048 / 4.565676 (-2.800628) | 0.062680 / 0.424275 (-0.361595) | 0.004929 / 0.007607 (-0.002678) | 0.337578 / 0.226044 (0.111533) | 3.316780 / 2.268929 (1.047851) | 1.803829 / 55.444624 (-53.640795) | 1.524585 / 6.876477 (-5.351891) | 1.549695 / 2.142072 (-0.592377) | 0.638053 / 4.805227 (-4.167174) | 0.116983 / 6.500664 (-6.383681) | 0.042251 / 0.075469 (-0.033218) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.946978 / 1.841788 (-0.894810) | 11.809483 / 8.074308 (3.735175) | 10.459974 / 10.191392 (0.268582) | 0.130015 / 0.680424 (-0.550409) | 0.013843 / 0.534201 (-0.520358) | 0.286972 / 0.579283 (-0.292311) | 0.268904 / 0.434364 (-0.165460) | 0.325591 / 0.540337 (-0.214746) | 0.439233 / 1.386936 (-0.947703) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005804 / 0.011353 (-0.005549) | 0.003431 / 0.011008 (-0.007577) | 0.049041 / 0.038508 (0.010533) | 0.054758 / 0.023109 (0.031649) | 0.262330 / 0.275898 (-0.013568) | 0.288872 / 0.323480 (-0.034608) | 0.004016 / 0.007986 (-0.003970) | 0.002606 / 0.004328 (-0.001722) | 0.047878 / 0.004250 (0.043628) | 0.045066 / 0.037052 (0.008013) | 0.266310 / 0.258489 (0.007820) | 0.290072 / 0.293841 (-0.003768) | 0.028738 / 0.128546 (-0.099809) | 0.010667 / 0.075646 (-0.064979) | 0.057300 / 0.419271 (-0.361972) | 0.032715 / 0.043533 (-0.010818) | 0.264043 / 0.255139 (0.008904) | 0.278652 / 0.283200 (-0.004547) | 0.017873 / 0.141683 (-0.123810) | 1.125981 / 1.452155 (-0.326174) | 1.168548 / 1.492716 (-0.324168) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090997 / 0.018006 (0.072991) | 0.300807 / 0.000490 (0.300317) | 0.000223 / 0.000200 (0.000023) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021510 / 0.037411 (-0.015901) | 0.068251 / 0.014526 (0.053725) | 0.082073 / 0.176557 (-0.094484) | 0.120071 / 0.737135 (-0.617064) | 0.082245 / 0.296338 (-0.214093) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290601 / 0.215209 (0.075392) | 2.871855 / 2.077655 (0.794200) | 1.558239 / 1.504120 (0.054119) | 1.447767 / 1.541195 (-0.093427) | 1.446851 / 1.468490 (-0.021639) | 0.573990 / 4.584777 (-4.010787) | 2.439859 / 3.745712 (-1.305853) | 2.795899 / 5.269862 (-2.473963) | 1.746751 / 4.565676 (-2.818926) | 0.062100 / 0.424275 (-0.362175) | 0.004948 / 0.007607 (-0.002659) | 0.344281 / 0.226044 (0.118236) | 3.427499 / 2.268929 (1.158570) | 1.940348 / 55.444624 (-53.504276) | 1.660926 / 6.876477 (-5.215551) | 1.669485 / 2.142072 (-0.472588) | 0.634034 / 4.805227 (-4.171193) | 0.114748 / 6.500664 (-6.385916) | 0.041617 / 0.075469 (-0.033852) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.966411 / 1.841788 (-0.875376) | 12.040753 / 8.074308 (3.966445) | 10.506542 / 10.191392 (0.315150) | 0.129659 / 0.680424 (-0.550764) | 0.015691 / 0.534201 (-0.518510) | 0.286911 / 0.579283 (-0.292372) | 0.273588 / 0.434364 (-0.160776) | 0.333642 / 0.540337 (-0.206695) | 0.568550 / 1.386936 (-0.818386) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b38ed4705263df92ae06d89baab0932ae10065e0 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005023 / 0.011353 (-0.006330) | 0.003492 / 0.011008 (-0.007516) | 0.062808 / 0.038508 (0.024300) | 0.051649 / 0.023109 (0.028540) | 0.246871 / 0.275898 (-0.029027) | 0.273430 / 0.323480 (-0.050050) | 0.003851 / 0.007986 (-0.004135) | 0.002643 / 0.004328 (-0.001686) | 0.048499 / 0.004250 (0.044248) | 0.037713 / 0.037052 (0.000661) | 0.256431 / 0.258489 (-0.002058) | 0.306956 / 0.293841 (0.013116) | 0.027116 / 0.128546 (-0.101430) | 0.010769 / 0.075646 (-0.064877) | 0.206218 / 0.419271 (-0.213053) | 0.035592 / 0.043533 (-0.007941) | 0.249629 / 0.255139 (-0.005510) | 0.268438 / 0.283200 (-0.014761) | 0.018557 / 0.141683 (-0.123125) | 1.123988 / 1.452155 (-0.328167) | 1.158196 / 1.492716 (-0.334520) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090221 / 0.018006 (0.072215) | 0.300892 / 0.000490 (0.300402) | 0.000209 / 0.000200 (0.000009) | 0.000046 / 0.000054 (-0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018305 / 0.037411 (-0.019106) | 0.060294 / 0.014526 (0.045769) | 0.073330 / 0.176557 (-0.103227) | 0.119620 / 0.737135 (-0.617515) | 0.074611 / 0.296338 (-0.221727) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285347 / 0.215209 (0.070138) | 2.795144 / 2.077655 (0.717490) | 1.468321 / 1.504120 (-0.035799) | 1.343848 / 1.541195 (-0.197347) | 1.388998 / 1.468490 (-0.079492) | 0.559609 / 4.584777 (-4.025168) | 2.355056 / 3.745712 (-1.390656) | 2.798763 / 5.269862 (-2.471099) | 1.764371 / 4.565676 (-2.801305) | 0.062563 / 0.424275 (-0.361712) | 0.005101 / 0.007607 (-0.002506) | 0.339205 / 0.226044 (0.113161) | 3.336729 / 2.268929 (1.067800) | 1.801987 / 55.444624 (-53.642637) | 1.526720 / 6.876477 (-5.349757) | 1.539324 / 2.142072 (-0.602749) | 0.635805 / 4.805227 (-4.169422) | 0.138762 / 6.500664 (-6.361902) | 0.042092 / 0.075469 (-0.033377) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.928755 / 1.841788 (-0.913032) | 11.468224 / 8.074308 (3.393916) | 10.784568 / 10.191392 (0.593176) | 0.130332 / 0.680424 (-0.550092) | 0.014203 / 0.534201 (-0.519998) | 0.287125 / 0.579283 (-0.292158) | 0.263921 / 0.434364 (-0.170443) | 0.327824 / 0.540337 (-0.212513) | 0.434679 / 1.386936 (-0.952257) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005194 / 0.011353 (-0.006159) | 0.003411 / 0.011008 (-0.007598) | 0.050122 / 0.038508 (0.011614) | 0.049378 / 0.023109 (0.026269) | 0.272980 / 0.275898 (-0.002918) | 0.298047 / 0.323480 (-0.025433) | 0.003945 / 0.007986 (-0.004041) | 0.002633 / 0.004328 (-0.001696) | 0.048935 / 0.004250 (0.044685) | 0.040157 / 0.037052 (0.003104) | 0.277056 / 0.258489 (0.018567) | 0.299824 / 0.293841 (0.005983) | 0.028997 / 0.128546 (-0.099550) | 0.010868 / 0.075646 (-0.064779) | 0.057895 / 0.419271 (-0.361377) | 0.033522 / 0.043533 (-0.010010) | 0.274912 / 0.255139 (0.019773) | 0.288902 / 0.283200 (0.005702) | 0.018016 / 0.141683 (-0.123667) | 1.116669 / 1.452155 (-0.335485) | 1.175007 / 1.492716 (-0.317710) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090169 / 0.018006 (0.072163) | 0.310577 / 0.000490 (0.310087) | 0.000215 / 0.000200 (0.000015) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020448 / 0.037411 (-0.016963) | 0.068216 / 0.014526 (0.053690) | 0.081798 / 0.176557 (-0.094759) | 0.119151 / 0.737135 (-0.617985) | 0.085197 / 0.296338 (-0.211142) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294957 / 0.215209 (0.079748) | 2.874065 / 2.077655 (0.796410) | 1.590963 / 1.504120 (0.086843) | 1.459596 / 1.541195 (-0.081599) | 1.467931 / 1.468490 (-0.000559) | 0.562832 / 4.584777 (-4.021944) | 2.426384 / 3.745712 (-1.319328) | 2.767749 / 5.269862 (-2.502112) | 1.746702 / 4.565676 (-2.818975) | 0.063353 / 0.424275 (-0.360922) | 0.005073 / 0.007607 (-0.002534) | 0.348258 / 0.226044 (0.122213) | 3.390351 / 2.268929 (1.121423) | 1.950092 / 55.444624 (-53.494532) | 1.671227 / 6.876477 (-5.205250) | 1.683349 / 2.142072 (-0.458723) | 0.637613 / 4.805227 (-4.167614) | 0.115172 / 6.500664 (-6.385492) | 0.040202 / 0.075469 (-0.035267) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963085 / 1.841788 (-0.878702) | 11.895384 / 8.074308 (3.821076) | 10.609906 / 10.191392 (0.418513) | 0.130865 / 0.680424 (-0.549559) | 0.016020 / 0.534201 (-0.518181) | 0.287540 / 0.579283 (-0.291743) | 0.278204 / 0.434364 (-0.156160) | 0.326007 / 0.540337 (-0.214330) | 0.590881 / 1.386936 (-0.796055) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c291e330a7d460ff09d867377de1d4c53fd5394c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005266 / 0.011353 (-0.006087) | 0.003751 / 0.011008 (-0.007257) | 0.063835 / 0.038508 (0.025327) | 0.052688 / 0.023109 (0.029579) | 0.261957 / 0.275898 (-0.013941) | 0.284264 / 0.323480 (-0.039216) | 0.003958 / 0.007986 (-0.004027) | 0.002696 / 0.004328 (-0.001633) | 0.052791 / 0.004250 (0.048540) | 0.038294 / 0.037052 (0.001242) | 0.259488 / 0.258489 (0.000999) | 0.298368 / 0.293841 (0.004528) | 0.028309 / 0.128546 (-0.100237) | 0.010819 / 0.075646 (-0.064827) | 0.208221 / 0.419271 (-0.211050) | 0.036373 / 0.043533 (-0.007160) | 0.257000 / 0.255139 (0.001861) | 0.273108 / 0.283200 (-0.010092) | 0.019674 / 0.141683 (-0.122009) | 1.119196 / 1.452155 (-0.332958) | 1.161613 / 1.492716 (-0.331104) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093408 / 0.018006 (0.075401) | 0.302278 / 0.000490 (0.301788) | 0.000212 / 0.000200 (0.000012) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019417 / 0.037411 (-0.017995) | 0.060847 / 0.014526 (0.046321) | 0.075399 / 0.176557 (-0.101158) | 0.121233 / 0.737135 (-0.615902) | 0.076916 / 0.296338 (-0.219422) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281265 / 0.215209 (0.066056) | 2.651726 / 2.077655 (0.574072) | 1.457726 / 1.504120 (-0.046394) | 1.339250 / 1.541195 (-0.201945) | 1.398529 / 1.468490 (-0.069961) | 0.566574 / 4.584777 (-4.018203) | 2.431576 / 3.745712 (-1.314136) | 2.845884 / 5.269862 (-2.423977) | 1.798051 / 4.565676 (-2.767626) | 0.063619 / 0.424275 (-0.360656) | 0.005286 / 0.007607 (-0.002321) | 0.332834 / 0.226044 (0.106789) | 3.293222 / 2.268929 (1.024293) | 1.837810 / 55.444624 (-53.606815) | 1.568511 / 6.876477 (-5.307966) | 1.627518 / 2.142072 (-0.514555) | 0.643520 / 4.805227 (-4.161708) | 0.118482 / 6.500664 (-6.382182) | 0.049563 / 0.075469 (-0.025906) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.947767 / 1.841788 (-0.894021) | 11.994999 / 8.074308 (3.920691) | 10.662651 / 10.191392 (0.471259) | 0.142070 / 0.680424 (-0.538354) | 0.014276 / 0.534201 (-0.519925) | 0.288455 / 0.579283 (-0.290828) | 0.266335 / 0.434364 (-0.168029) | 0.328455 / 0.540337 (-0.211883) | 0.440740 / 1.386936 (-0.946196) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005636 / 0.011353 (-0.005717) | 0.003664 / 0.011008 (-0.007344) | 0.050340 / 0.038508 (0.011832) | 0.062795 / 0.023109 (0.039685) | 0.280874 / 0.275898 (0.004976) | 0.314056 / 0.323480 (-0.009424) | 0.004089 / 0.007986 (-0.003897) | 0.002780 / 0.004328 (-0.001548) | 0.048468 / 0.004250 (0.044218) | 0.042924 / 0.037052 (0.005871) | 0.281381 / 0.258489 (0.022892) | 0.308232 / 0.293841 (0.014391) | 0.030294 / 0.128546 (-0.098252) | 0.011098 / 0.075646 (-0.064548) | 0.057535 / 0.419271 (-0.361736) | 0.034217 / 0.043533 (-0.009316) | 0.283022 / 0.255139 (0.027883) | 0.298425 / 0.283200 (0.015225) | 0.019285 / 0.141683 (-0.122398) | 1.117722 / 1.452155 (-0.334433) | 1.185878 / 1.492716 (-0.306839) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094915 / 0.018006 (0.076909) | 0.311782 / 0.000490 (0.311293) | 0.000217 / 0.000200 (0.000017) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022652 / 0.037411 (-0.014759) | 0.069766 / 0.014526 (0.055240) | 0.084495 / 0.176557 (-0.092061) | 0.121295 / 0.737135 (-0.615841) | 0.082447 / 0.296338 (-0.213891) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294286 / 0.215209 (0.079077) | 2.863694 / 2.077655 (0.786039) | 1.578338 / 1.504120 (0.074219) | 1.478737 / 1.541195 (-0.062458) | 1.528569 / 1.468490 (0.060079) | 0.576944 / 4.584777 (-4.007833) | 2.438730 / 3.745712 (-1.306982) | 2.956138 / 5.269862 (-2.313723) | 1.844484 / 4.565676 (-2.721192) | 0.065980 / 0.424275 (-0.358295) | 0.004998 / 0.007607 (-0.002609) | 0.352063 / 0.226044 (0.126019) | 3.456355 / 2.268929 (1.187426) | 1.971582 / 55.444624 (-53.473042) | 1.684536 / 6.876477 (-5.191940) | 1.726823 / 2.142072 (-0.415250) | 0.660235 / 4.805227 (-4.144992) | 0.119029 / 6.500664 (-6.381635) | 0.042497 / 0.075469 (-0.032972) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.971817 / 1.841788 (-0.869970) | 12.900324 / 8.074308 (4.826015) | 10.957495 / 10.191392 (0.766103) | 0.133705 / 0.680424 (-0.546718) | 0.015669 / 0.534201 (-0.518532) | 0.287340 / 0.579283 (-0.291943) | 0.280380 / 0.434364 (-0.153984) | 0.330369 / 0.540337 (-0.209969) | 0.581793 / 1.386936 (-0.805143) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c2af5efae1985499d6a0a1b6ab4120337eebf776 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005038 / 0.011353 (-0.006315) | 0.003737 / 0.011008 (-0.007272) | 0.063118 / 0.038508 (0.024610) | 0.050120 / 0.023109 (0.027011) | 0.240722 / 0.275898 (-0.035176) | 0.263128 / 0.323480 (-0.060352) | 0.003839 / 0.007986 (-0.004147) | 0.002718 / 0.004328 (-0.001610) | 0.047869 / 0.004250 (0.043618) | 0.038092 / 0.037052 (0.001040) | 0.245759 / 0.258489 (-0.012730) | 0.277728 / 0.293841 (-0.016113) | 0.027466 / 0.128546 (-0.101081) | 0.011767 / 0.075646 (-0.063879) | 0.205505 / 0.419271 (-0.213766) | 0.035429 / 0.043533 (-0.008104) | 0.241665 / 0.255139 (-0.013474) | 0.260908 / 0.283200 (-0.022292) | 0.017133 / 0.141683 (-0.124550) | 1.107725 / 1.452155 (-0.344429) | 1.169707 / 1.492716 (-0.323009) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094112 / 0.018006 (0.076106) | 0.302596 / 0.000490 (0.302106) | 0.000237 / 0.000200 (0.000037) | 0.000041 / 0.000054 (-0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017923 / 0.037411 (-0.019488) | 0.060356 / 0.014526 (0.045830) | 0.073708 / 0.176557 (-0.102849) | 0.119952 / 0.737135 (-0.617183) | 0.075350 / 0.296338 (-0.220989) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289253 / 0.215209 (0.074044) | 2.800772 / 2.077655 (0.723117) | 1.538368 / 1.504120 (0.034248) | 1.401037 / 1.541195 (-0.140158) | 1.427170 / 1.468490 (-0.041320) | 0.560497 / 4.584777 (-4.024280) | 2.417844 / 3.745712 (-1.327868) | 2.798377 / 5.269862 (-2.471484) | 1.756517 / 4.565676 (-2.809160) | 0.063897 / 0.424275 (-0.360378) | 0.005323 / 0.007607 (-0.002284) | 0.339881 / 0.226044 (0.113836) | 3.354858 / 2.268929 (1.085929) | 1.877233 / 55.444624 (-53.567391) | 1.578713 / 6.876477 (-5.297764) | 1.631898 / 2.142072 (-0.510175) | 0.640303 / 4.805227 (-4.164924) | 0.116731 / 6.500664 (-6.383933) | 0.041978 / 0.075469 (-0.033491) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963259 / 1.841788 (-0.878529) | 11.983646 / 8.074308 (3.909338) | 10.561596 / 10.191392 (0.370204) | 0.135863 / 0.680424 (-0.544561) | 0.015607 / 0.534201 (-0.518594) | 0.295164 / 0.579283 (-0.284119) | 0.283366 / 0.434364 (-0.150998) | 0.341848 / 0.540337 (-0.198489) | 0.448359 / 1.386936 (-0.938577) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005366 / 0.011353 (-0.005987) | 0.003621 / 0.011008 (-0.007387) | 0.048615 / 0.038508 (0.010107) | 0.053950 / 0.023109 (0.030841) | 0.273112 / 0.275898 (-0.002786) | 0.295655 / 0.323480 (-0.027825) | 0.004066 / 0.007986 (-0.003920) | 0.002700 / 0.004328 (-0.001628) | 0.047899 / 0.004250 (0.043648) | 0.041633 / 0.037052 (0.004581) | 0.277760 / 0.258489 (0.019271) | 0.302068 / 0.293841 (0.008227) | 0.028879 / 0.128546 (-0.099668) | 0.010756 / 0.075646 (-0.064891) | 0.057190 / 0.419271 (-0.362082) | 0.032555 / 0.043533 (-0.010978) | 0.272045 / 0.255139 (0.016906) | 0.289330 / 0.283200 (0.006130) | 0.018466 / 0.141683 (-0.123216) | 1.180435 / 1.452155 (-0.271720) | 1.192228 / 1.492716 (-0.300488) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094871 / 0.018006 (0.076864) | 0.302552 / 0.000490 (0.302062) | 0.000224 / 0.000200 (0.000024) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022008 / 0.037411 (-0.015403) | 0.068528 / 0.014526 (0.054002) | 0.081735 / 0.176557 (-0.094821) | 0.120990 / 0.737135 (-0.616145) | 0.083155 / 0.296338 (-0.213184) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.305030 / 0.215209 (0.089821) | 3.009812 / 2.077655 (0.932158) | 1.677773 / 1.504120 (0.173654) | 1.552280 / 1.541195 (0.011085) | 1.606248 / 1.468490 (0.137758) | 0.557093 / 4.584777 (-4.027684) | 2.418292 / 3.745712 (-1.327420) | 2.813049 / 5.269862 (-2.456813) | 1.764507 / 4.565676 (-2.801169) | 0.065089 / 0.424275 (-0.359186) | 0.004944 / 0.007607 (-0.002663) | 0.360672 / 0.226044 (0.134628) | 3.525850 / 2.268929 (1.256921) | 2.030091 / 55.444624 (-53.414533) | 1.754669 / 6.876477 (-5.121807) | 1.772673 / 2.142072 (-0.369399) | 0.642904 / 4.805227 (-4.162324) | 0.116018 / 6.500664 (-6.384646) | 0.041308 / 0.075469 (-0.034161) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.986386 / 1.841788 (-0.855401) | 12.291623 / 8.074308 (4.217315) | 10.655932 / 10.191392 (0.464540) | 0.141736 / 0.680424 (-0.538688) | 0.016669 / 0.534201 (-0.517532) | 0.286875 / 0.579283 (-0.292408) | 0.281898 / 0.434364 (-0.152466) | 0.325206 / 0.540337 (-0.215132) | 0.577607 / 1.386936 (-0.809329) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1cf33502493fb9760ea8cc8e51622bf94d0c9e31 \"CML watermark\")\n",
"Alright tests are passing (except one on temp dir cleanup windows but I don't think it's related to this PR ?)\r\n\r\n```\r\nFAILED tests/test_load.py::test_loading_from_the_datasets_hub - NotADirectoryError: [WinError 267] The directory name is invalid: 'C:\\\\Users\\\\RUNNER~1\\\\AppData\\\\Local\\\\Temp\\\\tmpqy3f2ft_\\\\hf-internal-testing___dataset_with_script\\\\default\\\\0.0.0\\\\c240e2be3370bdbd\\\\dataset_with_script-train.arrow'\r\n```",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005072 / 0.011353 (-0.006281) | 0.003449 / 0.011008 (-0.007559) | 0.062630 / 0.038508 (0.024122) | 0.054276 / 0.023109 (0.031167) | 0.253345 / 0.275898 (-0.022553) | 0.273460 / 0.323480 (-0.050020) | 0.003859 / 0.007986 (-0.004127) | 0.002646 / 0.004328 (-0.001683) | 0.048289 / 0.004250 (0.044038) | 0.037943 / 0.037052 (0.000891) | 0.256569 / 0.258489 (-0.001920) | 0.287809 / 0.293841 (-0.006032) | 0.027675 / 0.128546 (-0.100872) | 0.010554 / 0.075646 (-0.065092) | 0.205157 / 0.419271 (-0.214115) | 0.035464 / 0.043533 (-0.008069) | 0.254300 / 0.255139 (-0.000839) | 0.272907 / 0.283200 (-0.010292) | 0.018146 / 0.141683 (-0.123537) | 1.110528 / 1.452155 (-0.341626) | 1.170156 / 1.492716 (-0.322560) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093151 / 0.018006 (0.075144) | 0.302087 / 0.000490 (0.301598) | 0.000216 / 0.000200 (0.000016) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018744 / 0.037411 (-0.018667) | 0.059843 / 0.014526 (0.045317) | 0.073165 / 0.176557 (-0.103391) | 0.120464 / 0.737135 (-0.616671) | 0.074992 / 0.296338 (-0.221347) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285103 / 0.215209 (0.069894) | 2.820254 / 2.077655 (0.742600) | 1.505336 / 1.504120 (0.001216) | 1.368631 / 1.541195 (-0.172564) | 1.404140 / 1.468490 (-0.064350) | 0.563906 / 4.584777 (-4.020871) | 2.411871 / 3.745712 (-1.333841) | 2.788390 / 5.269862 (-2.481471) | 1.749788 / 4.565676 (-2.815888) | 0.062171 / 0.424275 (-0.362104) | 0.004918 / 0.007607 (-0.002689) | 0.339615 / 0.226044 (0.113571) | 3.337789 / 2.268929 (1.068861) | 1.808445 / 55.444624 (-53.636180) | 1.541015 / 6.876477 (-5.335462) | 1.572389 / 2.142072 (-0.569683) | 0.641739 / 4.805227 (-4.163488) | 0.115844 / 6.500664 (-6.384820) | 0.042504 / 0.075469 (-0.032965) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.942463 / 1.841788 (-0.899325) | 11.602364 / 8.074308 (3.528056) | 10.628921 / 10.191392 (0.437529) | 0.136154 / 0.680424 (-0.544270) | 0.013842 / 0.534201 (-0.520359) | 0.287085 / 0.579283 (-0.292198) | 0.269860 / 0.434364 (-0.164503) | 0.329525 / 0.540337 (-0.210812) | 0.441287 / 1.386936 (-0.945649) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005215 / 0.011353 (-0.006138) | 0.003549 / 0.011008 (-0.007460) | 0.049199 / 0.038508 (0.010691) | 0.051655 / 0.023109 (0.028545) | 0.272150 / 0.275898 (-0.003748) | 0.291978 / 0.323480 (-0.031502) | 0.003985 / 0.007986 (-0.004001) | 0.002668 / 0.004328 (-0.001661) | 0.048524 / 0.004250 (0.044274) | 0.039824 / 0.037052 (0.002772) | 0.275566 / 0.258489 (0.017077) | 0.298076 / 0.293841 (0.004235) | 0.029508 / 0.128546 (-0.099038) | 0.010673 / 0.075646 (-0.064973) | 0.057327 / 0.419271 (-0.361944) | 0.032590 / 0.043533 (-0.010943) | 0.273295 / 0.255139 (0.018156) | 0.289127 / 0.283200 (0.005928) | 0.017694 / 0.141683 (-0.123989) | 1.134502 / 1.452155 (-0.317653) | 1.185603 / 1.492716 (-0.307114) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098403 / 0.018006 (0.080396) | 0.302735 / 0.000490 (0.302245) | 0.000228 / 0.000200 (0.000028) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025192 / 0.037411 (-0.012219) | 0.068149 / 0.014526 (0.053623) | 0.082220 / 0.176557 (-0.094336) | 0.119491 / 0.737135 (-0.617645) | 0.082484 / 0.296338 (-0.213855) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295339 / 0.215209 (0.080130) | 2.868411 / 2.077655 (0.790757) | 1.590665 / 1.504120 (0.086545) | 1.465995 / 1.541195 (-0.075200) | 1.489205 / 1.468490 (0.020715) | 0.562503 / 4.584777 (-4.022274) | 2.480100 / 3.745712 (-1.265613) | 2.774216 / 5.269862 (-2.495646) | 1.733129 / 4.565676 (-2.832548) | 0.062698 / 0.424275 (-0.361577) | 0.004910 / 0.007607 (-0.002697) | 0.354766 / 0.226044 (0.128722) | 3.435541 / 2.268929 (1.166613) | 1.953357 / 55.444624 (-53.491267) | 1.673584 / 6.876477 (-5.202893) | 1.677749 / 2.142072 (-0.464323) | 0.632601 / 4.805227 (-4.172626) | 0.114875 / 6.500664 (-6.385789) | 0.040577 / 0.075469 (-0.034892) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.967003 / 1.841788 (-0.874785) | 11.964490 / 8.074308 (3.890181) | 10.493812 / 10.191392 (0.302420) | 0.132177 / 0.680424 (-0.548247) | 0.015149 / 0.534201 (-0.519052) | 0.289011 / 0.579283 (-0.290272) | 0.285479 / 0.434364 (-0.148885) | 0.327090 / 0.540337 (-0.213248) | 0.571747 / 1.386936 (-0.815189) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4c9b4cb7ee4720415261216d72051e2a3320fe41 \"CML watermark\")\n"
] | "2023-11-23T17:31:57Z" | "2023-12-01T17:57:17Z" | "2023-12-01T17:50:59Z" | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6448.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6448",
"merged_at": "2023-12-01T17:50:59Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6448.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6448"
} | The idea is to make this code work for datasets with scripts if they have a Parquet export
```python
ds = load_dataset("squad", trust_remote_code=False)
```
And more generally, it means we use the Parquet export whenever it's possible (it's safer and faster than dataset scripts).
I also added a `config.USE_PARQUET_EXPORT` variable to use in the datasets-server parquet conversion job
- [x] Needs https://github.com/huggingface/datasets/pull/6429 to be merged first
cc @severo I use the /parquet and /info endpoints from datasets-server | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 2,
"laugh": 0,
"rocket": 0,
"total_count": 2,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6448/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6448/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1042 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1042/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1042/comments | https://api.github.com/repos/huggingface/datasets/issues/1042/events | https://github.com/huggingface/datasets/pull/1042 | 756,097,583 | MDExOlB1bGxSZXF1ZXN0NTMxNjk3NDU4 | 1,042 | Add Big Patent dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/46804938?v=4",
"events_url": "https://api.github.com/users/mattbui/events{/privacy}",
"followers_url": "https://api.github.com/users/mattbui/followers",
"following_url": "https://api.github.com/users/mattbui/following{/other_user}",
"gists_url": "https://api.github.com/users/mattbui/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mattbui",
"id": 46804938,
"login": "mattbui",
"node_id": "MDQ6VXNlcjQ2ODA0OTM4",
"organizations_url": "https://api.github.com/users/mattbui/orgs",
"received_events_url": "https://api.github.com/users/mattbui/received_events",
"repos_url": "https://api.github.com/users/mattbui/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mattbui/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mattbui/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mattbui"
} | [] | closed | false | null | [] | null | [
"Looks like this PR include changes about many other files than the ones related to big patent.\r\nCould you create another branch and another PR ?",
"@lhoestq Just created a new PR here: https://github.com/huggingface/datasets/pull/1087"
] | "2020-12-03T11:07:59Z" | "2020-12-04T04:38:26Z" | "2020-12-04T04:38:26Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1042.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1042",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/1042.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1042"
} | - More info on the dataset: https://evasharma.github.io/bigpatent/
- There's another raw version of the dataset available from tfds. However, they're quite large so I don't have the resources to fully test all the configs for that version yet. We'll try to add it later.
- ~Currently, there are no dummy data for this dataset yet as I'm facing some problems with generating them. I'm trying to add them later.~ | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1042/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1042/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/4622 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4622/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4622/comments | https://api.github.com/repos/huggingface/datasets/issues/4622/events | https://github.com/huggingface/datasets/pull/4622 | 1,293,031,939 | PR_kwDODunzps46ynmT | 4,622 | Fix ImageFolder with parameters drop_metadata=True and drop_labels=False (when metadata.jsonl is present) | {
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"@lhoestq @mariosasko pls take a look at https://github.com/huggingface/datasets/pull/4622/commits/769e4c046a5bd5e3a4dbd09cfad1f4cf60677869. I modified `_generate_examples()` according to the same logic too: removed checking if `metadata_files` are not empty for the case when `self.config.drop_metadata=True` because I think we should be aligned with the config and preserve labels if `self.config.drop_labels=False` (the default value) and `self.config.drop_metadata=True` but `metadata_files` are passed. This is an extremely unlikely use case (when `self.config.drop_metadata=True`, but `metadata_files` are passed to `_generate_examples()`) since users usually do not use `_generate_examples()` alone but I believe it would be consistent to have the same behavior as in `_splits_generators()`. This change requires change in tests too if we suppose that we want to preserve labels (default value of `self.config.drop_labels` is False) when `self.config.drop_metadata=True`, even if `metadata_files` are for some reason provided (as it is done in tests). \r\n\r\nwdyt about this change?\r\n",
"@lhoestq it wouldn't raise an error if we check `example.keys() == {\"image\", \"label\"}` as test checks only `_generate_examples`, not `encode_example`. and in the implementation of this PR `_generate_examples` would return both `image` and `label` key in the case when `drop_metadata=True` and `drop_labels=False` (default) as it seems that we agreed on that :)",
"and on the other hand it would raise an error if `label` column is missing in _generate_examples when `drop_metadata=True` and `drop_labels=False`\r\n\r\nby \"it\" i mean tests :D (`test_generate_examples_with_metadata_that_misses_one_image`, `test_generate_examples_with_metadata_in_wrong_location` and `test_generate_examples_drop_metadata`)",
"Perhaps we could make `self.config.drop_metadata = None` and `self.config.drop_labels = None` the defaults to see explicitly what the user wants. This would then turn into `self.config.drop_metadata = False` and `self.config.drop_labels = True` if metadata files are present and `self.config.drop_metadata = True` and `self.config.drop_labels = False` if not. And if the user wants to have the `label` column alongside metadata columns, it can do so by passing `drop_labels = False` explicitely (in that scenario we have to check that the `label` column is not already present in metadata files). And maybe we can also improve the logging messages.\r\n\r\nI find it problematic that the current implementation drops labels in some scenarios even if `self.config.drop_labels = False`, and the user doesn't have control over this behavior.\r\n\r\nLet me know what you think."
] | "2022-07-04T11:23:20Z" | "2022-07-15T14:37:23Z" | "2022-07-15T14:24:24Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/4622.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4622",
"merged_at": "2022-07-15T14:24:24Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4622.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4622"
} | Will fix #4621
ImageFolder raises `KeyError: 'label'` with params `drop_metadata=True` and `drop_labels=False` (if there is at least one metadata.jsonl file a data directory). This happens because metadata files are collected inside `analyze()` function regardless of `drop_metadata` value. And then the following condition doesn't pass: https://github.com/huggingface/datasets/blob/master/src/datasets/packaged_modules/imagefolder/imagefolder.py#L167
So I suggest to double check it inside `analyze()` not to collect metadata files if they are not needed. (and labels too, to be consistent)
---
Also, I added a test to check if labels are inferred correctly from directories names in general (because we didn't have it) :) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4622/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4622/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1510 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1510/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1510/comments | https://api.github.com/repos/huggingface/datasets/issues/1510/events | https://github.com/huggingface/datasets/pull/1510 | 763,980,369 | MDExOlB1bGxSZXF1ZXN0NTM4MjU4NDg3 | 1,510 | Add Dataset for (qa_srl)Question-Answer Driven Semantic Role Labeling | {
"avatar_url": "https://avatars.githubusercontent.com/u/12439573?v=4",
"events_url": "https://api.github.com/users/bpatidar/events{/privacy}",
"followers_url": "https://api.github.com/users/bpatidar/followers",
"following_url": "https://api.github.com/users/bpatidar/following{/other_user}",
"gists_url": "https://api.github.com/users/bpatidar/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/bpatidar",
"id": 12439573,
"login": "bpatidar",
"node_id": "MDQ6VXNlcjEyNDM5NTcz",
"organizations_url": "https://api.github.com/users/bpatidar/orgs",
"received_events_url": "https://api.github.com/users/bpatidar/received_events",
"repos_url": "https://api.github.com/users/bpatidar/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/bpatidar/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bpatidar/subscriptions",
"type": "User",
"url": "https://api.github.com/users/bpatidar"
} | [] | closed | false | null | [] | null | [
"Hii please follow me",
"merging since the CI is fixed on master"
] | "2020-12-12T15:48:11Z" | "2020-12-17T16:06:22Z" | "2020-12-17T16:06:22Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1510.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1510",
"merged_at": "2020-12-17T16:06:22Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1510.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1510"
} | - Added tags, Readme file
- Added code changes | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1510/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1510/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/1263 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1263/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1263/comments | https://api.github.com/repos/huggingface/datasets/issues/1263/events | https://github.com/huggingface/datasets/pull/1263 | 758,663,787 | MDExOlB1bGxSZXF1ZXN0NTMzNzk5NzU5 | 1,263 | Added kannada news headlines classification dataset. | {
"avatar_url": "https://avatars.githubusercontent.com/u/16264631?v=4",
"events_url": "https://api.github.com/users/vrindaprabhu/events{/privacy}",
"followers_url": "https://api.github.com/users/vrindaprabhu/followers",
"following_url": "https://api.github.com/users/vrindaprabhu/following{/other_user}",
"gists_url": "https://api.github.com/users/vrindaprabhu/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/vrindaprabhu",
"id": 16264631,
"login": "vrindaprabhu",
"node_id": "MDQ6VXNlcjE2MjY0NjMx",
"organizations_url": "https://api.github.com/users/vrindaprabhu/orgs",
"received_events_url": "https://api.github.com/users/vrindaprabhu/received_events",
"repos_url": "https://api.github.com/users/vrindaprabhu/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/vrindaprabhu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vrindaprabhu/subscriptions",
"type": "User",
"url": "https://api.github.com/users/vrindaprabhu"
} | [] | closed | false | null | [] | null | [
"Hi! Let me know if any more comments! Will fix it! :-)"
] | "2020-12-07T16:35:37Z" | "2020-12-10T14:30:55Z" | "2020-12-09T18:01:31Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1263.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1263",
"merged_at": "2020-12-09T18:01:31Z",
"patch_url": "https://github.com/huggingface/datasets/pull/1263.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1263"
} | Manual Download of a kaggle dataset. Mostly followed process as ms_terms. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1263/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1263/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/3320 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/3320/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/3320/comments | https://api.github.com/repos/huggingface/datasets/issues/3320/events | https://github.com/huggingface/datasets/issues/3320 | 1,063,531,992 | I_kwDODunzps4_ZDXY | 3,320 | Can't get tatoeba.rus dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/65535131?v=4",
"events_url": "https://api.github.com/users/mmg10/events{/privacy}",
"followers_url": "https://api.github.com/users/mmg10/followers",
"following_url": "https://api.github.com/users/mmg10/following{/other_user}",
"gists_url": "https://api.github.com/users/mmg10/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mmg10",
"id": 65535131,
"login": "mmg10",
"node_id": "MDQ6VXNlcjY1NTM1MTMx",
"organizations_url": "https://api.github.com/users/mmg10/orgs",
"received_events_url": "https://api.github.com/users/mmg10/received_events",
"repos_url": "https://api.github.com/users/mmg10/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mmg10/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mmg10/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mmg10"
} | [
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] | closed | false | null | [] | null | [] | "2021-11-25T12:31:11Z" | "2021-11-26T10:30:29Z" | "2021-11-26T10:30:29Z" | NONE | null | null | null | ## Describe the bug
It gives an error.
> FileNotFoundError: Couldn't find file at https://github.com/facebookresearch/LASER/raw/master/data/tatoeba/v1/tatoeba.rus-eng.rus
## Steps to reproduce the bug
```python
data=load_dataset("xtreme","tatoeba.rus", split="validation")
```
## Solution
The library tries to access the **master** branch. In the github repo of facebookresearch, it is in the **main** branch. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/3320/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/3320/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/4181 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/4181/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/4181/comments | https://api.github.com/repos/huggingface/datasets/issues/4181/events | https://github.com/huggingface/datasets/issues/4181 | 1,208,194,805 | I_kwDODunzps5IA5b1 | 4,181 | Support streaming FLEURS dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4",
"events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}",
"followers_url": "https://api.github.com/users/patrickvonplaten/followers",
"following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}",
"gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/patrickvonplaten",
"id": 23423619,
"login": "patrickvonplaten",
"node_id": "MDQ6VXNlcjIzNDIzNjE5",
"organizations_url": "https://api.github.com/users/patrickvonplaten/orgs",
"received_events_url": "https://api.github.com/users/patrickvonplaten/received_events",
"repos_url": "https://api.github.com/users/patrickvonplaten/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions",
"type": "User",
"url": "https://api.github.com/users/patrickvonplaten"
} | [
{
"color": "2edb81",
"default": false,
"description": "A bug in a dataset script provided in the library",
"id": 2067388877,
"name": "dataset bug",
"node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug"
}
] | closed | false | null | [] | null | [
"Yes, you just have to use `dl_manager.iter_archive` instead of `dl_manager.download_and_extract`.\r\n\r\nThat's because `download_and_extract` doesn't support TAR archives in streaming mode.",
"Tried to make it streamable, but I don't think it's really possible. @lhoestq @polinaeterna maybe you guys can check: \r\nhttps://huggingface.co/datasets/google/fleurs/commit/dcf80160cd77977490a8d32b370c027107f2407b \r\n\r\nreal quick. \r\n\r\nI think the problem is that we cannot ensure that the metadata file is found before the audio. Or is this possible somehow @lhoestq ? ",
"@patrickvonplaten I think the metadata file should be found first because the audio files are contained in a folder next to the metadata files (just as in common voice), so the metadata files should be \"on top of the list\" as they are closer to the root in the directories hierarchy ",
"@patrickvonplaten but apparently it doesn't... I don't really know why.",
"Yeah! Any ideas what could be the reason here? cc @lhoestq ?",
"The order of the files is determined when the TAR archive is created, depending on the commands the creator ran.\r\nIf the metadata file is not at the beginning of the file, that makes streaming completely inefficient. In this case the TAR archive needs to be recreated in an appropriate order.",
"Actually we could maybe just host the metadata file ourselves and then stream the audio data only. Don't think that this would be a problem for the FLEURS authors (I can ask them :-)) ",
"I made a PR to their repo to support streaming (by uploading the metadata file to the Hub). See:\r\n- https://huggingface.co/datasets/google/fleurs/discussions/4",
"I'm closing this issue as the PR above has been merged."
] | "2022-04-19T11:09:56Z" | "2022-07-25T11:44:02Z" | "2022-07-25T11:44:02Z" | MEMBER | null | null | null | ## Dataset viewer issue for '*name of the dataset*'
https://huggingface.co/datasets/google/fleurs
```
Status code: 400
Exception: NotImplementedError
Message: Extraction protocol for TAR archives like 'https://storage.googleapis.com/xtreme_translations/FLEURS/af_za.tar.gz' is not implemented in streaming mode. Please use `dl_manager.iter_archive` instead.
```
Am I the one who added this dataset ? Yes
Can I fix this somehow in the script? @lhoestq @severo
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4181/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/4181/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/1421 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/1421/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/1421/comments | https://api.github.com/repos/huggingface/datasets/issues/1421/events | https://github.com/huggingface/datasets/pull/1421 | 760,706,851 | MDExOlB1bGxSZXF1ZXN0NTM1NDkzMzU4 | 1,421 | adding fake-news-english-2 | {
"avatar_url": "https://avatars.githubusercontent.com/u/15351802?v=4",
"events_url": "https://api.github.com/users/MisbahKhan789/events{/privacy}",
"followers_url": "https://api.github.com/users/MisbahKhan789/followers",
"following_url": "https://api.github.com/users/MisbahKhan789/following{/other_user}",
"gists_url": "https://api.github.com/users/MisbahKhan789/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/MisbahKhan789",
"id": 15351802,
"login": "MisbahKhan789",
"node_id": "MDQ6VXNlcjE1MzUxODAy",
"organizations_url": "https://api.github.com/users/MisbahKhan789/orgs",
"received_events_url": "https://api.github.com/users/MisbahKhan789/received_events",
"repos_url": "https://api.github.com/users/MisbahKhan789/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/MisbahKhan789/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MisbahKhan789/subscriptions",
"type": "User",
"url": "https://api.github.com/users/MisbahKhan789"
} | [] | closed | false | null | [] | null | [] | "2020-12-09T22:05:13Z" | "2020-12-13T00:48:49Z" | "2020-12-13T00:48:49Z" | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/1421.diff",
"html_url": "https://github.com/huggingface/datasets/pull/1421",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/1421.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/1421"
} | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/1421/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/1421/timeline | null | null | true |