url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
600M
2.05B
node_id
stringlengths
18
32
number
int64
2
6.51k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
4
milestone
dict
comments
sequencelengths
0
30
created_at
unknown
updated_at
unknown
closed_at
unknown
author_association
stringclasses
3 values
active_lock_reason
float64
draft
float64
0
1
pull_request
dict
body
stringlengths
0
228k
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
float64
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/2469
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2469/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2469/comments
https://api.github.com/repos/huggingface/datasets/issues/2469/events
https://github.com/huggingface/datasets/pull/2469
916,440,418
MDExOlB1bGxSZXF1ZXN0NjY2MTA1OTk1
2,469
Bump tqdm version
{ "avatar_url": "https://avatars.githubusercontent.com/u/26859204?v=4", "events_url": "https://api.github.com/users/lewtun/events{/privacy}", "followers_url": "https://api.github.com/users/lewtun/followers", "following_url": "https://api.github.com/users/lewtun/following{/other_user}", "gists_url": "https://api.github.com/users/lewtun/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lewtun", "id": 26859204, "login": "lewtun", "node_id": "MDQ6VXNlcjI2ODU5MjA0", "organizations_url": "https://api.github.com/users/lewtun/orgs", "received_events_url": "https://api.github.com/users/lewtun/received_events", "repos_url": "https://api.github.com/users/lewtun/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lewtun/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lewtun/subscriptions", "type": "User", "url": "https://api.github.com/users/lewtun" }
[]
closed
false
null
[]
null
[ "i tried both the latest version of `tqdm` and the version required by `autonlp` - no luck with windows 😞 \r\n\r\nit's very weird that a progress bar would trigger these kind of errors, so i'll have a look to see if it's something unique to `datasets`", "Closing since this is now fixed in #2482 " ]
"2021-06-09T17:24:40"
"2021-06-11T15:03:42"
"2021-06-11T15:03:36"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2469.diff", "html_url": "https://github.com/huggingface/datasets/pull/2469", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/2469.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2469" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2469/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2469/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1373
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1373/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1373/comments
https://api.github.com/repos/huggingface/datasets/issues/1373/events
https://github.com/huggingface/datasets/pull/1373
760,280,869
MDExOlB1bGxSZXF1ZXN0NTM1MTM5MTY0
1,373
Add OPUS ECB Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/1183441?v=4", "events_url": "https://api.github.com/users/abhishekkrthakur/events{/privacy}", "followers_url": "https://api.github.com/users/abhishekkrthakur/followers", "following_url": "https://api.github.com/users/abhishekkrthakur/following{/other_user}", "gists_url": "https://api.github.com/users/abhishekkrthakur/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/abhishekkrthakur", "id": 1183441, "login": "abhishekkrthakur", "node_id": "MDQ6VXNlcjExODM0NDE=", "organizations_url": "https://api.github.com/users/abhishekkrthakur/orgs", "received_events_url": "https://api.github.com/users/abhishekkrthakur/received_events", "repos_url": "https://api.github.com/users/abhishekkrthakur/repos", "site_admin": false, "starred_url": "https://api.github.com/users/abhishekkrthakur/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/abhishekkrthakur/subscriptions", "type": "User", "url": "https://api.github.com/users/abhishekkrthakur" }
[]
closed
false
null
[]
null
[]
"2020-12-09T12:18:22"
"2020-12-10T15:25:55"
"2020-12-10T15:25:54"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1373.diff", "html_url": "https://github.com/huggingface/datasets/pull/1373", "merged_at": "2020-12-10T15:25:54Z", "patch_url": "https://github.com/huggingface/datasets/pull/1373.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1373" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1373/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1373/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/964
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/964/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/964/comments
https://api.github.com/repos/huggingface/datasets/issues/964/events
https://github.com/huggingface/datasets/pull/964
754,474,660
MDExOlB1bGxSZXF1ZXN0NTMwMzY4OTAy
964
Adding the WebNLG dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yjernite", "id": 10469459, "login": "yjernite", "node_id": "MDQ6VXNlcjEwNDY5NDU5", "organizations_url": "https://api.github.com/users/yjernite/orgs", "received_events_url": "https://api.github.com/users/yjernite/received_events", "repos_url": "https://api.github.com/users/yjernite/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "type": "User", "url": "https://api.github.com/users/yjernite" }
[]
closed
false
null
[]
null
[ "This is task is part of the GEM suite so will actually need a more complete dataset card. I'm taking a break for now though and will get back to it before merging :) " ]
"2020-12-01T15:05:23"
"2020-12-02T17:34:05"
"2020-12-02T17:34:05"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/964.diff", "html_url": "https://github.com/huggingface/datasets/pull/964", "merged_at": "2020-12-02T17:34:05Z", "patch_url": "https://github.com/huggingface/datasets/pull/964.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/964" }
This PR adds data from the WebNLG challenge, with one configuration per release and challenge iteration. More information can be found [here](https://webnlg-challenge.loria.fr/) Unfortunately, the data itself comes from a pretty large number of small XML files, so the dummy data ends up being quite large (8.4 MB even keeping only one example per file).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/964/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/964/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3804
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3804/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3804/comments
https://api.github.com/repos/huggingface/datasets/issues/3804/events
https://github.com/huggingface/datasets/issues/3804
1,157,297,278
I_kwDODunzps5E-vR-
3,804
Text builder with custom separator line boundaries
{ "avatar_url": "https://avatars.githubusercontent.com/u/18630848?v=4", "events_url": "https://api.github.com/users/cronoik/events{/privacy}", "followers_url": "https://api.github.com/users/cronoik/followers", "following_url": "https://api.github.com/users/cronoik/following{/other_user}", "gists_url": "https://api.github.com/users/cronoik/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cronoik", "id": 18630848, "login": "cronoik", "node_id": "MDQ6VXNlcjE4NjMwODQ4", "organizations_url": "https://api.github.com/users/cronoik/orgs", "received_events_url": "https://api.github.com/users/cronoik/received_events", "repos_url": "https://api.github.com/users/cronoik/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cronoik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cronoik/subscriptions", "type": "User", "url": "https://api.github.com/users/cronoik" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Gently pinging @lhoestq", "Hi ! Interresting :)\r\n\r\nCould you give more details on what kind of separators you would like to use instead ?", "In my case, I just want to use `\\n` but not `U+2028`.", "Ok I see, maybe there can be a `sep` parameter to allow users to specify what line/paragraph separator they'd like to use", "Related to:\r\n- #3729 \r\n- #3910", "Thanks for requesting this enhancement. We have recently found a somehow related issue with another dataset:\r\n- #3704\r\n\r\nLet me make a PR proposal." ]
"2022-03-02T14:50:16"
"2022-03-16T15:53:59"
null
NONE
null
null
null
**Is your feature request related to a problem? Please describe.** The current [Text](https://github.com/huggingface/datasets/blob/207be676bffe9d164740a41a883af6125edef135/src/datasets/packaged_modules/text/text.py#L23) builder implementation splits texts with `splitlines()` which splits the text on several line boundaries. Not all of them are always wanted. **Describe the solution you'd like** ```python if self.config.sample_by == "line": batch_idx = 0 while True: batch = f.read(self.config.chunksize) if not batch: break batch += f.readline() # finish current line if self.config.custom_newline is None: batch = batch.splitlines(keepends=self.config.keep_linebreaks) else: batch = batch.split(self.config.custom_newline)[:-1] pa_table = pa.Table.from_arrays([pa.array(batch)], schema=schema) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), pa_table batch_idx += 1 ``` **A clear and concise description of what you want to happen.** Creating the dataset rows with a subset of the `splitlines()` line boundaries.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3804/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3804/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/1643
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1643/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1643/comments
https://api.github.com/repos/huggingface/datasets/issues/1643/events
https://github.com/huggingface/datasets/issues/1643
775,280,046
MDU6SXNzdWU3NzUyODAwNDY=
1,643
Dataset social_bias_frames 404
{ "avatar_url": "https://avatars.githubusercontent.com/u/7501517?v=4", "events_url": "https://api.github.com/users/atemate/events{/privacy}", "followers_url": "https://api.github.com/users/atemate/followers", "following_url": "https://api.github.com/users/atemate/following{/other_user}", "gists_url": "https://api.github.com/users/atemate/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/atemate", "id": 7501517, "login": "atemate", "node_id": "MDQ6VXNlcjc1MDE1MTc=", "organizations_url": "https://api.github.com/users/atemate/orgs", "received_events_url": "https://api.github.com/users/atemate/received_events", "repos_url": "https://api.github.com/users/atemate/repos", "site_admin": false, "starred_url": "https://api.github.com/users/atemate/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/atemate/subscriptions", "type": "User", "url": "https://api.github.com/users/atemate" }
[]
closed
false
null
[]
null
[ "I see, master is already fixed in https://github.com/huggingface/datasets/commit/9e058f098a0919efd03a136b9b9c3dec5076f626" ]
"2020-12-28T08:35:34"
"2020-12-28T08:38:07"
"2020-12-28T08:38:07"
NONE
null
null
null
``` >>> from datasets import load_dataset >>> dataset = load_dataset("social_bias_frames") ... Downloading and preparing dataset social_bias_frames/default ... ~/.pyenv/versions/3.7.6/lib/python3.7/site-packages/datasets/utils/file_utils.py in get_from_cache(url, cache_dir, force_download, proxies, etag_timeout, resume_download, user_agent, local_files_only, use_etag) 484 ) 485 elif response is not None and response.status_code == 404: --> 486 raise FileNotFoundError("Couldn't find file at {}".format(url)) 487 raise ConnectionError("Couldn't reach {}".format(url)) 488 FileNotFoundError: Couldn't find file at https://homes.cs.washington.edu/~msap/social-bias-frames/SocialBiasFrames_v2.tgz ``` [Here](https://homes.cs.washington.edu/~msap/social-bias-frames/) we find button `Download data` with the correct URL for the data: https://homes.cs.washington.edu/~msap/social-bias-frames/SBIC.v2.tgz
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1643/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1643/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5655
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5655/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5655/comments
https://api.github.com/repos/huggingface/datasets/issues/5655/events
https://github.com/huggingface/datasets/pull/5655
1,634,030,017
PR_kwDODunzps5MjWYy
5,655
Improve features decoding in to_iterable_dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009691 / 0.011353 (-0.001662) | 0.006160 / 0.011008 (-0.004848) | 0.127528 / 0.038508 (0.089020) | 0.034445 / 0.023109 (0.011335) | 0.391483 / 0.275898 (0.115585) | 0.425922 / 0.323480 (0.102442) | 0.006621 / 0.007986 (-0.001365) | 0.004550 / 0.004328 (0.000221) | 0.099134 / 0.004250 (0.094884) | 0.051089 / 0.037052 (0.014037) | 0.398675 / 0.258489 (0.140186) | 0.456740 / 0.293841 (0.162899) | 0.052279 / 0.128546 (-0.076267) | 0.020878 / 0.075646 (-0.054768) | 0.414954 / 0.419271 (-0.004317) | 0.061903 / 0.043533 (0.018370) | 0.393088 / 0.255139 (0.137949) | 0.410289 / 0.283200 (0.127089) | 0.101684 / 0.141683 (-0.039998) | 1.747102 / 1.452155 (0.294947) | 1.896976 / 1.492716 (0.404260) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203193 / 0.018006 (0.185187) | 0.495011 / 0.000490 (0.494521) | 0.006290 / 0.000200 (0.006090) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034840 / 0.037411 (-0.002571) | 0.122529 / 0.014526 (0.108003) | 0.133870 / 0.176557 (-0.042686) | 0.207771 / 0.737135 (-0.529364) | 0.141441 / 0.296338 (-0.154897) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.604190 / 0.215209 (0.388981) | 6.040295 / 2.077655 (3.962641) | 2.405703 / 1.504120 (0.901583) | 2.062767 / 1.541195 (0.521572) | 2.079313 / 1.468490 (0.610823) | 1.240107 / 4.584777 (-3.344670) | 5.316583 / 3.745712 (1.570871) | 3.104758 / 5.269862 (-2.165103) | 2.056489 / 4.565676 (-2.509187) | 0.149060 / 0.424275 (-0.275215) | 0.014467 / 0.007607 (0.006860) | 0.736882 / 0.226044 (0.510838) | 7.324142 / 2.268929 (5.055213) | 3.048752 / 55.444624 (-52.395872) | 2.385013 / 6.876477 (-4.491463) | 2.457478 / 2.142072 (0.315405) | 1.459276 / 4.805227 (-3.345951) | 0.253882 / 6.500664 (-6.246782) | 0.076756 / 0.075469 (0.001287) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.499166 / 1.841788 (-0.342622) | 17.294165 / 8.074308 (9.219857) | 20.385668 / 10.191392 (10.194276) | 0.254633 / 0.680424 (-0.425791) | 0.026253 / 0.534201 (-0.507948) | 0.532928 / 0.579283 (-0.046355) | 0.606095 / 0.434364 (0.171731) | 0.615025 / 0.540337 (0.074687) | 0.728651 / 1.386936 (-0.658285) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009376 / 0.011353 (-0.001977) | 0.005981 / 0.011008 (-0.005027) | 0.109898 / 0.038508 (0.071390) | 0.033746 / 0.023109 (0.010637) | 0.410226 / 0.275898 (0.134328) | 0.470606 / 0.323480 (0.147126) | 0.006706 / 0.007986 (-0.001279) | 0.004482 / 0.004328 (0.000153) | 0.092280 / 0.004250 (0.088030) | 0.047988 / 0.037052 (0.010935) | 0.430628 / 0.258489 (0.172139) | 0.480668 / 0.293841 (0.186827) | 0.052099 / 0.128546 (-0.076447) | 0.018743 / 0.075646 (-0.056903) | 0.112204 / 0.419271 (-0.307068) | 0.059838 / 0.043533 (0.016305) | 0.418230 / 0.255139 (0.163091) | 0.451568 / 0.283200 (0.168368) | 0.107026 / 0.141683 (-0.034657) | 1.708111 / 1.452155 (0.255956) | 1.839268 / 1.492716 (0.346552) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229558 / 0.018006 (0.211552) | 0.488099 / 0.000490 (0.487609) | 0.004643 / 0.000200 (0.004443) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030461 / 0.037411 (-0.006951) | 0.120993 / 0.014526 (0.106467) | 0.130874 / 0.176557 (-0.045682) | 0.193550 / 0.737135 (-0.543585) | 0.138164 / 0.296338 (-0.158174) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.635709 / 0.215209 (0.420500) | 6.225112 / 2.077655 (4.147457) | 2.639584 / 1.504120 (1.135465) | 2.254487 / 1.541195 (0.713293) | 2.280478 / 1.468490 (0.811988) | 1.205712 / 4.584777 (-3.379065) | 5.367845 / 3.745712 (1.622133) | 3.020207 / 5.269862 (-2.249655) | 2.001897 / 4.565676 (-2.563779) | 0.149582 / 0.424275 (-0.274693) | 0.014867 / 0.007607 (0.007260) | 0.759050 / 0.226044 (0.533006) | 7.692969 / 2.268929 (5.424041) | 3.274009 / 55.444624 (-52.170615) | 2.635529 / 6.876477 (-4.240948) | 2.672960 / 2.142072 (0.530888) | 1.426487 / 4.805227 (-3.378740) | 0.253368 / 6.500664 (-6.247296) | 0.078650 / 0.075469 (0.003181) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.620265 / 1.841788 (-0.221523) | 17.674168 / 8.074308 (9.599860) | 21.120528 / 10.191392 (10.929136) | 0.244205 / 0.680424 (-0.436218) | 0.029646 / 0.534201 (-0.504555) | 0.510948 / 0.579283 (-0.068335) | 0.586255 / 0.434364 (0.151891) | 0.589286 / 0.540337 (0.048949) | 0.736561 / 1.386936 (-0.650375) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#de5fe9ae5df84c489e08dcbdc3d2d20272b312c3 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007778 / 0.011353 (-0.003575) | 0.005432 / 0.011008 (-0.005577) | 0.098776 / 0.038508 (0.060268) | 0.035196 / 0.023109 (0.012087) | 0.305646 / 0.275898 (0.029748) | 0.342661 / 0.323480 (0.019181) | 0.006513 / 0.007986 (-0.001472) | 0.005897 / 0.004328 (0.001568) | 0.075797 / 0.004250 (0.071547) | 0.056060 / 0.037052 (0.019007) | 0.306645 / 0.258489 (0.048156) | 0.352447 / 0.293841 (0.058606) | 0.037304 / 0.128546 (-0.091242) | 0.012514 / 0.075646 (-0.063132) | 0.334949 / 0.419271 (-0.084323) | 0.051600 / 0.043533 (0.008067) | 0.302302 / 0.255139 (0.047163) | 0.322238 / 0.283200 (0.039038) | 0.106896 / 0.141683 (-0.034787) | 1.483163 / 1.452155 (0.031008) | 1.587483 / 1.492716 (0.094767) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292318 / 0.018006 (0.274312) | 0.541541 / 0.000490 (0.541051) | 0.008342 / 0.000200 (0.008142) | 0.000339 / 0.000054 (0.000285) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028287 / 0.037411 (-0.009124) | 0.107775 / 0.014526 (0.093250) | 0.119112 / 0.176557 (-0.057445) | 0.174002 / 0.737135 (-0.563134) | 0.126531 / 0.296338 (-0.169808) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401684 / 0.215209 (0.186475) | 4.024708 / 2.077655 (1.947053) | 1.812763 / 1.504120 (0.308643) | 1.629540 / 1.541195 (0.088345) | 1.731733 / 1.468490 (0.263243) | 0.711066 / 4.584777 (-3.873711) | 3.867499 / 3.745712 (0.121786) | 3.615968 / 5.269862 (-1.653893) | 1.876077 / 4.565676 (-2.689600) | 0.087003 / 0.424275 (-0.337272) | 0.012445 / 0.007607 (0.004838) | 0.499106 / 0.226044 (0.273061) | 4.975920 / 2.268929 (2.706992) | 2.279074 / 55.444624 (-53.165550) | 1.952311 / 6.876477 (-4.924166) | 2.167480 / 2.142072 (0.025408) | 0.855882 / 4.805227 (-3.949346) | 0.171378 / 6.500664 (-6.329287) | 0.066731 / 0.075469 (-0.008738) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.184226 / 1.841788 (-0.657561) | 15.383396 / 8.074308 (7.309088) | 15.069783 / 10.191392 (4.878391) | 0.161489 / 0.680424 (-0.518935) | 0.017763 / 0.534201 (-0.516438) | 0.427103 / 0.579283 (-0.152180) | 0.434295 / 0.434364 (-0.000069) | 0.496848 / 0.540337 (-0.043489) | 0.592572 / 1.386936 (-0.794364) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008014 / 0.011353 (-0.003339) | 0.005607 / 0.011008 (-0.005401) | 0.076826 / 0.038508 (0.038318) | 0.035283 / 0.023109 (0.012174) | 0.347809 / 0.275898 (0.071911) | 0.382482 / 0.323480 (0.059003) | 0.006276 / 0.007986 (-0.001709) | 0.005978 / 0.004328 (0.001650) | 0.074938 / 0.004250 (0.070687) | 0.054323 / 0.037052 (0.017271) | 0.344027 / 0.258489 (0.085538) | 0.397623 / 0.293841 (0.103783) | 0.037851 / 0.128546 (-0.090695) | 0.012649 / 0.075646 (-0.062997) | 0.086169 / 0.419271 (-0.333103) | 0.051510 / 0.043533 (0.007977) | 0.341112 / 0.255139 (0.085973) | 0.357957 / 0.283200 (0.074757) | 0.110949 / 0.141683 (-0.030734) | 1.479573 / 1.452155 (0.027419) | 1.578572 / 1.492716 (0.085855) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.310678 / 0.018006 (0.292672) | 0.525504 / 0.000490 (0.525015) | 0.000447 / 0.000200 (0.000247) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031262 / 0.037411 (-0.006149) | 0.113801 / 0.014526 (0.099275) | 0.124967 / 0.176557 (-0.051590) | 0.175226 / 0.737135 (-0.561909) | 0.129377 / 0.296338 (-0.166962) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420672 / 0.215209 (0.205463) | 4.181337 / 2.077655 (2.103682) | 1.985524 / 1.504120 (0.481404) | 1.803468 / 1.541195 (0.262273) | 1.952915 / 1.468490 (0.484425) | 0.710928 / 4.584777 (-3.873849) | 3.886245 / 3.745712 (0.140533) | 3.737837 / 5.269862 (-1.532024) | 1.806859 / 4.565676 (-2.758818) | 0.088461 / 0.424275 (-0.335814) | 0.013125 / 0.007607 (0.005518) | 0.522410 / 0.226044 (0.296365) | 5.232591 / 2.268929 (2.963663) | 2.451188 / 55.444624 (-52.993437) | 2.127725 / 6.876477 (-4.748751) | 2.232859 / 2.142072 (0.090786) | 0.854257 / 4.805227 (-3.950970) | 0.171004 / 6.500664 (-6.329661) | 0.066724 / 0.075469 (-0.008746) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257700 / 1.841788 (-0.584088) | 15.738605 / 8.074308 (7.664297) | 15.021698 / 10.191392 (4.830306) | 0.147422 / 0.680424 (-0.533002) | 0.017928 / 0.534201 (-0.516273) | 0.428121 / 0.579283 (-0.151162) | 0.432056 / 0.434364 (-0.002308) | 0.498318 / 0.540337 (-0.042020) | 0.591040 / 1.386936 (-0.795896) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1ac74267032ef3608779a8c8c4361b95a83ecbcb \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007014 / 0.011353 (-0.004339) | 0.004792 / 0.011008 (-0.006216) | 0.099822 / 0.038508 (0.061314) | 0.029333 / 0.023109 (0.006224) | 0.306453 / 0.275898 (0.030555) | 0.344598 / 0.323480 (0.021118) | 0.005121 / 0.007986 (-0.002865) | 0.004850 / 0.004328 (0.000522) | 0.076668 / 0.004250 (0.072417) | 0.039980 / 0.037052 (0.002927) | 0.312276 / 0.258489 (0.053787) | 0.354722 / 0.293841 (0.060881) | 0.031653 / 0.128546 (-0.096893) | 0.011743 / 0.075646 (-0.063903) | 0.322998 / 0.419271 (-0.096274) | 0.042813 / 0.043533 (-0.000720) | 0.308855 / 0.255139 (0.053716) | 0.332650 / 0.283200 (0.049451) | 0.087155 / 0.141683 (-0.054528) | 1.454946 / 1.452155 (0.002791) | 1.550589 / 1.492716 (0.057873) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192921 / 0.018006 (0.174914) | 0.411155 / 0.000490 (0.410666) | 0.004779 / 0.000200 (0.004579) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024462 / 0.037411 (-0.012950) | 0.100320 / 0.014526 (0.085794) | 0.105509 / 0.176557 (-0.071048) | 0.168533 / 0.737135 (-0.568602) | 0.110018 / 0.296338 (-0.186321) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415025 / 0.215209 (0.199816) | 4.144583 / 2.077655 (2.066928) | 1.871627 / 1.504120 (0.367507) | 1.671638 / 1.541195 (0.130443) | 1.734458 / 1.468490 (0.265968) | 0.693435 / 4.584777 (-3.891342) | 3.487999 / 3.745712 (-0.257713) | 3.196553 / 5.269862 (-2.073308) | 1.628499 / 4.565676 (-2.937178) | 0.082999 / 0.424275 (-0.341276) | 0.012822 / 0.007607 (0.005215) | 0.514904 / 0.226044 (0.288860) | 5.157525 / 2.268929 (2.888596) | 2.313093 / 55.444624 (-53.131531) | 1.968335 / 6.876477 (-4.908142) | 2.083462 / 2.142072 (-0.058610) | 0.804485 / 4.805227 (-4.000742) | 0.152290 / 6.500664 (-6.348374) | 0.066813 / 0.075469 (-0.008656) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.210370 / 1.841788 (-0.631418) | 14.261779 / 8.074308 (6.187471) | 14.268121 / 10.191392 (4.076729) | 0.149216 / 0.680424 (-0.531207) | 0.016529 / 0.534201 (-0.517672) | 0.378814 / 0.579283 (-0.200469) | 0.386304 / 0.434364 (-0.048060) | 0.439653 / 0.540337 (-0.100684) | 0.523658 / 1.386936 (-0.863278) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006979 / 0.011353 (-0.004374) | 0.004718 / 0.011008 (-0.006290) | 0.077023 / 0.038508 (0.038514) | 0.029080 / 0.023109 (0.005971) | 0.343145 / 0.275898 (0.067247) | 0.380633 / 0.323480 (0.057153) | 0.006057 / 0.007986 (-0.001928) | 0.003541 / 0.004328 (-0.000788) | 0.075773 / 0.004250 (0.071523) | 0.039112 / 0.037052 (0.002060) | 0.342355 / 0.258489 (0.083866) | 0.386002 / 0.293841 (0.092161) | 0.033238 / 0.128546 (-0.095308) | 0.011696 / 0.075646 (-0.063950) | 0.086178 / 0.419271 (-0.333093) | 0.045219 / 0.043533 (0.001686) | 0.360710 / 0.255139 (0.105571) | 0.367490 / 0.283200 (0.084290) | 0.093041 / 0.141683 (-0.048642) | 1.523670 / 1.452155 (0.071516) | 1.595280 / 1.492716 (0.102564) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235888 / 0.018006 (0.217882) | 0.410205 / 0.000490 (0.409715) | 0.000405 / 0.000200 (0.000205) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025752 / 0.037411 (-0.011659) | 0.103343 / 0.014526 (0.088818) | 0.108722 / 0.176557 (-0.067834) | 0.159241 / 0.737135 (-0.577894) | 0.113684 / 0.296338 (-0.182654) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441809 / 0.215209 (0.226600) | 4.410893 / 2.077655 (2.333238) | 2.104061 / 1.504120 (0.599941) | 1.854016 / 1.541195 (0.312821) | 1.947100 / 1.468490 (0.478610) | 0.697682 / 4.584777 (-3.887095) | 3.467513 / 3.745712 (-0.278199) | 1.911603 / 5.269862 (-3.358258) | 1.187479 / 4.565676 (-3.378197) | 0.083153 / 0.424275 (-0.341122) | 0.012651 / 0.007607 (0.005044) | 0.542081 / 0.226044 (0.316036) | 5.444622 / 2.268929 (3.175693) | 2.524236 / 55.444624 (-52.920388) | 2.190463 / 6.876477 (-4.686014) | 2.265764 / 2.142072 (0.123691) | 0.810778 / 4.805227 (-3.994450) | 0.152459 / 6.500664 (-6.348205) | 0.067815 / 0.075469 (-0.007654) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.334388 / 1.841788 (-0.507400) | 14.640459 / 8.074308 (6.566151) | 14.714874 / 10.191392 (4.523482) | 0.153479 / 0.680424 (-0.526945) | 0.016709 / 0.534201 (-0.517492) | 0.379427 / 0.579283 (-0.199856) | 0.391602 / 0.434364 (-0.042762) | 0.438297 / 0.540337 (-0.102041) | 0.524170 / 1.386936 (-0.862766) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b277cef5cb56c0c506eda082fb69fddb839156a1 \"CML watermark\")\n" ]
"2023-03-21T14:18:09"
"2023-03-23T13:19:27"
"2023-03-23T13:12:25"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5655.diff", "html_url": "https://github.com/huggingface/datasets/pull/5655", "merged_at": "2023-03-23T13:12:25Z", "patch_url": "https://github.com/huggingface/datasets/pull/5655.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5655" }
Following discussion at https://github.com/huggingface/datasets/pull/5589 Right now `to_iterable_dataset` on images/audio hurts iterable dataset performance a lot (e.g. x4 slower because it encodes+decodes images/audios unnecessarily). I fixed it by providing a generator that yields undecoded examples
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5655/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5655/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5276
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5276/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5276/comments
https://api.github.com/repos/huggingface/datasets/issues/5276/events
https://github.com/huggingface/datasets/issues/5276
1,459,363,442
I_kwDODunzps5W_B5y
5,276
Bug in downloading common_voice data and snall chunk of it to one's own hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/48530104?v=4", "events_url": "https://api.github.com/users/capsabogdan/events{/privacy}", "followers_url": "https://api.github.com/users/capsabogdan/followers", "following_url": "https://api.github.com/users/capsabogdan/following{/other_user}", "gists_url": "https://api.github.com/users/capsabogdan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/capsabogdan", "id": 48530104, "login": "capsabogdan", "node_id": "MDQ6VXNlcjQ4NTMwMTA0", "organizations_url": "https://api.github.com/users/capsabogdan/orgs", "received_events_url": "https://api.github.com/users/capsabogdan/received_events", "repos_url": "https://api.github.com/users/capsabogdan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/capsabogdan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/capsabogdan/subscriptions", "type": "User", "url": "https://api.github.com/users/capsabogdan" }
[]
closed
false
null
[]
null
[ "Sounds like one of the file is not a valid one, can you make sure you uploaded valid mp3 files ?", "Well I just sharded the original commonVoice dataset and pushed a small chunk of it in a private rep\n\nWhat did go wrong?\n\nHolen Sie sich Outlook für iOS<https://aka.ms/o0ukef>\n________________________________\nVon: Quentin Lhoest ***@***.***>\nGesendet: Tuesday, November 22, 2022 3:03:40 PM\nAn: huggingface/datasets ***@***.***>\nCc: capsabogdan ***@***.***>; Author ***@***.***>\nBetreff: Re: [huggingface/datasets] Bug in downloading common_voice data and snall chunk of it to one's own hub (Issue #5276)\n\n\nSounds like one of the file is not a valid one, can you make sure you uploaded valid mp3 files ?\n\n—\nReply to this email directly, view it on GitHub<https://github.com/huggingface/datasets/issues/5276#issuecomment-1323727434>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/ALSIFOAPAL2V4TBJTSPMAULWJTHDZANCNFSM6AAAAAASHQJ63U>.\nYou are receiving this because you authored the thread.Message ID: ***@***.***>\n", "It should be all good then !\r\nCould you share a link to your repository for me to investigate what went wrong ?", "https://huggingface.co/datasets/DTU54DL/common-voice-test16k\n\nAm Di., 22. Nov. 2022 um 16:43 Uhr schrieb Quentin Lhoest <\n***@***.***>:\n\n> It should be all good then !\n> Could you share a link to your repository for me to investigate what went\n> wrong ?\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5276#issuecomment-1323876682>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ALSIFOEUJRZWXAM7DYA5VJDWJTS3NANCNFSM6AAAAAASHQJ63U>\n> .\n> You are receiving this because you authored the thread.Message ID:\n> ***@***.***>\n>\n", "I see ! This is a bug with MP3 files.\r\n\r\nWhen we store audio data in parquet, we store the bytes and the file name. From the file name extension we know if it's a WAV, an MP3 or else. But here it looks like the paths are all None.\r\n\r\nIt looks like it comes from here:\r\n\r\nhttps://github.com/huggingface/datasets/blob/7feeb5648a63b6135a8259dedc3b1e19185ee4c7/src/datasets/features/audio.py#L212\r\n\r\nCc @polinaeterna maybe we should simply put the file name instead of None values ?", "@lhoestq I remember we wanted to avoid storing redundant data but maybe it's not that crucial indeed to store one more string value. \r\nOr we can store paths only for mp3s, considering that for other formats we don't have such a problem with reading from bytes without format specified. ", "It doesn't cost much to always store the file name IMO", "thanks for the help!\n\ncan I do anything on my side? we are doing a DL project and we need the\ndata really quick.\n\nthanks\nbogdan\n\n> Message ID: ***@***.***>\n>\n", "I opened a pull requests here: https://github.com/huggingface/datasets/pull/5285, we'll do a new release soon with this fix.\r\n\r\nOtherwise if you're really in a hurry you can install `datasets` from this PR", "[image: image.png]\n\n> Message ID: ***@***.***>\n>\n", "any idea on what's going wrong here?\n\nthanks\n\nAm So., 27. Nov. 2022 um 13:53 Uhr schrieb Bogdan Capsa <\n***@***.***>:\n\n> [image: image.png]\n>\n>> Message ID: ***@***.***>\n>>\n>\n", "hi @capsabogdan! \r\ncould you please share more specifically what problem do you have now?", "I have attached this screenshot above . can u pls help? So can not pip from pull request\r\n\r\n![image](https://user-images.githubusercontent.com/48530104/204354027-6173e6d1-e3d4-4085-a363-e924cfe1a7f4.png)\r\n", "The pull request has been merged on `main`.\r\nYou can install `datasets` from `main` using\r\n```\r\npip install git+https://github.com/huggingface/datasets.git\r\n```", "I've tried to load this dataset DTU54DL/common-voice-test16k, but am\ngetting the same error.\n\nSo the bug fix will fix only if I upload a new dataset, or also loading\npreviously uploaded datasets?\n\nthanks\n\nAm Mo., 28. Nov. 2022 um 19:51 Uhr schrieb Quentin Lhoest <\n***@***.***>:\n\n> The pull request has been merged on main.\n> You can install datasets from main using\n>\n> pip install git+https://github.com/huggingface/datasets.git\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5276#issuecomment-1329587334>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ALSIFOCNYYIGHM2EX3ZIO6DWKT5MXANCNFSM6AAAAAASHQJ63U>\n> .\n> You are receiving this because you were mentioned.Message ID:\n> ***@***.***>\n>\n", "> So the bug fix will fix only if I upload a new dataset, or also loading\r\npreviously uploaded datasets?\r\n\r\nYou have to reupload the dataset, sorry for the inconvenience", "thank you so much for the help! works like a charm!\n\nAm Di., 29. Nov. 2022 um 12:15 Uhr schrieb Quentin Lhoest <\n***@***.***>:\n\n> So the bug fix will fix only if I upload a new dataset, or also loading\n> previously uploaded datasets?\n>\n> You have to reupload the dataset, sorry for the inconvenience\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5276#issuecomment-1330468393>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ALSIFOBKEFZO57BAKY4IGW3WKXQUZANCNFSM6AAAAAASHQJ63U>\n> .\n> You are receiving this because you were mentioned.Message ID:\n> ***@***.***>\n>\n" ]
"2022-11-22T08:17:53"
"2023-07-21T14:33:10"
"2023-07-21T14:33:10"
NONE
null
null
null
### Describe the bug I'm trying to load the common voice dataset. Currently there is no implementation to download just par tof the data, and I need just one part of it, without downloading the entire dataset Help please? ![image](https://user-images.githubusercontent.com/48530104/203260511-26df766f-6013-4eaf-be26-8aa13794def2.png) ### Steps to reproduce the bug So here is what I have done: 1. Download common_voice data 2. Trim part of it and publish it to my own repo. 3. Download data from my own repo, but am getting this error. ### Expected behavior There shouldn't be an error in downloading part of the data and publishing it to one's own repo ### Environment info common_voice 11
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5276/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5276/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6023
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6023/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6023/comments
https://api.github.com/repos/huggingface/datasets/issues/6023/events
https://github.com/huggingface/datasets/pull/6023
1,801,272,420
PR_kwDODunzps5VU7EG
6,023
Fix `ClassLabel` min max check for `None` values
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007108 / 0.011353 (-0.004245) | 0.004446 / 0.011008 (-0.006562) | 0.084013 / 0.038508 (0.045505) | 0.084271 / 0.023109 (0.061162) | 0.324496 / 0.275898 (0.048598) | 0.347783 / 0.323480 (0.024303) | 0.004382 / 0.007986 (-0.003604) | 0.005200 / 0.004328 (0.000872) | 0.065117 / 0.004250 (0.060866) | 0.063368 / 0.037052 (0.026316) | 0.328731 / 0.258489 (0.070242) | 0.356676 / 0.293841 (0.062835) | 0.031155 / 0.128546 (-0.097392) | 0.008672 / 0.075646 (-0.066975) | 0.287573 / 0.419271 (-0.131698) | 0.053692 / 0.043533 (0.010160) | 0.308796 / 0.255139 (0.053657) | 0.330521 / 0.283200 (0.047321) | 0.025010 / 0.141683 (-0.116672) | 1.498968 / 1.452155 (0.046813) | 1.552096 / 1.492716 (0.059380) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263580 / 0.018006 (0.245574) | 0.559765 / 0.000490 (0.559275) | 0.003450 / 0.000200 (0.003250) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029403 / 0.037411 (-0.008008) | 0.088154 / 0.014526 (0.073628) | 0.100372 / 0.176557 (-0.076185) | 0.157777 / 0.737135 (-0.579359) | 0.102273 / 0.296338 (-0.194066) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.387027 / 0.215209 (0.171818) | 3.854260 / 2.077655 (1.776605) | 1.875159 / 1.504120 (0.371039) | 1.703734 / 1.541195 (0.162539) | 1.814305 / 1.468490 (0.345815) | 0.482524 / 4.584777 (-4.102253) | 3.463602 / 3.745712 (-0.282110) | 4.004766 / 5.269862 (-1.265095) | 2.406751 / 4.565676 (-2.158925) | 0.057069 / 0.424275 (-0.367206) | 0.007448 / 0.007607 (-0.000159) | 0.465801 / 0.226044 (0.239757) | 4.636700 / 2.268929 (2.367771) | 2.329475 / 55.444624 (-53.115150) | 1.998330 / 6.876477 (-4.878146) | 2.264617 / 2.142072 (0.122544) | 0.577998 / 4.805227 (-4.227230) | 0.130846 / 6.500664 (-6.369818) | 0.059713 / 0.075469 (-0.015756) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.275931 / 1.841788 (-0.565857) | 20.396288 / 8.074308 (12.321980) | 13.875242 / 10.191392 (3.683850) | 0.164367 / 0.680424 (-0.516057) | 0.018573 / 0.534201 (-0.515628) | 0.397516 / 0.579283 (-0.181767) | 0.398977 / 0.434364 (-0.035387) | 0.462386 / 0.540337 (-0.077951) | 0.610129 / 1.386936 (-0.776807) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006912 / 0.011353 (-0.004441) | 0.004212 / 0.011008 (-0.006797) | 0.065707 / 0.038508 (0.027199) | 0.090435 / 0.023109 (0.067325) | 0.380539 / 0.275898 (0.104641) | 0.412692 / 0.323480 (0.089212) | 0.005545 / 0.007986 (-0.002441) | 0.003657 / 0.004328 (-0.000672) | 0.065380 / 0.004250 (0.061130) | 0.062901 / 0.037052 (0.025848) | 0.385931 / 0.258489 (0.127442) | 0.416272 / 0.293841 (0.122431) | 0.031974 / 0.128546 (-0.096572) | 0.008783 / 0.075646 (-0.066863) | 0.071424 / 0.419271 (-0.347847) | 0.049454 / 0.043533 (0.005921) | 0.374231 / 0.255139 (0.119092) | 0.386530 / 0.283200 (0.103331) | 0.025404 / 0.141683 (-0.116279) | 1.469869 / 1.452155 (0.017715) | 1.548629 / 1.492716 (0.055913) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218413 / 0.018006 (0.200406) | 0.573863 / 0.000490 (0.573373) | 0.004156 / 0.000200 (0.003956) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032610 / 0.037411 (-0.004801) | 0.088270 / 0.014526 (0.073744) | 0.106821 / 0.176557 (-0.069735) | 0.164498 / 0.737135 (-0.572638) | 0.106881 / 0.296338 (-0.189457) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433730 / 0.215209 (0.218520) | 4.323902 / 2.077655 (2.246247) | 2.308607 / 1.504120 (0.804487) | 2.138888 / 1.541195 (0.597693) | 2.246760 / 1.468490 (0.778269) | 0.486863 / 4.584777 (-4.097914) | 3.561826 / 3.745712 (-0.183886) | 5.592685 / 5.269862 (0.322824) | 3.318560 / 4.565676 (-1.247116) | 0.057348 / 0.424275 (-0.366927) | 0.007434 / 0.007607 (-0.000174) | 0.506767 / 0.226044 (0.280723) | 5.083097 / 2.268929 (2.814168) | 2.780618 / 55.444624 (-52.664006) | 2.456924 / 6.876477 (-4.419553) | 2.564184 / 2.142072 (0.422112) | 0.580693 / 4.805227 (-4.224534) | 0.134471 / 6.500664 (-6.366194) | 0.062883 / 0.075469 (-0.012586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346618 / 1.841788 (-0.495169) | 20.547998 / 8.074308 (12.473690) | 14.404159 / 10.191392 (4.212767) | 0.176612 / 0.680424 (-0.503812) | 0.018372 / 0.534201 (-0.515829) | 0.395636 / 0.579283 (-0.183647) | 0.410661 / 0.434364 (-0.023703) | 0.468782 / 0.540337 (-0.071555) | 0.637476 / 1.386936 (-0.749460) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0172d4dac0ca823e8bd293cfd4d28e78d92efe42 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009896 / 0.011353 (-0.001457) | 0.004658 / 0.011008 (-0.006351) | 0.101185 / 0.038508 (0.062677) | 0.075480 / 0.023109 (0.052371) | 0.410620 / 0.275898 (0.134722) | 0.470639 / 0.323480 (0.147159) | 0.007042 / 0.007986 (-0.000943) | 0.003909 / 0.004328 (-0.000419) | 0.079676 / 0.004250 (0.075425) | 0.066921 / 0.037052 (0.029869) | 0.423624 / 0.258489 (0.165135) | 0.473008 / 0.293841 (0.179167) | 0.048492 / 0.128546 (-0.080054) | 0.012833 / 0.075646 (-0.062813) | 0.335286 / 0.419271 (-0.083985) | 0.083506 / 0.043533 (0.039973) | 0.401918 / 0.255139 (0.146779) | 0.467975 / 0.283200 (0.184775) | 0.050025 / 0.141683 (-0.091658) | 1.679392 / 1.452155 (0.227237) | 1.852812 / 1.492716 (0.360095) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248067 / 0.018006 (0.230061) | 0.584818 / 0.000490 (0.584328) | 0.021558 / 0.000200 (0.021358) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028572 / 0.037411 (-0.008839) | 0.097212 / 0.014526 (0.082686) | 0.121675 / 0.176557 (-0.054881) | 0.186597 / 0.737135 (-0.550538) | 0.122285 / 0.296338 (-0.174053) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.586279 / 0.215209 (0.371070) | 5.634402 / 2.077655 (3.556747) | 2.560648 / 1.504120 (1.056528) | 2.288796 / 1.541195 (0.747601) | 2.402580 / 1.468490 (0.934090) | 0.801453 / 4.584777 (-3.783324) | 5.036654 / 3.745712 (1.290942) | 8.319972 / 5.269862 (3.050110) | 4.665620 / 4.565676 (0.099944) | 0.107292 / 0.424275 (-0.316983) | 0.009206 / 0.007607 (0.001599) | 0.766505 / 0.226044 (0.540461) | 7.333784 / 2.268929 (5.064856) | 3.601875 / 55.444624 (-51.842749) | 2.886388 / 6.876477 (-3.990089) | 3.231797 / 2.142072 (1.089725) | 1.179509 / 4.805227 (-3.625718) | 0.224656 / 6.500664 (-6.276008) | 0.084749 / 0.075469 (0.009280) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.772345 / 1.841788 (-0.069443) | 24.138788 / 8.074308 (16.064480) | 20.712416 / 10.191392 (10.521024) | 0.254655 / 0.680424 (-0.425769) | 0.028858 / 0.534201 (-0.505343) | 0.499314 / 0.579283 (-0.079969) | 0.605797 / 0.434364 (0.171433) | 0.567628 / 0.540337 (0.027290) | 0.752288 / 1.386936 (-0.634648) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010134 / 0.011353 (-0.001219) | 0.004630 / 0.011008 (-0.006378) | 0.082282 / 0.038508 (0.043774) | 0.081722 / 0.023109 (0.058613) | 0.465018 / 0.275898 (0.189120) | 0.516392 / 0.323480 (0.192912) | 0.006618 / 0.007986 (-0.001368) | 0.004310 / 0.004328 (-0.000018) | 0.078990 / 0.004250 (0.074739) | 0.077729 / 0.037052 (0.040677) | 0.464892 / 0.258489 (0.206403) | 0.510551 / 0.293841 (0.216710) | 0.050750 / 0.128546 (-0.077796) | 0.014402 / 0.075646 (-0.061244) | 0.092587 / 0.419271 (-0.326685) | 0.074769 / 0.043533 (0.031237) | 0.468591 / 0.255139 (0.213452) | 0.508138 / 0.283200 (0.224938) | 0.047774 / 0.141683 (-0.093909) | 1.798354 / 1.452155 (0.346199) | 1.851431 / 1.492716 (0.358714) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282528 / 0.018006 (0.264522) | 0.588286 / 0.000490 (0.587797) | 0.004892 / 0.000200 (0.004692) | 0.000136 / 0.000054 (0.000082) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037048 / 0.037411 (-0.000364) | 0.101513 / 0.014526 (0.086987) | 0.133238 / 0.176557 (-0.043319) | 0.234799 / 0.737135 (-0.502336) | 0.120636 / 0.296338 (-0.175703) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.615377 / 0.215209 (0.400168) | 6.225717 / 2.077655 (4.148062) | 2.974137 / 1.504120 (1.470018) | 2.642168 / 1.541195 (1.100973) | 2.706051 / 1.468490 (1.237561) | 0.837171 / 4.584777 (-3.747606) | 5.143368 / 3.745712 (1.397656) | 4.560241 / 5.269862 (-0.709621) | 2.838375 / 4.565676 (-1.727301) | 0.092505 / 0.424275 (-0.331770) | 0.008962 / 0.007607 (0.001355) | 0.726361 / 0.226044 (0.500317) | 7.323998 / 2.268929 (5.055070) | 3.650531 / 55.444624 (-51.794094) | 2.960886 / 6.876477 (-3.915591) | 3.003889 / 2.142072 (0.861816) | 0.979264 / 4.805227 (-3.825963) | 0.204531 / 6.500664 (-6.296133) | 0.078285 / 0.075469 (0.002816) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.774225 / 1.841788 (-0.067563) | 26.399536 / 8.074308 (18.325228) | 22.312890 / 10.191392 (12.121498) | 0.244651 / 0.680424 (-0.435773) | 0.026950 / 0.534201 (-0.507251) | 0.493037 / 0.579283 (-0.086246) | 0.620399 / 0.434364 (0.186036) | 0.748985 / 0.540337 (0.208648) | 0.799766 / 1.386936 (-0.587170) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a49ac2864177ec4fb34c43b59a6e49de1f21f973 \"CML watermark\")\n" ]
"2023-07-12T15:46:12"
"2023-07-12T16:29:26"
"2023-07-12T16:18:04"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6023.diff", "html_url": "https://github.com/huggingface/datasets/pull/6023", "merged_at": "2023-07-12T16:18:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/6023.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6023" }
Fix #6022
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6023/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6023/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3135
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3135/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3135/comments
https://api.github.com/repos/huggingface/datasets/issues/3135/events
https://github.com/huggingface/datasets/issues/3135
1,033,294,299
I_kwDODunzps49ltHb
3,135
Make inspect.get_dataset_config_names always return a non-empty list of configs
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" }, { "color": "E5583E", "default": false, "description": "Related to the dataset viewer on huggingface.co", "id": 3470211881, "name": "dataset-viewer", "node_id": "LA_kwDODunzps7O1zsp", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Hi @severo, I guess this issue requests not only to be able to access the configuration name (by using `inspect.get_dataset_config_names`), but the configuration itself as well (I mean you use the name to get the configuration afterwards, maybe using `builder_cls.builder_configs`), is this right?", "Yes, maybe the issue could be reformulated. As a user, I want to avoid having to manage special cases:\r\n- I want to be able to get the names of a dataset's configs, and use them in the rest of the API (get the data, get the split names, etc).\r\n- I don't want to have to manage datasets with named configs (`glue`) differently from datasets without named configs (`acronym_identification`, `Check/region_1`)" ]
"2021-10-22T08:02:50"
"2021-10-28T05:44:49"
"2021-10-28T05:44:49"
CONTRIBUTOR
null
null
null
**Is your feature request related to a problem? Please describe.** Currently, some datasets have a configuration, while others don't. It would be simpler for the user to always have configuration names to refer to **Describe the solution you'd like** In that sense inspect.get_dataset_config_names should always return at least one configuration name, be it `default` or `Check___region_1` (for community datasets like `Check/region_1`). https://github.com/huggingface/datasets/blob/c5747a5e1dde2670b7f2ca6e79e2ffd99dff85af/src/datasets/inspect.py#L161
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3135/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3135/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4018
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4018/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4018/comments
https://api.github.com/repos/huggingface/datasets/issues/4018/events
https://github.com/huggingface/datasets/pull/4018
1,180,622,816
PR_kwDODunzps41Aj7g
4,018
Replace yelp_review_full data url
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-03-25T10:37:18"
"2022-03-25T15:01:02"
"2022-03-25T14:56:10"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4018.diff", "html_url": "https://github.com/huggingface/datasets/pull/4018", "merged_at": "2022-03-25T14:56:10Z", "patch_url": "https://github.com/huggingface/datasets/pull/4018.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4018" }
I replaced the Google Drive URL of the Yelp review dataset by the FastAI one, since we've had some issues with Google Drive. Close https://github.com/huggingface/datasets/issues/4005
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4018/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4018/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2125
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2125/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2125/comments
https://api.github.com/repos/huggingface/datasets/issues/2125/events
https://github.com/huggingface/datasets/issues/2125
842,690,570
MDU6SXNzdWU4NDI2OTA1NzA=
2,125
Is dataset timit_asr broken?
{ "avatar_url": "https://avatars.githubusercontent.com/u/42398050?v=4", "events_url": "https://api.github.com/users/kosuke-kitahara/events{/privacy}", "followers_url": "https://api.github.com/users/kosuke-kitahara/followers", "following_url": "https://api.github.com/users/kosuke-kitahara/following{/other_user}", "gists_url": "https://api.github.com/users/kosuke-kitahara/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kosuke-kitahara", "id": 42398050, "login": "kosuke-kitahara", "node_id": "MDQ6VXNlcjQyMzk4MDUw", "organizations_url": "https://api.github.com/users/kosuke-kitahara/orgs", "received_events_url": "https://api.github.com/users/kosuke-kitahara/received_events", "repos_url": "https://api.github.com/users/kosuke-kitahara/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kosuke-kitahara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kosuke-kitahara/subscriptions", "type": "User", "url": "https://api.github.com/users/kosuke-kitahara" }
[]
closed
false
null
[]
null
[ "Hi,\r\n\r\nthanks for the report, but this is a duplicate of #2052. ", "@mariosasko \r\nThank you for your quick response! Following #2052, I've fixed the problem." ]
"2021-03-28T08:30:18"
"2021-03-28T12:29:25"
"2021-03-28T12:29:25"
NONE
null
null
null
Using `timit_asr` dataset, I saw all records are the same. ``` python from datasets import load_dataset, load_metric timit = load_dataset("timit_asr") from datasets import ClassLabel import random import pandas as pd from IPython.display import display, HTML def show_random_elements(dataset, num_examples=10): assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset." picks = [] for _ in range(num_examples): pick = random.randint(0, len(dataset)-1) while pick in picks: pick = random.randint(0, len(dataset)-1) picks.append(pick) df = pd.DataFrame(dataset[picks]) display(HTML(df.to_html())) show_random_elements(timit['train'].remove_columns(["file", "phonetic_detail", "word_detail", "dialect_region", "id", "sentence_type", "speaker_id"]), num_examples=20) ``` `output` <img width="312" alt="Screen Shot 2021-03-28 at 17 29 04" src="https://user-images.githubusercontent.com/42398050/112746646-21acee80-8feb-11eb-84f3-dbb5d4269724.png"> I double-checked it [here](https://huggingface.co/datasets/viewer/), and met the same problem. <img width="1374" alt="Screen Shot 2021-03-28 at 17 32 07" src="https://user-images.githubusercontent.com/42398050/112746698-9bdd7300-8feb-11eb-97ed-5babead385f4.png">
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2125/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2125/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5303
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5303/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5303/comments
https://api.github.com/repos/huggingface/datasets/issues/5303/events
https://github.com/huggingface/datasets/pull/5303
1,464,837,251
PR_kwDODunzps5DuVTa
5,303
Skip dataset verifications by default
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "100% agree that the checksum verification is overkill and not super useful. But I think this PR would also disable the check on num_examples no ?\r\n \r\nAs a user I would like to know if the dataset I'm loading changed significantly.\r\nAnd I also think it can be useful to make sure the metadata are up to date.\r\n\r\nWhat do you think ?\r\n\r\nWe could have a default `ignore_verifications=\"ignore_checksums\"`", "> We could have a default `ignore_verifications=\"ignore_checksums\"`\r\n\r\nAccepting multiple types (booleans and strings) at the same time is not the best design. Maybe we could define an enum for this parameter?", "Yes an enum sounds good !", "so we can have three verification levels, - smth like \"ignore_all\" (to skip both checksums and all other info like num_examples verification), \"ignore_checksums\" (to skip only checksums verification), and \"verify_all\" (to perform all verification)?\r\nand deprecate `ignore_verifications` param.\r\n\r\n@mariosasko if you're not going to work on this PR in the coming days, I can take over it if you want (this PR will help me with [this issue](https://github.com/huggingface/datasets/issues/5315), not super urgent though).", "Okay, I propose deprecating `ignore_verifications` in favor of `verification_mode` (`load_dataset` already has `download_mode`; some other projects use this name for verification control). `verification_mode` would accept the following enum (or strings in the same manner as `download_mode` does):\r\n\r\n```python\r\nclass VerificationMode(enum.Enum):\r\n FULL = \"full\" # runs all verification checks \r\n BASIC = \"basic\" # default, runs only the cheap ones (skips the checksum check)\r\n NONE = \"none\" # skips all the checks\r\n```\r\n\r\nWDTY?", "(copy paste from my message on slack)\r\n\r\nWhat do you think of a config variable in config.py to switch from one verification mode to another ? This way we don’t deprecate anything\r\n\r\nMany users are familiar with ignore_verifications=True, it might be overkill to deprecate it", "@lhoestq So we have \"basic\" verification mode in `config.py` and continue to have `False` as a default \r\nvalue for `ignore_verifications`? That way running all verifications including checksums would not be possible without switching the config var, right? \r\n\r\nI like having a `VerificationMode` enum because it's aligned with `DownloadMode` and sounds more natural to me (`ignore_verifications` feels a bit semantically reverted but this is probably just my feeling) and it's flexible (no need to worry about `config.py`, I'm not sure that users even know it exists, wdyt?).\r\n\r\nThe usage point seems also valid to me, but cases when users are stuck with NonMatchingX errors also happen from time to time and to figure out what's wrong is non-trivial here. \r\n\r\nAs a note aside - I suggest to add instructions to the NonMatchingX error message (how to use `ignore_verifications` / `verification_mode`), this would save users who don't know about this param a lot of time.", "Ok I see. I'm fine with the new parameter then (even though I had a small pref for the config variable) :)", "I like the idea of an enum and the `verification_mode` parameter. \r\n\r\nIn relation with the config parameter, we could additionally add a `DEFAULT_VERIFICATION_MODE`, maybe only if users require it. Note that until now there wasn't any config parameter for a default `ignore_verifications` value: I guess people are explicitly passing `ignore_verifications=True`...\r\n\r\nAs a note aside, I like the suggestion by @polinaeterna: we could give actionable messages when verifying checksums. This could be done in other PR.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012891 / 0.011353 (0.001538) | 0.006474 / 0.011008 (-0.004535) | 0.144038 / 0.038508 (0.105530) | 0.036151 / 0.023109 (0.013042) | 0.404366 / 0.275898 (0.128468) | 0.479988 / 0.323480 (0.156508) | 0.010219 / 0.007986 (0.002233) | 0.005319 / 0.004328 (0.000990) | 0.099705 / 0.004250 (0.095455) | 0.046639 / 0.037052 (0.009586) | 0.398997 / 0.258489 (0.140508) | 0.478431 / 0.293841 (0.184590) | 0.069125 / 0.128546 (-0.059421) | 0.019603 / 0.075646 (-0.056043) | 0.400829 / 0.419271 (-0.018443) | 0.066549 / 0.043533 (0.023016) | 0.398343 / 0.255139 (0.143204) | 0.417928 / 0.283200 (0.134728) | 0.121124 / 0.141683 (-0.020559) | 1.751513 / 1.452155 (0.299358) | 1.821239 / 1.492716 (0.328523) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.251603 / 0.018006 (0.233597) | 0.579916 / 0.000490 (0.579427) | 0.003257 / 0.000200 (0.003058) | 0.000109 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031502 / 0.037411 (-0.005909) | 0.134688 / 0.014526 (0.120162) | 0.152306 / 0.176557 (-0.024251) | 0.198943 / 0.737135 (-0.538192) | 0.142551 / 0.296338 (-0.153788) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.634672 / 0.215209 (0.419463) | 6.370215 / 2.077655 (4.292561) | 2.548123 / 1.504120 (1.044003) | 2.184263 / 1.541195 (0.643069) | 2.239026 / 1.468490 (0.770536) | 1.233340 / 4.584777 (-3.351437) | 5.791824 / 3.745712 (2.046112) | 5.093032 / 5.269862 (-0.176830) | 2.849833 / 4.565676 (-1.715844) | 0.143787 / 0.424275 (-0.280488) | 0.015279 / 0.007607 (0.007672) | 0.757984 / 0.226044 (0.531939) | 7.883604 / 2.268929 (5.614675) | 3.321591 / 55.444624 (-52.123033) | 2.671777 / 6.876477 (-4.204700) | 2.685215 / 2.142072 (0.543142) | 1.546709 / 4.805227 (-3.258519) | 0.247186 / 6.500664 (-6.253478) | 0.085117 / 0.075469 (0.009648) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.679809 / 1.841788 (-0.161979) | 18.528893 / 8.074308 (10.454585) | 23.168590 / 10.191392 (12.977198) | 0.277618 / 0.680424 (-0.402806) | 0.045109 / 0.534201 (-0.489092) | 0.568873 / 0.579283 (-0.010410) | 0.695017 / 0.434364 (0.260653) | 0.671024 / 0.540337 (0.130687) | 0.823817 / 1.386936 (-0.563119) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009809 / 0.011353 (-0.001544) | 0.006890 / 0.011008 (-0.004118) | 0.099211 / 0.038508 (0.060703) | 0.035387 / 0.023109 (0.012278) | 0.507603 / 0.275898 (0.231705) | 0.535553 / 0.323480 (0.212073) | 0.007346 / 0.007986 (-0.000640) | 0.007559 / 0.004328 (0.003231) | 0.099132 / 0.004250 (0.094882) | 0.048048 / 0.037052 (0.010996) | 0.518096 / 0.258489 (0.259607) | 0.561134 / 0.293841 (0.267294) | 0.057580 / 0.128546 (-0.070966) | 0.023665 / 0.075646 (-0.051982) | 0.138409 / 0.419271 (-0.280862) | 0.061989 / 0.043533 (0.018456) | 0.510568 / 0.255139 (0.255429) | 0.552722 / 0.283200 (0.269522) | 0.115990 / 0.141683 (-0.025693) | 1.884900 / 1.452155 (0.432745) | 1.990604 / 1.492716 (0.497888) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.280638 / 0.018006 (0.262632) | 0.592837 / 0.000490 (0.592347) | 0.000465 / 0.000200 (0.000265) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030253 / 0.037411 (-0.007158) | 0.141580 / 0.014526 (0.127054) | 0.135114 / 0.176557 (-0.041443) | 0.190003 / 0.737135 (-0.547133) | 0.160230 / 0.296338 (-0.136109) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.699762 / 0.215209 (0.484553) | 6.632344 / 2.077655 (4.554689) | 2.718803 / 1.504120 (1.214683) | 2.485294 / 1.541195 (0.944099) | 2.579889 / 1.468490 (1.111399) | 1.268795 / 4.584777 (-3.315982) | 5.777745 / 3.745712 (2.032033) | 3.232551 / 5.269862 (-2.037311) | 2.127699 / 4.565676 (-2.437977) | 0.146570 / 0.424275 (-0.277705) | 0.015971 / 0.007607 (0.008364) | 0.803181 / 0.226044 (0.577137) | 8.377192 / 2.268929 (6.108264) | 3.551242 / 55.444624 (-51.893382) | 2.865228 / 6.876477 (-4.011249) | 2.774869 / 2.142072 (0.632797) | 1.553856 / 4.805227 (-3.251371) | 0.264510 / 6.500664 (-6.236154) | 0.087918 / 0.075469 (0.012449) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.653396 / 1.841788 (-0.188391) | 18.703863 / 8.074308 (10.629555) | 22.067331 / 10.191392 (11.875939) | 0.257424 / 0.680424 (-0.422999) | 0.026448 / 0.534201 (-0.507753) | 0.550100 / 0.579283 (-0.029183) | 0.647296 / 0.434364 (0.212932) | 0.657476 / 0.540337 (0.117138) | 0.781119 / 1.386936 (-0.605817) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8c4a9cb95f8742a2850f11d59abbef71d6c1f60c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008889 / 0.011353 (-0.002464) | 0.004563 / 0.011008 (-0.006445) | 0.101627 / 0.038508 (0.063118) | 0.030526 / 0.023109 (0.007417) | 0.297175 / 0.275898 (0.021277) | 0.368454 / 0.323480 (0.044974) | 0.007246 / 0.007986 (-0.000740) | 0.003565 / 0.004328 (-0.000763) | 0.078644 / 0.004250 (0.074394) | 0.038616 / 0.037052 (0.001564) | 0.310521 / 0.258489 (0.052032) | 0.348014 / 0.293841 (0.054173) | 0.033463 / 0.128546 (-0.095083) | 0.011544 / 0.075646 (-0.064102) | 0.323281 / 0.419271 (-0.095990) | 0.040187 / 0.043533 (-0.003346) | 0.298015 / 0.255139 (0.042876) | 0.326392 / 0.283200 (0.043193) | 0.088730 / 0.141683 (-0.052952) | 1.503387 / 1.452155 (0.051233) | 1.548704 / 1.492716 (0.055988) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185983 / 0.018006 (0.167977) | 0.451889 / 0.000490 (0.451400) | 0.001433 / 0.000200 (0.001233) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023396 / 0.037411 (-0.014015) | 0.118236 / 0.014526 (0.103710) | 0.124594 / 0.176557 (-0.051962) | 0.159089 / 0.737135 (-0.578047) | 0.129369 / 0.296338 (-0.166969) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423161 / 0.215209 (0.207952) | 4.228211 / 2.077655 (2.150556) | 1.853862 / 1.504120 (0.349742) | 1.649471 / 1.541195 (0.108276) | 1.708631 / 1.468490 (0.240141) | 0.697456 / 4.584777 (-3.887321) | 3.473244 / 3.745712 (-0.272468) | 1.942586 / 5.269862 (-3.327275) | 1.291592 / 4.565676 (-3.274084) | 0.082758 / 0.424275 (-0.341517) | 0.012256 / 0.007607 (0.004649) | 0.528355 / 0.226044 (0.302311) | 5.277620 / 2.268929 (3.008691) | 2.299604 / 55.444624 (-53.145020) | 1.954940 / 6.876477 (-4.921537) | 2.055543 / 2.142072 (-0.086529) | 0.814723 / 4.805227 (-3.990505) | 0.149937 / 6.500664 (-6.350727) | 0.064529 / 0.075469 (-0.010941) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266240 / 1.841788 (-0.575547) | 14.144016 / 8.074308 (6.069708) | 14.331733 / 10.191392 (4.140340) | 0.138963 / 0.680424 (-0.541461) | 0.029034 / 0.534201 (-0.505167) | 0.397325 / 0.579283 (-0.181958) | 0.405293 / 0.434364 (-0.029071) | 0.480745 / 0.540337 (-0.059592) | 0.573386 / 1.386936 (-0.813550) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007214 / 0.011353 (-0.004139) | 0.004569 / 0.011008 (-0.006439) | 0.078718 / 0.038508 (0.040209) | 0.031104 / 0.023109 (0.007995) | 0.342562 / 0.275898 (0.066664) | 0.387802 / 0.323480 (0.064322) | 0.005378 / 0.007986 (-0.002608) | 0.003414 / 0.004328 (-0.000915) | 0.077249 / 0.004250 (0.072999) | 0.044337 / 0.037052 (0.007285) | 0.341397 / 0.258489 (0.082907) | 0.385536 / 0.293841 (0.091695) | 0.033257 / 0.128546 (-0.095289) | 0.011825 / 0.075646 (-0.063821) | 0.086723 / 0.419271 (-0.332549) | 0.045951 / 0.043533 (0.002418) | 0.340914 / 0.255139 (0.085775) | 0.367126 / 0.283200 (0.083926) | 0.096326 / 0.141683 (-0.045357) | 1.608612 / 1.452155 (0.156458) | 1.687251 / 1.492716 (0.194534) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227595 / 0.018006 (0.209589) | 0.418502 / 0.000490 (0.418013) | 0.000392 / 0.000200 (0.000192) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026232 / 0.037411 (-0.011179) | 0.101020 / 0.014526 (0.086494) | 0.110017 / 0.176557 (-0.066539) | 0.153497 / 0.737135 (-0.583639) | 0.110602 / 0.296338 (-0.185737) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433789 / 0.215209 (0.218579) | 4.329350 / 2.077655 (2.251696) | 2.052136 / 1.504120 (0.548016) | 1.848457 / 1.541195 (0.307262) | 1.936791 / 1.468490 (0.468301) | 0.700609 / 4.584777 (-3.884168) | 3.391983 / 3.745712 (-0.353729) | 1.903220 / 5.269862 (-3.366642) | 1.179463 / 4.565676 (-3.386213) | 0.084025 / 0.424275 (-0.340250) | 0.012743 / 0.007607 (0.005136) | 0.536816 / 0.226044 (0.310772) | 5.420230 / 2.268929 (3.151302) | 2.507438 / 55.444624 (-52.937187) | 2.178907 / 6.876477 (-4.697570) | 2.228586 / 2.142072 (0.086514) | 0.812527 / 4.805227 (-3.992701) | 0.153382 / 6.500664 (-6.347282) | 0.069932 / 0.075469 (-0.005537) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256861 / 1.841788 (-0.584927) | 14.309236 / 8.074308 (6.234928) | 13.740323 / 10.191392 (3.548931) | 0.142698 / 0.680424 (-0.537726) | 0.016998 / 0.534201 (-0.517203) | 0.385489 / 0.579283 (-0.193794) | 0.391515 / 0.434364 (-0.042849) | 0.472704 / 0.540337 (-0.067633) | 0.565042 / 1.386936 (-0.821894) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4b0713ddf2e2e7129d9ccda791d265684c96675c \"CML watermark\")\n", "This is ready for review. \r\n\r\nIf `verification_mode` is None, it defaults to `VerificationMode.BASIC` instead of `VerificationMode.NONE`, so maybe we should find a better name for the latter to avoid confusion.\r\n\r\nPS: `ignore_verifications` is still present in the `test`/`run_beam` commands for simplicity. Let me know if you think these commands should support all three modes.", "> I would also prefer to change the name for the NONE verification mode, but don't have really good ideas in mind. maybe smth like SKIP_ALL ?\r\n\r\nI decided to go with the following names:\r\n* `no_checks` (previously `none`)\r\n* `basic_checks` (previously `basic`)\r\n* `all_checks` (previously `full`)\r\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008900 / 0.011353 (-0.002453) | 0.004492 / 0.011008 (-0.006516) | 0.100957 / 0.038508 (0.062449) | 0.030145 / 0.023109 (0.007036) | 0.302531 / 0.275898 (0.026633) | 0.344072 / 0.323480 (0.020592) | 0.007032 / 0.007986 (-0.000953) | 0.004150 / 0.004328 (-0.000178) | 0.078272 / 0.004250 (0.074021) | 0.034142 / 0.037052 (-0.002910) | 0.310798 / 0.258489 (0.052308) | 0.350077 / 0.293841 (0.056236) | 0.034497 / 0.128546 (-0.094050) | 0.011417 / 0.075646 (-0.064230) | 0.323427 / 0.419271 (-0.095844) | 0.045664 / 0.043533 (0.002132) | 0.304688 / 0.255139 (0.049549) | 0.336591 / 0.283200 (0.053391) | 0.086116 / 0.141683 (-0.055567) | 1.519278 / 1.452155 (0.067123) | 1.576728 / 1.492716 (0.084011) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242482 / 0.018006 (0.224476) | 0.403548 / 0.000490 (0.403058) | 0.001217 / 0.000200 (0.001017) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023466 / 0.037411 (-0.013945) | 0.095220 / 0.014526 (0.080694) | 0.104119 / 0.176557 (-0.072438) | 0.141107 / 0.737135 (-0.596029) | 0.107236 / 0.296338 (-0.189102) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416290 / 0.215209 (0.201081) | 4.159068 / 2.077655 (2.081413) | 1.846014 / 1.504120 (0.341894) | 1.634789 / 1.541195 (0.093594) | 1.724687 / 1.468490 (0.256196) | 0.696887 / 4.584777 (-3.887890) | 3.313861 / 3.745712 (-0.431851) | 1.907239 / 5.269862 (-3.362622) | 1.266815 / 4.565676 (-3.298861) | 0.081660 / 0.424275 (-0.342615) | 0.012290 / 0.007607 (0.004683) | 0.522866 / 0.226044 (0.296822) | 5.237356 / 2.268929 (2.968428) | 2.294645 / 55.444624 (-53.149979) | 1.946407 / 6.876477 (-4.930069) | 1.995441 / 2.142072 (-0.146632) | 0.808340 / 4.805227 (-3.996887) | 0.149670 / 6.500664 (-6.350994) | 0.065162 / 0.075469 (-0.010307) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.219476 / 1.841788 (-0.622312) | 13.868709 / 8.074308 (5.794401) | 14.115783 / 10.191392 (3.924391) | 0.149403 / 0.680424 (-0.531021) | 0.028514 / 0.534201 (-0.505686) | 0.398194 / 0.579283 (-0.181089) | 0.410898 / 0.434364 (-0.023466) | 0.485763 / 0.540337 (-0.054574) | 0.574924 / 1.386936 (-0.812012) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006906 / 0.011353 (-0.004447) | 0.004446 / 0.011008 (-0.006562) | 0.075936 / 0.038508 (0.037428) | 0.027693 / 0.023109 (0.004584) | 0.339505 / 0.275898 (0.063607) | 0.383315 / 0.323480 (0.059835) | 0.005138 / 0.007986 (-0.002847) | 0.004636 / 0.004328 (0.000308) | 0.074829 / 0.004250 (0.070578) | 0.040327 / 0.037052 (0.003274) | 0.340516 / 0.258489 (0.082027) | 0.388569 / 0.293841 (0.094729) | 0.031562 / 0.128546 (-0.096984) | 0.011585 / 0.075646 (-0.064061) | 0.084753 / 0.419271 (-0.334518) | 0.041310 / 0.043533 (-0.002223) | 0.338272 / 0.255139 (0.083133) | 0.367243 / 0.283200 (0.084043) | 0.092653 / 0.141683 (-0.049029) | 1.515973 / 1.452155 (0.063818) | 1.582869 / 1.492716 (0.090152) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229366 / 0.018006 (0.211360) | 0.414404 / 0.000490 (0.413914) | 0.002922 / 0.000200 (0.002723) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026391 / 0.037411 (-0.011020) | 0.106754 / 0.014526 (0.092228) | 0.110718 / 0.176557 (-0.065839) | 0.145786 / 0.737135 (-0.591350) | 0.113180 / 0.296338 (-0.183159) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.446340 / 0.215209 (0.231131) | 4.499756 / 2.077655 (2.422101) | 2.071485 / 1.504120 (0.567365) | 1.873223 / 1.541195 (0.332029) | 1.931562 / 1.468490 (0.463071) | 0.699270 / 4.584777 (-3.885507) | 3.452383 / 3.745712 (-0.293329) | 2.970630 / 5.269862 (-2.299232) | 1.300859 / 4.565676 (-3.264817) | 0.083971 / 0.424275 (-0.340304) | 0.012489 / 0.007607 (0.004882) | 0.544190 / 0.226044 (0.318146) | 5.460097 / 2.268929 (3.191169) | 2.700244 / 55.444624 (-52.744380) | 2.396694 / 6.876477 (-4.479783) | 2.376334 / 2.142072 (0.234262) | 0.812845 / 4.805227 (-3.992382) | 0.154441 / 6.500664 (-6.346223) | 0.069510 / 0.075469 (-0.005959) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.278836 / 1.841788 (-0.562952) | 14.153158 / 8.074308 (6.078850) | 13.821290 / 10.191392 (3.629898) | 0.160464 / 0.680424 (-0.519960) | 0.016742 / 0.534201 (-0.517459) | 0.379840 / 0.579283 (-0.199443) | 0.391903 / 0.434364 (-0.042461) | 0.461646 / 0.540337 (-0.078691) | 0.550691 / 1.386936 (-0.836245) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aeb637daab938d51b8b15ad4d175d06817e99512 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009858 / 0.011353 (-0.001495) | 0.005383 / 0.011008 (-0.005625) | 0.100527 / 0.038508 (0.062019) | 0.037176 / 0.023109 (0.014067) | 0.295204 / 0.275898 (0.019306) | 0.364511 / 0.323480 (0.041031) | 0.008486 / 0.007986 (0.000500) | 0.004273 / 0.004328 (-0.000055) | 0.076538 / 0.004250 (0.072288) | 0.046250 / 0.037052 (0.009197) | 0.307102 / 0.258489 (0.048613) | 0.339313 / 0.293841 (0.045472) | 0.040783 / 0.128546 (-0.087763) | 0.012323 / 0.075646 (-0.063323) | 0.336216 / 0.419271 (-0.083055) | 0.050480 / 0.043533 (0.006947) | 0.293689 / 0.255139 (0.038550) | 0.315034 / 0.283200 (0.031834) | 0.113775 / 0.141683 (-0.027908) | 1.438738 / 1.452155 (-0.013416) | 1.499874 / 1.492716 (0.007157) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202392 / 0.018006 (0.184386) | 0.442784 / 0.000490 (0.442295) | 0.003004 / 0.000200 (0.002804) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027792 / 0.037411 (-0.009620) | 0.110886 / 0.014526 (0.096360) | 0.121041 / 0.176557 (-0.055515) | 0.166803 / 0.737135 (-0.570333) | 0.127617 / 0.296338 (-0.168722) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409762 / 0.215209 (0.194553) | 4.073297 / 2.077655 (1.995643) | 1.836375 / 1.504120 (0.332255) | 1.651507 / 1.541195 (0.110312) | 1.734134 / 1.468490 (0.265644) | 0.690900 / 4.584777 (-3.893877) | 3.812045 / 3.745712 (0.066333) | 2.101378 / 5.269862 (-3.168483) | 1.438242 / 4.565676 (-3.127434) | 0.083256 / 0.424275 (-0.341020) | 0.012436 / 0.007607 (0.004829) | 0.501702 / 0.226044 (0.275658) | 5.007679 / 2.268929 (2.738751) | 2.315158 / 55.444624 (-53.129466) | 2.003934 / 6.876477 (-4.872543) | 2.154658 / 2.142072 (0.012586) | 0.831749 / 4.805227 (-3.973478) | 0.165058 / 6.500664 (-6.335606) | 0.062166 / 0.075469 (-0.013303) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212435 / 1.841788 (-0.629353) | 15.022673 / 8.074308 (6.948365) | 14.649631 / 10.191392 (4.458239) | 0.172121 / 0.680424 (-0.508303) | 0.028791 / 0.534201 (-0.505410) | 0.440290 / 0.579283 (-0.138993) | 0.437359 / 0.434364 (0.002995) | 0.543603 / 0.540337 (0.003265) | 0.643241 / 1.386936 (-0.743695) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007572 / 0.011353 (-0.003781) | 0.005207 / 0.011008 (-0.005801) | 0.074427 / 0.038508 (0.035919) | 0.033384 / 0.023109 (0.010275) | 0.334538 / 0.275898 (0.058640) | 0.371556 / 0.323480 (0.048076) | 0.006453 / 0.007986 (-0.001532) | 0.004010 / 0.004328 (-0.000319) | 0.073488 / 0.004250 (0.069238) | 0.048082 / 0.037052 (0.011030) | 0.337325 / 0.258489 (0.078836) | 0.395143 / 0.293841 (0.101302) | 0.036714 / 0.128546 (-0.091832) | 0.012089 / 0.075646 (-0.063557) | 0.086008 / 0.419271 (-0.333263) | 0.049277 / 0.043533 (0.005744) | 0.333848 / 0.255139 (0.078709) | 0.354003 / 0.283200 (0.070803) | 0.105012 / 0.141683 (-0.036671) | 1.450769 / 1.452155 (-0.001386) | 1.554538 / 1.492716 (0.061821) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208407 / 0.018006 (0.190400) | 0.438778 / 0.000490 (0.438288) | 0.000399 / 0.000200 (0.000199) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030180 / 0.037411 (-0.007232) | 0.115432 / 0.014526 (0.100906) | 0.126106 / 0.176557 (-0.050451) | 0.167508 / 0.737135 (-0.569627) | 0.130566 / 0.296338 (-0.165772) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421408 / 0.215209 (0.206198) | 4.208492 / 2.077655 (2.130838) | 2.024177 / 1.504120 (0.520057) | 1.834356 / 1.541195 (0.293161) | 1.923234 / 1.468490 (0.454744) | 0.699548 / 4.584777 (-3.885229) | 3.933775 / 3.745712 (0.188063) | 2.124526 / 5.269862 (-3.145336) | 1.360934 / 4.565676 (-3.204742) | 0.086568 / 0.424275 (-0.337707) | 0.012351 / 0.007607 (0.004744) | 0.517431 / 0.226044 (0.291387) | 5.175428 / 2.268929 (2.906499) | 2.471031 / 55.444624 (-52.973593) | 2.131529 / 6.876477 (-4.744948) | 2.202512 / 2.142072 (0.060440) | 0.849364 / 4.805227 (-3.955863) | 0.171505 / 6.500664 (-6.329159) | 0.065864 / 0.075469 (-0.009605) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270054 / 1.841788 (-0.571734) | 15.254502 / 8.074308 (7.180194) | 13.874969 / 10.191392 (3.683577) | 0.144131 / 0.680424 (-0.536293) | 0.017743 / 0.534201 (-0.516458) | 0.421990 / 0.579283 (-0.157293) | 0.423924 / 0.434364 (-0.010439) | 0.522560 / 0.540337 (-0.017778) | 0.626159 / 1.386936 (-0.760777) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#05bd726a575a3c1c337022424fa7d226f1a2ebee \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008643 / 0.011353 (-0.002710) | 0.004479 / 0.011008 (-0.006529) | 0.102372 / 0.038508 (0.063864) | 0.029703 / 0.023109 (0.006594) | 0.301479 / 0.275898 (0.025581) | 0.370970 / 0.323480 (0.047490) | 0.007044 / 0.007986 (-0.000942) | 0.004868 / 0.004328 (0.000540) | 0.079568 / 0.004250 (0.075318) | 0.035344 / 0.037052 (-0.001708) | 0.308091 / 0.258489 (0.049602) | 0.353812 / 0.293841 (0.059971) | 0.033406 / 0.128546 (-0.095140) | 0.011476 / 0.075646 (-0.064170) | 0.324343 / 0.419271 (-0.094929) | 0.040293 / 0.043533 (-0.003240) | 0.300007 / 0.255139 (0.044868) | 0.334410 / 0.283200 (0.051210) | 0.086553 / 0.141683 (-0.055130) | 1.463814 / 1.452155 (0.011659) | 1.501580 / 1.492716 (0.008864) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198032 / 0.018006 (0.180025) | 0.409970 / 0.000490 (0.409480) | 0.001075 / 0.000200 (0.000875) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022941 / 0.037411 (-0.014471) | 0.097320 / 0.014526 (0.082794) | 0.106445 / 0.176557 (-0.070111) | 0.139073 / 0.737135 (-0.598063) | 0.108408 / 0.296338 (-0.187930) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419315 / 0.215209 (0.204106) | 4.199273 / 2.077655 (2.121618) | 1.877689 / 1.504120 (0.373569) | 1.670442 / 1.541195 (0.129247) | 1.735034 / 1.468490 (0.266544) | 0.694691 / 4.584777 (-3.890086) | 3.323644 / 3.745712 (-0.422069) | 2.884349 / 5.269862 (-2.385513) | 1.518882 / 4.565676 (-3.046794) | 0.082390 / 0.424275 (-0.341886) | 0.012884 / 0.007607 (0.005277) | 0.525103 / 0.226044 (0.299058) | 5.277297 / 2.268929 (3.008369) | 2.328639 / 55.444624 (-53.115985) | 1.983210 / 6.876477 (-4.893267) | 2.037985 / 2.142072 (-0.104088) | 0.809520 / 4.805227 (-3.995707) | 0.150150 / 6.500664 (-6.350514) | 0.065578 / 0.075469 (-0.009891) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.221971 / 1.841788 (-0.619817) | 13.692361 / 8.074308 (5.618052) | 13.874582 / 10.191392 (3.683190) | 0.138182 / 0.680424 (-0.542242) | 0.028618 / 0.534201 (-0.505583) | 0.395104 / 0.579283 (-0.184179) | 0.397169 / 0.434364 (-0.037195) | 0.457509 / 0.540337 (-0.082829) | 0.537275 / 1.386936 (-0.849661) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006835 / 0.011353 (-0.004518) | 0.004585 / 0.011008 (-0.006423) | 0.076877 / 0.038508 (0.038369) | 0.027305 / 0.023109 (0.004196) | 0.349085 / 0.275898 (0.073187) | 0.401416 / 0.323480 (0.077936) | 0.004912 / 0.007986 (-0.003074) | 0.003315 / 0.004328 (-0.001014) | 0.075676 / 0.004250 (0.071425) | 0.038960 / 0.037052 (0.001907) | 0.346196 / 0.258489 (0.087707) | 0.403185 / 0.293841 (0.109344) | 0.032054 / 0.128546 (-0.096493) | 0.011742 / 0.075646 (-0.063905) | 0.086631 / 0.419271 (-0.332640) | 0.041633 / 0.043533 (-0.001900) | 0.343519 / 0.255139 (0.088380) | 0.385413 / 0.283200 (0.102213) | 0.091430 / 0.141683 (-0.050253) | 1.478886 / 1.452155 (0.026731) | 1.546873 / 1.492716 (0.054156) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.167882 / 0.018006 (0.149876) | 0.396464 / 0.000490 (0.395974) | 0.003629 / 0.000200 (0.003429) | 0.000085 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024829 / 0.037411 (-0.012583) | 0.099607 / 0.014526 (0.085081) | 0.106187 / 0.176557 (-0.070370) | 0.142379 / 0.737135 (-0.594756) | 0.109307 / 0.296338 (-0.187032) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442276 / 0.215209 (0.227067) | 4.427099 / 2.077655 (2.349444) | 2.093407 / 1.504120 (0.589287) | 1.880973 / 1.541195 (0.339778) | 1.915592 / 1.468490 (0.447102) | 0.708196 / 4.584777 (-3.876581) | 3.417649 / 3.745712 (-0.328063) | 2.859953 / 5.269862 (-2.409909) | 1.528380 / 4.565676 (-3.037297) | 0.084054 / 0.424275 (-0.340221) | 0.012585 / 0.007607 (0.004978) | 0.537614 / 0.226044 (0.311569) | 5.409915 / 2.268929 (3.140987) | 2.555853 / 55.444624 (-52.888771) | 2.195075 / 6.876477 (-4.681402) | 2.232775 / 2.142072 (0.090703) | 0.814994 / 4.805227 (-3.990233) | 0.152882 / 6.500664 (-6.347782) | 0.067467 / 0.075469 (-0.008002) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306007 / 1.841788 (-0.535780) | 13.923981 / 8.074308 (5.849673) | 13.385881 / 10.191392 (3.194489) | 0.150712 / 0.680424 (-0.529712) | 0.016731 / 0.534201 (-0.517470) | 0.376557 / 0.579283 (-0.202726) | 0.379396 / 0.434364 (-0.054968) | 0.456251 / 0.540337 (-0.084087) | 0.545731 / 1.386936 (-0.841205) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cc637d107ef3e3b9948691379312a8099b6476aa \"CML watermark\")\n" ]
"2022-11-25T18:39:09"
"2023-02-13T16:50:42"
"2023-02-13T16:43:47"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5303.diff", "html_url": "https://github.com/huggingface/datasets/pull/5303", "merged_at": "2023-02-13T16:43:47Z", "patch_url": "https://github.com/huggingface/datasets/pull/5303.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5303" }
Skip the dataset verifications (split and checksum verifications, duplicate keys check) by default unless a dataset is being tested (`datasets-cli test/run_beam`). The main goal is to avoid running the checksum check in the default case due to how expensive it can be for large datasets. PS: Maybe we should deprecate `ignore_verifications`, which is `True` now by default, and give it a different name?
{ "+1": 3, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/5303/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5303/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/340
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/340/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/340/comments
https://api.github.com/repos/huggingface/datasets/issues/340/events
https://github.com/huggingface/datasets/pull/340
650,533,920
MDExOlB1bGxSZXF1ZXN0NDQ0MDA2Nzcy
340
Update cfq.py
{ "avatar_url": "https://avatars.githubusercontent.com/u/4437290?v=4", "events_url": "https://api.github.com/users/brainshawn/events{/privacy}", "followers_url": "https://api.github.com/users/brainshawn/followers", "following_url": "https://api.github.com/users/brainshawn/following{/other_user}", "gists_url": "https://api.github.com/users/brainshawn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/brainshawn", "id": 4437290, "login": "brainshawn", "node_id": "MDQ6VXNlcjQ0MzcyOTA=", "organizations_url": "https://api.github.com/users/brainshawn/orgs", "received_events_url": "https://api.github.com/users/brainshawn/received_events", "repos_url": "https://api.github.com/users/brainshawn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/brainshawn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/brainshawn/subscriptions", "type": "User", "url": "https://api.github.com/users/brainshawn" }
[]
closed
false
null
[]
null
[ "Thanks @brainshawn for this update" ]
"2020-07-03T11:23:19"
"2020-07-03T12:33:50"
"2020-07-03T12:33:50"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/340.diff", "html_url": "https://github.com/huggingface/datasets/pull/340", "merged_at": "2020-07-03T12:33:50Z", "patch_url": "https://github.com/huggingface/datasets/pull/340.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/340" }
Make the dataset name consistent with in the paper: Compositional Freebase Question => Compositional Freebase Questions.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/340/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/340/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5269
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5269/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5269/comments
https://api.github.com/repos/huggingface/datasets/issues/5269/events
https://github.com/huggingface/datasets/issues/5269
1,456,485,799
I_kwDODunzps5W0DWn
5,269
Shell completions
{ "avatar_url": "https://avatars.githubusercontent.com/u/32936898?v=4", "events_url": "https://api.github.com/users/Freed-Wu/events{/privacy}", "followers_url": "https://api.github.com/users/Freed-Wu/followers", "following_url": "https://api.github.com/users/Freed-Wu/following{/other_user}", "gists_url": "https://api.github.com/users/Freed-Wu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Freed-Wu", "id": 32936898, "login": "Freed-Wu", "node_id": "MDQ6VXNlcjMyOTM2ODk4", "organizations_url": "https://api.github.com/users/Freed-Wu/orgs", "received_events_url": "https://api.github.com/users/Freed-Wu/received_events", "repos_url": "https://api.github.com/users/Freed-Wu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Freed-Wu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Freed-Wu/subscriptions", "type": "User", "url": "https://api.github.com/users/Freed-Wu" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "I don't think we need completion on the datasets-cli, since we're mainly developing huggingface-cli", "I see." ]
"2022-11-19T13:48:59"
"2022-11-21T15:06:15"
"2022-11-21T15:06:14"
NONE
null
null
null
### Feature request Like <https://github.com/huggingface/huggingface_hub/issues/1197>, datasets-cli maybe need it, too. ### Motivation See above. ### Your contribution Maybe.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5269/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5269/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6220
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6220/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6220/comments
https://api.github.com/repos/huggingface/datasets/issues/6220/events
https://github.com/huggingface/datasets/pull/6220
1,884,285,980
PR_kwDODunzps5ZspRb
6,220
Set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6220). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005950 / 0.011353 (-0.005403) | 0.003578 / 0.011008 (-0.007431) | 0.079327 / 0.038508 (0.040819) | 0.057862 / 0.023109 (0.034752) | 0.317288 / 0.275898 (0.041390) | 0.358210 / 0.323480 (0.034730) | 0.004685 / 0.007986 (-0.003301) | 0.002879 / 0.004328 (-0.001450) | 0.062355 / 0.004250 (0.058105) | 0.045093 / 0.037052 (0.008041) | 0.322520 / 0.258489 (0.064031) | 0.367114 / 0.293841 (0.073273) | 0.027233 / 0.128546 (-0.101313) | 0.007941 / 0.075646 (-0.067705) | 0.260511 / 0.419271 (-0.158761) | 0.044355 / 0.043533 (0.000822) | 0.332993 / 0.255139 (0.077854) | 0.351363 / 0.283200 (0.068163) | 0.020784 / 0.141683 (-0.120899) | 1.429044 / 1.452155 (-0.023111) | 1.489355 / 1.492716 (-0.003362) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.180903 / 0.018006 (0.162897) | 0.421566 / 0.000490 (0.421077) | 0.003259 / 0.000200 (0.003059) | 0.000068 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023765 / 0.037411 (-0.013646) | 0.072815 / 0.014526 (0.058289) | 0.084592 / 0.176557 (-0.091965) | 0.143556 / 0.737135 (-0.593579) | 0.083591 / 0.296338 (-0.212748) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401896 / 0.215209 (0.186687) | 4.006344 / 2.077655 (1.928689) | 2.092280 / 1.504120 (0.588160) | 1.937828 / 1.541195 (0.396633) | 2.026901 / 1.468490 (0.558411) | 0.499999 / 4.584777 (-4.084778) | 3.008715 / 3.745712 (-0.736997) | 2.789735 / 5.269862 (-2.480127) | 1.827319 / 4.565676 (-2.738358) | 0.057413 / 0.424275 (-0.366862) | 0.006716 / 0.007607 (-0.000891) | 0.473061 / 0.226044 (0.247016) | 4.733256 / 2.268929 (2.464327) | 2.403922 / 55.444624 (-53.040702) | 2.017466 / 6.876477 (-4.859011) | 2.209710 / 2.142072 (0.067638) | 0.590813 / 4.805227 (-4.214414) | 0.124760 / 6.500664 (-6.375904) | 0.060976 / 0.075469 (-0.014494) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.229172 / 1.841788 (-0.612616) | 17.924644 / 8.074308 (9.850336) | 13.697347 / 10.191392 (3.505955) | 0.128258 / 0.680424 (-0.552166) | 0.016780 / 0.534201 (-0.517421) | 0.329301 / 0.579283 (-0.249982) | 0.344527 / 0.434364 (-0.089837) | 0.379482 / 0.540337 (-0.160855) | 0.513851 / 1.386936 (-0.873085) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005962 / 0.011353 (-0.005391) | 0.003613 / 0.011008 (-0.007396) | 0.062428 / 0.038508 (0.023920) | 0.058151 / 0.023109 (0.035042) | 0.452926 / 0.275898 (0.177027) | 0.489740 / 0.323480 (0.166260) | 0.006137 / 0.007986 (-0.001848) | 0.002890 / 0.004328 (-0.001438) | 0.062880 / 0.004250 (0.058629) | 0.046175 / 0.037052 (0.009123) | 0.452416 / 0.258489 (0.193927) | 0.486047 / 0.293841 (0.192206) | 0.028517 / 0.128546 (-0.100029) | 0.008102 / 0.075646 (-0.067544) | 0.068251 / 0.419271 (-0.351020) | 0.040569 / 0.043533 (-0.002964) | 0.461306 / 0.255139 (0.206167) | 0.477675 / 0.283200 (0.194475) | 0.020944 / 0.141683 (-0.120739) | 1.414300 / 1.452155 (-0.037855) | 1.502108 / 1.492716 (0.009391) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217786 / 0.018006 (0.199780) | 0.410757 / 0.000490 (0.410267) | 0.002981 / 0.000200 (0.002781) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026846 / 0.037411 (-0.010565) | 0.080098 / 0.014526 (0.065572) | 0.090591 / 0.176557 (-0.085965) | 0.144674 / 0.737135 (-0.592461) | 0.091287 / 0.296338 (-0.205052) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458224 / 0.215209 (0.243015) | 4.590541 / 2.077655 (2.512886) | 2.511251 / 1.504120 (1.007131) | 2.329165 / 1.541195 (0.787970) | 2.379187 / 1.468490 (0.910696) | 0.507485 / 4.584777 (-4.077292) | 3.135011 / 3.745712 (-0.610701) | 2.805913 / 5.269862 (-2.463948) | 1.851382 / 4.565676 (-2.714295) | 0.057981 / 0.424275 (-0.366294) | 0.006557 / 0.007607 (-0.001050) | 0.532496 / 0.226044 (0.306452) | 5.348802 / 2.268929 (3.079874) | 2.993379 / 55.444624 (-52.451245) | 2.636372 / 6.876477 (-4.240104) | 2.753219 / 2.142072 (0.611147) | 0.591989 / 4.805227 (-4.213238) | 0.126691 / 6.500664 (-6.373973) | 0.062359 / 0.075469 (-0.013110) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.345498 / 1.841788 (-0.496290) | 18.335767 / 8.074308 (10.261458) | 15.115449 / 10.191392 (4.924057) | 0.147382 / 0.680424 (-0.533041) | 0.017729 / 0.534201 (-0.516472) | 0.334337 / 0.579283 (-0.244946) | 0.359035 / 0.434364 (-0.075329) | 0.386319 / 0.540337 (-0.154019) | 0.536378 / 1.386936 (-0.850558) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f2b028fd83d74e7701e7b8f2d87e740a989505a7 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009136 / 0.011353 (-0.002216) | 0.005567 / 0.011008 (-0.005442) | 0.120320 / 0.038508 (0.081812) | 0.078082 / 0.023109 (0.054973) | 0.405579 / 0.275898 (0.129681) | 0.459714 / 0.323480 (0.136234) | 0.006327 / 0.007986 (-0.001659) | 0.007187 / 0.004328 (0.002859) | 0.084373 / 0.004250 (0.080122) | 0.059727 / 0.037052 (0.022675) | 0.418918 / 0.258489 (0.160429) | 0.486767 / 0.293841 (0.192927) | 0.047715 / 0.128546 (-0.080831) | 0.014417 / 0.075646 (-0.061229) | 0.379847 / 0.419271 (-0.039425) | 0.067472 / 0.043533 (0.023939) | 0.419304 / 0.255139 (0.164166) | 0.466260 / 0.283200 (0.183060) | 0.036872 / 0.141683 (-0.104811) | 1.876273 / 1.452155 (0.424119) | 2.043856 / 1.492716 (0.551140) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.296266 / 0.018006 (0.278260) | 0.601843 / 0.000490 (0.601354) | 0.005663 / 0.000200 (0.005463) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033272 / 0.037411 (-0.004139) | 0.098839 / 0.014526 (0.084313) | 0.124658 / 0.176557 (-0.051899) | 0.190226 / 0.737135 (-0.546909) | 0.119288 / 0.296338 (-0.177051) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.600878 / 0.215209 (0.385668) | 6.011749 / 2.077655 (3.934095) | 2.611809 / 1.504120 (1.107689) | 2.314985 / 1.541195 (0.773790) | 2.398988 / 1.468490 (0.930498) | 0.835577 / 4.584777 (-3.749200) | 5.482848 / 3.745712 (1.737136) | 4.965393 / 5.269862 (-0.304469) | 3.082420 / 4.565676 (-1.483256) | 0.098048 / 0.424275 (-0.326227) | 0.009148 / 0.007607 (0.001541) | 0.725721 / 0.226044 (0.499676) | 7.297429 / 2.268929 (5.028501) | 3.558050 / 55.444624 (-51.886575) | 2.815884 / 6.876477 (-4.060593) | 3.094103 / 2.142072 (0.952031) | 1.023617 / 4.805227 (-3.781610) | 0.222453 / 6.500664 (-6.278211) | 0.081707 / 0.075469 (0.006238) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.788327 / 1.841788 (-0.053461) | 25.285829 / 8.074308 (17.211521) | 21.878811 / 10.191392 (11.687419) | 0.215494 / 0.680424 (-0.464930) | 0.032050 / 0.534201 (-0.502151) | 0.505210 / 0.579283 (-0.074073) | 0.623545 / 0.434364 (0.189181) | 0.583342 / 0.540337 (0.043005) | 0.826497 / 1.386936 (-0.560439) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009640 / 0.011353 (-0.001713) | 0.005479 / 0.011008 (-0.005529) | 0.088940 / 0.038508 (0.050432) | 0.084186 / 0.023109 (0.061077) | 0.552290 / 0.275898 (0.276392) | 0.583296 / 0.323480 (0.259816) | 0.006999 / 0.007986 (-0.000987) | 0.004597 / 0.004328 (0.000269) | 0.089407 / 0.004250 (0.085157) | 0.067210 / 0.037052 (0.030157) | 0.554968 / 0.258489 (0.296479) | 0.595635 / 0.293841 (0.301794) | 0.052245 / 0.128546 (-0.076301) | 0.015914 / 0.075646 (-0.059733) | 0.097037 / 0.419271 (-0.322235) | 0.063954 / 0.043533 (0.020421) | 0.533752 / 0.255139 (0.278614) | 0.573789 / 0.283200 (0.290589) | 0.036526 / 0.141683 (-0.105157) | 1.867713 / 1.452155 (0.415558) | 1.996901 / 1.492716 (0.504185) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.414967 / 0.018006 (0.396961) | 0.632367 / 0.000490 (0.631877) | 0.064061 / 0.000200 (0.063861) | 0.000565 / 0.000054 (0.000510) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035953 / 0.037411 (-0.001458) | 0.112603 / 0.014526 (0.098077) | 0.126227 / 0.176557 (-0.050330) | 0.196881 / 0.737135 (-0.540255) | 0.127635 / 0.296338 (-0.168704) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.674735 / 0.215209 (0.459526) | 6.614578 / 2.077655 (4.536923) | 3.208198 / 1.504120 (1.704078) | 2.870412 / 1.541195 (1.329217) | 2.979358 / 1.468490 (1.510868) | 0.872589 / 4.584777 (-3.712187) | 5.501771 / 3.745712 (1.756059) | 4.865191 / 5.269862 (-0.404671) | 3.075281 / 4.565676 (-1.490396) | 0.098048 / 0.424275 (-0.326227) | 0.009121 / 0.007607 (0.001514) | 0.801639 / 0.226044 (0.575595) | 8.062040 / 2.268929 (5.793111) | 3.996693 / 55.444624 (-51.447931) | 3.343770 / 6.876477 (-3.532706) | 3.555977 / 2.142072 (1.413904) | 1.035050 / 4.805227 (-3.770177) | 0.227552 / 6.500664 (-6.273112) | 0.097733 / 0.075469 (0.022264) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.897210 / 1.841788 (0.055422) | 25.762459 / 8.074308 (17.688151) | 22.771290 / 10.191392 (12.579898) | 0.252650 / 0.680424 (-0.427773) | 0.032534 / 0.534201 (-0.501667) | 0.521047 / 0.579283 (-0.058236) | 0.620850 / 0.434364 (0.186486) | 0.612750 / 0.540337 (0.072413) | 0.837486 / 1.386936 (-0.549451) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1f522e5bdd73c45f7ba0a03f2ecd4e7de7351f2e \"CML watermark\")\n" ]
"2023-09-06T15:40:33"
"2023-09-06T15:52:33"
"2023-09-06T15:41:13"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6220.diff", "html_url": "https://github.com/huggingface/datasets/pull/6220", "merged_at": "2023-09-06T15:41:13Z", "patch_url": "https://github.com/huggingface/datasets/pull/6220.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6220" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6220/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6220/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3411
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3411/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3411/comments
https://api.github.com/repos/huggingface/datasets/issues/3411/events
https://github.com/huggingface/datasets/issues/3411
1,075,846,272
I_kwDODunzps5AIByA
3,411
[chinese wwm] load_datasets behavior not as expected when using run_mlm_wwm.py script
{ "avatar_url": "https://avatars.githubusercontent.com/u/52968111?v=4", "events_url": "https://api.github.com/users/hyusterr/events{/privacy}", "followers_url": "https://api.github.com/users/hyusterr/followers", "following_url": "https://api.github.com/users/hyusterr/following{/other_user}", "gists_url": "https://api.github.com/users/hyusterr/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hyusterr", "id": 52968111, "login": "hyusterr", "node_id": "MDQ6VXNlcjUyOTY4MTEx", "organizations_url": "https://api.github.com/users/hyusterr/orgs", "received_events_url": "https://api.github.com/users/hyusterr/received_events", "repos_url": "https://api.github.com/users/hyusterr/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hyusterr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hyusterr/subscriptions", "type": "User", "url": "https://api.github.com/users/hyusterr" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "@LysandreJik not so sure who to @\r\nCould you help?", "Hi @hyusterr, I believe it is @wlhgtc from https://github.com/huggingface/transformers/pull/9887" ]
"2021-12-09T17:54:35"
"2021-12-22T11:21:33"
null
NONE
null
null
null
## Describe the bug Model I am using (Bert, XLNet ...): bert-base-chinese The problem arises when using: * [https://github.com/huggingface/transformers/blob/master/examples/research_projects/mlm_wwm/run_mlm_wwm.py] the official example scripts: `rum_mlm_wwm.py` The tasks I am working on is: pretraining whole word masking with my own dataset and ref.json file I tried follow the run_mlm_wwm.py procedure to do whole word masking on pretraining task. my file is in .txt form, where one line represents one sample, with `9,264,784` chinese lines in total. the ref.json file is also contains 9,264,784 lines of whole word masking reference data for my chinese corpus. but when I try to adapt the run_mlm_wwm.py script, it shows that somehow after `datasets["train"] = load_dataset(...` `len(datasets["train"])` returns `9,265,365` then, after `tokenized_datasets = datasets.map(...` `len(tokenized_datasets["train"])` returns `9,265,279` I'm really confused and tried to trace code by myself but can't know what happened after a week trial. I want to know what happened in the `load_dataset()` function and `datasets.map` here and how did I get more lines of data than I input. so I'm here to ask. ## To reproduce Sorry that I can't provide my data here since it did not belong to me. but I'm sure I remove the blank lines. ## Expected behavior I expect the code run as it should. but the AssertionError in line 167 keeps raise as the line of reference json and datasets['train'] differs. Thanks for your patient reading! ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.8.0 - Platform: Linux-5.4.0-91-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 3.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3411/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3411/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/704
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/704/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/704/comments
https://api.github.com/repos/huggingface/datasets/issues/704/events
https://github.com/huggingface/datasets/pull/704
713,572,556
MDExOlB1bGxSZXF1ZXN0NDk2ODY2NTQ0
704
Fix remote tests for new datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2020-10-02T12:08:04"
"2020-10-02T12:12:02"
"2020-10-02T12:12:01"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/704.diff", "html_url": "https://github.com/huggingface/datasets/pull/704", "merged_at": "2020-10-02T12:12:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/704.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/704" }
When adding a new dataset, the remote tests fail because they try to get the new dataset from the master branch (i.e., where the dataset doesn't exist yet) To fix that I reverted to the use of the HF API that fetch the available datasets on S3 that is synced with the master branch
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/704/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/704/timeline
null
null
true
README.md exists but content is empty.
Downloads last month
29