dariolopez's picture
Add new SentenceTransformer model.
42d0a03 verified
|
raw
history blame
31.1 kB
metadata
base_model: BAAI/bge-m3
datasets: []
language:
  - es
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:2947
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Es uso privativo el que determina la ocupación de una porción del dominio
      público, de modo que se limita o excluye la utilización del mismo por
      otros interesados.
    sentences:
      - ¿Qué es el uso privativo de los bienes de dominio público?
      - ¿Qué es la sanidad ambiental?
      - >-
        ¿Qué información básica debe contener la información que se facilita al
        afectado cuando se obtienen datos personales de él?
  - source_sentence: >-
      Las retribuciones básicas, que se fijan en la Ley de Presupuestos
      Generales del Estado, estarán integradas única y exclusivamente por: a) El
      sueldo asignado a cada Subgrupo o Grupo de clasificación profesional, en
      el supuesto de que éste no tenga Subgrupo. b) Los trienios, que consisten
      en una cantidad, que será igual para cada Subgrupo o Grupo de
      clasificación profesional, en el supuesto de que éste no tenga Subgrupo,
      por cada tres años de servicio.
    sentences:
      - ¿Qué se entiende por retribuciones básicas?
      - ¿Cuál es el título competencial de esta ley orgánica?
      - ¿Qué se aprueba a propuesta del Ministro de Hacienda?
  - source_sentence: >-
      Se reconoce el valor social de las niñas, niños y adolescentes como
      personas que realizan un aporte afectivo, cultural y ético al caudal
      social, y cuyo protagonismo, creatividad y posicionamiento activo
      enriquecen la vida colectiva.
    sentences:
      - >-
        ¿Qué sucede si se produce un incumplimiento de las actuaciones
        establecidas en el Plan de inclusión sociolaboral?
      - ¿Qué se reconoce en cuanto al valor social de la infancia?
      - ¿Cuál es el plazo de prescripción de las infracciones?
  - source_sentence: >-
      Las empresas y las universidades podrán promover y participar en programas
      de voluntariado que cumplan los requisitos establecidos en esta Ley.
    sentences:
      - ¿Cuál es la consideración de las infracciones muy graves?
      - >-
        ¿Qué tipo de empresas pueden promover y participar en programas de
        voluntariado?
      - >-
        ¿Qué tipo de entidades están obligadas a cumplir con las obligaciones de
        publicidad activa?
  - source_sentence: >-
      Artículo 6. Definiciones. 1. Discriminación directa e indirecta. b) La
      discriminación indirecta se produce cuando una disposición, criterio o
      práctica aparentemente neutros ocasiona o puede ocasionar a una o varias
      personas una desventaja particular con respecto a otras por razón de las
      causas previstas en el apartado 1 del artículo 2.
    sentences:
      - ¿Cuál es el papel del Consejo de Salud de Área?
      - ¿Qué se considera discriminación indirecta?
      - ¿Qué tipo de información se considera veraz?
model-index:
  - name: BGE large Legal Spanish
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 1024
          type: dim_1024
        metrics:
          - type: cosine_accuracy@1
            value: 0.551829268292683
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8048780487804879
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8445121951219512
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9024390243902439
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.551829268292683
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2682926829268293
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16890243902439023
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09024390243902437
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.551829268292683
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8048780487804879
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8445121951219512
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9024390243902439
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7379864083246442
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6841608594657377
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6880865147668174
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.5487804878048781
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8048780487804879
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.850609756097561
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9024390243902439
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5487804878048781
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2682926829268293
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17012195121951218
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09024390243902437
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5487804878048781
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8048780487804879
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.850609756097561
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9024390243902439
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.736128283939538
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6815560878823075
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6854885550473444
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.5579268292682927
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8109756097560976
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.850609756097561
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8932926829268293
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5579268292682927
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27032520325203246
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17012195121951218
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08932926829268292
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5579268292682927
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8109756097560976
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.850609756097561
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8932926829268293
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7362627915663099
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6845153406891215
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6889302518809046
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.5548780487804879
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7957317073170732
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8323170731707317
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8841463414634146
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5548780487804879
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2652439024390244
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16646341463414632
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08841463414634146
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5548780487804879
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7957317073170732
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8323170731707317
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8841463414634146
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7307377627264078
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6803994870305846
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6851337079025414
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.5213414634146342
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7621951219512195
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8140243902439024
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8658536585365854
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5213414634146342
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25406504065040647
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16280487804878047
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08658536585365853
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5213414634146342
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7621951219512195
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8140243902439024
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8658536585365854
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7028480041122221
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6495075977545491
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6549966797371862
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.4847560975609756
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.725609756097561
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7804878048780488
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8536585365853658
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.4847560975609756
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.24186991869918703
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15609756097560976
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08536585365853658
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.4847560975609756
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.725609756097561
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7804878048780488
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8536585365853658
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6729421249114532
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6146668118466899
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6198317239083065
            name: Cosine Map@100

BGE large Legal Spanish

This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Language: es
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dariolopez/bge-m3-es-legal-tmp-6")
# Run inference
sentences = [
    'Artículo 6. Definiciones. 1. Discriminación directa e indirecta. b) La discriminación indirecta se produce cuando una disposición, criterio o práctica aparentemente neutros ocasiona o puede ocasionar a una o varias personas una desventaja particular con respecto a otras por razón de las causas previstas en el apartado 1 del artículo 2.',
    '¿Qué se considera discriminación indirecta?',
    '¿Qué tipo de información se considera veraz?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.5518
cosine_accuracy@3 0.8049
cosine_accuracy@5 0.8445
cosine_accuracy@10 0.9024
cosine_precision@1 0.5518
cosine_precision@3 0.2683
cosine_precision@5 0.1689
cosine_precision@10 0.0902
cosine_recall@1 0.5518
cosine_recall@3 0.8049
cosine_recall@5 0.8445
cosine_recall@10 0.9024
cosine_ndcg@10 0.738
cosine_mrr@10 0.6842
cosine_map@100 0.6881

Information Retrieval

Metric Value
cosine_accuracy@1 0.5488
cosine_accuracy@3 0.8049
cosine_accuracy@5 0.8506
cosine_accuracy@10 0.9024
cosine_precision@1 0.5488
cosine_precision@3 0.2683
cosine_precision@5 0.1701
cosine_precision@10 0.0902
cosine_recall@1 0.5488
cosine_recall@3 0.8049
cosine_recall@5 0.8506
cosine_recall@10 0.9024
cosine_ndcg@10 0.7361
cosine_mrr@10 0.6816
cosine_map@100 0.6855

Information Retrieval

Metric Value
cosine_accuracy@1 0.5579
cosine_accuracy@3 0.811
cosine_accuracy@5 0.8506
cosine_accuracy@10 0.8933
cosine_precision@1 0.5579
cosine_precision@3 0.2703
cosine_precision@5 0.1701
cosine_precision@10 0.0893
cosine_recall@1 0.5579
cosine_recall@3 0.811
cosine_recall@5 0.8506
cosine_recall@10 0.8933
cosine_ndcg@10 0.7363
cosine_mrr@10 0.6845
cosine_map@100 0.6889

Information Retrieval

Metric Value
cosine_accuracy@1 0.5549
cosine_accuracy@3 0.7957
cosine_accuracy@5 0.8323
cosine_accuracy@10 0.8841
cosine_precision@1 0.5549
cosine_precision@3 0.2652
cosine_precision@5 0.1665
cosine_precision@10 0.0884
cosine_recall@1 0.5549
cosine_recall@3 0.7957
cosine_recall@5 0.8323
cosine_recall@10 0.8841
cosine_ndcg@10 0.7307
cosine_mrr@10 0.6804
cosine_map@100 0.6851

Information Retrieval

Metric Value
cosine_accuracy@1 0.5213
cosine_accuracy@3 0.7622
cosine_accuracy@5 0.814
cosine_accuracy@10 0.8659
cosine_precision@1 0.5213
cosine_precision@3 0.2541
cosine_precision@5 0.1628
cosine_precision@10 0.0866
cosine_recall@1 0.5213
cosine_recall@3 0.7622
cosine_recall@5 0.814
cosine_recall@10 0.8659
cosine_ndcg@10 0.7028
cosine_mrr@10 0.6495
cosine_map@100 0.655

Information Retrieval

Metric Value
cosine_accuracy@1 0.4848
cosine_accuracy@3 0.7256
cosine_accuracy@5 0.7805
cosine_accuracy@10 0.8537
cosine_precision@1 0.4848
cosine_precision@3 0.2419
cosine_precision@5 0.1561
cosine_precision@10 0.0854
cosine_recall@1 0.4848
cosine_recall@3 0.7256
cosine_recall@5 0.7805
cosine_recall@10 0.8537
cosine_ndcg@10 0.6729
cosine_mrr@10 0.6147
cosine_map@100 0.6198

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 6
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 6
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss dim_1024_cosine_map@100 dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.4324 5 1.6507 - - - - - - -
0.8649 10 0.9598 - - - - - - -
0.9514 11 - 0.5477 0.6833 0.6616 0.6836 0.6758 0.5994 0.6744
1.2973 15 0.8248 - - - - - - -
1.7297 20 0.3858 - - - - - - -
1.9892 23 - 0.4242 0.6748 0.6544 0.6833 0.6740 0.6233 0.6697
2.1622 25 0.32 - - - - - - -
2.5946 30 0.1703 - - - - - - -
2.9405 34 - 0.3940 0.6755 0.6523 0.6823 0.6797 0.6196 0.6776
3.0270 35 0.1337 - - - - - - -
3.4595 40 0.0949 - - - - - - -
3.8919 45 0.0594 - - - - - - -
3.9784 46 - 0.3735 0.6867 0.6588 0.6865 0.6854 0.6189 0.6826
4.3243 50 0.07 - - - - - - -
4.7568 55 0.0524 - - - - - - -
4.9297 57 - 0.3642 0.6870 0.6577 0.6858 0.6871 0.6228 0.6853
5.1892 60 0.0598 - - - - - - -
5.6216 65 0.0491 - - - - - - -
5.7081 66 - 0.3626 0.6881 0.6550 0.6851 0.6889 0.6198 0.6855
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.3
  • PyTorch: 2.2.0+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}