BGE large Legal Spanish
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Language: es
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("dariolopez/bge-m3-es-legal-tmp-6")
sentences = [
'Artículo 6. Definiciones. 1. Discriminación directa e indirecta. b) La discriminación indirecta se produce cuando una disposición, criterio o práctica aparentemente neutros ocasiona o puede ocasionar a una o varias personas una desventaja particular con respecto a otras por razón de las causas previstas en el apartado 1 del artículo 2.',
'¿Qué se considera discriminación indirecta?',
'¿Qué tipo de información se considera veraz?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5518 |
cosine_accuracy@3 |
0.8049 |
cosine_accuracy@5 |
0.8445 |
cosine_accuracy@10 |
0.9024 |
cosine_precision@1 |
0.5518 |
cosine_precision@3 |
0.2683 |
cosine_precision@5 |
0.1689 |
cosine_precision@10 |
0.0902 |
cosine_recall@1 |
0.5518 |
cosine_recall@3 |
0.8049 |
cosine_recall@5 |
0.8445 |
cosine_recall@10 |
0.9024 |
cosine_ndcg@10 |
0.738 |
cosine_mrr@10 |
0.6842 |
cosine_map@100 |
0.6881 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5488 |
cosine_accuracy@3 |
0.8049 |
cosine_accuracy@5 |
0.8506 |
cosine_accuracy@10 |
0.9024 |
cosine_precision@1 |
0.5488 |
cosine_precision@3 |
0.2683 |
cosine_precision@5 |
0.1701 |
cosine_precision@10 |
0.0902 |
cosine_recall@1 |
0.5488 |
cosine_recall@3 |
0.8049 |
cosine_recall@5 |
0.8506 |
cosine_recall@10 |
0.9024 |
cosine_ndcg@10 |
0.7361 |
cosine_mrr@10 |
0.6816 |
cosine_map@100 |
0.6855 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5579 |
cosine_accuracy@3 |
0.811 |
cosine_accuracy@5 |
0.8506 |
cosine_accuracy@10 |
0.8933 |
cosine_precision@1 |
0.5579 |
cosine_precision@3 |
0.2703 |
cosine_precision@5 |
0.1701 |
cosine_precision@10 |
0.0893 |
cosine_recall@1 |
0.5579 |
cosine_recall@3 |
0.811 |
cosine_recall@5 |
0.8506 |
cosine_recall@10 |
0.8933 |
cosine_ndcg@10 |
0.7363 |
cosine_mrr@10 |
0.6845 |
cosine_map@100 |
0.6889 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5549 |
cosine_accuracy@3 |
0.7957 |
cosine_accuracy@5 |
0.8323 |
cosine_accuracy@10 |
0.8841 |
cosine_precision@1 |
0.5549 |
cosine_precision@3 |
0.2652 |
cosine_precision@5 |
0.1665 |
cosine_precision@10 |
0.0884 |
cosine_recall@1 |
0.5549 |
cosine_recall@3 |
0.7957 |
cosine_recall@5 |
0.8323 |
cosine_recall@10 |
0.8841 |
cosine_ndcg@10 |
0.7307 |
cosine_mrr@10 |
0.6804 |
cosine_map@100 |
0.6851 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5213 |
cosine_accuracy@3 |
0.7622 |
cosine_accuracy@5 |
0.814 |
cosine_accuracy@10 |
0.8659 |
cosine_precision@1 |
0.5213 |
cosine_precision@3 |
0.2541 |
cosine_precision@5 |
0.1628 |
cosine_precision@10 |
0.0866 |
cosine_recall@1 |
0.5213 |
cosine_recall@3 |
0.7622 |
cosine_recall@5 |
0.814 |
cosine_recall@10 |
0.8659 |
cosine_ndcg@10 |
0.7028 |
cosine_mrr@10 |
0.6495 |
cosine_map@100 |
0.655 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4848 |
cosine_accuracy@3 |
0.7256 |
cosine_accuracy@5 |
0.7805 |
cosine_accuracy@10 |
0.8537 |
cosine_precision@1 |
0.4848 |
cosine_precision@3 |
0.2419 |
cosine_precision@5 |
0.1561 |
cosine_precision@10 |
0.0854 |
cosine_recall@1 |
0.4848 |
cosine_recall@3 |
0.7256 |
cosine_recall@5 |
0.7805 |
cosine_recall@10 |
0.8537 |
cosine_ndcg@10 |
0.6729 |
cosine_mrr@10 |
0.6147 |
cosine_map@100 |
0.6198 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 6
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 6
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
dim_1024_cosine_map@100 |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.4324 |
5 |
1.6507 |
- |
- |
- |
- |
- |
- |
- |
0.8649 |
10 |
0.9598 |
- |
- |
- |
- |
- |
- |
- |
0.9514 |
11 |
- |
0.5477 |
0.6833 |
0.6616 |
0.6836 |
0.6758 |
0.5994 |
0.6744 |
1.2973 |
15 |
0.8248 |
- |
- |
- |
- |
- |
- |
- |
1.7297 |
20 |
0.3858 |
- |
- |
- |
- |
- |
- |
- |
1.9892 |
23 |
- |
0.4242 |
0.6748 |
0.6544 |
0.6833 |
0.6740 |
0.6233 |
0.6697 |
2.1622 |
25 |
0.32 |
- |
- |
- |
- |
- |
- |
- |
2.5946 |
30 |
0.1703 |
- |
- |
- |
- |
- |
- |
- |
2.9405 |
34 |
- |
0.3940 |
0.6755 |
0.6523 |
0.6823 |
0.6797 |
0.6196 |
0.6776 |
3.0270 |
35 |
0.1337 |
- |
- |
- |
- |
- |
- |
- |
3.4595 |
40 |
0.0949 |
- |
- |
- |
- |
- |
- |
- |
3.8919 |
45 |
0.0594 |
- |
- |
- |
- |
- |
- |
- |
3.9784 |
46 |
- |
0.3735 |
0.6867 |
0.6588 |
0.6865 |
0.6854 |
0.6189 |
0.6826 |
4.3243 |
50 |
0.07 |
- |
- |
- |
- |
- |
- |
- |
4.7568 |
55 |
0.0524 |
- |
- |
- |
- |
- |
- |
- |
4.9297 |
57 |
- |
0.3642 |
0.6870 |
0.6577 |
0.6858 |
0.6871 |
0.6228 |
0.6853 |
5.1892 |
60 |
0.0598 |
- |
- |
- |
- |
- |
- |
- |
5.6216 |
65 |
0.0491 |
- |
- |
- |
- |
- |
- |
- |
5.7081 |
66 |
- |
0.3626 |
0.6881 |
0.6550 |
0.6851 |
0.6889 |
0.6198 |
0.6855 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.2.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}