walloc / README.md
Dan Jacobellis
reduce size
60adc6f
|
raw
history blame
12.1 kB
metadata
datasets:
  - danjacobellis/LSDIR_540
  - danjacobellis/musdb_segments

Wavelet Learned Lossy Compression

Comparison of WaLLoC with other autoencoder designs for RGB Images and stereo audio.

Example of forward and inverse WPT with $J=2$ levels. Each level applies filters $\text{L}{\text{A}}$ and $\text{H}{\text{A}}$ independently to each of the signal channels, followed by downsampling by two $(\downarrow 2)$. An inverse level consists of upsampling $(\uparrow 2)$ followed by $\text{L}{\text{S}}$ and $\text{H}{\text{S}}$, then summing the two channels. The full WPT $\tilde{\textbf{X}}$ of consists of $J$ levels.

WaLLoC’s encode-decode pipeline. The entropy bottleneck and entropy coding steps are only required to achieve high compression ratios for storage and transmission. For compressed-domain learning where dimensionality reduction is the primary goal, these steps can be skipped to reduce overhead and completely eliminate CPU-GPU transfers.

Wavelet Learned Lossy Compression (WaLLoC)

WaLLoC sandwiches a convolutional autoencoder between time-frequency analysis and synthesis transforms using CDF 9/7 wavelet filters. The time-frequency transform increases the number of signal channels, but reduces the temporal or spatial resolution, resulting in lower GPU memory consumption and higher throughput. WaLLoC's training procedure is highly simplified compared to other $\beta$-VAEs, VQ-VAEs, and neural codecs, but still offers significant dimensionality reduction and compression. This makes it suitable for dataset storage and compressed-domain learning. It currently supports 1D and 2D signals, including mono, stereo, or multi-channel audio, and grayscale, RGB, or hyperspectral images.

Installation

  1. Follow the installation instructions for torch
  2. Install WaLLoC and other dependencies via pip

pip install walloc PyWavelets pytorch-wavelets

Image compression

import os
import torch
import json
import matplotlib.pyplot as plt
import numpy as np
from types import SimpleNamespace
from PIL import Image, ImageEnhance
from IPython.display import display
from torchvision.transforms import ToPILImage, PILToTensor
from walloc import walloc
from walloc.walloc import latent_to_pil, pil_to_latent

Load the model from a pre-trained checkpoint

wget https://hf.co/danjacobellis/walloc/resolve/main/RGB_16x.pth

wget https://hf.co/danjacobellis/walloc/resolve/main/RGB_16x.json

device = "cpu"
codec_config = SimpleNamespace(**json.load(open("RGB_16x.json")))
checkpoint = torch.load("RGB_16x.pth",map_location="cpu",weights_only=False)
codec = walloc.Codec2D(
    channels = codec_config.channels,
    J = codec_config.J,
    Ne = codec_config.Ne,
    Nd = codec_config.Nd,
    latent_dim = codec_config.latent_dim,
    latent_bits = codec_config.latent_bits,
    lightweight_encode = codec_config.lightweight_encode
)
codec.load_state_dict(checkpoint['model_state_dict'])
codec = codec.to(device)
codec.eval();

Load an example image

wget "https://r0k.us/graphics/kodak/kodak/kodim05.png"

img = Image.open("kodim05.png")
img

png

Full encoding and decoding pipeline with .forward()

  • If codec.eval() is called, the latent is rounded to nearest integer.

  • If codec.train() is called, uniform noise is added instead of rounding.

with torch.no_grad():
    codec.eval()
    x = PILToTensor()(img).to(torch.float)
    x = (x/255 - 0.5).unsqueeze(0).to(device)
    x_hat, _, _ = codec(x)
ToPILImage()(x_hat[0]+0.5)

png

Accessing latents

with torch.no_grad():
    X = codec.wavelet_analysis(x,J=codec.J)
    z = codec.encoder[0:2](X)
    z_hat = codec.encoder[2](z)
    X_hat = codec.decoder(z_hat)
    x_rec = codec.wavelet_synthesis(X_hat,J=codec.J)
print(f"dimensionality reduction: {x.numel()/z.numel()}×")
dimensionality reduction: 16.0×
plt.figure(figsize=(5,3),dpi=150)
plt.hist(
    z.flatten().numpy(),
    range=(-25,25),
    bins=151,
    density=True,
);
plt.title("Histogram of latents")
plt.xlim([-25,25]);

png

Lossless compression of latents

def scale_for_display(img, n_bits):
    scale_factor = (2**8 - 1) / (2**n_bits - 1)
    lut = [int(i * scale_factor) for i in range(2**n_bits)]
    channels = img.split()
    scaled_channels = [ch.point(lut * 2**(8-n_bits)) for ch in channels]
    return Image.merge(img.mode, scaled_channels)

Single channel PNG (L)

z_padded = torch.nn.functional.pad(z_hat, (0, 0, 0, 0, 0, 4))
z_pil = latent_to_pil(z_padded,codec.latent_bits,1)
display(scale_for_display(z_pil[0], codec.latent_bits))
z_pil[0].save('latent.png')
png = [Image.open("latent.png")]
z_rec = pil_to_latent(png,16,codec.latent_bits,1)
assert(z_rec.equal(z_padded))
print("compression_ratio: ", x.numel()/os.path.getsize("latent.png"))

png

compression_ratio:  26.729991842653856

Three channel WebP (RGB)

z_pil = latent_to_pil(z_hat,codec.latent_bits,3)
display(scale_for_display(z_pil[0], codec.latent_bits))
z_pil[0].save('latent.webp',lossless=True)
webp = [Image.open("latent.webp")]
z_rec = pil_to_latent(webp,12,codec.latent_bits,3)
assert(z_rec.equal(z_hat))
print("compression_ratio: ", x.numel()/os.path.getsize("latent.webp"))

png

compression_ratio:  28.811254396248536

Four channel TIF (CMYK)

z_padded = torch.nn.functional.pad(z_hat, (0, 0, 0, 0, 0, 4))
z_pil = latent_to_pil(z_padded,codec.latent_bits,4)
display(scale_for_display(z_pil[0], codec.latent_bits))
z_pil[0].save('latent.tif',compression="tiff_adobe_deflate")
tif = [Image.open("latent.tif")]
z_rec = pil_to_latent(tif,16,codec.latent_bits,4)
assert(z_rec.equal(z_padded))
print("compression_ratio: ", x.numel()/os.path.getsize("latent.tif"))

jpeg

compression_ratio:  21.04034530731638

Audio Compression

import io
import os
import torch
import torchaudio
import json
import matplotlib.pyplot as plt
from types import SimpleNamespace
from PIL import Image
from datasets import load_dataset
from einops import rearrange
from IPython.display import Audio
from walloc import walloc

Load the model from a pre-trained checkpoint

wget https://hf.co/danjacobellis/walloc/resolve/main/stereo_5x.pth

wget https://hf.co/danjacobellis/walloc/resolve/main/stereo_5x.json

codec_config = SimpleNamespace(**json.load(open("stereo_5x.json")))
checkpoint = torch.load("stereo_5x.pth",map_location="cpu",weights_only=False)
codec = walloc.Codec1D(
    channels = codec_config.channels,
    J = codec_config.J,
    Ne = codec_config.Ne,
    Nd = codec_config.Nd,
    latent_dim = codec_config.latent_dim,
    latent_bits = codec_config.latent_bits,
    lightweight_encode = codec_config.lightweight_encode,
    post_filter = codec_config.post_filter
)
codec.load_state_dict(checkpoint['model_state_dict'])
codec.eval();
/home/dan/g/lib/python3.12/site-packages/torch/nn/utils/weight_norm.py:143: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.
  WeightNorm.apply(module, name, dim)

Load example audio track

MUSDB = load_dataset("danjacobellis/musdb_segments_val",split='validation')
audio_buff = io.BytesIO(MUSDB[40]['audio_mix']['bytes'])
x, fs = torchaudio.load(audio_buff,normalize=False)
x = x.to(torch.float)
x = x - x.mean()
max_abs = x.abs().max()
x = x / (max_abs + 1e-8)
x = x/2
Audio(x[:,:2**20],rate=44100)

Full encoding and decoding pipeline with .forward()

  • If codec.eval() is called, the latent is rounded to nearest integer.

  • If codec.train() is called, uniform noise is added instead of rounding.

with torch.no_grad():
    codec.eval()
    x_hat, _, _ = codec(x.unsqueeze(0))
Audio(x_hat[0,:,:2**20],rate=44100)

Accessing latents

with torch.no_grad():
    X = codec.wavelet_analysis(x.unsqueeze(0),J=codec.J)
    z = codec.encoder[0:2](X)
    z_hat = codec.encoder[2](z)
    X_hat = codec.decoder(z_hat)
    x_rec = codec.wavelet_synthesis(X_hat,J=codec.J)
print(f"dimensionality reduction: {x.numel()/z.numel():.4g}×")
dimensionality reduction: 4.74×
plt.figure(figsize=(5,3),dpi=150)
plt.hist(
    z.flatten().numpy(),
    range=(-25,25),
    bins=151,
    density=True,
);
plt.title("Histogram of latents")
plt.xlim([-25,25]);

png

Lossless compression of latents

def pad(audio, p=2**16):
    B,C,L = audio.shape
    padding_size = (p - (L % p)) % p
    if padding_size > 0:
        audio = torch.nn.functional.pad(audio, (0, padding_size), mode='constant', value=0)
    return audio
with torch.no_grad():
    L = x.shape[-1]
    x_padded = pad(x.unsqueeze(0), 2**16)
    X = codec.wavelet_analysis(x_padded,codec.J)
    z = codec.encoder(X)
    ℓ = z.shape[-1]
    z = pad(z,128)
    z = rearrange(z, 'b c (w h) -> b c w h', h=128).to("cpu")
    webp = walloc.latent_to_pil(z,codec.latent_bits,3)[0]
    buff = io.BytesIO()
    webp.save(buff, format='WEBP', lossless=True)
    webp_bytes = buff.getbuffer()
print("compression_ratio: ", x.numel()/len(webp_bytes))
webp
compression_ratio:  9.83650170496386

png

Decoding

with torch.no_grad():
    z_hat = walloc.pil_to_latent(
        [Image.open(buff)],
        codec.latent_dim,
        codec.latent_bits,
        3)
    X_hat = codec.decoder(rearrange(z_hat, 'b c h w -> b c (h w)')[:,:,:ℓ])
    x_hat = codec.wavelet_synthesis(X_hat,codec.J)
    x_hat = codec.post(x_hat)
    x_hat = codec.clamp(x_hat[0,:,:L])
start, end = 0, 1000
plt.figure(figsize=(8, 3), dpi=180)
plt.plot(x[0, start:end], alpha=0.5, c='b', label='Ch.1 (Uncompressed)')
plt.plot(x_hat[0, start:end], alpha=0.5, c='g', label='Ch.1 (WaLLoC)')
plt.plot(x[1, start:end], alpha=0.5, c='r', label='Ch.2 (Uncompressed)')
plt.plot(x_hat[1, start:end], alpha=0.5, c='purple', label='Ch.2 (WaLLoC)')

plt.xlim([400,1000])
plt.ylim([-0.6,0.3])
plt.legend(loc='lower center')
plt.box(False)
plt.xticks([])
plt.yticks([]);

png

!jupyter nbconvert --to markdown README.ipynb
[NbConvertApp] Converting notebook README.ipynb to markdown
[NbConvertApp] Support files will be in README_files/
[NbConvertApp] Writing 1409744 bytes to README.md
!sed -i 's|!\[png](README_files/\(README_[0-9]*_[0-9]*\.png\))|![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/\1)|g' README.md