Dan Jacobellis
commited on
Commit
·
60adc6f
1
Parent(s):
7db5410
reduce size
Browse files
README.md
CHANGED
@@ -1,3 +1,458 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- danjacobellis/LSDIR_540
|
4 |
+
- danjacobellis/musdb_segments
|
5 |
+
---
|
6 |
+
# Wavelet Learned Lossy Compression
|
7 |
+
|
8 |
+
- [Project page and documentation](https://danjacobellis.net/walloc)
|
9 |
+
- [Paper: "Learned Compression for Compressed Learning"](https://danjacobellis.net/_static/walloc.pdf)
|
10 |
+
- [Additional code accompanying the paper](https://github.com/danjacobellis/lccl)
|
11 |
+
|
12 |
+
![](https://danjacobellis.net/walloc/_images/radar.svg)
|
13 |
+
Comparison of WaLLoC with other autoencoder designs for RGB Images and stereo audio.
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
![](https://danjacobellis.net/walloc/_images/wpt.svg)
|
18 |
+
Example of forward and inverse WPT with $J=2$ levels. Each level applies filters $\text{L}_{\text{A}}$ and $\text{H}_{\text{A}}$ independently to each of the signal channels, followed by downsampling by two $(\downarrow 2)$. An inverse level consists of upsampling $(\uparrow 2)$ followed by $\text{L}_{\text{S}}$
|
19 |
+
and $\text{H}_{\text{S}}$, then summing the two channels. The full WPT $\tilde{\textbf{X}}$ of consists of $J$ levels.
|
20 |
+
|
21 |
+
![](https://danjacobellis.net/walloc/_images/walloc.svg)
|
22 |
+
WaLLoC’s encode-decode pipeline. The entropy bottleneck and entropy coding steps are only required to achieve high compression ratios for storage and transmission. For compressed-domain learning where dimensionality reduction is the primary goal, these steps can be skipped to reduce overhead and completely eliminate CPU-GPU transfers.
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
# Wavelet Learned Lossy Compression (WaLLoC)
|
27 |
+
|
28 |
+
WaLLoC sandwiches a convolutional autoencoder between time-frequency analysis and synthesis transforms using CDF 9/7 wavelet filters. The time-frequency transform increases the number of signal channels, but reduces the temporal or spatial resolution, resulting in lower GPU memory consumption and higher throughput. WaLLoC's training procedure is highly simplified compared to other $\beta$-VAEs, VQ-VAEs, and neural codecs, but still offers significant dimensionality reduction and compression. This makes it suitable for dataset storage and compressed-domain learning. It currently supports 1D and 2D signals, including mono, stereo, or multi-channel audio, and grayscale, RGB, or hyperspectral images.
|
29 |
+
|
30 |
+
## Installation
|
31 |
+
|
32 |
+
1. Follow the installation instructions for [torch](https://pytorch.org/get-started/locally/)
|
33 |
+
2. Install WaLLoC and other dependencies via pip
|
34 |
+
|
35 |
+
```pip install walloc PyWavelets pytorch-wavelets```
|
36 |
+
|
37 |
+
## Image compression
|
38 |
+
|
39 |
+
|
40 |
+
```python
|
41 |
+
import os
|
42 |
+
import torch
|
43 |
+
import json
|
44 |
+
import matplotlib.pyplot as plt
|
45 |
+
import numpy as np
|
46 |
+
from types import SimpleNamespace
|
47 |
+
from PIL import Image, ImageEnhance
|
48 |
+
from IPython.display import display
|
49 |
+
from torchvision.transforms import ToPILImage, PILToTensor
|
50 |
+
from walloc import walloc
|
51 |
+
from walloc.walloc import latent_to_pil, pil_to_latent
|
52 |
+
```
|
53 |
+
|
54 |
+
### Load the model from a pre-trained checkpoint
|
55 |
+
|
56 |
+
```wget https://hf.co/danjacobellis/walloc/resolve/main/RGB_16x.pth```
|
57 |
+
|
58 |
+
```wget https://hf.co/danjacobellis/walloc/resolve/main/RGB_16x.json```
|
59 |
+
|
60 |
+
|
61 |
+
```python
|
62 |
+
device = "cpu"
|
63 |
+
codec_config = SimpleNamespace(**json.load(open("RGB_16x.json")))
|
64 |
+
checkpoint = torch.load("RGB_16x.pth",map_location="cpu",weights_only=False)
|
65 |
+
codec = walloc.Codec2D(
|
66 |
+
channels = codec_config.channels,
|
67 |
+
J = codec_config.J,
|
68 |
+
Ne = codec_config.Ne,
|
69 |
+
Nd = codec_config.Nd,
|
70 |
+
latent_dim = codec_config.latent_dim,
|
71 |
+
latent_bits = codec_config.latent_bits,
|
72 |
+
lightweight_encode = codec_config.lightweight_encode
|
73 |
+
)
|
74 |
+
codec.load_state_dict(checkpoint['model_state_dict'])
|
75 |
+
codec = codec.to(device)
|
76 |
+
codec.eval();
|
77 |
+
```
|
78 |
+
|
79 |
+
### Load an example image
|
80 |
+
|
81 |
+
```wget "https://r0k.us/graphics/kodak/kodak/kodim05.png"```
|
82 |
+
|
83 |
+
|
84 |
+
```python
|
85 |
+
img = Image.open("kodim05.png")
|
86 |
+
img
|
87 |
+
```
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_11_0.png)
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
### Full encoding and decoding pipeline with .forward()
|
99 |
+
|
100 |
+
* If `codec.eval()` is called, the latent is rounded to nearest integer.
|
101 |
+
|
102 |
+
* If `codec.train()` is called, uniform noise is added instead of rounding.
|
103 |
+
|
104 |
+
|
105 |
+
```python
|
106 |
+
with torch.no_grad():
|
107 |
+
codec.eval()
|
108 |
+
x = PILToTensor()(img).to(torch.float)
|
109 |
+
x = (x/255 - 0.5).unsqueeze(0).to(device)
|
110 |
+
x_hat, _, _ = codec(x)
|
111 |
+
ToPILImage()(x_hat[0]+0.5)
|
112 |
+
```
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_13_0.png)
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
### Accessing latents
|
124 |
+
|
125 |
+
|
126 |
+
```python
|
127 |
+
with torch.no_grad():
|
128 |
+
X = codec.wavelet_analysis(x,J=codec.J)
|
129 |
+
z = codec.encoder[0:2](X)
|
130 |
+
z_hat = codec.encoder[2](z)
|
131 |
+
X_hat = codec.decoder(z_hat)
|
132 |
+
x_rec = codec.wavelet_synthesis(X_hat,J=codec.J)
|
133 |
+
print(f"dimensionality reduction: {x.numel()/z.numel()}×")
|
134 |
+
```
|
135 |
+
|
136 |
+
dimensionality reduction: 16.0×
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
```python
|
141 |
+
plt.figure(figsize=(5,3),dpi=150)
|
142 |
+
plt.hist(
|
143 |
+
z.flatten().numpy(),
|
144 |
+
range=(-25,25),
|
145 |
+
bins=151,
|
146 |
+
density=True,
|
147 |
+
);
|
148 |
+
plt.title("Histogram of latents")
|
149 |
+
plt.xlim([-25,25]);
|
150 |
+
```
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_16_0.png)
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
# Lossless compression of latents
|
159 |
+
|
160 |
+
|
161 |
+
```python
|
162 |
+
def scale_for_display(img, n_bits):
|
163 |
+
scale_factor = (2**8 - 1) / (2**n_bits - 1)
|
164 |
+
lut = [int(i * scale_factor) for i in range(2**n_bits)]
|
165 |
+
channels = img.split()
|
166 |
+
scaled_channels = [ch.point(lut * 2**(8-n_bits)) for ch in channels]
|
167 |
+
return Image.merge(img.mode, scaled_channels)
|
168 |
+
```
|
169 |
+
|
170 |
+
### Single channel PNG (L)
|
171 |
+
|
172 |
+
|
173 |
+
```python
|
174 |
+
z_padded = torch.nn.functional.pad(z_hat, (0, 0, 0, 0, 0, 4))
|
175 |
+
z_pil = latent_to_pil(z_padded,codec.latent_bits,1)
|
176 |
+
display(scale_for_display(z_pil[0], codec.latent_bits))
|
177 |
+
z_pil[0].save('latent.png')
|
178 |
+
png = [Image.open("latent.png")]
|
179 |
+
z_rec = pil_to_latent(png,16,codec.latent_bits,1)
|
180 |
+
assert(z_rec.equal(z_padded))
|
181 |
+
print("compression_ratio: ", x.numel()/os.path.getsize("latent.png"))
|
182 |
+
```
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_20_0.png)
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
compression_ratio: 26.729991842653856
|
191 |
+
|
192 |
+
|
193 |
+
### Three channel WebP (RGB)
|
194 |
+
|
195 |
+
|
196 |
+
```python
|
197 |
+
z_pil = latent_to_pil(z_hat,codec.latent_bits,3)
|
198 |
+
display(scale_for_display(z_pil[0], codec.latent_bits))
|
199 |
+
z_pil[0].save('latent.webp',lossless=True)
|
200 |
+
webp = [Image.open("latent.webp")]
|
201 |
+
z_rec = pil_to_latent(webp,12,codec.latent_bits,3)
|
202 |
+
assert(z_rec.equal(z_hat))
|
203 |
+
print("compression_ratio: ", x.numel()/os.path.getsize("latent.webp"))
|
204 |
+
```
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_22_0.png)
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
compression_ratio: 28.811254396248536
|
213 |
+
|
214 |
+
|
215 |
+
### Four channel TIF (CMYK)
|
216 |
+
|
217 |
+
|
218 |
+
```python
|
219 |
+
z_padded = torch.nn.functional.pad(z_hat, (0, 0, 0, 0, 0, 4))
|
220 |
+
z_pil = latent_to_pil(z_padded,codec.latent_bits,4)
|
221 |
+
display(scale_for_display(z_pil[0], codec.latent_bits))
|
222 |
+
z_pil[0].save('latent.tif',compression="tiff_adobe_deflate")
|
223 |
+
tif = [Image.open("latent.tif")]
|
224 |
+
z_rec = pil_to_latent(tif,16,codec.latent_bits,4)
|
225 |
+
assert(z_rec.equal(z_padded))
|
226 |
+
print("compression_ratio: ", x.numel()/os.path.getsize("latent.tif"))
|
227 |
+
```
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
![jpeg](README_files/README_24_0.jpg)
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
compression_ratio: 21.04034530731638
|
236 |
+
|
237 |
+
|
238 |
+
# Audio Compression
|
239 |
+
|
240 |
+
|
241 |
+
```python
|
242 |
+
import io
|
243 |
+
import os
|
244 |
+
import torch
|
245 |
+
import torchaudio
|
246 |
+
import json
|
247 |
+
import matplotlib.pyplot as plt
|
248 |
+
from types import SimpleNamespace
|
249 |
+
from PIL import Image
|
250 |
+
from datasets import load_dataset
|
251 |
+
from einops import rearrange
|
252 |
+
from IPython.display import Audio
|
253 |
+
from walloc import walloc
|
254 |
+
```
|
255 |
+
|
256 |
+
### Load the model from a pre-trained checkpoint
|
257 |
+
|
258 |
+
```wget https://hf.co/danjacobellis/walloc/resolve/main/stereo_5x.pth```
|
259 |
+
|
260 |
+
```wget https://hf.co/danjacobellis/walloc/resolve/main/stereo_5x.json```
|
261 |
+
|
262 |
+
|
263 |
+
```python
|
264 |
+
codec_config = SimpleNamespace(**json.load(open("stereo_5x.json")))
|
265 |
+
checkpoint = torch.load("stereo_5x.pth",map_location="cpu",weights_only=False)
|
266 |
+
codec = walloc.Codec1D(
|
267 |
+
channels = codec_config.channels,
|
268 |
+
J = codec_config.J,
|
269 |
+
Ne = codec_config.Ne,
|
270 |
+
Nd = codec_config.Nd,
|
271 |
+
latent_dim = codec_config.latent_dim,
|
272 |
+
latent_bits = codec_config.latent_bits,
|
273 |
+
lightweight_encode = codec_config.lightweight_encode,
|
274 |
+
post_filter = codec_config.post_filter
|
275 |
+
)
|
276 |
+
codec.load_state_dict(checkpoint['model_state_dict'])
|
277 |
+
codec.eval();
|
278 |
+
```
|
279 |
+
|
280 |
+
/home/dan/g/lib/python3.12/site-packages/torch/nn/utils/weight_norm.py:143: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.
|
281 |
+
WeightNorm.apply(module, name, dim)
|
282 |
+
|
283 |
+
|
284 |
+
### Load example audio track
|
285 |
+
|
286 |
+
|
287 |
+
```python
|
288 |
+
MUSDB = load_dataset("danjacobellis/musdb_segments_val",split='validation')
|
289 |
+
audio_buff = io.BytesIO(MUSDB[40]['audio_mix']['bytes'])
|
290 |
+
x, fs = torchaudio.load(audio_buff,normalize=False)
|
291 |
+
x = x.to(torch.float)
|
292 |
+
x = x - x.mean()
|
293 |
+
max_abs = x.abs().max()
|
294 |
+
x = x / (max_abs + 1e-8)
|
295 |
+
x = x/2
|
296 |
+
```
|
297 |
+
|
298 |
+
|
299 |
+
```python
|
300 |
+
Audio(x[:,:2**20],rate=44100)
|
301 |
+
```
|
302 |
+
|
303 |
+
<audio controls>
|
304 |
+
<source src="README_files/README_0.wav" type="audio/wav">
|
305 |
+
</audio>
|
306 |
+
|
307 |
+
### Full encoding and decoding pipeline with .forward()
|
308 |
+
|
309 |
+
* If `codec.eval()` is called, the latent is rounded to nearest integer.
|
310 |
+
|
311 |
+
* If `codec.train()` is called, uniform noise is added instead of rounding.
|
312 |
+
|
313 |
+
|
314 |
+
```python
|
315 |
+
with torch.no_grad():
|
316 |
+
codec.eval()
|
317 |
+
x_hat, _, _ = codec(x.unsqueeze(0))
|
318 |
+
```
|
319 |
+
|
320 |
+
|
321 |
+
```python
|
322 |
+
Audio(x_hat[0,:,:2**20],rate=44100)
|
323 |
+
```
|
324 |
+
|
325 |
+
<audio controls>
|
326 |
+
<source src="README_files/README_1.wav" type="audio/wav">
|
327 |
+
</audio>
|
328 |
+
|
329 |
+
### Accessing latents
|
330 |
+
|
331 |
+
|
332 |
+
```python
|
333 |
+
with torch.no_grad():
|
334 |
+
X = codec.wavelet_analysis(x.unsqueeze(0),J=codec.J)
|
335 |
+
z = codec.encoder[0:2](X)
|
336 |
+
z_hat = codec.encoder[2](z)
|
337 |
+
X_hat = codec.decoder(z_hat)
|
338 |
+
x_rec = codec.wavelet_synthesis(X_hat,J=codec.J)
|
339 |
+
print(f"dimensionality reduction: {x.numel()/z.numel():.4g}×")
|
340 |
+
```
|
341 |
+
|
342 |
+
dimensionality reduction: 4.74×
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
```python
|
347 |
+
plt.figure(figsize=(5,3),dpi=150)
|
348 |
+
plt.hist(
|
349 |
+
z.flatten().numpy(),
|
350 |
+
range=(-25,25),
|
351 |
+
bins=151,
|
352 |
+
density=True,
|
353 |
+
);
|
354 |
+
plt.title("Histogram of latents")
|
355 |
+
plt.xlim([-25,25]);
|
356 |
+
```
|
357 |
+
|
358 |
+
|
359 |
+
|
360 |
+
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_39_0.png)
|
361 |
+
|
362 |
+
|
363 |
+
|
364 |
+
# Lossless compression of latents
|
365 |
+
|
366 |
+
|
367 |
+
```python
|
368 |
+
def pad(audio, p=2**16):
|
369 |
+
B,C,L = audio.shape
|
370 |
+
padding_size = (p - (L % p)) % p
|
371 |
+
if padding_size > 0:
|
372 |
+
audio = torch.nn.functional.pad(audio, (0, padding_size), mode='constant', value=0)
|
373 |
+
return audio
|
374 |
+
with torch.no_grad():
|
375 |
+
L = x.shape[-1]
|
376 |
+
x_padded = pad(x.unsqueeze(0), 2**16)
|
377 |
+
X = codec.wavelet_analysis(x_padded,codec.J)
|
378 |
+
z = codec.encoder(X)
|
379 |
+
ℓ = z.shape[-1]
|
380 |
+
z = pad(z,128)
|
381 |
+
z = rearrange(z, 'b c (w h) -> b c w h', h=128).to("cpu")
|
382 |
+
webp = walloc.latent_to_pil(z,codec.latent_bits,3)[0]
|
383 |
+
buff = io.BytesIO()
|
384 |
+
webp.save(buff, format='WEBP', lossless=True)
|
385 |
+
webp_bytes = buff.getbuffer()
|
386 |
+
```
|
387 |
+
|
388 |
+
|
389 |
+
```python
|
390 |
+
print("compression_ratio: ", x.numel()/len(webp_bytes))
|
391 |
+
webp
|
392 |
+
```
|
393 |
+
|
394 |
+
compression_ratio: 9.83650170496386
|
395 |
+
|
396 |
+
|
397 |
+
|
398 |
+
|
399 |
+
|
400 |
+
|
401 |
+
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_42_1.png)
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
# Decoding
|
407 |
+
|
408 |
+
|
409 |
+
```python
|
410 |
+
with torch.no_grad():
|
411 |
+
z_hat = walloc.pil_to_latent(
|
412 |
+
[Image.open(buff)],
|
413 |
+
codec.latent_dim,
|
414 |
+
codec.latent_bits,
|
415 |
+
3)
|
416 |
+
X_hat = codec.decoder(rearrange(z_hat, 'b c h w -> b c (h w)')[:,:,:ℓ])
|
417 |
+
x_hat = codec.wavelet_synthesis(X_hat,codec.J)
|
418 |
+
x_hat = codec.post(x_hat)
|
419 |
+
x_hat = codec.clamp(x_hat[0,:,:L])
|
420 |
+
```
|
421 |
+
|
422 |
+
|
423 |
+
```python
|
424 |
+
start, end = 0, 1000
|
425 |
+
plt.figure(figsize=(8, 3), dpi=180)
|
426 |
+
plt.plot(x[0, start:end], alpha=0.5, c='b', label='Ch.1 (Uncompressed)')
|
427 |
+
plt.plot(x_hat[0, start:end], alpha=0.5, c='g', label='Ch.1 (WaLLoC)')
|
428 |
+
plt.plot(x[1, start:end], alpha=0.5, c='r', label='Ch.2 (Uncompressed)')
|
429 |
+
plt.plot(x_hat[1, start:end], alpha=0.5, c='purple', label='Ch.2 (WaLLoC)')
|
430 |
+
|
431 |
+
plt.xlim([400,1000])
|
432 |
+
plt.ylim([-0.6,0.3])
|
433 |
+
plt.legend(loc='lower center')
|
434 |
+
plt.box(False)
|
435 |
+
plt.xticks([])
|
436 |
+
plt.yticks([]);
|
437 |
+
```
|
438 |
+
|
439 |
+
|
440 |
+
|
441 |
+
![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_45_0.png)
|
442 |
+
|
443 |
+
|
444 |
+
|
445 |
+
|
446 |
+
```python
|
447 |
+
!jupyter nbconvert --to markdown README.ipynb
|
448 |
+
```
|
449 |
+
|
450 |
+
[NbConvertApp] Converting notebook README.ipynb to markdown
|
451 |
+
[NbConvertApp] Support files will be in README_files/
|
452 |
+
[NbConvertApp] Writing 1409744 bytes to README.md
|
453 |
+
|
454 |
+
|
455 |
+
|
456 |
+
```python
|
457 |
+
!sed -i 's|!\[png](README_files/\(README_[0-9]*_[0-9]*\.png\))|![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/\1)|g' README.md
|
458 |
+
```
|