File size: 31,069 Bytes
efec1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4fea1e
efec1c4
 
 
d20ad0a
dc1481d
efec1c4
 
 
 
 
 
 
 
 
 
 
 
50e921d
d20ad0a
dc1481d
efec1c4
50e921d
efec1c4
 
d20ad0a
50e921d
dc1481d
 
 
 
 
 
efec1c4
dc1481d
 
 
 
d20ad0a
 
 
 
 
efec1c4
 
 
dc1481d
 
 
 
 
efec1c4
 
dc1481d
efec1c4
dc1481d
 
efec1c4
 
 
acd253c
 
 
dc1481d
efec1c4
 
dc1481d
 
 
 
efec1c4
 
 
 
 
d20ad0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
 
 
 
 
 
 
 
 
 
 
 
188029e
acd253c
3d06203
 
912860d
3d06203
912860d
 
acd253c
 
 
 
 
 
 
efec1c4
acd253c
 
efec1c4
d20ad0a
acd253c
 
 
 
 
50e921d
 
 
 
acd253c
 
 
 
 
 
 
 
912860d
 
acd253c
912860d
acd253c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
912860d
acd253c
 
 
d20ad0a
acd253c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d20ad0a
acd253c
efec1c4
188029e
f4fea1e
 
 
 
 
3072225
 
 
f4fea1e
 
 
 
 
 
 
 
 
42e9bf9
f4fea1e
 
42e9bf9
f4fea1e
 
 
3072225
 
f4fea1e
 
 
 
 
3072225
d20ad0a
3072225
 
 
d20ad0a
 
 
 
 
 
 
dc1481d
d20ad0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc1481d
d20ad0a
dc1481d
 
 
 
d20ad0a
 
 
 
 
 
 
 
 
 
 
 
 
dc1481d
d20ad0a
 
 
 
 
 
 
 
 
 
 
dc1481d
 
 
 
d20ad0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc1481d
 
 
 
d20ad0a
 
 
 
 
 
 
 
 
f4fea1e
 
efec1c4
 
acd253c
d20ad0a
efec1c4
 
 
 
 
d20ad0a
acd253c
efec1c4
 
 
 
 
 
 
 
 
 
 
acd253c
efec1c4
 
 
d20ad0a
acd253c
 
 
 
 
efec1c4
 
 
dc1481d
 
 
 
 
efec1c4
 
 
 
019165f
efec1c4
 
 
 
 
 
 
acd253c
efec1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d20ad0a
 
 
efec1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d06203
efec1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d20ad0a
 
 
 
 
 
 
 
acd253c
 
 
 
 
 
 
 
 
 
 
efec1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
3072225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efec1c4
f4fea1e
acd253c
efec1c4
d20ad0a
acd253c
 
efec1c4
f4fea1e
 
 
 
efec1c4
dc1481d
 
 
 
 
 
 
 
efec1c4
 
 
 
 
acd253c
 
 
efec1c4
 
 
 
f4fea1e
 
acd253c
f4fea1e
 
dc1481d
d20ad0a
 
 
dc1481d
acd253c
 
 
efec1c4
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
"""
Geneformer in silico perturber stats generator.

Usage:
  from geneformer import InSilicoPerturberStats
  ispstats = InSilicoPerturberStats(mode="goal_state_shift",
                                    combos=0,
                                    anchor_gene=None,
                                    cell_states_to_model={"disease":(["dcm"],["ctrl"],["hcm"])})
  ispstats.get_stats("path/to/input_data",
                     None,
                     "path/to/output_directory",
                     "output_prefix")
"""


import os
import logging
import numpy as np
import pandas as pd
import pickle
import random
import statsmodels.stats.multitest as smt
from pathlib import Path
from scipy.stats import ranksums
from sklearn.mixture import GaussianMixture
from tqdm.notebook import trange, tqdm

from .tokenizer import TOKEN_DICTIONARY_FILE

GENE_NAME_ID_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl"

logger = logging.getLogger(__name__)

# invert dictionary keys/values
def invert_dict(dictionary):
    return {v: k for k, v in dictionary.items()}

# read raw dictionary files
def read_dictionaries(input_data_directory, cell_or_gene_emb, anchor_token):
    file_found = 0
    file_path_list = []
    dict_list = []
    for file in os.listdir(input_data_directory):
        # process only _raw.pickle files
        if file.endswith("_raw.pickle"):
            file_found = 1
            file_path_list += [f"{input_data_directory}/{file}"]
    for file_path in tqdm(file_path_list):
        with open(file_path, "rb") as fp:
            cos_sims_dict = pickle.load(fp)
            if cell_or_gene_emb == "cell":
                cell_emb_dict = {k: v for k,
                                v in cos_sims_dict.items() if v and "cell_emb" in k}
                dict_list += [cell_emb_dict]
            elif cell_or_gene_emb == "gene":
                gene_emb_dict = {k: v for k,
                                v in cos_sims_dict.items() if v and anchor_token == k[0]}  
                dict_list += [gene_emb_dict]
    if file_found == 0:
        logger.error(
                    "No raw data for processing found within provided directory. " \
                    "Please ensure data files end with '_raw.pickle'.")
        raise
    return dict_list

# get complete gene list
def get_gene_list(dict_list,mode):
    if mode == "cell":
        position = 0
    elif mode == "gene":
        position = 1
    gene_set = set()
    for dict_i in dict_list:
        gene_set.update([k[position] for k, v in dict_i.items() if v])
    gene_list = list(gene_set)
    if mode == "gene":
        gene_list.remove("cell_emb")
    gene_list.sort()
    return gene_list

def token_tuple_to_ensembl_ids(token_tuple, gene_token_id_dict):
    return tuple([gene_token_id_dict.get(i, np.nan) for i in token_tuple])

def n_detections(token, dict_list, mode, anchor_token):
    cos_sim_megalist = []
    for dict_i in dict_list:
        if mode == "cell":
            cos_sim_megalist += dict_i.get((token, "cell_emb"),[])
        elif mode == "gene":
            cos_sim_megalist += dict_i.get((anchor_token, token),[])
    return len(cos_sim_megalist)

def get_fdr(pvalues):
    return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1])

def get_impact_component(test_value, gaussian_mixture_model):
    impact_border = gaussian_mixture_model.means_[0][0]
    nonimpact_border = gaussian_mixture_model.means_[1][0]
    if test_value > nonimpact_border:
        impact_component = 0
    elif test_value < impact_border:
        impact_component = 1
    else:
        impact_component_raw = gaussian_mixture_model.predict([[test_value]])[0]
        if impact_component_raw == 1:
            impact_component = 0
        elif impact_component_raw == 0:
            impact_component = 1
    return impact_component

# aggregate data for single perturbation in multiple cells
def isp_aggregate_grouped_perturb(cos_sims_df, dict_list):  
    names=["Cosine_shift"]
    cos_sims_full_df = pd.DataFrame(columns=names)

    cos_shift_data = []
    token = cos_sims_df["Gene"][0]
    for dict_i in dict_list:
        cos_shift_data += dict_i.get((token, "cell_emb"),[])
    cos_sims_full_df["Cosine_shift"] = cos_shift_data
    return cos_sims_full_df 

# stats comparing cos sim shifts towards goal state of test perturbations vs random perturbations
def isp_stats_to_goal_state(cos_sims_df, dict_list, cell_states_to_model, genes_perturbed):
    cell_state_key = list(cell_states_to_model.keys())[0]
    if cell_states_to_model[cell_state_key][2] == []:
        alt_end_state_exists = False
    elif (len(cell_states_to_model[cell_state_key][2]) > 0) and (cell_states_to_model[cell_state_key][2] != [None]):
        alt_end_state_exists = True
    
    # for single perturbation in multiple cells, there are no random perturbations to compare to
    if genes_perturbed != "all":
        names=["Shift_to_goal_end",
               "Shift_to_alt_end"]
        if alt_end_state_exists == False:
            names.remove("Shift_to_alt_end")
        cos_sims_full_df = pd.DataFrame(columns=names)
        
        cos_shift_data = []
        token = cos_sims_df["Gene"][0]
        for dict_i in dict_list:
            cos_shift_data += dict_i.get((token, "cell_emb"),[])
        if alt_end_state_exists == False:
            cos_sims_full_df["Shift_to_goal_end"] = [goal_end for start_state,goal_end in cos_shift_data] 
        if alt_end_state_exists == True:
            cos_sims_full_df["Shift_to_goal_end"] = [goal_end for start_state,goal_end,alt_end in cos_shift_data] 
            cos_sims_full_df["Shift_to_alt_end"] = [alt_end for start_state,goal_end,alt_end in cos_shift_data]
        
        # sort by shift to desired state
        cos_sims_full_df = cos_sims_full_df.sort_values(by=["Shift_to_goal_end"],
                                                            ascending=[False])
        return cos_sims_full_df     
            
    elif genes_perturbed == "all":
        random_tuples = []
        for i in trange(cos_sims_df.shape[0]):
            token = cos_sims_df["Gene"][i]
            for dict_i in dict_list:
                random_tuples += dict_i.get((token, "cell_emb"),[])

        if alt_end_state_exists == False:
            goal_end_random_megalist = [goal_end for start_state,goal_end in random_tuples]
        elif alt_end_state_exists == True:
            goal_end_random_megalist = [goal_end for start_state,goal_end,alt_end in random_tuples]
            alt_end_random_megalist = [alt_end for start_state,goal_end,alt_end in random_tuples]

        # downsample to improve speed of ranksums
        if len(goal_end_random_megalist) > 100_000:
            random.seed(42)
            goal_end_random_megalist = random.sample(goal_end_random_megalist, k=100_000)
        if alt_end_state_exists == True:
            if len(alt_end_random_megalist) > 100_000:
                random.seed(42)
                alt_end_random_megalist = random.sample(alt_end_random_megalist, k=100_000)

        names=["Gene",
               "Gene_name",
               "Ensembl_ID",
               "Shift_to_goal_end",
               "Shift_to_alt_end",
               "Goal_end_vs_random_pval",
               "Alt_end_vs_random_pval"]
        if alt_end_state_exists == False:
            names.remove("Shift_to_alt_end")
            names.remove("Alt_end_vs_random_pval")
        cos_sims_full_df = pd.DataFrame(columns=names)

        for i in trange(cos_sims_df.shape[0]):
            token = cos_sims_df["Gene"][i]
            name = cos_sims_df["Gene_name"][i]
            ensembl_id = cos_sims_df["Ensembl_ID"][i]
            cos_shift_data = []

            for dict_i in dict_list:
                cos_shift_data += dict_i.get((token, "cell_emb"),[])

            if alt_end_state_exists == False:
                goal_end_cos_sim_megalist = [goal_end for start_state,goal_end in cos_shift_data]    
            elif alt_end_state_exists == True:
                goal_end_cos_sim_megalist = [goal_end for start_state,goal_end,alt_end in cos_shift_data]
                alt_end_cos_sim_megalist = [alt_end for start_state,goal_end,alt_end in cos_shift_data]
                mean_alt_end = np.mean(alt_end_cos_sim_megalist)
                pval_alt_end = ranksums(alt_end_random_megalist,alt_end_cos_sim_megalist).pvalue

            mean_goal_end = np.mean(goal_end_cos_sim_megalist)
            pval_goal_end = ranksums(goal_end_random_megalist,goal_end_cos_sim_megalist).pvalue

            if alt_end_state_exists == False:
                data_i = [token, 
                          name,
                          ensembl_id,
                          mean_goal_end, 
                          pval_goal_end]
            elif alt_end_state_exists == True:
                data_i = [token, 
                          name,
                          ensembl_id,
                          mean_goal_end, 
                          mean_alt_end,
                          pval_goal_end,
                          pval_alt_end]

            cos_sims_df_i = pd.DataFrame(dict(zip(names,data_i)),index=[i])
            cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i])

        cos_sims_full_df["Goal_end_FDR"] = get_fdr(list(cos_sims_full_df["Goal_end_vs_random_pval"]))
        if alt_end_state_exists == True:
            cos_sims_full_df["Alt_end_FDR"] = get_fdr(list(cos_sims_full_df["Alt_end_vs_random_pval"]))

        # quantify number of detections of each gene
        cos_sims_full_df["N_Detections"] = [n_detections(i, dict_list, "cell", None) for i in cos_sims_full_df["Gene"]]

        # sort by shift to desired state
        cos_sims_full_df = cos_sims_full_df.sort_values(by=["Shift_to_goal_end",
                                                            "Goal_end_FDR"],
                                                            ascending=[False,True])
    
        return cos_sims_full_df

# stats comparing cos sim shifts of test perturbations vs null distribution
def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list):
    cos_sims_full_df = cos_sims_df.copy()

    cos_sims_full_df["Test_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
    cos_sims_full_df["Null_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
    cos_sims_full_df["Test_vs_null_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
    cos_sims_full_df["Test_vs_null_pval"] = np.zeros(cos_sims_df.shape[0], dtype=float)
    cos_sims_full_df["Test_vs_null_FDR"] = np.zeros(cos_sims_df.shape[0], dtype=float)
    cos_sims_full_df["N_Detections_test"] = np.zeros(cos_sims_df.shape[0], dtype="uint32")
    cos_sims_full_df["N_Detections_null"] = np.zeros(cos_sims_df.shape[0], dtype="uint32")
    
    for i in trange(cos_sims_df.shape[0]):
        token = cos_sims_df["Gene"][i]
        test_shifts = []
        null_shifts = []
        
        for dict_i in dict_list:
            test_shifts += dict_i.get((token, "cell_emb"),[])

        for dict_i in null_dict_list:
            null_shifts += dict_i.get((token, "cell_emb"),[])
        
        cos_sims_full_df.loc[i, "Test_avg_shift"] = np.mean(test_shifts)
        cos_sims_full_df.loc[i, "Null_avg_shift"] = np.mean(null_shifts)
        cos_sims_full_df.loc[i, "Test_vs_null_avg_shift"] = np.mean(test_shifts)-np.mean(null_shifts)       
        cos_sims_full_df.loc[i, "Test_vs_null_pval"] = ranksums(test_shifts,
            null_shifts, nan_policy="omit").pvalue

        cos_sims_full_df.loc[i, "N_Detections_test"] = len(test_shifts)
        cos_sims_full_df.loc[i, "N_Detections_null"] = len(null_shifts)

    cos_sims_full_df["Test_vs_null_FDR"] = get_fdr(cos_sims_full_df["Test_vs_null_pval"])
    
    cos_sims_full_df = cos_sims_full_df.sort_values(by=["Test_vs_null_avg_shift",
                                                        "Test_vs_null_FDR"],
                                                        ascending=[False,True])
    return cos_sims_full_df

# stats for identifying perturbations with largest effect within a given set of cells
# fits a mixture model to 2 components (impact vs. non-impact) and
# reports the most likely component for each test perturbation
# Note: because assumes given perturbation has a consistent effect in the cells tested,
# we recommend only using the mixture model strategy with uniform cell populations
def isp_stats_mixture_model(cos_sims_df, dict_list, combos, anchor_token):
    
    names=["Gene",
           "Gene_name",
           "Ensembl_ID"]
    
    if combos == 0:
        names += ["Test_avg_shift"]
    elif combos == 1:
        names += ["Anchor_shift",
                  "Test_token_shift",
                  "Sum_of_indiv_shifts",
                  "Combo_shift",
                  "Combo_minus_sum_shift"]
        
    names += ["Impact_component",
              "Impact_component_percent"]

    cos_sims_full_df = pd.DataFrame(columns=names)
    avg_values = []
    gene_names = []
    
    for i in trange(cos_sims_df.shape[0]):
        token = cos_sims_df["Gene"][i]
        name = cos_sims_df["Gene_name"][i]
        ensembl_id = cos_sims_df["Ensembl_ID"][i]
        cos_shift_data = []
        
        for dict_i in dict_list:
            if (combos == 0) and (anchor_token is not None):
                cos_shift_data += dict_i.get((anchor_token, token),[])
            else:
                cos_shift_data += dict_i.get((token, "cell_emb"),[])
            
        # Extract values for current gene
        if combos == 0:
            test_values = cos_shift_data
        elif combos == 1:
            test_values = []
            for tup in cos_shift_data:
                test_values.append(tup[2])            
            
        if len(test_values) > 0:
            avg_value = np.mean(test_values)
            avg_values.append(avg_value)
            gene_names.append(name)
            
    # fit Gaussian mixture model to dataset of mean for each gene
    avg_values_to_fit = np.array(avg_values).reshape(-1, 1)
    gm = GaussianMixture(n_components=2, random_state=0).fit(avg_values_to_fit)
            
    for i in trange(cos_sims_df.shape[0]):
        token = cos_sims_df["Gene"][i]
        name = cos_sims_df["Gene_name"][i]
        ensembl_id = cos_sims_df["Ensembl_ID"][i]
        cos_shift_data = []

        for dict_i in dict_list:
            if (combos == 0) and (anchor_token is not None):
                cos_shift_data += dict_i.get((anchor_token, token),[])
            else:
                cos_shift_data += dict_i.get((token, "cell_emb"),[])
        
        if combos == 0:
            mean_test = np.mean(cos_shift_data)
            impact_components = [get_impact_component(value,gm) for value in cos_shift_data]
        elif combos == 1:
            anchor_cos_sim_megalist = [anchor for anchor,token,combo in cos_shift_data]
            token_cos_sim_megalist = [token for anchor,token,combo in cos_shift_data]
            anchor_plus_token_cos_sim_megalist = [1-((1-anchor)+(1-token)) for anchor,token,combo in cos_shift_data]
            combo_anchor_token_cos_sim_megalist = [combo for anchor,token,combo in cos_shift_data]
            combo_minus_sum_cos_sim_megalist = [combo-(1-((1-anchor)+(1-token))) for anchor,token,combo in cos_shift_data]

            mean_anchor = np.mean(anchor_cos_sim_megalist)
            mean_token = np.mean(token_cos_sim_megalist)
            mean_sum = np.mean(anchor_plus_token_cos_sim_megalist)
            mean_test = np.mean(combo_anchor_token_cos_sim_megalist)
            mean_combo_minus_sum = np.mean(combo_minus_sum_cos_sim_megalist)
            
            impact_components = [get_impact_component(value,gm) for value in combo_anchor_token_cos_sim_megalist]
        
        impact_component = get_impact_component(mean_test,gm)
        impact_component_percent = np.mean(impact_components)*100
            
        data_i = [token, 
                  name, 
                  ensembl_id]
        if combos == 0:
            data_i += [mean_test]
        elif combos == 1:
            data_i += [mean_anchor, 
                       mean_token, 
                       mean_sum, 
                       mean_test,
                       mean_combo_minus_sum]
        data_i += [impact_component,
                   impact_component_percent]
        
        cos_sims_df_i = pd.DataFrame(dict(zip(names,data_i)),index=[i])
        cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i])
        
    # quantify number of detections of each gene
    cos_sims_full_df["N_Detections"] = [n_detections(i, 
                                                     dict_list, 
                                                     "gene", 
                                                     anchor_token) for i in cos_sims_full_df["Gene"]]
    
    if combos == 0:
        cos_sims_full_df = cos_sims_full_df.sort_values(by=["Impact_component",
                                                            "Test_avg_shift"],
                                                            ascending=[False,True])    
    elif combos == 1:
        cos_sims_full_df = cos_sims_full_df.sort_values(by=["Impact_component",
                                                            "Combo_minus_sum_shift"],
                                                            ascending=[False,True])
    return cos_sims_full_df

class InSilicoPerturberStats:
    valid_option_dict = {
        "mode": {"goal_state_shift","vs_null","mixture_model","aggregate_data"},
        "combos": {0,1},
        "anchor_gene": {None, str},
        "cell_states_to_model": {None, dict},
    }
    def __init__(
        self,
        mode="mixture_model",
        genes_perturbed="all",
        combos=0,
        anchor_gene=None,
        cell_states_to_model=None,
        token_dictionary_file=TOKEN_DICTIONARY_FILE,
        gene_name_id_dictionary_file=GENE_NAME_ID_DICTIONARY_FILE,
    ):
        """
        Initialize in silico perturber stats generator.

        Parameters
        ----------
        mode : {"goal_state_shift","vs_null","mixture_model","aggregate_data"}
            Type of stats.
            "goal_state_shift": perturbation vs. random for desired cell state shift
            "vs_null": perturbation vs. null from provided null distribution dataset
            "mixture_model": perturbation in impact vs. no impact component of mixture model (no goal direction)
            "aggregate_data": aggregates cosine shifts for single perturbation in multiple cells
        genes_perturbed : "all", list
            Genes perturbed in isp experiment.
            Default is assuming genes_to_perturb in isp experiment was "all" (each gene in each cell).
            Otherwise, may provide a list of ENSEMBL IDs of genes perturbed as a group all together.
        combos : {0,1,2}
            Whether to perturb genes individually (0), in pairs (1), or in triplets (2).
        anchor_gene : None, str
            ENSEMBL ID of gene to use as anchor in combination perturbations or in testing effect on downstream genes.
            For example, if combos=1 and anchor_gene="ENSG00000136574":
                analyzes data for anchor gene perturbed in combination with each other gene.
            However, if combos=0 and anchor_gene="ENSG00000136574":
                analyzes data for the effect of anchor gene's perturbation on the embedding of each other gene.
        cell_states_to_model: None, dict
            Cell states to model if testing perturbations that achieve goal state change.
            Single-item dictionary with key being cell attribute (e.g. "disease").
            Value is tuple of three lists indicating start state, goal end state, and alternate possible end states.
            If no alternate possible end states, third list should be empty (i.e. the third list should be []).
        token_dictionary_file : Path
            Path to pickle file containing token dictionary (Ensembl ID:token).
        gene_name_id_dictionary_file : Path
            Path to pickle file containing gene name to ID dictionary (gene name:Ensembl ID).
        """

        self.mode = mode
        self.genes_perturbed = genes_perturbed
        self.combos = combos
        self.anchor_gene = anchor_gene
        self.cell_states_to_model = cell_states_to_model
        
        self.validate_options()

        # load token dictionary (Ensembl IDs:token)
        with open(token_dictionary_file, "rb") as f:
            self.gene_token_dict = pickle.load(f)
            
        # load gene name dictionary (gene name:Ensembl ID)
        with open(gene_name_id_dictionary_file, "rb") as f:
            self.gene_name_id_dict = pickle.load(f)

        if anchor_gene is None:
            self.anchor_token = None
        else:
            self.anchor_token = self.gene_token_dict[self.anchor_gene]

    def validate_options(self):
        for attr_name,valid_options in self.valid_option_dict.items():
            attr_value = self.__dict__[attr_name]
            if type(attr_value) not in {list, dict}:
                if attr_name in {"anchor_gene"}:
                    continue
                elif attr_value in valid_options:
                    continue
            valid_type = False
            for option in valid_options:
                if (option in [int,list,dict]) and isinstance(attr_value, option):
                    valid_type = True
                    break
            if valid_type:
                continue
            logger.error(
                f"Invalid option for {attr_name}. " \
                f"Valid options for {attr_name}: {valid_options}"
            )
            raise
        
        if self.cell_states_to_model is not None:
            if len(self.cell_states_to_model.items()) == 1:
                for key,value in self.cell_states_to_model.items():
                    if (len(value) == 3) and isinstance(value, tuple):
                        if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list):
                            if len(value[0]) == 1 and len(value[1]) == 1:
                                all_values = value[0]+value[1]+value[2]
                                if len(all_values) == len(set(all_values)):
                                    continue
            else:
                logger.error(
                    "Cell states to model must be a single-item dictionary with " \
                    "key being cell attribute (e.g. 'disease') and value being " \
                    "tuple of three lists indicating start state, goal end state, and alternate possible end states. " \
                    "Values should all be unique. " \
                    "For example: {'disease':(['start_state'],['ctrl'],['alt_end'])}")
                raise
            if self.anchor_gene is not None:
                self.anchor_gene = None
                logger.warning(
                    "anchor_gene set to None. " \
                    "Currently, anchor gene not available " \
                    "when modeling multiple cell states.")
                
        if self.combos > 0:
            if self.anchor_gene is None:
                logger.error(
                    "Currently, stats are only supported for combination " \
                    "in silico perturbation run with anchor gene. Please add " \
                    "anchor gene when using with combos > 0. ")
                raise
        
        if (self.mode == "mixture_model") and (self.genes_perturbed != "all"):
            logger.error(
                    "Mixture model mode requires multiple gene perturbations to fit model " \
                    "so is incompatible with a single grouped perturbation.")
            raise
        if (self.mode == "aggregate_data") and (self.genes_perturbed == "all"):
            logger.error(
                    "Simple data aggregation mode is for single perturbation in multiple cells " \
                    "so is incompatible with a genes_perturbed being 'all'.")
            raise            

    def get_stats(self,
                  input_data_directory,
                  null_dist_data_directory,
                  output_directory,
                  output_prefix):
        """
        Get stats for in silico perturbation data and save as results in output_directory.

        Parameters
        ----------
        input_data_directory : Path
            Path to directory containing cos_sim dictionary inputs
        null_dist_data_directory : Path
            Path to directory containing null distribution cos_sim dictionary inputs
        output_directory : Path
            Path to directory where perturbation data will be saved as .csv
        output_prefix : str
            Prefix for output .csv
            
        Outputs
        ----------
        Definition of possible columns in .csv output file.
        
        Of note, not all columns will be present in all output files.
        Some columns are specific to particular perturbation modes.
        
        "Gene": gene token
        "Gene_name": gene name
        "Ensembl_ID": gene Ensembl ID
        "N_Detections": number of cells in which each gene or gene combination was detected in the input dataset
        
        "Shift_to_goal_end": cosine shift from start state towards goal end state in response to given perturbation
        "Shift_to_alt_end": cosine shift from start state towards alternate end state in response to given perturbation
        "Goal_end_vs_random_pval": pvalue of cosine shift from start state towards goal end state by Wilcoxon
            pvalue compares shift caused by perturbing given gene compared to random genes
        "Alt_end_vs_random_pval": pvalue of cosine shift from start state towards alternate end state by Wilcoxon
            pvalue compares shift caused by perturbing given gene compared to random genes
        "Goal_end_FDR": Benjamini-Hochberg correction of "Goal_end_vs_random_pval"
        "Alt_end_FDR": Benjamini-Hochberg correction of "Alt_end_vs_random_pval"
        
        "Test_avg_shift": cosine shift in response to given perturbation in cells from test distribution
        "Null_avg_shift": cosine shift in response to given perturbation in cells from null distribution (e.g. random cells)
        "Test_vs_null_avg_shift": difference in cosine shift in cells from test vs. null distribution
            (i.e. "Test_avg_shift" minus "Null_avg_shift")
        "Test_vs_null_pval": pvalue of cosine shift in test vs. null distribution
        "Test_vs_null_FDR": Benjamini-Hochberg correction of "Test_vs_null_pval"
        "N_Detections_test": "N_Detections" in cells from test distribution
        "N_Detections_null": "N_Detections" in cells from null distribution
        
        "Anchor_shift": cosine shift in response to given perturbation of anchor gene
        "Test_token_shift": cosine shift in response to given perturbation of test gene
        "Sum_of_indiv_shifts": sum of cosine shifts in response to individually perturbing test and anchor genes
        "Combo_shift": cosine shift in response to given perturbation of both anchor and test gene(s) in combination
        "Combo_minus_sum_shift": difference of cosine shifts in response combo perturbation vs. sum of individual perturbations
            (i.e. "Combo_shift" minus "Sum_of_indiv_shifts")
        "Impact_component": whether the given perturbation was modeled to be within the impact component by the mixture model
            1: within impact component; 0: not within impact component
        "Impact_component_percent": percent of cells in which given perturbation was modeled to be within impact component
        """

        if self.mode not in ["goal_state_shift", "vs_null", "mixture_model","aggregate_data"]:
            logger.error(
                "Currently, only modes available are stats for goal_state_shift, " \
                "vs_null (comparing to null distribution), and " \
                "mixture_model (fitting mixture model for perturbations with or without impact.")
            raise

        self.gene_token_id_dict = invert_dict(self.gene_token_dict)
        self.gene_id_name_dict = invert_dict(self.gene_name_id_dict)

        # obtain total gene list
        if (self.combos == 0) and (self.anchor_token is not None):
            # cos sim data for effect of gene perturbation on the embedding of each other gene
            dict_list = read_dictionaries(input_data_directory, "gene", self.anchor_token)
            gene_list = get_gene_list(dict_list, "gene")
        else:
            # cos sim data for effect of gene perturbation on the embedding of each cell
            dict_list = read_dictionaries(input_data_directory, "cell", self.anchor_token)
            gene_list = get_gene_list(dict_list, "cell")
        
        # initiate results dataframe
        cos_sims_df_initial = pd.DataFrame({"Gene": gene_list, 
                                            "Gene_name": [self.token_to_gene_name(item) \
                                                          for item in gene_list], \
                                            "Ensembl_ID": [token_tuple_to_ensembl_ids(genes, self.gene_token_id_dict) \
                                                           if self.genes_perturbed != "all" else \
                                                           self.gene_token_id_dict[genes[1]] \
                                                           if isinstance(genes,tuple) else \
                                                           self.gene_token_id_dict[genes] \
                                                           for genes in gene_list]}, \
                                             index=[i for i in range(len(gene_list))])

        if self.mode == "goal_state_shift":
            cos_sims_df = isp_stats_to_goal_state(cos_sims_df_initial, dict_list, self.cell_states_to_model, self.genes_perturbed)
            
        elif self.mode == "vs_null":
            null_dict_list = read_dictionaries(null_dist_data_directory, "cell", self.anchor_token)
            cos_sims_df = isp_stats_vs_null(cos_sims_df_initial, dict_list, null_dict_list)

        elif self.mode == "mixture_model":
            cos_sims_df = isp_stats_mixture_model(cos_sims_df_initial, dict_list, self.combos, self.anchor_token)
            
        elif self.mode == "aggregate_data":
            cos_sims_df = isp_aggregate_grouped_perturb(cos_sims_df_initial, dict_list)

        # save perturbation stats to output_path
        output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
        cos_sims_df.to_csv(output_path)

    def token_to_gene_name(self, item):
        if isinstance(item,int):
            return self.gene_id_name_dict.get(self.gene_token_id_dict.get(item, np.nan), np.nan)
        if isinstance(item,tuple):
            return tuple([self.gene_id_name_dict.get(self.gene_token_id_dict.get(i, np.nan), np.nan) for i in item])