Christina Theodoris
commited on
Commit
•
dc1481d
1
Parent(s):
67f674c
Add mixture model option for gene-gene interaction stats
Browse files
geneformer/in_silico_perturber_stats.py
CHANGED
@@ -24,7 +24,7 @@ import statsmodels.stats.multitest as smt
|
|
24 |
from pathlib import Path
|
25 |
from scipy.stats import ranksums
|
26 |
from sklearn.mixture import GaussianMixture
|
27 |
-
from tqdm.notebook import trange
|
28 |
|
29 |
from .tokenizer import TOKEN_DICTIONARY_FILE
|
30 |
|
@@ -37,19 +37,26 @@ def invert_dict(dictionary):
|
|
37 |
return {v: k for k, v in dictionary.items()}
|
38 |
|
39 |
# read raw dictionary files
|
40 |
-
def read_dictionaries(dir, cell_or_gene_emb):
|
41 |
file_found = 0
|
|
|
42 |
dict_list = []
|
43 |
for file in os.listdir(dir):
|
44 |
# process only _raw.pickle files
|
45 |
if file.endswith("_raw.pickle"):
|
46 |
file_found = 1
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
dict_list += [cell_emb_dict]
|
|
|
|
|
|
|
|
|
53 |
if file_found == 0:
|
54 |
logger.error(
|
55 |
"No raw data for processing found within provided directory. " \
|
@@ -58,18 +65,27 @@ def read_dictionaries(dir, cell_or_gene_emb):
|
|
58 |
return dict_list
|
59 |
|
60 |
# get complete gene list
|
61 |
-
def get_gene_list(dict_list):
|
|
|
|
|
|
|
|
|
62 |
gene_set = set()
|
63 |
for dict_i in dict_list:
|
64 |
-
gene_set.update([k[
|
65 |
gene_list = list(gene_set)
|
|
|
|
|
66 |
gene_list.sort()
|
67 |
return gene_list
|
68 |
|
69 |
-
def n_detections(token, dict_list):
|
70 |
cos_sim_megalist = []
|
71 |
for dict_i in dict_list:
|
72 |
-
|
|
|
|
|
|
|
73 |
return len(cos_sim_megalist)
|
74 |
|
75 |
def get_fdr(pvalues):
|
@@ -154,7 +170,7 @@ def isp_stats_to_goal_state(cos_sims_df, dict_list):
|
|
154 |
cos_sims_full_df["Alt_end_FDR"] = get_fdr(list(cos_sims_full_df["Alt_end_vs_random_pval"]))
|
155 |
|
156 |
# quantify number of detections of each gene
|
157 |
-
cos_sims_full_df["N_Detections"] = [n_detections(i, dict_list) for i in cos_sims_full_df["Gene"]]
|
158 |
|
159 |
# sort by shift to desired state
|
160 |
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Shift_from_goal_end",
|
@@ -205,7 +221,7 @@ def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list):
|
|
205 |
# reports the most likely component for each test perturbation
|
206 |
# Note: because assumes given perturbation has a consistent effect in the cells tested,
|
207 |
# we recommend only using the mixture model strategy with uniform cell populations
|
208 |
-
def isp_stats_mixture_model(cos_sims_df, dict_list, combos):
|
209 |
|
210 |
names=["Gene",
|
211 |
"Gene_name",
|
@@ -232,9 +248,12 @@ def isp_stats_mixture_model(cos_sims_df, dict_list, combos):
|
|
232 |
name = cos_sims_df["Gene_name"][i]
|
233 |
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
234 |
cos_shift_data = []
|
235 |
-
|
236 |
for dict_i in dict_list:
|
237 |
-
|
|
|
|
|
|
|
238 |
|
239 |
# Extract values for current gene
|
240 |
if combos == 0:
|
@@ -248,7 +267,7 @@ def isp_stats_mixture_model(cos_sims_df, dict_list, combos):
|
|
248 |
avg_value = np.mean(test_values)
|
249 |
avg_values.append(avg_value)
|
250 |
gene_names.append(name)
|
251 |
-
|
252 |
# fit Gaussian mixture model to dataset of mean for each gene
|
253 |
avg_values_to_fit = np.array(avg_values).reshape(-1, 1)
|
254 |
gm = GaussianMixture(n_components=2, random_state=0).fit(avg_values_to_fit)
|
@@ -260,7 +279,10 @@ def isp_stats_mixture_model(cos_sims_df, dict_list, combos):
|
|
260 |
cos_shift_data = []
|
261 |
|
262 |
for dict_i in dict_list:
|
263 |
-
|
|
|
|
|
|
|
264 |
|
265 |
if combos == 0:
|
266 |
mean_test = np.mean(cos_shift_data)
|
@@ -301,7 +323,10 @@ def isp_stats_mixture_model(cos_sims_df, dict_list, combos):
|
|
301 |
cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i])
|
302 |
|
303 |
# quantify number of detections of each gene
|
304 |
-
cos_sims_full_df["N_Detections"] = [n_detections(i,
|
|
|
|
|
|
|
305 |
|
306 |
if combos == 0:
|
307 |
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Impact_component",
|
@@ -342,9 +367,11 @@ class InSilicoPerturberStats:
|
|
342 |
combos : {0,1,2}
|
343 |
Whether to perturb genes individually (0), in pairs (1), or in triplets (2).
|
344 |
anchor_gene : None, str
|
345 |
-
ENSEMBL ID of gene to use as anchor in combination perturbations.
|
346 |
-
For example, if combos=1 and anchor_gene="
|
347 |
-
anchor gene
|
|
|
|
|
348 |
cell_states_to_model: None, dict
|
349 |
Cell states to model if testing perturbations that achieve goal state change.
|
350 |
Single-item dictionary with key being cell attribute (e.g. "disease").
|
@@ -459,8 +486,14 @@ class InSilicoPerturberStats:
|
|
459 |
self.gene_id_name_dict = invert_dict(self.gene_name_id_dict)
|
460 |
|
461 |
# obtain total gene list
|
462 |
-
|
463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
464 |
|
465 |
# initiate results dataframe
|
466 |
cos_sims_df_initial = pd.DataFrame({"Gene": gene_list,
|
@@ -476,11 +509,11 @@ class InSilicoPerturberStats:
|
|
476 |
cos_sims_df = isp_stats_to_goal_state(cos_sims_df_initial, dict_list)
|
477 |
|
478 |
elif self.mode == "vs_null":
|
479 |
-
null_dict_list = read_dictionaries(null_dist_data_directory, "cell")
|
480 |
cos_sims_df = isp_stats_vs_null(cos_sims_df_initial, dict_list, null_dict_list)
|
481 |
|
482 |
elif self.mode == "mixture_model":
|
483 |
-
cos_sims_df = isp_stats_mixture_model(cos_sims_df_initial, dict_list, self.combos)
|
484 |
|
485 |
# save perturbation stats to output_path
|
486 |
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
|
|
|
24 |
from pathlib import Path
|
25 |
from scipy.stats import ranksums
|
26 |
from sklearn.mixture import GaussianMixture
|
27 |
+
from tqdm.notebook import trange, tqdm
|
28 |
|
29 |
from .tokenizer import TOKEN_DICTIONARY_FILE
|
30 |
|
|
|
37 |
return {v: k for k, v in dictionary.items()}
|
38 |
|
39 |
# read raw dictionary files
|
40 |
+
def read_dictionaries(dir, cell_or_gene_emb, anchor_token):
|
41 |
file_found = 0
|
42 |
+
file_path_list = []
|
43 |
dict_list = []
|
44 |
for file in os.listdir(dir):
|
45 |
# process only _raw.pickle files
|
46 |
if file.endswith("_raw.pickle"):
|
47 |
file_found = 1
|
48 |
+
file_path_list += [f"{dir}/{file}"]
|
49 |
+
for file_path in tqdm(file_path_list):
|
50 |
+
with open(file_path, "rb") as fp:
|
51 |
+
cos_sims_dict = pickle.load(fp)
|
52 |
+
if cell_or_gene_emb == "cell":
|
53 |
+
cell_emb_dict = {k: v for k,
|
54 |
+
v in cos_sims_dict.items() if v and "cell_emb" in k}
|
55 |
dict_list += [cell_emb_dict]
|
56 |
+
elif cell_or_gene_emb == "gene":
|
57 |
+
gene_emb_dict = {k: v for k,
|
58 |
+
v in cos_sims_dict.items() if v and anchor_token == k[0]}
|
59 |
+
dict_list += [gene_emb_dict]
|
60 |
if file_found == 0:
|
61 |
logger.error(
|
62 |
"No raw data for processing found within provided directory. " \
|
|
|
65 |
return dict_list
|
66 |
|
67 |
# get complete gene list
|
68 |
+
def get_gene_list(dict_list,mode):
|
69 |
+
if mode == "cell":
|
70 |
+
position = 0
|
71 |
+
elif mode == "gene":
|
72 |
+
position = 1
|
73 |
gene_set = set()
|
74 |
for dict_i in dict_list:
|
75 |
+
gene_set.update([k[position] for k, v in dict_i.items() if v])
|
76 |
gene_list = list(gene_set)
|
77 |
+
if mode == "gene":
|
78 |
+
gene_list.remove("cell_emb")
|
79 |
gene_list.sort()
|
80 |
return gene_list
|
81 |
|
82 |
+
def n_detections(token, dict_list, mode, anchor_token):
|
83 |
cos_sim_megalist = []
|
84 |
for dict_i in dict_list:
|
85 |
+
if mode == "cell":
|
86 |
+
cos_sim_megalist += dict_i.get((token, "cell_emb"),[])
|
87 |
+
elif mode == "gene":
|
88 |
+
cos_sim_megalist += dict_i.get((anchor_token, token),[])
|
89 |
return len(cos_sim_megalist)
|
90 |
|
91 |
def get_fdr(pvalues):
|
|
|
170 |
cos_sims_full_df["Alt_end_FDR"] = get_fdr(list(cos_sims_full_df["Alt_end_vs_random_pval"]))
|
171 |
|
172 |
# quantify number of detections of each gene
|
173 |
+
cos_sims_full_df["N_Detections"] = [n_detections(i, dict_list, "cell", None) for i in cos_sims_full_df["Gene"]]
|
174 |
|
175 |
# sort by shift to desired state
|
176 |
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Shift_from_goal_end",
|
|
|
221 |
# reports the most likely component for each test perturbation
|
222 |
# Note: because assumes given perturbation has a consistent effect in the cells tested,
|
223 |
# we recommend only using the mixture model strategy with uniform cell populations
|
224 |
+
def isp_stats_mixture_model(cos_sims_df, dict_list, combos, anchor_token):
|
225 |
|
226 |
names=["Gene",
|
227 |
"Gene_name",
|
|
|
248 |
name = cos_sims_df["Gene_name"][i]
|
249 |
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
250 |
cos_shift_data = []
|
251 |
+
|
252 |
for dict_i in dict_list:
|
253 |
+
if (combos == 0) and (anchor_token is not None):
|
254 |
+
cos_shift_data += dict_i.get((anchor_token, token),[])
|
255 |
+
else:
|
256 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
257 |
|
258 |
# Extract values for current gene
|
259 |
if combos == 0:
|
|
|
267 |
avg_value = np.mean(test_values)
|
268 |
avg_values.append(avg_value)
|
269 |
gene_names.append(name)
|
270 |
+
|
271 |
# fit Gaussian mixture model to dataset of mean for each gene
|
272 |
avg_values_to_fit = np.array(avg_values).reshape(-1, 1)
|
273 |
gm = GaussianMixture(n_components=2, random_state=0).fit(avg_values_to_fit)
|
|
|
279 |
cos_shift_data = []
|
280 |
|
281 |
for dict_i in dict_list:
|
282 |
+
if (combos == 0) and (anchor_token is not None):
|
283 |
+
cos_shift_data += dict_i.get((anchor_token, token),[])
|
284 |
+
else:
|
285 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
286 |
|
287 |
if combos == 0:
|
288 |
mean_test = np.mean(cos_shift_data)
|
|
|
323 |
cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i])
|
324 |
|
325 |
# quantify number of detections of each gene
|
326 |
+
cos_sims_full_df["N_Detections"] = [n_detections(i,
|
327 |
+
dict_list,
|
328 |
+
"gene",
|
329 |
+
anchor_token) for i in cos_sims_full_df["Gene"]]
|
330 |
|
331 |
if combos == 0:
|
332 |
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Impact_component",
|
|
|
367 |
combos : {0,1,2}
|
368 |
Whether to perturb genes individually (0), in pairs (1), or in triplets (2).
|
369 |
anchor_gene : None, str
|
370 |
+
ENSEMBL ID of gene to use as anchor in combination perturbations or in testing effect on downstream genes.
|
371 |
+
For example, if combos=1 and anchor_gene="ENSG00000136574":
|
372 |
+
analyzes data for anchor gene perturbed in combination with each other gene.
|
373 |
+
However, if combos=0 and anchor_gene="ENSG00000136574":
|
374 |
+
analyzes data for the effect of anchor gene's perturbation on the embedding of each other gene.
|
375 |
cell_states_to_model: None, dict
|
376 |
Cell states to model if testing perturbations that achieve goal state change.
|
377 |
Single-item dictionary with key being cell attribute (e.g. "disease").
|
|
|
486 |
self.gene_id_name_dict = invert_dict(self.gene_name_id_dict)
|
487 |
|
488 |
# obtain total gene list
|
489 |
+
if (self.combos == 0) and (self.anchor_token is not None):
|
490 |
+
# cos sim data for effect of gene perturbation on the embedding of each other gene
|
491 |
+
dict_list = read_dictionaries(input_data_directory, "gene", self.anchor_token)
|
492 |
+
gene_list = get_gene_list(dict_list, "gene")
|
493 |
+
else:
|
494 |
+
# cos sim data for effect of gene perturbation on the embedding of each cell
|
495 |
+
dict_list = read_dictionaries(input_data_directory, "cell", self.anchor_token)
|
496 |
+
gene_list = get_gene_list(dict_list, "cell")
|
497 |
|
498 |
# initiate results dataframe
|
499 |
cos_sims_df_initial = pd.DataFrame({"Gene": gene_list,
|
|
|
509 |
cos_sims_df = isp_stats_to_goal_state(cos_sims_df_initial, dict_list)
|
510 |
|
511 |
elif self.mode == "vs_null":
|
512 |
+
null_dict_list = read_dictionaries(null_dist_data_directory, "cell", self.anchor_token)
|
513 |
cos_sims_df = isp_stats_vs_null(cos_sims_df_initial, dict_list, null_dict_list)
|
514 |
|
515 |
elif self.mode == "mixture_model":
|
516 |
+
cos_sims_df = isp_stats_mixture_model(cos_sims_df_initial, dict_list, self.combos, self.anchor_token)
|
517 |
|
518 |
# save perturbation stats to output_path
|
519 |
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
|