Christina Theodoris
commited on
Commit
•
d20ad0a
1
Parent(s):
0637325
Add stats with mixture model to determine whether test perturbation is in impact component
Browse files
geneformer/in_silico_perturber_stats.py
CHANGED
@@ -23,6 +23,7 @@ import random
|
|
23 |
import statsmodels.stats.multitest as smt
|
24 |
from pathlib import Path
|
25 |
from scipy.stats import ranksums
|
|
|
26 |
from tqdm.notebook import trange
|
27 |
|
28 |
from .tokenizer import TOKEN_DICTIONARY_FILE
|
@@ -37,16 +38,23 @@ def invert_dict(dictionary):
|
|
37 |
|
38 |
# read raw dictionary files
|
39 |
def read_dictionaries(dir, cell_or_gene_emb):
|
|
|
40 |
dict_list = []
|
41 |
for file in os.listdir(dir):
|
42 |
# process only _raw.pickle files
|
43 |
if file.endswith("_raw.pickle"):
|
|
|
44 |
with open(f"{dir}/{file}", "rb") as fp:
|
45 |
cos_sims_dict = pickle.load(fp)
|
46 |
if cell_or_gene_emb == "cell":
|
47 |
cell_emb_dict = {k: v for k,
|
48 |
v in cos_sims_dict.items() if v and "cell_emb" in k}
|
49 |
dict_list += [cell_emb_dict]
|
|
|
|
|
|
|
|
|
|
|
50 |
return dict_list
|
51 |
|
52 |
# get complete gene list
|
@@ -67,6 +75,21 @@ def n_detections(token, dict_list):
|
|
67 |
def get_fdr(pvalues):
|
68 |
return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1])
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
# stats comparing cos sim shifts towards goal state of test perturbations vs random perturbations
|
71 |
def isp_stats_to_goal_state(cos_sims_df, dict_list):
|
72 |
random_tuples = []
|
@@ -102,13 +125,13 @@ def isp_stats_to_goal_state(cos_sims_df, dict_list):
|
|
102 |
token = cos_sims_df["Gene"][i]
|
103 |
name = cos_sims_df["Gene_name"][i]
|
104 |
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
105 |
-
|
106 |
|
107 |
for dict_i in dict_list:
|
108 |
-
|
109 |
|
110 |
-
goal_end_cos_sim_megalist = [goal_end for goal_end,alt_end,start_state in
|
111 |
-
alt_end_cos_sim_megalist = [alt_end for goal_end,alt_end,start_state in
|
112 |
|
113 |
mean_goal_end = np.mean(goal_end_cos_sim_megalist)
|
114 |
mean_alt_end = np.mean(alt_end_cos_sim_megalist)
|
@@ -130,6 +153,13 @@ def isp_stats_to_goal_state(cos_sims_df, dict_list):
|
|
130 |
cos_sims_full_df["Goal_end_FDR"] = get_fdr(list(cos_sims_full_df["Goal_end_vs_random_pval"]))
|
131 |
cos_sims_full_df["Alt_end_FDR"] = get_fdr(list(cos_sims_full_df["Alt_end_vs_random_pval"]))
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
return cos_sims_full_df
|
134 |
|
135 |
# stats comparing cos sim shifts of test perturbations vs null distribution
|
@@ -165,18 +195,134 @@ def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list):
|
|
165 |
cos_sims_full_df.loc[i, "N_Detections_null"] = len(null_shifts)
|
166 |
|
167 |
cos_sims_full_df["Test_v_null_FDR"] = get_fdr(cos_sims_full_df["Test_v_null_pval"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
return cos_sims_full_df
|
169 |
|
170 |
class InSilicoPerturberStats:
|
171 |
valid_option_dict = {
|
172 |
-
"mode": {"goal_state_shift","vs_null","
|
173 |
-
"combos": {0,1
|
174 |
"anchor_gene": {None, str},
|
175 |
"cell_states_to_model": {None, dict},
|
176 |
}
|
177 |
def __init__(
|
178 |
self,
|
179 |
-
mode="
|
180 |
combos=0,
|
181 |
anchor_gene=None,
|
182 |
cell_states_to_model=None,
|
@@ -188,11 +334,11 @@ class InSilicoPerturberStats:
|
|
188 |
|
189 |
Parameters
|
190 |
----------
|
191 |
-
mode : {"goal_state_shift","vs_null","
|
192 |
Type of stats.
|
193 |
"goal_state_shift": perturbation vs. random for desired cell state shift
|
194 |
"vs_null": perturbation vs. null from provided null distribution dataset
|
195 |
-
"
|
196 |
combos : {0,1,2}
|
197 |
Whether to perturb genes individually (0), in pairs (1), or in triplets (2).
|
198 |
anchor_gene : None, str
|
@@ -233,7 +379,9 @@ class InSilicoPerturberStats:
|
|
233 |
for attr_name,valid_options in self.valid_option_dict.items():
|
234 |
attr_value = self.__dict__[attr_name]
|
235 |
if type(attr_value) not in {list, dict}:
|
236 |
-
if
|
|
|
|
|
237 |
continue
|
238 |
valid_type = False
|
239 |
for option in valid_options:
|
@@ -271,6 +419,14 @@ class InSilicoPerturberStats:
|
|
271 |
"anchor_gene set to None. " \
|
272 |
"Currently, anchor gene not available " \
|
273 |
"when modeling multiple cell states.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
def get_stats(self,
|
276 |
input_data_directory,
|
@@ -292,10 +448,11 @@ class InSilicoPerturberStats:
|
|
292 |
Prefix for output .dataset
|
293 |
"""
|
294 |
|
295 |
-
if self.mode not in ["goal_state_shift", "vs_null"]:
|
296 |
logger.error(
|
297 |
-
"Currently, only modes available are stats for goal_state_shift \
|
298 |
-
|
|
|
299 |
raise
|
300 |
|
301 |
self.gene_token_id_dict = invert_dict(self.gene_token_dict)
|
@@ -318,19 +475,12 @@ class InSilicoPerturberStats:
|
|
318 |
if self.mode == "goal_state_shift":
|
319 |
cos_sims_df = isp_stats_to_goal_state(cos_sims_df_initial, dict_list)
|
320 |
|
321 |
-
# quantify number of detections of each gene
|
322 |
-
cos_sims_df["N_Detections"] = [n_detections(i, dict_list) for i in cos_sims_df["Gene"]]
|
323 |
-
|
324 |
-
# sort by shift to desired state
|
325 |
-
cos_sims_df = cos_sims_df.sort_values(by=["Shift_from_goal_end",
|
326 |
-
"Goal_end_FDR"])
|
327 |
elif self.mode == "vs_null":
|
328 |
-
dict_list = read_dictionaries(input_data_directory, "cell")
|
329 |
null_dict_list = read_dictionaries(null_dist_data_directory, "cell")
|
330 |
-
cos_sims_df = isp_stats_vs_null(cos_sims_df_initial, dict_list,
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
|
335 |
# save perturbation stats to output_path
|
336 |
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
|
|
|
23 |
import statsmodels.stats.multitest as smt
|
24 |
from pathlib import Path
|
25 |
from scipy.stats import ranksums
|
26 |
+
from sklearn.mixture import GaussianMixture
|
27 |
from tqdm.notebook import trange
|
28 |
|
29 |
from .tokenizer import TOKEN_DICTIONARY_FILE
|
|
|
38 |
|
39 |
# read raw dictionary files
|
40 |
def read_dictionaries(dir, cell_or_gene_emb):
|
41 |
+
file_found = 0
|
42 |
dict_list = []
|
43 |
for file in os.listdir(dir):
|
44 |
# process only _raw.pickle files
|
45 |
if file.endswith("_raw.pickle"):
|
46 |
+
file_found = 1
|
47 |
with open(f"{dir}/{file}", "rb") as fp:
|
48 |
cos_sims_dict = pickle.load(fp)
|
49 |
if cell_or_gene_emb == "cell":
|
50 |
cell_emb_dict = {k: v for k,
|
51 |
v in cos_sims_dict.items() if v and "cell_emb" in k}
|
52 |
dict_list += [cell_emb_dict]
|
53 |
+
if file_found == 0:
|
54 |
+
logger.error(
|
55 |
+
"No raw data for processing found within provided directory. " \
|
56 |
+
"Please ensure data files end with '_raw.pickle'.")
|
57 |
+
raise
|
58 |
return dict_list
|
59 |
|
60 |
# get complete gene list
|
|
|
75 |
def get_fdr(pvalues):
|
76 |
return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1])
|
77 |
|
78 |
+
def get_impact_component(test_value, gaussian_mixture_model):
|
79 |
+
impact_border = gaussian_mixture_model.means_[0][0]
|
80 |
+
nonimpact_border = gaussian_mixture_model.means_[1][0]
|
81 |
+
if test_value > nonimpact_border:
|
82 |
+
impact_component = 0
|
83 |
+
elif test_value < impact_border:
|
84 |
+
impact_component = 1
|
85 |
+
else:
|
86 |
+
impact_component_raw = gaussian_mixture_model.predict([[test_value]])[0]
|
87 |
+
if impact_component_raw == 1:
|
88 |
+
impact_component = 0
|
89 |
+
elif impact_component_raw == 0:
|
90 |
+
impact_component = 1
|
91 |
+
return impact_component
|
92 |
+
|
93 |
# stats comparing cos sim shifts towards goal state of test perturbations vs random perturbations
|
94 |
def isp_stats_to_goal_state(cos_sims_df, dict_list):
|
95 |
random_tuples = []
|
|
|
125 |
token = cos_sims_df["Gene"][i]
|
126 |
name = cos_sims_df["Gene_name"][i]
|
127 |
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
128 |
+
cos_shift_data = []
|
129 |
|
130 |
for dict_i in dict_list:
|
131 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
132 |
|
133 |
+
goal_end_cos_sim_megalist = [goal_end for goal_end,alt_end,start_state in cos_shift_data]
|
134 |
+
alt_end_cos_sim_megalist = [alt_end for goal_end,alt_end,start_state in cos_shift_data]
|
135 |
|
136 |
mean_goal_end = np.mean(goal_end_cos_sim_megalist)
|
137 |
mean_alt_end = np.mean(alt_end_cos_sim_megalist)
|
|
|
153 |
cos_sims_full_df["Goal_end_FDR"] = get_fdr(list(cos_sims_full_df["Goal_end_vs_random_pval"]))
|
154 |
cos_sims_full_df["Alt_end_FDR"] = get_fdr(list(cos_sims_full_df["Alt_end_vs_random_pval"]))
|
155 |
|
156 |
+
# quantify number of detections of each gene
|
157 |
+
cos_sims_full_df["N_Detections"] = [n_detections(i, dict_list) for i in cos_sims_full_df["Gene"]]
|
158 |
+
|
159 |
+
# sort by shift to desired state
|
160 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Shift_from_goal_end",
|
161 |
+
"Goal_end_FDR"])
|
162 |
+
|
163 |
return cos_sims_full_df
|
164 |
|
165 |
# stats comparing cos sim shifts of test perturbations vs null distribution
|
|
|
195 |
cos_sims_full_df.loc[i, "N_Detections_null"] = len(null_shifts)
|
196 |
|
197 |
cos_sims_full_df["Test_v_null_FDR"] = get_fdr(cos_sims_full_df["Test_v_null_pval"])
|
198 |
+
|
199 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Test_v_null_avg_shift",
|
200 |
+
"Test_v_null_FDR"])
|
201 |
+
return cos_sims_full_df
|
202 |
+
|
203 |
+
# stats for identifying perturbations with largest effect within a given set of cells
|
204 |
+
# fits a mixture model to 2 components (impact vs. non-impact) and
|
205 |
+
# reports the most likely component for each test perturbation
|
206 |
+
# Note: because assumes given perturbation has a consistent effect in the cells tested,
|
207 |
+
# we recommend only using the mixture model strategy with uniform cell populations
|
208 |
+
def isp_stats_mixture_model(cos_sims_df, dict_list, combos):
|
209 |
+
|
210 |
+
names=["Gene",
|
211 |
+
"Gene_name",
|
212 |
+
"Ensembl_ID"]
|
213 |
+
|
214 |
+
if combos == 0:
|
215 |
+
names += ["Test_avg_shift"]
|
216 |
+
elif combos == 1:
|
217 |
+
names += ["Anchor_shift",
|
218 |
+
"Test_token_shift",
|
219 |
+
"Sum_of_indiv_shifts",
|
220 |
+
"Combo_shift",
|
221 |
+
"Combo_minus_sum_shift"]
|
222 |
+
|
223 |
+
names += ["Impact_component",
|
224 |
+
"Impact_component_percent"]
|
225 |
+
|
226 |
+
cos_sims_full_df = pd.DataFrame(columns=names)
|
227 |
+
avg_values = []
|
228 |
+
gene_names = []
|
229 |
+
|
230 |
+
for i in trange(cos_sims_df.shape[0]):
|
231 |
+
token = cos_sims_df["Gene"][i]
|
232 |
+
name = cos_sims_df["Gene_name"][i]
|
233 |
+
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
234 |
+
cos_shift_data = []
|
235 |
+
|
236 |
+
for dict_i in dict_list:
|
237 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
238 |
+
|
239 |
+
# Extract values for current gene
|
240 |
+
if combos == 0:
|
241 |
+
test_values = cos_shift_data
|
242 |
+
elif combos == 1:
|
243 |
+
test_values = []
|
244 |
+
for tup in cos_shift_data:
|
245 |
+
test_values.append(tup[2])
|
246 |
+
|
247 |
+
if len(test_values) > 0:
|
248 |
+
avg_value = np.mean(test_values)
|
249 |
+
avg_values.append(avg_value)
|
250 |
+
gene_names.append(name)
|
251 |
+
|
252 |
+
# fit Gaussian mixture model to dataset of mean for each gene
|
253 |
+
avg_values_to_fit = np.array(avg_values).reshape(-1, 1)
|
254 |
+
gm = GaussianMixture(n_components=2, random_state=0).fit(avg_values_to_fit)
|
255 |
+
|
256 |
+
for i in trange(cos_sims_df.shape[0]):
|
257 |
+
token = cos_sims_df["Gene"][i]
|
258 |
+
name = cos_sims_df["Gene_name"][i]
|
259 |
+
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
260 |
+
cos_shift_data = []
|
261 |
+
|
262 |
+
for dict_i in dict_list:
|
263 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
264 |
+
|
265 |
+
if combos == 0:
|
266 |
+
mean_test = np.mean(cos_shift_data)
|
267 |
+
impact_components = [get_impact_component(value,gm) for value in cos_shift_data]
|
268 |
+
elif combos == 1:
|
269 |
+
anchor_cos_sim_megalist = [anchor for anchor,token,combo in cos_shift_data]
|
270 |
+
token_cos_sim_megalist = [token for anchor,token,combo in cos_shift_data]
|
271 |
+
anchor_plus_token_cos_sim_megalist = [1-((1-anchor)+(1-token)) for anchor,token,combo in cos_shift_data]
|
272 |
+
combo_anchor_token_cos_sim_megalist = [combo for anchor,token,combo in cos_shift_data]
|
273 |
+
combo_minus_sum_cos_sim_megalist = [combo-(1-((1-anchor)+(1-token))) for anchor,token,combo in cos_shift_data]
|
274 |
+
|
275 |
+
mean_anchor = np.mean(anchor_cos_sim_megalist)
|
276 |
+
mean_token = np.mean(token_cos_sim_megalist)
|
277 |
+
mean_sum = np.mean(anchor_plus_token_cos_sim_megalist)
|
278 |
+
mean_test = np.mean(combo_anchor_token_cos_sim_megalist)
|
279 |
+
mean_combo_minus_sum = np.mean(combo_minus_sum_cos_sim_megalist)
|
280 |
+
|
281 |
+
impact_components = [get_impact_component(value,gm) for value in combo_anchor_token_cos_sim_megalist]
|
282 |
+
|
283 |
+
impact_component = get_impact_component(mean_test,gm)
|
284 |
+
impact_component_percent = np.mean(impact_components)*100
|
285 |
+
|
286 |
+
data_i = [token,
|
287 |
+
name,
|
288 |
+
ensembl_id]
|
289 |
+
if combos == 0:
|
290 |
+
data_i += [mean_test]
|
291 |
+
elif combos == 1:
|
292 |
+
data_i += [mean_anchor,
|
293 |
+
mean_token,
|
294 |
+
mean_sum,
|
295 |
+
mean_test,
|
296 |
+
mean_combo_minus_sum]
|
297 |
+
data_i += [impact_component,
|
298 |
+
impact_component_percent]
|
299 |
+
|
300 |
+
cos_sims_df_i = pd.DataFrame(dict(zip(names,data_i)),index=[i])
|
301 |
+
cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i])
|
302 |
+
|
303 |
+
# quantify number of detections of each gene
|
304 |
+
cos_sims_full_df["N_Detections"] = [n_detections(i, dict_list) for i in cos_sims_full_df["Gene"]]
|
305 |
+
|
306 |
+
if combos == 0:
|
307 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Impact_component",
|
308 |
+
"Test_avg_shift"],
|
309 |
+
ascending=[False,True])
|
310 |
+
elif combos == 1:
|
311 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Impact_component",
|
312 |
+
"Combo_minus_sum_shift"],
|
313 |
+
ascending=[False,True])
|
314 |
return cos_sims_full_df
|
315 |
|
316 |
class InSilicoPerturberStats:
|
317 |
valid_option_dict = {
|
318 |
+
"mode": {"goal_state_shift","vs_null","mixture_model"},
|
319 |
+
"combos": {0,1},
|
320 |
"anchor_gene": {None, str},
|
321 |
"cell_states_to_model": {None, dict},
|
322 |
}
|
323 |
def __init__(
|
324 |
self,
|
325 |
+
mode="mixture_model",
|
326 |
combos=0,
|
327 |
anchor_gene=None,
|
328 |
cell_states_to_model=None,
|
|
|
334 |
|
335 |
Parameters
|
336 |
----------
|
337 |
+
mode : {"goal_state_shift","vs_null","mixture_model"}
|
338 |
Type of stats.
|
339 |
"goal_state_shift": perturbation vs. random for desired cell state shift
|
340 |
"vs_null": perturbation vs. null from provided null distribution dataset
|
341 |
+
"mixture_model": perturbation in impact vs. no impact component of mixture model (no goal direction)
|
342 |
combos : {0,1,2}
|
343 |
Whether to perturb genes individually (0), in pairs (1), or in triplets (2).
|
344 |
anchor_gene : None, str
|
|
|
379 |
for attr_name,valid_options in self.valid_option_dict.items():
|
380 |
attr_value = self.__dict__[attr_name]
|
381 |
if type(attr_value) not in {list, dict}:
|
382 |
+
if attr_name in {"anchor_gene"}:
|
383 |
+
continue
|
384 |
+
elif attr_value in valid_options:
|
385 |
continue
|
386 |
valid_type = False
|
387 |
for option in valid_options:
|
|
|
419 |
"anchor_gene set to None. " \
|
420 |
"Currently, anchor gene not available " \
|
421 |
"when modeling multiple cell states.")
|
422 |
+
|
423 |
+
if self.combos > 0:
|
424 |
+
if self.anchor_gene is None:
|
425 |
+
logger.error(
|
426 |
+
"Currently, stats are only supported for combination " \
|
427 |
+
"in silico perturbation run with anchor gene. Please add " \
|
428 |
+
"anchor gene when using with combos > 0. ")
|
429 |
+
raise
|
430 |
|
431 |
def get_stats(self,
|
432 |
input_data_directory,
|
|
|
448 |
Prefix for output .dataset
|
449 |
"""
|
450 |
|
451 |
+
if self.mode not in ["goal_state_shift", "vs_null", "mixture_model"]:
|
452 |
logger.error(
|
453 |
+
"Currently, only modes available are stats for goal_state_shift, " \
|
454 |
+
"vs_null (comparing to null distribution), and " \
|
455 |
+
"mixture_model (fitting mixture model for perturbations with or without impact.")
|
456 |
raise
|
457 |
|
458 |
self.gene_token_id_dict = invert_dict(self.gene_token_dict)
|
|
|
475 |
if self.mode == "goal_state_shift":
|
476 |
cos_sims_df = isp_stats_to_goal_state(cos_sims_df_initial, dict_list)
|
477 |
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
elif self.mode == "vs_null":
|
|
|
479 |
null_dict_list = read_dictionaries(null_dist_data_directory, "cell")
|
480 |
+
cos_sims_df = isp_stats_vs_null(cos_sims_df_initial, dict_list, null_dict_list)
|
481 |
+
|
482 |
+
elif self.mode == "mixture_model":
|
483 |
+
cos_sims_df = isp_stats_mixture_model(cos_sims_df_initial, dict_list, self.combos)
|
484 |
|
485 |
# save perturbation stats to output_path
|
486 |
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
|