ctheodoris
commited on
Commit
•
0637325
1
Parent(s):
514c5fb
Update model card for 12 layer Geneformer model
Browse files
README.md
CHANGED
@@ -16,7 +16,7 @@ We detail applications and results in [our manuscript](https://www.nature.com/ar
|
|
16 |
|
17 |
During pretraining, Geneformer gained a fundamental understanding of network dynamics, encoding network hierarchy in the model’s attention weights in a completely self-supervised manner. Fine-tuning Geneformer towards a diverse panel of downstream tasks relevant to chromatin and network dynamics using limited task-specific data demonstrated that Geneformer consistently boosted predictive accuracy. Applied to disease modeling with limited patient data, Geneformer identified candidate therapeutic targets. Overall, Geneformer represents a pretrained deep learning model from which fine-tuning towards a broad range of downstream applications can be pursued to accelerate discovery of key network regulators and candidate therapeutic targets.
|
18 |
|
19 |
-
In [our manuscript](https://www.nature.com/articles/s41586-023-06139-9), we report results for the 6 layer Geneformer model pretrained on
|
20 |
|
21 |
# Application
|
22 |
The pretrained Geneformer model can be used directly for zero-shot learning, for example for in silico perturbation analysis, or by fine-tuning towards the relevant downstream task, such as gene or cell state classification.
|
|
|
16 |
|
17 |
During pretraining, Geneformer gained a fundamental understanding of network dynamics, encoding network hierarchy in the model’s attention weights in a completely self-supervised manner. Fine-tuning Geneformer towards a diverse panel of downstream tasks relevant to chromatin and network dynamics using limited task-specific data demonstrated that Geneformer consistently boosted predictive accuracy. Applied to disease modeling with limited patient data, Geneformer identified candidate therapeutic targets. Overall, Geneformer represents a pretrained deep learning model from which fine-tuning towards a broad range of downstream applications can be pursued to accelerate discovery of key network regulators and candidate therapeutic targets.
|
18 |
|
19 |
+
In [our manuscript](https://www.nature.com/articles/s41586-023-06139-9), we report results for the 6 layer Geneformer model pretrained on Genecorpus-30M. We additionally provide within this repository a 12 layer Geneformer model, also pretrained on Genecorpus-30M.
|
20 |
|
21 |
# Application
|
22 |
The pretrained Geneformer model can be used directly for zero-shot learning, for example for in silico perturbation analysis, or by fine-tuning towards the relevant downstream task, such as gene or cell state classification.
|