File size: 42,711 Bytes
efec1c4
 
 
 
 
 
 
 
2f25aea
 
 
9169bfd
efec1c4
 
 
 
 
 
 
 
2f25aea
efec1c4
f4fea1e
efec1c4
2f25aea
 
 
 
efec1c4
d20ad0a
2f25aea
9169bfd
2f25aea
efec1c4
 
 
 
 
 
2f25aea
efec1c4
 
 
 
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efec1c4
2f25aea
 
 
 
 
 
 
 
dc1481d
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50e921d
2f25aea
 
 
50e921d
dc1481d
 
 
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
d20ad0a
2f25aea
 
 
d20ad0a
2f25aea
 
 
 
 
efec1c4
 
2f25aea
dc1481d
 
 
 
efec1c4
2f25aea
 
 
 
 
 
 
 
 
 
 
 
efec1c4
dc1481d
 
efec1c4
 
 
2f25aea
acd253c
2f25aea
 
 
 
 
acd253c
dc1481d
efec1c4
 
dc1481d
2f25aea
dc1481d
2f25aea
efec1c4
 
2f25aea
efec1c4
 
 
2f25aea
d20ad0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f25aea
acd253c
2f25aea
 
acd253c
 
 
 
 
2f25aea
acd253c
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
188029e
2f25aea
 
 
 
 
 
 
 
912860d
2f25aea
 
 
912860d
2f25aea
acd253c
 
2f25aea
 
 
acd253c
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
50e921d
2f25aea
 
 
 
 
acd253c
2f25aea
 
 
 
 
acd253c
 
2f25aea
 
 
 
 
 
 
 
acd253c
 
 
 
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
d20ad0a
2f25aea
acd253c
 
 
 
2f25aea
 
 
 
 
 
 
 
acd253c
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
2f25aea
 
 
 
 
 
 
 
 
 
 
acd253c
 
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
efec1c4
2f25aea
188029e
f4fea1e
 
 
 
 
2f25aea
 
 
3072225
 
2f25aea
 
 
 
 
 
 
f4fea1e
 
 
 
2f25aea
f4fea1e
2f25aea
f4fea1e
 
2f25aea
 
f4fea1e
 
2f25aea
 
 
 
 
 
 
 
 
 
 
 
f4fea1e
 
 
2f25aea
 
 
 
 
 
 
 
 
 
 
d20ad0a
 
2f25aea
d20ad0a
 
 
 
 
dc1481d
2f25aea
 
d20ad0a
 
 
2f25aea
 
 
 
 
 
 
 
 
d20ad0a
 
 
 
2f25aea
d20ad0a
 
 
 
 
2f25aea
d20ad0a
dc1481d
2f25aea
dc1481d
2f25aea
 
d20ad0a
 
 
 
 
 
2f25aea
 
d20ad0a
 
 
 
2f25aea
d20ad0a
 
 
2f25aea
d20ad0a
 
 
 
 
 
 
dc1481d
2f25aea
dc1481d
2f25aea
 
d20ad0a
 
2f25aea
 
 
d20ad0a
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d20ad0a
 
 
 
 
 
2f25aea
 
 
 
 
 
 
 
 
 
d20ad0a
 
 
2f25aea
 
 
 
 
 
 
 
 
 
 
 
d20ad0a
2f25aea
 
 
 
 
d20ad0a
2f25aea
 
 
d20ad0a
2f25aea
 
 
f4fea1e
 
2f25aea
efec1c4
 
2f25aea
 
 
 
 
 
 
 
 
efec1c4
 
2f25aea
efec1c4
2f25aea
efec1c4
 
d20ad0a
acd253c
efec1c4
 
 
2f25aea
efec1c4
 
 
 
 
 
 
 
2f25aea
efec1c4
 
 
d20ad0a
acd253c
2f25aea
acd253c
 
 
 
efec1c4
 
 
dc1481d
 
 
 
 
efec1c4
 
9169bfd
 
 
 
 
 
 
 
 
efec1c4
 
 
 
 
 
 
acd253c
efec1c4
 
 
2f25aea
 
efec1c4
 
 
 
 
2f25aea
efec1c4
 
 
 
 
 
 
 
 
 
2f25aea
efec1c4
 
d20ad0a
 
 
efec1c4
 
 
2f25aea
 
 
efec1c4
 
2f25aea
 
 
 
 
 
 
efec1c4
3d06203
9169bfd
2f25aea
 
 
 
 
 
 
 
 
9169bfd
2f25aea
efec1c4
2f25aea
 
 
 
 
efec1c4
2f25aea
efec1c4
 
9169bfd
 
 
 
 
 
2f25aea
9169bfd
2f25aea
 
 
 
 
 
 
 
 
 
 
9169bfd
2f25aea
 
9169bfd
2f25aea
 
 
 
 
 
9169bfd
 
 
2f25aea
9169bfd
 
 
 
2f25aea
 
 
 
9169bfd
 
efec1c4
 
2f25aea
 
 
 
 
 
 
9169bfd
efec1c4
9169bfd
efec1c4
 
 
2f25aea
 
 
 
 
d20ad0a
 
 
2f25aea
 
 
 
d20ad0a
2f25aea
acd253c
 
2f25aea
 
 
acd253c
 
 
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
efec1c4
 
 
 
 
 
 
 
 
 
 
 
acd253c
2f25aea
 
 
3072225
 
 
2f25aea
3072225
 
2f25aea
3072225
 
 
 
9169bfd
2f25aea
3072225
 
 
 
 
 
 
 
2f25aea
3072225
 
 
 
 
 
 
 
2f25aea
3072225
 
 
 
 
 
 
 
 
2f25aea
 
 
 
 
 
efec1c4
f4fea1e
2f25aea
 
 
 
 
 
 
efec1c4
2f25aea
 
 
 
 
efec1c4
f4fea1e
 
 
 
efec1c4
dc1481d
 
2f25aea
 
 
 
 
 
 
dc1481d
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
dc1481d
 
2f25aea
 
 
 
 
 
 
dc1481d
2f25aea
efec1c4
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4fea1e
 
2f25aea
 
 
 
 
 
 
f4fea1e
2f25aea
 
 
 
 
 
 
 
 
 
 
d20ad0a
 
2f25aea
 
 
 
acd253c
 
efec1c4
2f25aea
 
 
 
 
 
 
 
efec1c4
 
 
 
 
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
"""
Geneformer in silico perturber stats generator.

Usage:
  from geneformer import InSilicoPerturberStats
  ispstats = InSilicoPerturberStats(mode="goal_state_shift",
                                    combos=0,
                                    anchor_gene=None,
                                    cell_states_to_model={"state_key": "disease",
                                                          "start_state": "dcm",
                                                          "goal_state": "nf",
                                                          "alt_states": ["hcm", "other1", "other2"]})
  ispstats.get_stats("path/to/input_data",
                     None,
                     "path/to/output_directory",
                     "output_prefix")
"""


import logging
import os
import pickle
import random
from pathlib import Path

import numpy as np
import pandas as pd
import statsmodels.stats.multitest as smt
from scipy.stats import ranksums
from sklearn.mixture import GaussianMixture
from tqdm.auto import tqdm, trange

from .perturber_utils import flatten_list, validate_cell_states_to_model
from .tokenizer import TOKEN_DICTIONARY_FILE

GENE_NAME_ID_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl"

logger = logging.getLogger(__name__)


# invert dictionary keys/values
def invert_dict(dictionary):
    return {v: k for k, v in dictionary.items()}


def read_dict(cos_sims_dict, cell_or_gene_emb, anchor_token):
    if cell_or_gene_emb == "cell":
        cell_emb_dict = {
            k: v for k, v in cos_sims_dict.items() if v and "cell_emb" in k
        }
        return [cell_emb_dict]
    elif cell_or_gene_emb == "gene":
        if anchor_token is None:
            gene_emb_dict = {k: v for k, v in cos_sims_dict.items() if v}
        else:
            gene_emb_dict = {
                k: v for k, v in cos_sims_dict.items() if v and anchor_token == k[0]
            }
    return [gene_emb_dict]


# read raw dictionary files
def read_dictionaries(
    input_data_directory,
    cell_or_gene_emb,
    anchor_token,
    cell_states_to_model,
    pickle_suffix,
):
    file_found = False
    file_path_list = []
    if cell_states_to_model is None:
        dict_list = []
    else:
        validate_cell_states_to_model(cell_states_to_model)
        cell_states_to_model_valid = {
            state: value
            for state, value in cell_states_to_model.items()
            if state != "state_key"
            and cell_states_to_model[state] is not None
            and cell_states_to_model[state] != []
        }
        cell_states_list = []
        # flatten all state values into list
        for state in cell_states_to_model_valid:
            value = cell_states_to_model_valid[state]
            if isinstance(value, list):
                cell_states_list += value
            else:
                cell_states_list.append(value)
        state_dict = {state_value: dict() for state_value in cell_states_list}
    for file in os.listdir(input_data_directory):
        # process only files with given suffix (e.g. "_raw.pickle")
        if file.endswith(pickle_suffix):
            file_found = True
            file_path_list += [f"{input_data_directory}/{file}"]
    for file_path in tqdm(file_path_list):
        with open(file_path, "rb") as fp:
            cos_sims_dict = pickle.load(fp)
            if cell_states_to_model is None:
                dict_list += read_dict(cos_sims_dict, cell_or_gene_emb, anchor_token)
            else:
                for state_value in cell_states_list:
                    new_dict = read_dict(
                        cos_sims_dict[state_value], cell_or_gene_emb, anchor_token
                    )[0]
                    for key in new_dict:
                        try:
                            state_dict[state_value][key] += new_dict[key]
                        except KeyError:
                            state_dict[state_value][key] = new_dict[key]
    if not file_found:
        logger.error(
            "No raw data for processing found within provided directory. "
            "Please ensure data files end with '{pickle_suffix}'."
        )
        raise
    if cell_states_to_model is None:
        return dict_list
    else:
        return state_dict


# get complete gene list
def get_gene_list(dict_list, mode):
    if mode == "cell":
        position = 0
    elif mode == "gene":
        position = 1
    gene_set = set()
    if isinstance(dict_list, list):
        for dict_i in dict_list:
            gene_set.update([k[position] for k, v in dict_i.items() if v])
    elif isinstance(dict_list, dict):
        for state, dict_i in dict_list.items():
            gene_set.update([k[position] for k, v in dict_i.items() if v])
    else:
        logger.error(
            "dict_list should be a list, or if modeling shift to goal states, a dict. "
            f"{type(dict_list)} is not the correct format."
        )
        raise
    gene_list = list(gene_set)
    if mode == "gene":
        gene_list.remove("cell_emb")
    gene_list.sort()
    return gene_list


def token_tuple_to_ensembl_ids(token_tuple, gene_token_id_dict):
    try:
        return tuple([gene_token_id_dict.get(i, np.nan) for i in token_tuple])
    except TypeError:
        return tuple(gene_token_id_dict.get(token_tuple, np.nan))


def n_detections(token, dict_list, mode, anchor_token):
    cos_sim_megalist = []
    for dict_i in dict_list:
        if mode == "cell":
            cos_sim_megalist += dict_i.get((token, "cell_emb"), [])
        elif mode == "gene":
            cos_sim_megalist += dict_i.get((anchor_token, token), [])
    return len(cos_sim_megalist)


def get_fdr(pvalues):
    return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1])


def get_impact_component(test_value, gaussian_mixture_model):
    impact_border = gaussian_mixture_model.means_[0][0]
    nonimpact_border = gaussian_mixture_model.means_[1][0]
    if test_value > nonimpact_border:
        impact_component = 0
    elif test_value < impact_border:
        impact_component = 1
    else:
        impact_component_raw = gaussian_mixture_model.predict([[test_value]])[0]
        if impact_component_raw == 1:
            impact_component = 0
        elif impact_component_raw == 0:
            impact_component = 1
    return impact_component


# aggregate data for single perturbation in multiple cells
def isp_aggregate_grouped_perturb(cos_sims_df, dict_list):
    names = ["Cosine_shift"]
    cos_sims_full_df = pd.DataFrame(columns=names)

    cos_shift_data = []
    token = cos_sims_df["Gene"][0]
    for dict_i in dict_list:
        cos_shift_data += dict_i.get((token, "cell_emb"), [])
    cos_sims_full_df["Cosine_shift"] = cos_shift_data
    return cos_sims_full_df


def find(variable, x):
    try:
        if x in variable:  # Test if variable is iterable and contains x
            return True
    except TypeError:
        return x == variable  # Test if variable is x if non-iterable


def isp_aggregate_gene_shifts(
    cos_sims_df, dict_list, gene_token_id_dict, gene_id_name_dict
):
    cos_shift_data = dict()
    for i in trange(cos_sims_df.shape[0]):
        token = cos_sims_df["Gene"][i]
        for dict_i in dict_list:
            affected_pairs = [k for k, v in dict_i.items() if find(k[0], token)]
            for key in affected_pairs:
                if key in cos_shift_data.keys():
                    cos_shift_data[key] += dict_i.get(key, [])
                else:
                    cos_shift_data[key] = dict_i.get(key, [])

    cos_data_mean = {
        k: [np.mean(v), np.std(v), len(v)] for k, v in cos_shift_data.items()
    }
    cos_sims_full_df = pd.DataFrame()
    cos_sims_full_df["Perturbed"] = [k[0] for k, v in cos_data_mean.items()]
    cos_sims_full_df["Gene_name"] = [
        cos_sims_df[cos_sims_df["Gene"] == k[0]]["Gene_name"][0]
        for k, v in cos_data_mean.items()
    ]
    cos_sims_full_df["Ensembl_ID"] = [
        cos_sims_df[cos_sims_df["Gene"] == k[0]]["Ensembl_ID"][0]
        for k, v in cos_data_mean.items()
    ]
    cos_sims_full_df["Affected"] = [k[1] for k, v in cos_data_mean.items()]
    cos_sims_full_df["Affected_Gene_name"] = [
        gene_id_name_dict.get(gene_token_id_dict.get(token, np.nan), np.nan)
        for token in cos_sims_full_df["Affected"]
    ]
    cos_sims_full_df["Affected_Ensembl_ID"] = [
        gene_token_id_dict.get(token, np.nan) for token in cos_sims_full_df["Affected"]
    ]
    cos_sims_full_df["Cosine_shift_mean"] = [v[0] for k, v in cos_data_mean.items()]
    cos_sims_full_df["Cosine_shift_stdev"] = [v[1] for k, v in cos_data_mean.items()]
    cos_sims_full_df["N_Detections"] = [v[2] for k, v in cos_data_mean.items()]

    specific_val = "cell_emb"
    cos_sims_full_df["temp"] = list(cos_sims_full_df["Affected"] == specific_val)
    # reorder so cell embs are at the top and all are subordered by magnitude of cosine shift
    cos_sims_full_df = cos_sims_full_df.sort_values(
        by=(["temp", "Cosine_shift_mean"]), ascending=[False, False]
    ).drop("temp", axis=1)

    return cos_sims_full_df


# stats comparing cos sim shifts towards goal state of test perturbations vs random perturbations
def isp_stats_to_goal_state(
    cos_sims_df, result_dict, cell_states_to_model, genes_perturbed
):
    if (
        ("alt_states" not in cell_states_to_model.keys())
        or (len(cell_states_to_model["alt_states"]) == 0)
        or (cell_states_to_model["alt_states"] == [None])
    ):
        alt_end_state_exists = False
    elif (len(cell_states_to_model["alt_states"]) > 0) and (
        cell_states_to_model["alt_states"] != [None]
    ):
        alt_end_state_exists = True

    # for single perturbation in multiple cells, there are no random perturbations to compare to
    if genes_perturbed != "all":
        cos_sims_full_df = pd.DataFrame()

        cos_shift_data_end = []
        token = cos_sims_df["Gene"][0]
        cos_shift_data_end += result_dict[cell_states_to_model["goal_state"]].get(
            (token, "cell_emb"), []
        )
        cos_sims_full_df["Shift_to_goal_end"] = [np.mean(cos_shift_data_end)]
        if alt_end_state_exists is True:
            for alt_state in cell_states_to_model["alt_states"]:
                cos_shift_data_alt_state = []
                cos_shift_data_alt_state += result_dict.get(alt_state).get(
                    (token, "cell_emb"), []
                )
                cos_sims_full_df[f"Shift_to_alt_end_{alt_state}"] = [
                    np.mean(cos_shift_data_alt_state)
                ]

        # sort by shift to desired state
        cos_sims_full_df = cos_sims_full_df.sort_values(
            by=["Shift_to_goal_end"], ascending=[False]
        )
        return cos_sims_full_df

    elif genes_perturbed == "all":
        goal_end_random_megalist = []
        if alt_end_state_exists is True:
            alt_end_state_random_dict = {
                alt_state: [] for alt_state in cell_states_to_model["alt_states"]
            }
        for i in trange(cos_sims_df.shape[0]):
            token = cos_sims_df["Gene"][i]
            goal_end_random_megalist += result_dict[
                cell_states_to_model["goal_state"]
            ].get((token, "cell_emb"), [])
            if alt_end_state_exists is True:
                for alt_state in cell_states_to_model["alt_states"]:
                    alt_end_state_random_dict[alt_state] += result_dict[alt_state].get(
                        (token, "cell_emb"), []
                    )

        # downsample to improve speed of ranksums
        if len(goal_end_random_megalist) > 100_000:
            random.seed(42)
            goal_end_random_megalist = random.sample(
                goal_end_random_megalist, k=100_000
            )
        if alt_end_state_exists is True:
            for alt_state in cell_states_to_model["alt_states"]:
                if len(alt_end_state_random_dict[alt_state]) > 100_000:
                    random.seed(42)
                    alt_end_state_random_dict[alt_state] = random.sample(
                        alt_end_state_random_dict[alt_state], k=100_000
                    )

        names = [
            "Gene",
            "Gene_name",
            "Ensembl_ID",
            "Shift_to_goal_end",
            "Goal_end_vs_random_pval",
        ]
        if alt_end_state_exists is True:
            [
                names.append(f"Shift_to_alt_end_{alt_state}")
                for alt_state in cell_states_to_model["alt_states"]
            ]
            names.append(names.pop(names.index("Goal_end_vs_random_pval")))
            [
                names.append(f"Alt_end_vs_random_pval_{alt_state}")
                for alt_state in cell_states_to_model["alt_states"]
            ]
        cos_sims_full_df = pd.DataFrame(columns=names)

        n_detections_dict = dict()
        for i in trange(cos_sims_df.shape[0]):
            token = cos_sims_df["Gene"][i]
            name = cos_sims_df["Gene_name"][i]
            ensembl_id = cos_sims_df["Ensembl_ID"][i]
            goal_end_cos_sim_megalist = result_dict[
                cell_states_to_model["goal_state"]
            ].get((token, "cell_emb"), [])
            n_detections_dict[token] = len(goal_end_cos_sim_megalist)
            mean_goal_end = np.mean(goal_end_cos_sim_megalist)
            pval_goal_end = ranksums(
                goal_end_random_megalist, goal_end_cos_sim_megalist
            ).pvalue

            if alt_end_state_exists is True:
                alt_end_state_dict = {
                    alt_state: [] for alt_state in cell_states_to_model["alt_states"]
                }
                for alt_state in cell_states_to_model["alt_states"]:
                    alt_end_state_dict[alt_state] = result_dict[alt_state].get(
                        (token, "cell_emb"), []
                    )
                    alt_end_state_dict[f"{alt_state}_mean"] = np.mean(
                        alt_end_state_dict[alt_state]
                    )
                    alt_end_state_dict[f"{alt_state}_pval"] = ranksums(
                        alt_end_state_random_dict[alt_state],
                        alt_end_state_dict[alt_state],
                    ).pvalue

            results_dict = dict()
            results_dict["Gene"] = token
            results_dict["Gene_name"] = name
            results_dict["Ensembl_ID"] = ensembl_id
            results_dict["Shift_to_goal_end"] = mean_goal_end
            results_dict["Goal_end_vs_random_pval"] = pval_goal_end
            if alt_end_state_exists is True:
                for alt_state in cell_states_to_model["alt_states"]:
                    results_dict[f"Shift_to_alt_end_{alt_state}"] = alt_end_state_dict[
                        f"{alt_state}_mean"
                    ]
                    results_dict[
                        f"Alt_end_vs_random_pval_{alt_state}"
                    ] = alt_end_state_dict[f"{alt_state}_pval"]

            cos_sims_df_i = pd.DataFrame(results_dict, index=[i])
            cos_sims_full_df = pd.concat([cos_sims_full_df, cos_sims_df_i])

        cos_sims_full_df["Goal_end_FDR"] = get_fdr(
            list(cos_sims_full_df["Goal_end_vs_random_pval"])
        )
        if alt_end_state_exists is True:
            for alt_state in cell_states_to_model["alt_states"]:
                cos_sims_full_df[f"Alt_end_FDR_{alt_state}"] = get_fdr(
                    list(cos_sims_full_df[f"Alt_end_vs_random_pval_{alt_state}"])
                )

        # quantify number of detections of each gene
        cos_sims_full_df["N_Detections"] = [
            n_detections_dict[token] for token in cos_sims_full_df["Gene"]
        ]

        # sort by shift to desired state
        cos_sims_full_df["Sig"] = [
            1 if fdr < 0.05 else 0 for fdr in cos_sims_full_df["Goal_end_FDR"]
        ]
        cos_sims_full_df = cos_sims_full_df.sort_values(
            by=["Sig", "Shift_to_goal_end", "Goal_end_FDR"],
            ascending=[False, False, True],
        )

        return cos_sims_full_df


# stats comparing cos sim shifts of test perturbations vs null distribution
def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list):
    cos_sims_full_df = cos_sims_df.copy()

    cos_sims_full_df["Test_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
    cos_sims_full_df["Null_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
    cos_sims_full_df["Test_vs_null_avg_shift"] = np.zeros(
        cos_sims_df.shape[0], dtype=float
    )
    cos_sims_full_df["Test_vs_null_pval"] = np.zeros(cos_sims_df.shape[0], dtype=float)
    cos_sims_full_df["Test_vs_null_FDR"] = np.zeros(cos_sims_df.shape[0], dtype=float)
    cos_sims_full_df["N_Detections_test"] = np.zeros(
        cos_sims_df.shape[0], dtype="uint32"
    )
    cos_sims_full_df["N_Detections_null"] = np.zeros(
        cos_sims_df.shape[0], dtype="uint32"
    )

    for i in trange(cos_sims_df.shape[0]):
        token = cos_sims_df["Gene"][i]
        test_shifts = []
        null_shifts = []

        for dict_i in dict_list:
            test_shifts += dict_i.get((token, "cell_emb"), [])

        for dict_i in null_dict_list:
            null_shifts += dict_i.get((token, "cell_emb"), [])

        cos_sims_full_df.loc[i, "Test_avg_shift"] = np.mean(test_shifts)
        cos_sims_full_df.loc[i, "Null_avg_shift"] = np.mean(null_shifts)
        cos_sims_full_df.loc[i, "Test_vs_null_avg_shift"] = np.mean(
            test_shifts
        ) - np.mean(null_shifts)
        cos_sims_full_df.loc[i, "Test_vs_null_pval"] = ranksums(
            test_shifts, null_shifts, nan_policy="omit"
        ).pvalue
        # remove nan values
        cos_sims_full_df.Test_vs_null_pval = np.where(
            np.isnan(cos_sims_full_df.Test_vs_null_pval),
            1,
            cos_sims_full_df.Test_vs_null_pval,
        )
        cos_sims_full_df.loc[i, "N_Detections_test"] = len(test_shifts)
        cos_sims_full_df.loc[i, "N_Detections_null"] = len(null_shifts)

    cos_sims_full_df["Test_vs_null_FDR"] = get_fdr(
        cos_sims_full_df["Test_vs_null_pval"]
    )

    cos_sims_full_df["Sig"] = [
        1 if fdr < 0.05 else 0 for fdr in cos_sims_full_df["Test_vs_null_FDR"]
    ]
    cos_sims_full_df = cos_sims_full_df.sort_values(
        by=["Sig", "Test_vs_null_avg_shift", "Test_vs_null_FDR"],
        ascending=[False, False, True],
    )
    return cos_sims_full_df


# stats for identifying perturbations with largest effect within a given set of cells
# fits a mixture model to 2 components (impact vs. non-impact) and
# reports the most likely component for each test perturbation
# Note: because assumes given perturbation has a consistent effect in the cells tested,
# we recommend only using the mixture model strategy with uniform cell populations
def isp_stats_mixture_model(cos_sims_df, dict_list, combos, anchor_token):
    names = ["Gene", "Gene_name", "Ensembl_ID"]

    if combos == 0:
        names += ["Test_avg_shift"]
    elif combos == 1:
        names += [
            "Anchor_shift",
            "Test_token_shift",
            "Sum_of_indiv_shifts",
            "Combo_shift",
            "Combo_minus_sum_shift",
        ]

    names += ["Impact_component", "Impact_component_percent"]

    cos_sims_full_df = pd.DataFrame(columns=names)
    avg_values = []
    gene_names = []

    for i in trange(cos_sims_df.shape[0]):
        token = cos_sims_df["Gene"][i]
        name = cos_sims_df["Gene_name"][i]
        ensembl_id = cos_sims_df["Ensembl_ID"][i]
        cos_shift_data = []

        for dict_i in dict_list:
            if (combos == 0) and (anchor_token is not None):
                cos_shift_data += dict_i.get((anchor_token, token), [])
            else:
                cos_shift_data += dict_i.get((token, "cell_emb"), [])

        # Extract values for current gene
        if combos == 0:
            test_values = cos_shift_data
        elif combos == 1:
            test_values = []
            for tup in cos_shift_data:
                test_values.append(tup[2])

        if len(test_values) > 0:
            avg_value = np.mean(test_values)
            avg_values.append(avg_value)
            gene_names.append(name)

    # fit Gaussian mixture model to dataset of mean for each gene
    avg_values_to_fit = np.array(avg_values).reshape(-1, 1)
    gm = GaussianMixture(n_components=2, random_state=0).fit(avg_values_to_fit)

    for i in trange(cos_sims_df.shape[0]):
        token = cos_sims_df["Gene"][i]
        name = cos_sims_df["Gene_name"][i]
        ensembl_id = cos_sims_df["Ensembl_ID"][i]
        cos_shift_data = []

        for dict_i in dict_list:
            if (combos == 0) and (anchor_token is not None):
                cos_shift_data += dict_i.get((anchor_token, token), [])
            else:
                cos_shift_data += dict_i.get((token, "cell_emb"), [])

        if combos == 0:
            mean_test = np.mean(cos_shift_data)
            impact_components = [
                get_impact_component(value, gm) for value in cos_shift_data
            ]
        elif combos == 1:
            anchor_cos_sim_megalist = [
                anchor for anchor, token, combo in cos_shift_data
            ]
            token_cos_sim_megalist = [token for anchor, token, combo in cos_shift_data]
            anchor_plus_token_cos_sim_megalist = [
                1 - ((1 - anchor) + (1 - token))
                for anchor, token, combo in cos_shift_data
            ]
            combo_anchor_token_cos_sim_megalist = [
                combo for anchor, token, combo in cos_shift_data
            ]
            combo_minus_sum_cos_sim_megalist = [
                combo - (1 - ((1 - anchor) + (1 - token)))
                for anchor, token, combo in cos_shift_data
            ]

            mean_anchor = np.mean(anchor_cos_sim_megalist)
            mean_token = np.mean(token_cos_sim_megalist)
            mean_sum = np.mean(anchor_plus_token_cos_sim_megalist)
            mean_test = np.mean(combo_anchor_token_cos_sim_megalist)
            mean_combo_minus_sum = np.mean(combo_minus_sum_cos_sim_megalist)

            impact_components = [
                get_impact_component(value, gm)
                for value in combo_anchor_token_cos_sim_megalist
            ]

        impact_component = get_impact_component(mean_test, gm)
        impact_component_percent = np.mean(impact_components) * 100

        data_i = [token, name, ensembl_id]
        if combos == 0:
            data_i += [mean_test]
        elif combos == 1:
            data_i += [
                mean_anchor,
                mean_token,
                mean_sum,
                mean_test,
                mean_combo_minus_sum,
            ]
        data_i += [impact_component, impact_component_percent]

        cos_sims_df_i = pd.DataFrame(dict(zip(names, data_i)), index=[i])
        cos_sims_full_df = pd.concat([cos_sims_full_df, cos_sims_df_i])

    # quantify number of detections of each gene
    cos_sims_full_df["N_Detections"] = [
        n_detections(i, dict_list, "gene", anchor_token)
        for i in cos_sims_full_df["Gene"]
    ]

    if combos == 0:
        cos_sims_full_df = cos_sims_full_df.sort_values(
            by=["Impact_component", "Test_avg_shift"], ascending=[False, True]
        )
    elif combos == 1:
        cos_sims_full_df = cos_sims_full_df.sort_values(
            by=["Impact_component", "Combo_minus_sum_shift"], ascending=[False, True]
        )
    return cos_sims_full_df


class InSilicoPerturberStats:
    valid_option_dict = {
        "mode": {
            "goal_state_shift",
            "vs_null",
            "mixture_model",
            "aggregate_data",
            "aggregate_gene_shifts",
        },
        "genes_perturbed": {"all", list},
        "combos": {0, 1},
        "anchor_gene": {None, str},
        "cell_states_to_model": {None, dict},
        "pickle_suffix": {None, str},
    }

    def __init__(
        self,
        mode="mixture_model",
        genes_perturbed="all",
        combos=0,
        anchor_gene=None,
        cell_states_to_model=None,
        pickle_suffix="_raw.pickle",
        token_dictionary_file=TOKEN_DICTIONARY_FILE,
        gene_name_id_dictionary_file=GENE_NAME_ID_DICTIONARY_FILE,
    ):
        """
        Initialize in silico perturber stats generator.

        Parameters
        ----------
        mode : {"goal_state_shift","vs_null","mixture_model","aggregate_data","aggregate_gene_shifts"}
            Type of stats.
            "goal_state_shift": perturbation vs. random for desired cell state shift
            "vs_null": perturbation vs. null from provided null distribution dataset
            "mixture_model": perturbation in impact vs. no impact component of mixture model (no goal direction)
            "aggregate_data": aggregates cosine shifts for single perturbation in multiple cells
            "aggregate_gene_shifts": aggregates cosine shifts of genes in response to perturbation(s)
        genes_perturbed : "all", list
            Genes perturbed in isp experiment.
            Default is assuming genes_to_perturb in isp experiment was "all" (each gene in each cell).
            Otherwise, may provide a list of ENSEMBL IDs of genes perturbed as a group all together.
        combos : {0,1,2}
            Whether to perturb genes individually (0), in pairs (1), or in triplets (2).
        anchor_gene : None, str
            ENSEMBL ID of gene to use as anchor in combination perturbations or in testing effect on downstream genes.
            For example, if combos=1 and anchor_gene="ENSG00000136574":
                analyzes data for anchor gene perturbed in combination with each other gene.
            However, if combos=0 and anchor_gene="ENSG00000136574":
                analyzes data for the effect of anchor gene's perturbation on the embedding of each other gene.
        cell_states_to_model: None, dict
            Cell states to model if testing perturbations that achieve goal state change.
            Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states
            state_key: key specifying name of column in .dataset that defines the start/goal states
            start_state: value in the state_key column that specifies the start state
            goal_state: value in the state_key column taht specifies the goal end state
            alt_states: list of values in the state_key column that specify the alternate end states
            For example: {"state_key": "disease",
                          "start_state": "dcm",
                          "goal_state": "nf",
                          "alt_states": ["hcm", "other1", "other2"]}
        token_dictionary_file : Path
            Path to pickle file containing token dictionary (Ensembl ID:token).
        gene_name_id_dictionary_file : Path
            Path to pickle file containing gene name to ID dictionary (gene name:Ensembl ID).
        """

        self.mode = mode
        self.genes_perturbed = genes_perturbed
        self.combos = combos
        self.anchor_gene = anchor_gene
        self.cell_states_to_model = cell_states_to_model
        self.pickle_suffix = pickle_suffix

        self.validate_options()

        # load token dictionary (Ensembl IDs:token)
        with open(token_dictionary_file, "rb") as f:
            self.gene_token_dict = pickle.load(f)

        # load gene name dictionary (gene name:Ensembl ID)
        with open(gene_name_id_dictionary_file, "rb") as f:
            self.gene_name_id_dict = pickle.load(f)

        if anchor_gene is None:
            self.anchor_token = None
        else:
            self.anchor_token = self.gene_token_dict[self.anchor_gene]

    def validate_options(self):
        for attr_name, valid_options in self.valid_option_dict.items():
            attr_value = self.__dict__[attr_name]
            if type(attr_value) not in {list, dict}:
                if attr_name in {"anchor_gene"}:
                    continue
                elif attr_value in valid_options:
                    continue
            valid_type = False
            for option in valid_options:
                if (option in [str, int, list, dict]) and isinstance(
                    attr_value, option
                ):
                    valid_type = True
                    break
            if not valid_type:
                logger.error(
                    f"Invalid option for {attr_name}. "
                    f"Valid options for {attr_name}: {valid_options}"
                )
                raise

        if self.cell_states_to_model is not None:
            if len(self.cell_states_to_model.items()) == 1:
                logger.warning(
                    "The single value dictionary for cell_states_to_model will be "
                    "replaced with a dictionary with named keys for start, goal, and alternate states. "
                    "Please specify state_key, start_state, goal_state, and alt_states "
                    "in the cell_states_to_model dictionary for future use. "
                    "For example, cell_states_to_model={"
                    "'state_key': 'disease', "
                    "'start_state': 'dcm', "
                    "'goal_state': 'nf', "
                    "'alt_states': ['hcm', 'other1', 'other2']}"
                )
                for key, value in self.cell_states_to_model.items():
                    if (len(value) == 3) and isinstance(value, tuple):
                        if (
                            isinstance(value[0], list)
                            and isinstance(value[1], list)
                            and isinstance(value[2], list)
                        ):
                            if len(value[0]) == 1 and len(value[1]) == 1:
                                all_values = value[0] + value[1] + value[2]
                                if len(all_values) == len(set(all_values)):
                                    continue
                # reformat to the new named key format
                state_values = flatten_list(list(self.cell_states_to_model.values()))
                self.cell_states_to_model = {
                    "state_key": list(self.cell_states_to_model.keys())[0],
                    "start_state": state_values[0][0],
                    "goal_state": state_values[1][0],
                    "alt_states": state_values[2:][0],
                }
            elif set(self.cell_states_to_model.keys()) == {
                "state_key",
                "start_state",
                "goal_state",
                "alt_states",
            }:
                if (
                    (self.cell_states_to_model["state_key"] is None)
                    or (self.cell_states_to_model["start_state"] is None)
                    or (self.cell_states_to_model["goal_state"] is None)
                ):
                    logger.error(
                        "Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model."
                    )
                    raise

                if (
                    self.cell_states_to_model["start_state"]
                    == self.cell_states_to_model["goal_state"]
                ):
                    logger.error("All states must be unique.")
                    raise

                if self.cell_states_to_model["alt_states"] is not None:
                    if not isinstance(self.cell_states_to_model["alt_states"], list):
                        logger.error(
                            "self.cell_states_to_model['alt_states'] must be a list (even if it is one element)."
                        )
                        raise
                    if len(self.cell_states_to_model["alt_states"]) != len(
                        set(self.cell_states_to_model["alt_states"])
                    ):
                        logger.error("All states must be unique.")
                        raise

            else:
                logger.error(
                    "cell_states_to_model must only have the following four keys: "
                    "'state_key', 'start_state', 'goal_state', 'alt_states'."
                    "For example, cell_states_to_model={"
                    "'state_key': 'disease', "
                    "'start_state': 'dcm', "
                    "'goal_state': 'nf', "
                    "'alt_states': ['hcm', 'other1', 'other2']}"
                )
                raise

            if self.anchor_gene is not None:
                self.anchor_gene = None
                logger.warning(
                    "anchor_gene set to None. "
                    "Currently, anchor gene not available "
                    "when modeling multiple cell states."
                )

        if self.combos > 0:
            if self.anchor_gene is None:
                logger.error(
                    "Currently, stats are only supported for combination "
                    "in silico perturbation run with anchor gene. Please add "
                    "anchor gene when using with combos > 0. "
                )
                raise

        if (self.mode == "mixture_model") and (self.genes_perturbed != "all"):
            logger.error(
                "Mixture model mode requires multiple gene perturbations to fit model "
                "so is incompatible with a single grouped perturbation."
            )
            raise
        if (self.mode == "aggregate_data") and (self.genes_perturbed == "all"):
            logger.error(
                "Simple data aggregation mode is for single perturbation in multiple cells "
                "so is incompatible with a genes_perturbed being 'all'."
            )
            raise

    def get_stats(
        self,
        input_data_directory,
        null_dist_data_directory,
        output_directory,
        output_prefix,
        null_dict_list=None,
    ):
        """
        Get stats for in silico perturbation data and save as results in output_directory.

        Parameters
        ----------
        input_data_directory : Path
            Path to directory containing cos_sim dictionary inputs
        null_dist_data_directory : Path
            Path to directory containing null distribution cos_sim dictionary inputs
        output_directory : Path
            Path to directory where perturbation data will be saved as .csv
        output_prefix : str
            Prefix for output .csv
        null_dict_list: dict
            List of loaded null distribtion dictionary if more than one comparison vs. the null is to be performed

        Outputs
        ----------
        Definition of possible columns in .csv output file.

        Of note, not all columns will be present in all output files.
        Some columns are specific to particular perturbation modes.

        "Gene": gene token
        "Gene_name": gene name
        "Ensembl_ID": gene Ensembl ID
        "N_Detections": number of cells in which each gene or gene combination was detected in the input dataset
        "Sig": 1 if FDR<0.05, otherwise 0

        "Shift_to_goal_end": cosine shift from start state towards goal end state in response to given perturbation
        "Shift_to_alt_end": cosine shift from start state towards alternate end state in response to given perturbation
        "Goal_end_vs_random_pval": pvalue of cosine shift from start state towards goal end state by Wilcoxon
            pvalue compares shift caused by perturbing given gene compared to random genes
        "Alt_end_vs_random_pval": pvalue of cosine shift from start state towards alternate end state by Wilcoxon
            pvalue compares shift caused by perturbing given gene compared to random genes
        "Goal_end_FDR": Benjamini-Hochberg correction of "Goal_end_vs_random_pval"
        "Alt_end_FDR": Benjamini-Hochberg correction of "Alt_end_vs_random_pval"

        "Test_avg_shift": cosine shift in response to given perturbation in cells from test distribution
        "Null_avg_shift": cosine shift in response to given perturbation in cells from null distribution (e.g. random cells)
        "Test_vs_null_avg_shift": difference in cosine shift in cells from test vs. null distribution
            (i.e. "Test_avg_shift" minus "Null_avg_shift")
        "Test_vs_null_pval": pvalue of cosine shift in test vs. null distribution
        "Test_vs_null_FDR": Benjamini-Hochberg correction of "Test_vs_null_pval"
        "N_Detections_test": "N_Detections" in cells from test distribution
        "N_Detections_null": "N_Detections" in cells from null distribution

        "Anchor_shift": cosine shift in response to given perturbation of anchor gene
        "Test_token_shift": cosine shift in response to given perturbation of test gene
        "Sum_of_indiv_shifts": sum of cosine shifts in response to individually perturbing test and anchor genes
        "Combo_shift": cosine shift in response to given perturbation of both anchor and test gene(s) in combination
        "Combo_minus_sum_shift": difference of cosine shifts in response combo perturbation vs. sum of individual perturbations
            (i.e. "Combo_shift" minus "Sum_of_indiv_shifts")
        "Impact_component": whether the given perturbation was modeled to be within the impact component by the mixture model
            1: within impact component; 0: not within impact component
        "Impact_component_percent": percent of cells in which given perturbation was modeled to be within impact component

        In case of aggregating gene shifts:
        "Perturbed": ID(s) of gene(s) being perturbed
        "Affected": ID of affected gene or "cell_emb" indicating the impact on the cell embedding as a whole
        "Cosine_shift_mean": mean of cosine shift of modeled perturbation on affected gene or cell
        "Cosine_shift_stdev": standard deviation of cosine shift of modeled perturbation on affected gene or cell
        """

        if self.mode not in [
            "goal_state_shift",
            "vs_null",
            "mixture_model",
            "aggregate_data",
            "aggregate_gene_shifts",
        ]:
            logger.error(
                "Currently, only modes available are stats for goal_state_shift, "
                "vs_null (comparing to null distribution), "
                "mixture_model (fitting mixture model for perturbations with or without impact), "
                "and aggregating data for single perturbations or for gene embedding shifts."
            )
            raise

        self.gene_token_id_dict = invert_dict(self.gene_token_dict)
        self.gene_id_name_dict = invert_dict(self.gene_name_id_dict)

        # obtain total gene list
        if (self.combos == 0) and (self.anchor_token is not None):
            # cos sim data for effect of gene perturbation on the embedding of each other gene
            dict_list = read_dictionaries(
                input_data_directory,
                "gene",
                self.anchor_token,
                self.cell_states_to_model,
                self.pickle_suffix,
            )
            gene_list = get_gene_list(dict_list, "gene")
        elif (
            (self.combos == 0)
            and (self.anchor_token is None)
            and (self.mode == "aggregate_gene_shifts")
        ):
            dict_list = read_dictionaries(
                input_data_directory,
                "gene",
                self.anchor_token,
                self.cell_states_to_model,
                self.pickle_suffix,
            )
            gene_list = get_gene_list(dict_list, "cell")
        else:
            # cos sim data for effect of gene perturbation on the embedding of each cell
            dict_list = read_dictionaries(
                input_data_directory,
                "cell",
                self.anchor_token,
                self.cell_states_to_model,
                self.pickle_suffix,
            )
            gene_list = get_gene_list(dict_list, "cell")

        # initiate results dataframe
        cos_sims_df_initial = pd.DataFrame(
            {
                "Gene": gene_list,
                "Gene_name": [self.token_to_gene_name(item) for item in gene_list],
                "Ensembl_ID": [
                    token_tuple_to_ensembl_ids(genes, self.gene_token_id_dict)
                    if self.genes_perturbed != "all"
                    else self.gene_token_id_dict[genes[1]]
                    if isinstance(genes, tuple)
                    else self.gene_token_id_dict[genes]
                    for genes in gene_list
                ],
            },
            index=[i for i in range(len(gene_list))],
        )

        if self.mode == "goal_state_shift":
            cos_sims_df = isp_stats_to_goal_state(
                cos_sims_df_initial,
                dict_list,
                self.cell_states_to_model,
                self.genes_perturbed,
            )

        elif self.mode == "vs_null":
            if null_dict_list is None:
                null_dict_list = read_dictionaries(
                    null_dist_data_directory,
                    "cell",
                    self.anchor_token,
                    self.cell_states_to_model,
                    self.pickle_suffix,
                )
            cos_sims_df = isp_stats_vs_null(
                cos_sims_df_initial, dict_list, null_dict_list
            )

        elif self.mode == "mixture_model":
            cos_sims_df = isp_stats_mixture_model(
                cos_sims_df_initial, dict_list, self.combos, self.anchor_token
            )

        elif self.mode == "aggregate_data":
            cos_sims_df = isp_aggregate_grouped_perturb(cos_sims_df_initial, dict_list)

        elif self.mode == "aggregate_gene_shifts":
            cos_sims_df = isp_aggregate_gene_shifts(
                cos_sims_df_initial,
                dict_list,
                self.gene_token_id_dict,
                self.gene_id_name_dict,
            )

        # save perturbation stats to output_path
        output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
        cos_sims_df.to_csv(output_path)

    def token_to_gene_name(self, item):
        if isinstance(item, int):
            return self.gene_id_name_dict.get(
                self.gene_token_id_dict.get(item, np.nan), np.nan
            )
        if isinstance(item, tuple):
            return tuple(
                [
                    self.gene_id_name_dict.get(
                        self.gene_token_id_dict.get(i, np.nan), np.nan
                    )
                    for i in item
                ]
            )