csikasote's picture
End of training
34428f4 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - bemgen
metrics:
  - wer
model-index:
  - name: whisper-medium-nyagen-combined-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: bemgen
          type: bemgen
        metrics:
          - name: Wer
            type: wer
            value: 0.19520264681555005

whisper-medium-nyagen-combined-model

This model is a fine-tuned version of openai/whisper-medium on the bemgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2561
  • Wer: 0.1952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1602 0.5326 200 0.5182 0.3747
0.5456 1.0639 400 0.3445 0.2552
0.5516 1.5965 600 0.2903 0.2413
0.224 2.1278 800 0.2817 0.2384
0.2413 2.6605 1000 0.2561 0.1952
0.1036 3.1917 1200 0.2583 0.1904
0.1135 3.7244 1400 0.2637 0.2120
0.057 4.2557 1600 0.2731 0.2097

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0