File size: 2,287 Bytes
5585b79 34428f4 5585b79 34428f4 5585b79 34428f4 5585b79 34428f4 5585b79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- bemgen
metrics:
- wer
model-index:
- name: whisper-medium-nyagen-combined-model
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: bemgen
type: bemgen
metrics:
- name: Wer
type: wer
value: 0.19520264681555005
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-nyagen-combined-model
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the bemgen dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2561
- Wer: 0.1952
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.1602 | 0.5326 | 200 | 0.5182 | 0.3747 |
| 0.5456 | 1.0639 | 400 | 0.3445 | 0.2552 |
| 0.5516 | 1.5965 | 600 | 0.2903 | 0.2413 |
| 0.224 | 2.1278 | 800 | 0.2817 | 0.2384 |
| 0.2413 | 2.6605 | 1000 | 0.2561 | 0.1952 |
| 0.1036 | 3.1917 | 1200 | 0.2583 | 0.1904 |
| 0.1135 | 3.7244 | 1400 | 0.2637 | 0.2120 |
| 0.057 | 4.2557 | 1600 | 0.2731 | 0.2097 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|