csikasote's picture
End of training
d870465 verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - natbed
  - mms
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-all-bem-natbed-nn-model
    results: []

mms-1b-all-bem-natbed-nn-model

This model is a fine-tuned version of facebook/mms-1b-all on the NATBED - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5884
  • Wer: 0.5333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.9244 0.2257 100 1.3514 1.0238
1.0236 0.4515 200 0.8355 0.6595
0.8005 0.6772 300 0.7837 0.6141
0.8968 0.9029 400 0.7809 0.6043
0.8909 1.1287 500 0.7147 0.5953
0.7983 1.3544 600 0.6990 0.5931
0.8563 1.5801 700 0.6805 0.5965
0.7094 1.8059 800 0.6849 0.5808
0.7499 2.0316 900 0.6457 0.5934
0.7722 2.2573 1000 0.6565 0.5875
0.7099 2.4831 1100 0.6419 0.5596
0.7416 2.7088 1200 0.6195 0.5611
0.6385 2.9345 1300 0.6228 0.5647
0.6436 3.1603 1400 0.6184 0.5510
0.6795 3.3860 1500 0.6157 0.5533
0.7027 3.6117 1600 0.6343 0.5426
0.6585 3.8375 1700 0.6057 0.5428
0.6351 4.0632 1800 0.6017 0.5430
0.6528 4.2889 1900 0.6099 0.5340
0.6603 4.5147 2000 0.6218 0.5335
0.6676 4.7404 2100 0.5977 0.5323
0.6304 4.9661 2200 0.5884 0.5333
0.5976 5.1919 2300 0.5956 0.5228
0.6564 5.4176 2400 0.5957 0.5302
0.6717 5.6433 2500 0.5767 0.5183
0.6091 5.8691 2600 0.5921 0.5273
0.6168 6.0948 2700 0.5894 0.5275
0.6495 6.3205 2800 0.6036 0.5197

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0