File size: 3,183 Bytes
067f840
 
 
 
 
d870465
 
 
067f840
 
 
 
 
 
 
 
 
 
 
 
 
d870465
067f840
d870465
 
067f840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- automatic-speech-recognition
- natbed
- mms
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-1b-all-bem-natbed-nn-model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mms-1b-all-bem-natbed-nn-model

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the NATBED - BEM dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5884
- Wer: 0.5333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 7.9244        | 0.2257 | 100  | 1.3514          | 1.0238 |
| 1.0236        | 0.4515 | 200  | 0.8355          | 0.6595 |
| 0.8005        | 0.6772 | 300  | 0.7837          | 0.6141 |
| 0.8968        | 0.9029 | 400  | 0.7809          | 0.6043 |
| 0.8909        | 1.1287 | 500  | 0.7147          | 0.5953 |
| 0.7983        | 1.3544 | 600  | 0.6990          | 0.5931 |
| 0.8563        | 1.5801 | 700  | 0.6805          | 0.5965 |
| 0.7094        | 1.8059 | 800  | 0.6849          | 0.5808 |
| 0.7499        | 2.0316 | 900  | 0.6457          | 0.5934 |
| 0.7722        | 2.2573 | 1000 | 0.6565          | 0.5875 |
| 0.7099        | 2.4831 | 1100 | 0.6419          | 0.5596 |
| 0.7416        | 2.7088 | 1200 | 0.6195          | 0.5611 |
| 0.6385        | 2.9345 | 1300 | 0.6228          | 0.5647 |
| 0.6436        | 3.1603 | 1400 | 0.6184          | 0.5510 |
| 0.6795        | 3.3860 | 1500 | 0.6157          | 0.5533 |
| 0.7027        | 3.6117 | 1600 | 0.6343          | 0.5426 |
| 0.6585        | 3.8375 | 1700 | 0.6057          | 0.5428 |
| 0.6351        | 4.0632 | 1800 | 0.6017          | 0.5430 |
| 0.6528        | 4.2889 | 1900 | 0.6099          | 0.5340 |
| 0.6603        | 4.5147 | 2000 | 0.6218          | 0.5335 |
| 0.6676        | 4.7404 | 2100 | 0.5977          | 0.5323 |
| 0.6304        | 4.9661 | 2200 | 0.5884          | 0.5333 |
| 0.5976        | 5.1919 | 2300 | 0.5956          | 0.5228 |
| 0.6564        | 5.4176 | 2400 | 0.5957          | 0.5302 |
| 0.6717        | 5.6433 | 2500 | 0.5767          | 0.5183 |
| 0.6091        | 5.8691 | 2600 | 0.5921          | 0.5273 |
| 0.6168        | 6.0948 | 2700 | 0.5894          | 0.5275 |
| 0.6495        | 6.3205 | 2800 | 0.6036          | 0.5197 |


### Framework versions

- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0