crina-t's picture
update model card README.md
88870df
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - sucx3_ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: histbert-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: sucx3_ner
          type: sucx3_ner
          config: simple_cased
          split: validation
          args: simple_cased
        metrics:
          - name: Precision
            type: precision
            value: 0.8784308810627898
          - name: Recall
            type: recall
            value: 0.9261363636363636
          - name: F1
            type: f1
            value: 0.9016530520357625
          - name: Accuracy
            type: accuracy
            value: 0.992218705252845

histbert-finetuned-ner

This model is a fine-tuned version of Riksarkivet/bert-base-cased-swe-historical on the sucx3_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0495
  • Precision: 0.8784
  • Recall: 0.9261
  • F1: 0.9017
  • Accuracy: 0.9922

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0403 1.0 5391 0.0316 0.8496 0.8866 0.8677 0.9903
0.0199 2.0 10782 0.0308 0.8814 0.9034 0.8923 0.9915
0.0173 3.0 16173 0.0372 0.8698 0.9197 0.8940 0.9913
0.0066 4.0 21564 0.0397 0.8783 0.9239 0.9005 0.9921
0.0029 5.0 26955 0.0454 0.8855 0.9181 0.9015 0.9923
0.0035 6.0 32346 0.0454 0.8834 0.9211 0.9019 0.9922
0.0009 7.0 37737 0.0495 0.8784 0.9261 0.9017 0.9922

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3