crina-t commited on
Commit
88870df
·
1 Parent(s): c598769

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - sucx3_ner
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: histbert-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: sucx3_ner
20
+ type: sucx3_ner
21
+ config: simple_cased
22
+ split: validation
23
+ args: simple_cased
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.8784308810627898
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9261363636363636
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9016530520357625
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.992218705252845
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # histbert-finetuned-ner
43
+
44
+ This model is a fine-tuned version of [Riksarkivet/bert-base-cased-swe-historical](https://huggingface.co/Riksarkivet/bert-base-cased-swe-historical) on the sucx3_ner dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0495
47
+ - Precision: 0.8784
48
+ - Recall: 0.9261
49
+ - F1: 0.9017
50
+ - Accuracy: 0.9922
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 7
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0403 | 1.0 | 5391 | 0.0316 | 0.8496 | 0.8866 | 0.8677 | 0.9903 |
82
+ | 0.0199 | 2.0 | 10782 | 0.0308 | 0.8814 | 0.9034 | 0.8923 | 0.9915 |
83
+ | 0.0173 | 3.0 | 16173 | 0.0372 | 0.8698 | 0.9197 | 0.8940 | 0.9913 |
84
+ | 0.0066 | 4.0 | 21564 | 0.0397 | 0.8783 | 0.9239 | 0.9005 | 0.9921 |
85
+ | 0.0029 | 5.0 | 26955 | 0.0454 | 0.8855 | 0.9181 | 0.9015 | 0.9923 |
86
+ | 0.0035 | 6.0 | 32346 | 0.0454 | 0.8834 | 0.9211 | 0.9019 | 0.9922 |
87
+ | 0.0009 | 7.0 | 37737 | 0.0495 | 0.8784 | 0.9261 | 0.9017 | 0.9922 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.28.0
93
+ - Pytorch 2.0.0+cu118
94
+ - Datasets 2.12.0
95
+ - Tokenizers 0.13.3