|
--- |
|
widget: |
|
- text: Climate change is just a natural phenomenon |
|
- example_title: 2.1 Contrarian claim |
|
license: mit |
|
language: |
|
- en |
|
metrics: |
|
- f1 |
|
pipeline_tag: text-classification |
|
tags: |
|
- climate |
|
- misinformation |
|
--- |
|
|
|
# Taxonomy Augmented CARDS |
|
|
|
## Taxonomy |
|
|
|
![Cards Taxonomy](CARDS_taxonomy_2_levels.png) |
|
|
|
## Metrics |
|
|
|
| **Category** | **CARDS** | **Augmented CARDS** | **Support** | |
|
|------------------:|----------:|--------------------:|------------:| |
|
| _0_0_ | 70.9 | **81.5** | 1049 | |
|
| _1_1_ | 60.5 | **70.4** | 28 | |
|
| _1_2_ | 40 | **44.4** | 20 | |
|
| _1_3_ | 37 | **48.6** | 61 | |
|
| _1_4_ | 62.1 | **65.6** | 27 | |
|
| _1_6_ | 56.7 | **59.7** | 41 | |
|
| _1_7_ | 46.4 | **52** | 89 | |
|
| _2_1_ | 68.1 | **69.4** | 154 | |
|
| _2_3_ | **36.7** | 25 | 22 | |
|
| _3_1_ | **38.5** | 34.8 | 8 | |
|
| _3_2_ | 61 | **74.6** | 31 | |
|
| _3_3_ | 54.2 | **65.4** | 23 | |
|
| _4_1_ | 38.5 | **49.4** | 103 | |
|
| _4_2_ | **37.6** | 28.6 | 61 | |
|
| _4_4_ | 30.8 | **54.5** | 46 | |
|
| _4_5_ | 19.7 | **39.4** | 50 | |
|
| _5_1_ | 32.8 | **38.2** | 96 | |
|
| _5_2_ | 38.6 | **53.5** | 498 | |
|
| _5.3_ | - | **62.9** | 200 | |
|
| | | | | |
|
| **Macro Average** | 43.69 | **53.57** | 2407 | |
|
|
|
# Code |
|
|
|
To run the model, you need to first evaluate the binary classification model, as shown below: |
|
|
|
```python |
|
# Models |
|
MAX_LEN = 256 |
|
BINARY_MODEL_DIR = "crarojasca/BinaryAugmentedCARDS" |
|
TAXONOMY_MODEL_DIR = "crarojasca/TaxonomyAugmentedCARDS" |
|
|
|
# Loading tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
BINARY_MODEL_DIR, |
|
max_length = MAX_LEN, padding = "max_length", |
|
return_token_type_ids = True |
|
) |
|
|
|
# Loading Models |
|
## 1. Binary Model |
|
print("Loading binary model: {}".format(BINARY_MODEL_DIR)) |
|
config = AutoConfig.from_pretrained(BINARY_MODEL_DIR) |
|
binary_model = AutoModelForSequenceClassification.from_pretrained(BINARY_MODEL_DIR, config=config) |
|
binary_model.to(device) |
|
|
|
## 2. Taxonomy Model |
|
print("Loading taxonomy model: {}".format(TAXONOMY_MODEL_DIR)) |
|
config = AutoConfig.from_pretrained(TAXONOMY_MODEL_DIR) |
|
taxonomy_model = AutoModelForSequenceClassification.from_pretrained(TAXONOMY_MODEL_DIR, config=config) |
|
taxonomy_model.to(device) |
|
|
|
# Load Dataset |
|
id2label = { |
|
0: '1_1', 1: '1_2', 2: '1_3', 3: '1_4', 4: '1_6', 5: '1_7', 6: '2_1', |
|
7: '2_3', 8: '3_1', 9: '3_2', 10: '3_3', 11: '4_1', 12: '4_2', 13: '4_4', |
|
14: '4_5', 15: '5_1', 16: '5_2', 17: '5_3' |
|
} |
|
|
|
|
|
text = "Climate change is just a natural phenomenon" |
|
|
|
tokenized_text = tokenizer(text, return_tensors = "pt") |
|
|
|
|
|
# Running Binary Model |
|
outputs = binary_model(**tokenized_text) |
|
binary_score = outputs.logits.softmax(dim = 1) |
|
binary_prediction = torch.argmax(outputs.logits, axis=1) |
|
binary_predictions = binary_prediction.to('cpu').item() |
|
|
|
# Running Taxonomy Model |
|
outputs = taxonomy_model(**tokenized_text) |
|
taxonomy_score = outputs.logits.softmax(dim = 1) |
|
taxonomy_prediction = torch.argmax(outputs.logits, axis=1) |
|
taxonomy_prediction = taxonomy_prediction.to('cpu').item() |
|
|
|
|
|
prediction = "0_0" if binary_prediction==0 else id2label[taxonomy_prediction] |
|
prediction |
|
|
|
``` |