Taxonomy Augmented CARDS

Taxonomy

Cards Taxonomy

Metrics

Category CARDS Augmented CARDS Support
0_0 70.9 81.5 1049
1_1 60.5 70.4 28
1_2 40 44.4 20
1_3 37 48.6 61
1_4 62.1 65.6 27
1_6 56.7 59.7 41
1_7 46.4 52 89
2_1 68.1 69.4 154
2_3 36.7 25 22
3_1 38.5 34.8 8
3_2 61 74.6 31
3_3 54.2 65.4 23
4_1 38.5 49.4 103
4_2 37.6 28.6 61
4_4 30.8 54.5 46
4_5 19.7 39.4 50
5_1 32.8 38.2 96
5_2 38.6 53.5 498
5.3 - 62.9 200
Macro Average 43.69 53.57 2407

Code

To run the model, you need to first evaluate the binary classification model, as shown below:

# Models
MAX_LEN = 256
BINARY_MODEL_DIR = "crarojasca/BinaryAugmentedCARDS"
TAXONOMY_MODEL_DIR = "crarojasca/TaxonomyAugmentedCARDS"

# Loading tokenizer
tokenizer = AutoTokenizer.from_pretrained(
    BINARY_MODEL_DIR,
    max_length = MAX_LEN, padding = "max_length", 
    return_token_type_ids = True
)

# Loading Models
## 1. Binary Model
print("Loading binary model: {}".format(BINARY_MODEL_DIR))
config = AutoConfig.from_pretrained(BINARY_MODEL_DIR)
binary_model = AutoModelForSequenceClassification.from_pretrained(BINARY_MODEL_DIR, config=config)
binary_model.to(device)

## 2. Taxonomy Model
print("Loading taxonomy model: {}".format(TAXONOMY_MODEL_DIR))
config = AutoConfig.from_pretrained(TAXONOMY_MODEL_DIR)
taxonomy_model = AutoModelForSequenceClassification.from_pretrained(TAXONOMY_MODEL_DIR, config=config)
taxonomy_model.to(device)

# Load Dataset
id2label = {
    0: '1_1', 1: '1_2', 2: '1_3', 3: '1_4', 4: '1_6', 5: '1_7', 6: '2_1', 
    7: '2_3', 8: '3_1', 9: '3_2', 10: '3_3', 11: '4_1', 12: '4_2', 13: '4_4', 
    14: '4_5', 15: '5_1', 16: '5_2', 17: '5_3'
}


text = "Climate change is just a natural phenomenon"

tokenized_text = tokenizer(text, return_tensors = "pt")


# Running Binary Model
outputs = binary_model(**tokenized_text)
binary_score = outputs.logits.softmax(dim = 1)
binary_prediction = torch.argmax(outputs.logits, axis=1)
binary_predictions = binary_prediction.to('cpu').item()

# Running Taxonomy Model
outputs = taxonomy_model(**tokenized_text)
taxonomy_score = outputs.logits.softmax(dim = 1)
taxonomy_prediction = torch.argmax(outputs.logits, axis=1)
taxonomy_prediction = taxonomy_prediction.to('cpu').item()


prediction = "0_0" if binary_prediction==0 else id2label[taxonomy_prediction]
prediction
Downloads last month
6
Safetensors
Model size
435M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using crarojasca/TaxonomyAugmentedCARDS 1