quant-tests / bench-TriLMs.py
compilade's picture
Add a Python-based benchmarking script
7b12d2f
raw
history blame
5.88 kB
#!/usr/bin/env python3
from __future__ import annotations
from pathlib import Path
from urllib import request
import os
import shlex
import subprocess
import sys
from typing import Any, Sequence
import logging
import json
import argparse
curdir = Path(os.path.dirname(__file__))
logger = logging.getLogger("bench")
MODEL_DIR = curdir / "bench-TriLMs-models"
LLAMA_CPP_PATH = curdir / "."
MODEL_SIZES = ("1.5", "2.4", "3.9")
ALL_TYPES = ("TQ1_0", "TQ2_0", "Q4_K_M", "Q8_0", "F16", "BF16")
GPU_TYPES = ("TQ2_0", "Q4_K_M", "Q8_0", "F16")
def gather_models(sizes: Sequence[str] = MODEL_SIZES):
logger.info("Gathering models")
if not MODEL_DIR.exists():
MODEL_DIR.mkdir(parents=True, exist_ok=True)
for size in sizes:
filename = f"TriLM_{size}B_Unpacked-TQ1_0-F16.gguf"
file = MODEL_DIR / filename
if not file.exists():
url = (
f"https://huggingface.co/compilade/quant-tests/resolve/main/{filename}"
)
logger.info(f"Fetching {filename} from {url}")
request.urlretrieve(url, file)
def build_llama_cpp(options: Sequence[str]):
logger.info("Building llama.cpp")
os.chdir(LLAMA_CPP_PATH)
builddir = LLAMA_CPP_PATH / "build"
if builddir.exists():
os.system("pwd")
os.system("rm -Ir build")
builddir.mkdir()
os.chdir(builddir)
os.system(shlex.join(("cmake", "..", *options)))
os.system("make -j llama-bench llama-quantize test-backend-ops")
def quantize(types: Sequence[str] = ALL_TYPES, sizes: Sequence[str] = MODEL_SIZES):
logger.info("Make all model types we'll test")
for size in sizes:
source = MODEL_DIR / f"TriLM_{size}B_Unpacked-TQ1_0-F16.gguf"
for ty in types:
target = MODEL_DIR / f"TriLM_{size}B_Unpacked-{ty}.gguf"
if not target.exists():
command = shlex.join(
(
str(LLAMA_CPP_PATH / "build" / "bin" / "llama-quantize"),
"--allow-requantize",
str(source),
str(target),
ty,
)
)
logger.info("Running: %s", command)
os.system(command)
def llama_bench(
repetitions: int = 5,
types: Sequence[str] = ALL_TYPES,
sizes: Sequence[str] = MODEL_SIZES,
) -> list[dict[str, Any]]:
logger.info("Test each model one by one for different numbers of threads")
threads = [2**i for i in range(5) if 2**i <= os.cpu_count()]
logger.info(f"Numbers of threads to be tested: {threads}")
out = []
for size in sizes:
for ty in types:
for th in threads:
model_path = MODEL_DIR / f"TriLM_{size}B_Unpacked-{ty}.gguf"
args = [
"-v",
"-m",
str(model_path),
"-t",
str(th),
"-r",
str(repetitions),
"-p",
"512",
"-n",
"128",
"-o",
"json",
]
result = subprocess.run(
[str(LLAMA_CPP_PATH / "build" / "bin" / "llama-bench")] + args,
capture_output=True,
)
logger.debug(result.stderr)
new_output = json.loads(result.stdout)
logger.info(json.dumps(new_output, indent=4))
out.extend(new_output)
return out
def test_backend_perf() -> str:
result = subprocess.run(
[
str(LLAMA_CPP_PATH / "build" / "bin" / "test-backend-ops"),
"perf",
"-o",
"MUL_MAT",
],
capture_output=True,
)
return result.stdout.decode(encoding="utf-8")
def parse_args(args: Sequence[str]):
parser = argparse.ArgumentParser(
prog=args[0], description="Benchmark ternary models"
)
parser.add_argument("--gpu", action="store_true", help="Run benchmarks on GPU")
parser.add_argument("--cpu", action="store_true", help="Run benchmarks on CPU")
parser.add_argument(
"--llama-cpp-path",
type=Path,
default=LLAMA_CPP_PATH,
help="Path to a llama.cpp checkout",
)
parser.add_argument(
"--model-dir",
type=Path,
default=MODEL_DIR,
help="Where the tested models will be stored",
)
parser.add_argument(
"--repetitions",
type=int,
default=5,
required=False,
help="How many repetitions are run for each test",
)
parser.add_argument(
"--out",
type=Path,
default=Path(os.path.curdir) / "result.json",
help="Path of the benchmark results to be written",
)
return parser.parse_args(args[1:])
if __name__ == "__main__":
args = parse_args(sys.argv)
LLAMA_CPP_PATH = args.llama_cpp_path
MODEL_DIR = args.model_dir
results = []
repetitions: int = args.repetitions
if args.cpu:
gather_models()
build_llama_cpp(["-DGGML_NATIVE=ON", "-DGGML_CPU=ON"])
quantize()
results.extend(llama_bench(repetitions=repetitions))
if args.gpu:
gather_models()
build_llama_cpp(["-DGGML_NATIVE=ON", "-DGGML_CUDA=ON", "-DGGML_CUDA_F16=ON"])
quantize()
results.extend(llama_bench(repetitions=repetitions, types=GPU_TYPES))
cpuinfo = subprocess.run(["lscpu"], capture_output=True).stdout.decode(
encoding="utf-8"
)
mulmat_perf = test_backend_perf()
final_result = {
"cpuinfo": cpuinfo,
"mulmat_perf": mulmat_perf,
"results": results,
}
with open(args.out, "w") as f:
json.dump(results, f, indent=4)