Add a Python-based benchmarking script
Browse files- bench-TriLMs.py +197 -0
- bench-TriLMs.sh +1 -1
bench-TriLMs.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from pathlib import Path
|
6 |
+
from urllib import request
|
7 |
+
import os
|
8 |
+
import shlex
|
9 |
+
import subprocess
|
10 |
+
import sys
|
11 |
+
from typing import Any, Sequence
|
12 |
+
import logging
|
13 |
+
import json
|
14 |
+
import argparse
|
15 |
+
|
16 |
+
curdir = Path(os.path.dirname(__file__))
|
17 |
+
|
18 |
+
logger = logging.getLogger("bench")
|
19 |
+
|
20 |
+
MODEL_DIR = curdir / "bench-TriLMs-models"
|
21 |
+
LLAMA_CPP_PATH = curdir / "."
|
22 |
+
MODEL_SIZES = ("1.5", "2.4", "3.9")
|
23 |
+
ALL_TYPES = ("TQ1_0", "TQ2_0", "Q4_K_M", "Q8_0", "F16", "BF16")
|
24 |
+
GPU_TYPES = ("TQ2_0", "Q4_K_M", "Q8_0", "F16")
|
25 |
+
|
26 |
+
|
27 |
+
def gather_models(sizes: Sequence[str] = MODEL_SIZES):
|
28 |
+
logger.info("Gathering models")
|
29 |
+
if not MODEL_DIR.exists():
|
30 |
+
MODEL_DIR.mkdir(parents=True, exist_ok=True)
|
31 |
+
for size in sizes:
|
32 |
+
filename = f"TriLM_{size}B_Unpacked-TQ1_0-F16.gguf"
|
33 |
+
file = MODEL_DIR / filename
|
34 |
+
if not file.exists():
|
35 |
+
url = (
|
36 |
+
f"https://huggingface.co/compilade/quant-tests/resolve/main/{filename}"
|
37 |
+
)
|
38 |
+
logger.info(f"Fetching {filename} from {url}")
|
39 |
+
request.urlretrieve(url, file)
|
40 |
+
|
41 |
+
|
42 |
+
def build_llama_cpp(options: Sequence[str]):
|
43 |
+
logger.info("Building llama.cpp")
|
44 |
+
os.chdir(LLAMA_CPP_PATH)
|
45 |
+
builddir = LLAMA_CPP_PATH / "build"
|
46 |
+
if builddir.exists():
|
47 |
+
os.system("pwd")
|
48 |
+
os.system("rm -Ir build")
|
49 |
+
builddir.mkdir()
|
50 |
+
os.chdir(builddir)
|
51 |
+
os.system(shlex.join(("cmake", "..", *options)))
|
52 |
+
os.system("make -j llama-bench llama-quantize test-backend-ops")
|
53 |
+
|
54 |
+
|
55 |
+
def quantize(types: Sequence[str] = ALL_TYPES, sizes: Sequence[str] = MODEL_SIZES):
|
56 |
+
logger.info("Make all model types we'll test")
|
57 |
+
for size in sizes:
|
58 |
+
source = MODEL_DIR / f"TriLM_{size}B_Unpacked-TQ1_0-F16.gguf"
|
59 |
+
for ty in types:
|
60 |
+
target = MODEL_DIR / f"TriLM_{size}B_Unpacked-{ty}.gguf"
|
61 |
+
if not target.exists():
|
62 |
+
command = shlex.join(
|
63 |
+
(
|
64 |
+
str(LLAMA_CPP_PATH / "build" / "bin" / "llama-quantize"),
|
65 |
+
"--allow-requantize",
|
66 |
+
str(source),
|
67 |
+
str(target),
|
68 |
+
ty,
|
69 |
+
)
|
70 |
+
)
|
71 |
+
logger.info("Running: %s", command)
|
72 |
+
os.system(command)
|
73 |
+
|
74 |
+
|
75 |
+
def llama_bench(
|
76 |
+
repetitions: int = 5,
|
77 |
+
types: Sequence[str] = ALL_TYPES,
|
78 |
+
sizes: Sequence[str] = MODEL_SIZES,
|
79 |
+
) -> list[dict[str, Any]]:
|
80 |
+
logger.info("Test each model one by one for different numbers of threads")
|
81 |
+
|
82 |
+
threads = [2**i for i in range(5) if 2**i <= os.cpu_count()]
|
83 |
+
logger.info(f"Numbers of threads to be tested: {threads}")
|
84 |
+
|
85 |
+
out = []
|
86 |
+
|
87 |
+
for size in sizes:
|
88 |
+
for ty in types:
|
89 |
+
for th in threads:
|
90 |
+
model_path = MODEL_DIR / f"TriLM_{size}B_Unpacked-{ty}.gguf"
|
91 |
+
args = [
|
92 |
+
"-v",
|
93 |
+
"-m",
|
94 |
+
str(model_path),
|
95 |
+
"-t",
|
96 |
+
str(th),
|
97 |
+
"-r",
|
98 |
+
str(repetitions),
|
99 |
+
"-p",
|
100 |
+
"512",
|
101 |
+
"-n",
|
102 |
+
"128",
|
103 |
+
"-o",
|
104 |
+
"json",
|
105 |
+
]
|
106 |
+
result = subprocess.run(
|
107 |
+
[str(LLAMA_CPP_PATH / "build" / "bin" / "llama-bench")] + args,
|
108 |
+
capture_output=True,
|
109 |
+
)
|
110 |
+
logger.debug(result.stderr)
|
111 |
+
|
112 |
+
new_output = json.loads(result.stdout)
|
113 |
+
logger.info(json.dumps(new_output, indent=4))
|
114 |
+
out.extend(new_output)
|
115 |
+
return out
|
116 |
+
|
117 |
+
|
118 |
+
def test_backend_perf() -> str:
|
119 |
+
result = subprocess.run(
|
120 |
+
[
|
121 |
+
str(LLAMA_CPP_PATH / "build" / "bin" / "test-backend-ops"),
|
122 |
+
"perf",
|
123 |
+
"-o",
|
124 |
+
"MUL_MAT",
|
125 |
+
],
|
126 |
+
capture_output=True,
|
127 |
+
)
|
128 |
+
return result.stdout.decode(encoding="utf-8")
|
129 |
+
|
130 |
+
|
131 |
+
def parse_args(args: Sequence[str]):
|
132 |
+
parser = argparse.ArgumentParser(
|
133 |
+
prog=args[0], description="Benchmark ternary models"
|
134 |
+
)
|
135 |
+
parser.add_argument("--gpu", action="store_true", help="Run benchmarks on GPU")
|
136 |
+
parser.add_argument("--cpu", action="store_true", help="Run benchmarks on CPU")
|
137 |
+
parser.add_argument(
|
138 |
+
"--llama-cpp-path",
|
139 |
+
type=Path,
|
140 |
+
default=LLAMA_CPP_PATH,
|
141 |
+
help="Path to a llama.cpp checkout",
|
142 |
+
)
|
143 |
+
parser.add_argument(
|
144 |
+
"--model-dir",
|
145 |
+
type=Path,
|
146 |
+
default=MODEL_DIR,
|
147 |
+
help="Where the tested models will be stored",
|
148 |
+
)
|
149 |
+
parser.add_argument(
|
150 |
+
"--repetitions",
|
151 |
+
type=int,
|
152 |
+
default=5,
|
153 |
+
required=False,
|
154 |
+
help="How many repetitions are run for each test",
|
155 |
+
)
|
156 |
+
parser.add_argument(
|
157 |
+
"--out",
|
158 |
+
type=Path,
|
159 |
+
default=Path(os.path.curdir) / "result.json",
|
160 |
+
help="Path of the benchmark results to be written",
|
161 |
+
)
|
162 |
+
return parser.parse_args(args[1:])
|
163 |
+
|
164 |
+
|
165 |
+
if __name__ == "__main__":
|
166 |
+
args = parse_args(sys.argv)
|
167 |
+
|
168 |
+
LLAMA_CPP_PATH = args.llama_cpp_path
|
169 |
+
MODEL_DIR = args.model_dir
|
170 |
+
|
171 |
+
results = []
|
172 |
+
repetitions: int = args.repetitions
|
173 |
+
|
174 |
+
if args.cpu:
|
175 |
+
gather_models()
|
176 |
+
build_llama_cpp(["-DGGML_NATIVE=ON", "-DGGML_CPU=ON"])
|
177 |
+
quantize()
|
178 |
+
results.extend(llama_bench(repetitions=repetitions))
|
179 |
+
|
180 |
+
if args.gpu:
|
181 |
+
gather_models()
|
182 |
+
build_llama_cpp(["-DGGML_NATIVE=ON", "-DGGML_CUDA=ON", "-DGGML_CUDA_F16=ON"])
|
183 |
+
quantize()
|
184 |
+
results.extend(llama_bench(repetitions=repetitions, types=GPU_TYPES))
|
185 |
+
|
186 |
+
cpuinfo = subprocess.run(["lscpu"], capture_output=True).stdout.decode(
|
187 |
+
encoding="utf-8"
|
188 |
+
)
|
189 |
+
mulmat_perf = test_backend_perf()
|
190 |
+
|
191 |
+
final_result = {
|
192 |
+
"cpuinfo": cpuinfo,
|
193 |
+
"mulmat_perf": mulmat_perf,
|
194 |
+
"results": results,
|
195 |
+
}
|
196 |
+
with open(args.out, "w") as f:
|
197 |
+
json.dump(results, f, indent=4)
|
bench-TriLMs.sh
CHANGED
@@ -7,7 +7,7 @@ MODEL_DIR="bench-TriLMs-models"
|
|
7 |
LLAMA_CPP_PATH="."
|
8 |
sizes=("1.5" "2.4" "3.9")
|
9 |
types=("TQ1_0" "TQ2_0" "Q4_K_M" "Q8_0" "F16" "BF16")
|
10 |
-
gputypes=("Q4_K_M" "Q8_0" "F16"
|
11 |
|
12 |
function gather_models() {
|
13 |
echo Gather the models
|
|
|
7 |
LLAMA_CPP_PATH="."
|
8 |
sizes=("1.5" "2.4" "3.9")
|
9 |
types=("TQ1_0" "TQ2_0" "Q4_K_M" "Q8_0" "F16" "BF16")
|
10 |
+
gputypes=("TQ2_0" "Q4_K_M" "Q8_0" "F16")
|
11 |
|
12 |
function gather_models() {
|
13 |
echo Gather the models
|