File size: 5,875 Bytes
7b12d2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
#!/usr/bin/env python3
from __future__ import annotations
from pathlib import Path
from urllib import request
import os
import shlex
import subprocess
import sys
from typing import Any, Sequence
import logging
import json
import argparse
curdir = Path(os.path.dirname(__file__))
logger = logging.getLogger("bench")
MODEL_DIR = curdir / "bench-TriLMs-models"
LLAMA_CPP_PATH = curdir / "."
MODEL_SIZES = ("1.5", "2.4", "3.9")
ALL_TYPES = ("TQ1_0", "TQ2_0", "Q4_K_M", "Q8_0", "F16", "BF16")
GPU_TYPES = ("TQ2_0", "Q4_K_M", "Q8_0", "F16")
def gather_models(sizes: Sequence[str] = MODEL_SIZES):
logger.info("Gathering models")
if not MODEL_DIR.exists():
MODEL_DIR.mkdir(parents=True, exist_ok=True)
for size in sizes:
filename = f"TriLM_{size}B_Unpacked-TQ1_0-F16.gguf"
file = MODEL_DIR / filename
if not file.exists():
url = (
f"https://huggingface.co/compilade/quant-tests/resolve/main/{filename}"
)
logger.info(f"Fetching {filename} from {url}")
request.urlretrieve(url, file)
def build_llama_cpp(options: Sequence[str]):
logger.info("Building llama.cpp")
os.chdir(LLAMA_CPP_PATH)
builddir = LLAMA_CPP_PATH / "build"
if builddir.exists():
os.system("pwd")
os.system("rm -Ir build")
builddir.mkdir()
os.chdir(builddir)
os.system(shlex.join(("cmake", "..", *options)))
os.system("make -j llama-bench llama-quantize test-backend-ops")
def quantize(types: Sequence[str] = ALL_TYPES, sizes: Sequence[str] = MODEL_SIZES):
logger.info("Make all model types we'll test")
for size in sizes:
source = MODEL_DIR / f"TriLM_{size}B_Unpacked-TQ1_0-F16.gguf"
for ty in types:
target = MODEL_DIR / f"TriLM_{size}B_Unpacked-{ty}.gguf"
if not target.exists():
command = shlex.join(
(
str(LLAMA_CPP_PATH / "build" / "bin" / "llama-quantize"),
"--allow-requantize",
str(source),
str(target),
ty,
)
)
logger.info("Running: %s", command)
os.system(command)
def llama_bench(
repetitions: int = 5,
types: Sequence[str] = ALL_TYPES,
sizes: Sequence[str] = MODEL_SIZES,
) -> list[dict[str, Any]]:
logger.info("Test each model one by one for different numbers of threads")
threads = [2**i for i in range(5) if 2**i <= os.cpu_count()]
logger.info(f"Numbers of threads to be tested: {threads}")
out = []
for size in sizes:
for ty in types:
for th in threads:
model_path = MODEL_DIR / f"TriLM_{size}B_Unpacked-{ty}.gguf"
args = [
"-v",
"-m",
str(model_path),
"-t",
str(th),
"-r",
str(repetitions),
"-p",
"512",
"-n",
"128",
"-o",
"json",
]
result = subprocess.run(
[str(LLAMA_CPP_PATH / "build" / "bin" / "llama-bench")] + args,
capture_output=True,
)
logger.debug(result.stderr)
new_output = json.loads(result.stdout)
logger.info(json.dumps(new_output, indent=4))
out.extend(new_output)
return out
def test_backend_perf() -> str:
result = subprocess.run(
[
str(LLAMA_CPP_PATH / "build" / "bin" / "test-backend-ops"),
"perf",
"-o",
"MUL_MAT",
],
capture_output=True,
)
return result.stdout.decode(encoding="utf-8")
def parse_args(args: Sequence[str]):
parser = argparse.ArgumentParser(
prog=args[0], description="Benchmark ternary models"
)
parser.add_argument("--gpu", action="store_true", help="Run benchmarks on GPU")
parser.add_argument("--cpu", action="store_true", help="Run benchmarks on CPU")
parser.add_argument(
"--llama-cpp-path",
type=Path,
default=LLAMA_CPP_PATH,
help="Path to a llama.cpp checkout",
)
parser.add_argument(
"--model-dir",
type=Path,
default=MODEL_DIR,
help="Where the tested models will be stored",
)
parser.add_argument(
"--repetitions",
type=int,
default=5,
required=False,
help="How many repetitions are run for each test",
)
parser.add_argument(
"--out",
type=Path,
default=Path(os.path.curdir) / "result.json",
help="Path of the benchmark results to be written",
)
return parser.parse_args(args[1:])
if __name__ == "__main__":
args = parse_args(sys.argv)
LLAMA_CPP_PATH = args.llama_cpp_path
MODEL_DIR = args.model_dir
results = []
repetitions: int = args.repetitions
if args.cpu:
gather_models()
build_llama_cpp(["-DGGML_NATIVE=ON", "-DGGML_CPU=ON"])
quantize()
results.extend(llama_bench(repetitions=repetitions))
if args.gpu:
gather_models()
build_llama_cpp(["-DGGML_NATIVE=ON", "-DGGML_CUDA=ON", "-DGGML_CUDA_F16=ON"])
quantize()
results.extend(llama_bench(repetitions=repetitions, types=GPU_TYPES))
cpuinfo = subprocess.run(["lscpu"], capture_output=True).stdout.decode(
encoding="utf-8"
)
mulmat_perf = test_backend_perf()
final_result = {
"cpuinfo": cpuinfo,
"mulmat_perf": mulmat_perf,
"results": results,
}
with open(args.out, "w") as f:
json.dump(results, f, indent=4)
|