metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-uncased-grammar-ner
results: []
bert-base-uncased-grammar-ner
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1052
- Accuracy: 0.9895
- F1 Macro: 0.7899
- F1 Micro: 0.9212
- Precision Macro: 0.8429
- Precision Micro: 0.9694
- Recall Macro: 0.7572
- Recall Micro: 0.8776
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 18
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro | Precision Macro | Precision Micro | Recall Macro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|
0.3673 | 1.0 | 93 | 0.2453 | 0.9284 | 0.1919 | 0.4850 | 0.2701 | 0.4678 | 0.1872 | 0.5035 |
0.2176 | 2.0 | 186 | 0.1888 | 0.9439 | 0.2591 | 0.5149 | 0.3936 | 0.6230 | 0.2298 | 0.4388 |
0.1418 | 3.0 | 279 | 0.1454 | 0.9666 | 0.3554 | 0.725 | 0.4120 | 0.7902 | 0.3577 | 0.6697 |
0.0859 | 4.0 | 372 | 0.1238 | 0.9750 | 0.4365 | 0.7789 | 0.6084 | 0.8540 | 0.3946 | 0.7159 |
0.0607 | 5.0 | 465 | 0.1136 | 0.9766 | 0.4979 | 0.7965 | 0.5945 | 0.8606 | 0.4781 | 0.7413 |
0.0413 | 6.0 | 558 | 0.1103 | 0.9827 | 0.4995 | 0.8608 | 0.6097 | 0.9629 | 0.4415 | 0.7783 |
0.0309 | 7.0 | 651 | 0.1109 | 0.9821 | 0.5654 | 0.8558 | 0.6379 | 0.8842 | 0.5439 | 0.8291 |
0.0237 | 8.0 | 744 | 0.1056 | 0.9847 | 0.6330 | 0.8721 | 0.7169 | 0.9227 | 0.5923 | 0.8268 |
0.0154 | 9.0 | 837 | 0.1009 | 0.9858 | 0.6639 | 0.8816 | 0.7079 | 0.9352 | 0.6422 | 0.8337 |
0.0096 | 10.0 | 930 | 0.1003 | 0.9881 | 0.6783 | 0.9047 | 0.7250 | 0.9470 | 0.6494 | 0.8661 |
0.0078 | 11.0 | 1023 | 0.1000 | 0.9889 | 0.7661 | 0.9144 | 0.8075 | 0.9571 | 0.7524 | 0.8753 |
0.0052 | 12.0 | 1116 | 0.1046 | 0.9890 | 0.7563 | 0.9166 | 0.7940 | 0.9619 | 0.7561 | 0.8753 |
0.0041 | 13.0 | 1209 | 0.1022 | 0.9892 | 0.7804 | 0.9177 | 0.8255 | 0.9644 | 0.7570 | 0.8753 |
0.0021 | 14.0 | 1302 | 0.0994 | 0.9887 | 0.7602 | 0.9133 | 0.7959 | 0.9547 | 0.7534 | 0.8753 |
0.0018 | 15.0 | 1395 | 0.1043 | 0.9895 | 0.7903 | 0.9212 | 0.8431 | 0.9694 | 0.7572 | 0.8776 |
0.0016 | 16.0 | 1488 | 0.1059 | 0.9898 | 0.7901 | 0.9235 | 0.8434 | 0.9744 | 0.7572 | 0.8776 |
0.0014 | 17.0 | 1581 | 0.1063 | 0.9898 | 0.7924 | 0.9235 | 0.8472 | 0.9744 | 0.7572 | 0.8776 |
0.001 | 18.0 | 1674 | 0.1052 | 0.9895 | 0.7899 | 0.9212 | 0.8429 | 0.9694 | 0.7572 | 0.8776 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3