bert-base-uncased-grammar-ner

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1052
  • Accuracy: 0.9895
  • F1 Macro: 0.7899
  • F1 Micro: 0.9212
  • Precision Macro: 0.8429
  • Precision Micro: 0.9694
  • Recall Macro: 0.7572
  • Recall Micro: 0.8776

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Micro Precision Macro Precision Micro Recall Macro Recall Micro
0.3673 1.0 93 0.2453 0.9284 0.1919 0.4850 0.2701 0.4678 0.1872 0.5035
0.2176 2.0 186 0.1888 0.9439 0.2591 0.5149 0.3936 0.6230 0.2298 0.4388
0.1418 3.0 279 0.1454 0.9666 0.3554 0.725 0.4120 0.7902 0.3577 0.6697
0.0859 4.0 372 0.1238 0.9750 0.4365 0.7789 0.6084 0.8540 0.3946 0.7159
0.0607 5.0 465 0.1136 0.9766 0.4979 0.7965 0.5945 0.8606 0.4781 0.7413
0.0413 6.0 558 0.1103 0.9827 0.4995 0.8608 0.6097 0.9629 0.4415 0.7783
0.0309 7.0 651 0.1109 0.9821 0.5654 0.8558 0.6379 0.8842 0.5439 0.8291
0.0237 8.0 744 0.1056 0.9847 0.6330 0.8721 0.7169 0.9227 0.5923 0.8268
0.0154 9.0 837 0.1009 0.9858 0.6639 0.8816 0.7079 0.9352 0.6422 0.8337
0.0096 10.0 930 0.1003 0.9881 0.6783 0.9047 0.7250 0.9470 0.6494 0.8661
0.0078 11.0 1023 0.1000 0.9889 0.7661 0.9144 0.8075 0.9571 0.7524 0.8753
0.0052 12.0 1116 0.1046 0.9890 0.7563 0.9166 0.7940 0.9619 0.7561 0.8753
0.0041 13.0 1209 0.1022 0.9892 0.7804 0.9177 0.8255 0.9644 0.7570 0.8753
0.0021 14.0 1302 0.0994 0.9887 0.7602 0.9133 0.7959 0.9547 0.7534 0.8753
0.0018 15.0 1395 0.1043 0.9895 0.7903 0.9212 0.8431 0.9694 0.7572 0.8776
0.0016 16.0 1488 0.1059 0.9898 0.7901 0.9235 0.8434 0.9744 0.7572 0.8776
0.0014 17.0 1581 0.1063 0.9898 0.7924 0.9235 0.8472 0.9744 0.7572 0.8776
0.001 18.0 1674 0.1052 0.9895 0.7899 0.9212 0.8429 0.9694 0.7572 0.8776

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
9
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for codymd/bert-base-uncased-grammar-ner

Finetuned
(2313)
this model