metadata
widget:
- text: >-
KOMMISSIONENS BESLUTNING
af 6. marts 2006
om klassificering af visse byggevarers ydeevne med hensyn til reaktion ved
brand for så vidt angår trægulve samt vægpaneler og vægbeklædning i
massivt træ
(meddelt under nummer K(2006) 655
datasets:
- multi_eurlex
metrics:
- f1
model-index:
- name: coastalcph/danish-legal-longformer-eurlex-sd
results:
- task:
type: text-classification
name: Danish EURLEX (Level 2)
dataset:
name: multi_eurlex
type: multi_eurlex
config: multi_eurlex
split: validation
metrics:
- name: Micro-F1
type: micro-f1
value: 0.76144
- name: Macro-F1
type: macro-f1
value: 0.52878
Model description
This model is a fine-tuned version of coastalcph/danish-legal-longformer-base on the Danish part of MultiEURLEX dataset using an additional Spectral Decoupling penalty (Pezeshki et al., 2020.
Training and evaluation data
The Danish part of MultiEURLEX dataset.
Use of Model
As a text classifier:
from transformers import pipeline
import numpy as np
# Init text classification pipeline
text_cls_pipe = pipeline(task="text-classification",
model="coastalcph/danish-legal-longformer-eurlex",
use_auth_token='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')
# Encode and Classify document
predictions = text_cls_pipe("KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers "
"ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler "
"og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655")
# Print prediction
print(predictions)
# [{'label': 'building and public works', 'score': 0.9626012444496155}]
As a feature extractor (document embedder):
from transformers import pipeline
import numpy as np
# Init feature extraction pipeline
feature_extraction_pipe = pipeline(task="feature-extraction",
model="coastalcph/danish-legal-longformer-eurlex",
use_auth_token='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')
# Encode document
predictions = feature_extraction_pipe("KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers "
"ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler "
"og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655")
# Use CLS token representation as document embedding
document_features = token_wise_features[0][0]
print(document_features.shape)
# (768,)
Framework versions
- Transformers 4.18.0
- Pytorch 1.12.0+cu113
- Datasets 2.0.0
- Tokenizers 0.12.1