kiddothe2b
commited on
Commit
•
e4add91
1
Parent(s):
6db080f
Fine-tuning + SD penaltyin EURLEX (Level 2)
Browse files- README.md +85 -1
- all_results.json +22 -0
- config.json +308 -0
- predict_results.json +9 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
README.md
CHANGED
@@ -1,3 +1,87 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
widget:
|
3 |
+
- text: "KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655"
|
4 |
+
datasets:
|
5 |
+
- multi_eurlex
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: coastalcph/danish-legal-longformer-eurlex-sd
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: text-classification
|
13 |
+
name: Danish EURLEX (Level 2)
|
14 |
+
dataset:
|
15 |
+
name: multi_eurlex
|
16 |
+
type: multi_eurlex
|
17 |
+
config: multi_eurlex
|
18 |
+
split: validation
|
19 |
+
metrics:
|
20 |
+
- name: Micro-F1
|
21 |
+
type: micro-f1
|
22 |
+
value: 0.76144
|
23 |
+
- name: Macro-F1
|
24 |
+
type: macro-f1
|
25 |
+
value: 0.52878
|
26 |
---
|
27 |
+
|
28 |
+
# Model description
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [coastalcph/danish-legal-longformer-base](https://huggingface.co/coastalcph/danish-legal-longformer-base) on the Danish part of [MultiEURLEX](https://huggingface.co/datasets/multi_eurlex) dataset using an additional Spectral Decoupling penalty ([Pezeshki et al., 2020](https://arxiv.org/abs/2011.09468).
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
The Danish part of [MultiEURLEX](https://huggingface.co/datasets/multi_eurlex) dataset.
|
35 |
+
|
36 |
+
## Use of Model
|
37 |
+
|
38 |
+
### As a text classifier:
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import pipeline
|
42 |
+
import numpy as np
|
43 |
+
|
44 |
+
# Init text classification pipeline
|
45 |
+
text_cls_pipe = pipeline(task="text-classification",
|
46 |
+
model="coastalcph/danish-legal-longformer-eurlex",
|
47 |
+
use_auth_token='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')
|
48 |
+
|
49 |
+
# Encode and Classify document
|
50 |
+
predictions = text_cls_pipe("KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers "
|
51 |
+
"ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler "
|
52 |
+
"og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655")
|
53 |
+
|
54 |
+
# Print prediction
|
55 |
+
print(predictions)
|
56 |
+
# [{'label': 'building and public works', 'score': 0.9626012444496155}]
|
57 |
+
```
|
58 |
+
|
59 |
+
### As a feature extractor (document embedder):
|
60 |
+
|
61 |
+
```python
|
62 |
+
from transformers import pipeline
|
63 |
+
import numpy as np
|
64 |
+
|
65 |
+
# Init feature extraction pipeline
|
66 |
+
feature_extraction_pipe = pipeline(task="feature-extraction",
|
67 |
+
model="coastalcph/danish-legal-longformer-eurlex",
|
68 |
+
use_auth_token='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')
|
69 |
+
|
70 |
+
# Encode document
|
71 |
+
predictions = feature_extraction_pipe("KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers "
|
72 |
+
"ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler "
|
73 |
+
"og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655")
|
74 |
+
|
75 |
+
# Use CLS token representation as document embedding
|
76 |
+
document_features = token_wise_features[0][0]
|
77 |
+
|
78 |
+
print(document_features.shape)
|
79 |
+
# (768,)
|
80 |
+
```
|
81 |
+
|
82 |
+
## Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.18.0
|
85 |
+
- Pytorch 1.12.0+cu113
|
86 |
+
- Datasets 2.0.0
|
87 |
+
- Tokenizers 0.12.1
|
all_results.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 20.0,
|
3 |
+
"eval_loss": 0.06451725959777832,
|
4 |
+
"eval_macro-f1": 0.5287864667312759,
|
5 |
+
"eval_micro-f1": 0.7614412568306012,
|
6 |
+
"eval_runtime": 85.9935,
|
7 |
+
"eval_samples": 5000,
|
8 |
+
"eval_samples_per_second": 58.144,
|
9 |
+
"eval_steps_per_second": 1.826,
|
10 |
+
"predict_loss": 0.08024133741855621,
|
11 |
+
"predict_macro-f1": 0.46986770055294413,
|
12 |
+
"predict_micro-f1": 0.6993679640782279,
|
13 |
+
"predict_runtime": 86.1285,
|
14 |
+
"predict_samples": 5000,
|
15 |
+
"predict_samples_per_second": 58.053,
|
16 |
+
"predict_steps_per_second": 1.823,
|
17 |
+
"train_loss": 0.03325878010370344,
|
18 |
+
"train_runtime": 59590.7061,
|
19 |
+
"train_samples": 55000,
|
20 |
+
"train_samples_per_second": 18.459,
|
21 |
+
"train_steps_per_second": 0.577
|
22 |
+
}
|
config.json
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "coastalcph/danish-legal-longformer-base",
|
3 |
+
"architectures": [
|
4 |
+
"LongformerForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_mode": "longformer",
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"attention_window": [
|
9 |
+
128,
|
10 |
+
128,
|
11 |
+
128,
|
12 |
+
128,
|
13 |
+
128,
|
14 |
+
128,
|
15 |
+
128,
|
16 |
+
128,
|
17 |
+
128,
|
18 |
+
128,
|
19 |
+
128,
|
20 |
+
128
|
21 |
+
],
|
22 |
+
"bos_token_id": 1,
|
23 |
+
"classifier_dropout": null,
|
24 |
+
"cls_token_id": 1,
|
25 |
+
"eos_token_id": 2,
|
26 |
+
"finetuning_task": "eurlex-127-concepts",
|
27 |
+
"gradient_checkpointing": false,
|
28 |
+
"hidden_act": "gelu",
|
29 |
+
"hidden_dropout_prob": 0.1,
|
30 |
+
"hidden_size": 768,
|
31 |
+
"id2label": {
|
32 |
+
"0": "health",
|
33 |
+
"1": "social framework",
|
34 |
+
"10": "building and public works",
|
35 |
+
"100": "European Union law",
|
36 |
+
"101": "humanities",
|
37 |
+
"102": "natural and applied sciences",
|
38 |
+
"103": "beverages and sugar",
|
39 |
+
"104": "processed agricultural produce",
|
40 |
+
"105": "agri-foodstuffs",
|
41 |
+
"106": "plant product",
|
42 |
+
"107": "animal product",
|
43 |
+
"108": "foodstuff",
|
44 |
+
"109": "food technology",
|
45 |
+
"11": "chemistry",
|
46 |
+
"110": "regions of EU Member States",
|
47 |
+
"111": "Africa",
|
48 |
+
"112": "overseas countries and territories",
|
49 |
+
"113": "Europe",
|
50 |
+
"114": "America",
|
51 |
+
"115": "economic geography",
|
52 |
+
"116": "Asia and Oceania",
|
53 |
+
"117": "political geography",
|
54 |
+
"118": "economic analysis",
|
55 |
+
"119": "economic conditions",
|
56 |
+
"12": "electronics and electrical engineering",
|
57 |
+
"120": "economic policy",
|
58 |
+
"121": "economic structure",
|
59 |
+
"122": "national accounts",
|
60 |
+
"123": "regions and regional policy",
|
61 |
+
"124": "deterioration of the environment",
|
62 |
+
"125": "natural environment",
|
63 |
+
"126": "environmental policy",
|
64 |
+
"13": "miscellaneous industries",
|
65 |
+
"14": "wood industry",
|
66 |
+
"15": "mechanical engineering",
|
67 |
+
"16": "industrial structures and policy",
|
68 |
+
"17": "leather and textile industries",
|
69 |
+
"18": "insurance",
|
70 |
+
"19": "free movement of capital",
|
71 |
+
"2": "culture and religion",
|
72 |
+
"20": "financing and investment",
|
73 |
+
"21": "prices",
|
74 |
+
"22": "budget",
|
75 |
+
"23": "public finance and budget policy",
|
76 |
+
"24": "monetary economics",
|
77 |
+
"25": "taxation",
|
78 |
+
"26": "financial institutions and credit",
|
79 |
+
"27": "monetary relations",
|
80 |
+
"28": "tariff policy",
|
81 |
+
"29": "trade",
|
82 |
+
"3": "social protection",
|
83 |
+
"30": "trade policy",
|
84 |
+
"31": "marketing",
|
85 |
+
"32": "distributive trades",
|
86 |
+
"33": "consumption",
|
87 |
+
"34": "international trade",
|
88 |
+
"35": "accounting",
|
89 |
+
"36": "competition",
|
90 |
+
"37": "management",
|
91 |
+
"38": "business classification",
|
92 |
+
"39": "legal form of organisations",
|
93 |
+
"4": "migration",
|
94 |
+
"40": "business organisation",
|
95 |
+
"41": "defence",
|
96 |
+
"42": "international affairs",
|
97 |
+
"43": "international security",
|
98 |
+
"44": "cooperation policy",
|
99 |
+
"45": "agricultural activity",
|
100 |
+
"46": "agricultural policy",
|
101 |
+
"47": "forestry",
|
102 |
+
"48": "agricultural structures and production",
|
103 |
+
"49": "cultivation of agricultural land",
|
104 |
+
"5": "family",
|
105 |
+
"50": "means of agricultural production",
|
106 |
+
"51": "fisheries",
|
107 |
+
"52": "farming systems",
|
108 |
+
"53": "production",
|
109 |
+
"54": "research and intellectual property",
|
110 |
+
"55": "technology and technical regulations",
|
111 |
+
"56": "transport policy",
|
112 |
+
"57": "air and space transport",
|
113 |
+
"58": "organisation of transport",
|
114 |
+
"59": "land transport",
|
115 |
+
"6": "construction and town planning",
|
116 |
+
"60": "maritime and inland waterway transport",
|
117 |
+
"61": "organisation of work and working conditions",
|
118 |
+
"62": "labour law and labour relations",
|
119 |
+
"63": "employment",
|
120 |
+
"64": "personnel management and staff remuneration",
|
121 |
+
"65": "labour market",
|
122 |
+
"66": "political party",
|
123 |
+
"67": "parliament",
|
124 |
+
"68": "executive power and public service",
|
125 |
+
"69": "parliamentary proceedings",
|
126 |
+
"7": "demography and population",
|
127 |
+
"70": "electoral procedure and voting",
|
128 |
+
"71": "political framework",
|
129 |
+
"72": "politics and public safety",
|
130 |
+
"73": "sources and branches of the law",
|
131 |
+
"74": "justice",
|
132 |
+
"75": "civil law",
|
133 |
+
"76": "rights and freedoms",
|
134 |
+
"77": "international law",
|
135 |
+
"78": "criminal law",
|
136 |
+
"79": "organisation of the legal system",
|
137 |
+
"8": "social affairs",
|
138 |
+
"80": "information and information processing",
|
139 |
+
"81": "education",
|
140 |
+
"82": "organisation of teaching",
|
141 |
+
"83": "information technology and data processing",
|
142 |
+
"84": "teaching",
|
143 |
+
"85": "documentation",
|
144 |
+
"86": "communications",
|
145 |
+
"87": "world organisations",
|
146 |
+
"88": "United Nations",
|
147 |
+
"89": "extra-European organisations",
|
148 |
+
"9": "iron, steel and other metal industries",
|
149 |
+
"90": "non-governmental organisations",
|
150 |
+
"91": "European organisations",
|
151 |
+
"92": "coal and mining industries",
|
152 |
+
"93": "energy policy",
|
153 |
+
"94": "oil industry",
|
154 |
+
"95": "soft energy",
|
155 |
+
"96": "electrical and nuclear industries",
|
156 |
+
"97": "EU finance",
|
157 |
+
"98": "EU institutions and European civil service",
|
158 |
+
"99": "European construction"
|
159 |
+
},
|
160 |
+
"ignore_attention_mask": false,
|
161 |
+
"initializer_range": 0.02,
|
162 |
+
"intermediate_size": 3072,
|
163 |
+
"label2id": {
|
164 |
+
"Africa": 111,
|
165 |
+
"America": 114,
|
166 |
+
"Asia and Oceania": 116,
|
167 |
+
"EU finance": 97,
|
168 |
+
"EU institutions and European civil service": 98,
|
169 |
+
"Europe": 113,
|
170 |
+
"European Union law": 100,
|
171 |
+
"European construction": 99,
|
172 |
+
"European organisations": 91,
|
173 |
+
"United Nations": 88,
|
174 |
+
"accounting": 35,
|
175 |
+
"agri-foodstuffs": 105,
|
176 |
+
"agricultural activity": 45,
|
177 |
+
"agricultural policy": 46,
|
178 |
+
"agricultural structures and production": 48,
|
179 |
+
"air and space transport": 57,
|
180 |
+
"animal product": 107,
|
181 |
+
"beverages and sugar": 103,
|
182 |
+
"budget": 22,
|
183 |
+
"building and public works": 10,
|
184 |
+
"business classification": 38,
|
185 |
+
"business organisation": 40,
|
186 |
+
"chemistry": 11,
|
187 |
+
"civil law": 75,
|
188 |
+
"coal and mining industries": 92,
|
189 |
+
"communications": 86,
|
190 |
+
"competition": 36,
|
191 |
+
"construction and town planning": 6,
|
192 |
+
"consumption": 33,
|
193 |
+
"cooperation policy": 44,
|
194 |
+
"criminal law": 78,
|
195 |
+
"cultivation of agricultural land": 49,
|
196 |
+
"culture and religion": 2,
|
197 |
+
"defence": 41,
|
198 |
+
"demography and population": 7,
|
199 |
+
"deterioration of the environment": 124,
|
200 |
+
"distributive trades": 32,
|
201 |
+
"documentation": 85,
|
202 |
+
"economic analysis": 118,
|
203 |
+
"economic conditions": 119,
|
204 |
+
"economic geography": 115,
|
205 |
+
"economic policy": 120,
|
206 |
+
"economic structure": 121,
|
207 |
+
"education": 81,
|
208 |
+
"electoral procedure and voting": 70,
|
209 |
+
"electrical and nuclear industries": 96,
|
210 |
+
"electronics and electrical engineering": 12,
|
211 |
+
"employment": 63,
|
212 |
+
"energy policy": 93,
|
213 |
+
"environmental policy": 126,
|
214 |
+
"executive power and public service": 68,
|
215 |
+
"extra-European organisations": 89,
|
216 |
+
"family": 5,
|
217 |
+
"farming systems": 52,
|
218 |
+
"financial institutions and credit": 26,
|
219 |
+
"financing and investment": 20,
|
220 |
+
"fisheries": 51,
|
221 |
+
"food technology": 109,
|
222 |
+
"foodstuff": 108,
|
223 |
+
"forestry": 47,
|
224 |
+
"free movement of capital": 19,
|
225 |
+
"health": 0,
|
226 |
+
"humanities": 101,
|
227 |
+
"industrial structures and policy": 16,
|
228 |
+
"information and information processing": 80,
|
229 |
+
"information technology and data processing": 83,
|
230 |
+
"insurance": 18,
|
231 |
+
"international affairs": 42,
|
232 |
+
"international law": 77,
|
233 |
+
"international security": 43,
|
234 |
+
"international trade": 34,
|
235 |
+
"iron, steel and other metal industries": 9,
|
236 |
+
"justice": 74,
|
237 |
+
"labour law and labour relations": 62,
|
238 |
+
"labour market": 65,
|
239 |
+
"land transport": 59,
|
240 |
+
"leather and textile industries": 17,
|
241 |
+
"legal form of organisations": 39,
|
242 |
+
"management": 37,
|
243 |
+
"maritime and inland waterway transport": 60,
|
244 |
+
"marketing": 31,
|
245 |
+
"means of agricultural production": 50,
|
246 |
+
"mechanical engineering": 15,
|
247 |
+
"migration": 4,
|
248 |
+
"miscellaneous industries": 13,
|
249 |
+
"monetary economics": 24,
|
250 |
+
"monetary relations": 27,
|
251 |
+
"national accounts": 122,
|
252 |
+
"natural and applied sciences": 102,
|
253 |
+
"natural environment": 125,
|
254 |
+
"non-governmental organisations": 90,
|
255 |
+
"oil industry": 94,
|
256 |
+
"organisation of teaching": 82,
|
257 |
+
"organisation of the legal system": 79,
|
258 |
+
"organisation of transport": 58,
|
259 |
+
"organisation of work and working conditions": 61,
|
260 |
+
"overseas countries and territories": 112,
|
261 |
+
"parliament": 67,
|
262 |
+
"parliamentary proceedings": 69,
|
263 |
+
"personnel management and staff remuneration": 64,
|
264 |
+
"plant product": 106,
|
265 |
+
"political framework": 71,
|
266 |
+
"political geography": 117,
|
267 |
+
"political party": 66,
|
268 |
+
"politics and public safety": 72,
|
269 |
+
"prices": 21,
|
270 |
+
"processed agricultural produce": 104,
|
271 |
+
"production": 53,
|
272 |
+
"public finance and budget policy": 23,
|
273 |
+
"regions and regional policy": 123,
|
274 |
+
"regions of EU Member States": 110,
|
275 |
+
"research and intellectual property": 54,
|
276 |
+
"rights and freedoms": 76,
|
277 |
+
"social affairs": 8,
|
278 |
+
"social framework": 1,
|
279 |
+
"social protection": 3,
|
280 |
+
"soft energy": 95,
|
281 |
+
"sources and branches of the law": 73,
|
282 |
+
"tariff policy": 28,
|
283 |
+
"taxation": 25,
|
284 |
+
"teaching": 84,
|
285 |
+
"technology and technical regulations": 55,
|
286 |
+
"trade": 29,
|
287 |
+
"trade policy": 30,
|
288 |
+
"transport policy": 56,
|
289 |
+
"wood industry": 14,
|
290 |
+
"world organisations": 87
|
291 |
+
},
|
292 |
+
"layer_norm_eps": 1e-05,
|
293 |
+
"max_position_embeddings": 2050,
|
294 |
+
"model_max_length": 2048,
|
295 |
+
"model_type": "longformer",
|
296 |
+
"num_attention_heads": 12,
|
297 |
+
"num_hidden_layers": 12,
|
298 |
+
"pad_token_id": 0,
|
299 |
+
"position_embedding_type": "absolute",
|
300 |
+
"problem_type": "multi_label_classification",
|
301 |
+
"sep_token_id": 2,
|
302 |
+
"torch_dtype": "float32",
|
303 |
+
"transformers_version": "4.18.0",
|
304 |
+
"type_vocab_size": 1,
|
305 |
+
"use_cache": true,
|
306 |
+
"use_spectral_decoupling": true,
|
307 |
+
"vocab_size": 32000
|
308 |
+
}
|
predict_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"predict_loss": 0.08024133741855621,
|
3 |
+
"predict_macro-f1": 0.46986770055294413,
|
4 |
+
"predict_micro-f1": 0.6993679640782279,
|
5 |
+
"predict_runtime": 86.1285,
|
6 |
+
"predict_samples": 5000,
|
7 |
+
"predict_samples_per_second": 58.053,
|
8 |
+
"predict_steps_per_second": 1.823
|
9 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:053945fba8a2787fc95f1fe319950a81247425aa27a87304be439416a4f9e1af
|
3 |
+
size 532736733
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": "<mask>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_max_length": 2048, "bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": "<mask>", "special_tokens_map_file": "data/PLMs/danish-lm/danish-lex-lm-base/special_tokens_map.json", "name_or_path": "coastalcph/danish-legal-longformer-base", "tokenizer_class": "PreTrainedTokenizerFast"}
|