Yi-34Bx2-MoE-60B / README.md
cloudyu's picture
Update README.md
d4578b6 verified
metadata
tags:
  - yi
  - moe
license: apache-2.0

UPDATE! GGUF Format is ready at cloudyu/Yi-34Bx2-MoE-60B-GGUF

Yi based MOE 2x34B with mixtral architecture

Highest score Model ranked by Open LLM Leaderboard (2024-01-11)

This is an English & Chinese MoE Model , slightly different with cloudyu/Mixtral_34Bx2_MoE_60B, and also based on

  • [jondurbin/bagel-dpo-34b-v0.2]
  • [SUSTech/SUS-Chat-34B]

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 76.72
AI2 Reasoning Challenge (25-Shot) 71.08
HellaSwag (10-Shot) 85.23
MMLU (5-Shot) 77.47
TruthfulQA (0-shot) 66.19
Winogrande (5-shot) 84.85
GSM8k (5-shot) 75.51

gpu code example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math

## v2 models
model_path = "cloudyu/Yi-34Bx2-MoE-60B"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
    model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")

  generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
  )
  print(tokenizer.decode(generation_output[0]))
  prompt = input("please input prompt:")

CPU example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math

## v2 models
model_path = "cloudyu/Yi-34Bx2-MoE-60B"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
        model_path, torch_dtype=torch.bfloat16, device_map='cpu'
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids

  generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
  )
  print(tokenizer.decode(generation_output[0]))
  prompt = input("please input prompt:")