File size: 2,670 Bytes
483359d 62e7569 d79427f 483359d db703e0 483359d a18386b d8fa5d8 483359d d4578b6 483359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
tags:
- yi
- moe
license: apache-2.0
---
UPDATE!
GGUF Format is ready at [cloudyu/Yi-34Bx2-MoE-60B-GGUF](https://huggingface.co/cloudyu/Yi-34Bx2-MoE-60B-GGUF)
# Yi based MOE 2x34B with mixtral architecture
Highest score Model ranked by Open LLM Leaderboard (2024-01-11)
* [Average Score 76.72](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
This is an English & Chinese MoE Model , slightly different with [cloudyu/Mixtral_34Bx2_MoE_60B](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B), and also based on
* [jondurbin/bagel-dpo-34b-v0.2]
* [SUSTech/SUS-Chat-34B]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_cloudyu__Yi-34Bx2-MoE-60B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.72|
|AI2 Reasoning Challenge (25-Shot)|71.08|
|HellaSwag (10-Shot) |85.23|
|MMLU (5-Shot) |77.47|
|TruthfulQA (0-shot) |66.19|
|Winogrande (5-shot) |84.85|
|GSM8k (5-shot) |75.51|
gpu code example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Yi-34Bx2-MoE-60B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
CPU example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Yi-34Bx2-MoE-60B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.bfloat16, device_map='cpu'
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
|