metadata
license: mit
language:
- code
datasets:
- code_search_net
arxiv: 2002.08155
This is an unofficial reupload of microsoft/codebert-base-mlm in the SafeTensors
format using transformers
4.40.1
. The goal of this reupload is to prevent older models that are still relevant baselines from becoming stale as a result of changes in HuggingFace. Additionally, I may include minor corrections, such as model max length configuration.
Original model card below:
CodeBERT-base-mlm
Pretrained weights for CodeBERT: A Pre-Trained Model for Programming and Natural Languages.
Training Data
The model is trained on the code corpus of CodeSearchNet
Training Objective
This model is initialized with Roberta-base and trained with a simple MLM (Masked Language Model) objective.
Usage
from transformers import RobertaTokenizer, RobertaForMaskedLM, pipeline
model = RobertaForMaskedLM.from_pretrained('microsoft/codebert-base-mlm')
tokenizer = RobertaTokenizer.from_pretrained('microsoft/codebert-base-mlm')
code_example = "if (x is not None) <mask> (x>1)"
fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer)
outputs = fill_mask(code_example)
print(outputs)
Expected results:
{'sequence': '<s> if (x is not None) and (x>1)</s>', 'score': 0.6049249172210693, 'token': 8}
{'sequence': '<s> if (x is not None) or (x>1)</s>', 'score': 0.30680200457572937, 'token': 50}
{'sequence': '<s> if (x is not None) if (x>1)</s>', 'score': 0.02133703976869583, 'token': 114}
{'sequence': '<s> if (x is not None) then (x>1)</s>', 'score': 0.018607674166560173, 'token': 172}
{'sequence': '<s> if (x is not None) AND (x>1)</s>', 'score': 0.007619690150022507, 'token': 4248}
Reference
- Bimodal CodeBERT trained with MLM+RTD objective (suitable for code search and document generation)
- 🤗 Hugging Face's CodeBERTa (small size, 6 layers)
Citation
@misc{feng2020codebert,
title={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},
author={Zhangyin Feng and Daya Guo and Duyu Tang and Nan Duan and Xiaocheng Feng and Ming Gong and Linjun Shou and Bing Qin and Ting Liu and Daxin Jiang and Ming Zhou},
year={2020},
eprint={2002.08155},
archivePrefix={arXiv},
primaryClass={cs.CL}
}