Edit model card

This is an unofficial reupload of microsoft/codebert-base-mlm in the SafeTensors format using transformers 4.41.1. The goal of this reupload is to prevent older models that are still relevant baselines from becoming stale as a result of changes in HuggingFace. Additionally, I may include minor corrections, such as model max length configuration.

Original model card below:


CodeBERT-base-mlm

Pretrained weights for CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

Training Data

The model is trained on the code corpus of CodeSearchNet

Training Objective

This model is initialized with Roberta-base and trained with a simple MLM (Masked Language Model) objective.

Usage

from transformers import RobertaTokenizer, RobertaForMaskedLM, pipeline

model = RobertaForMaskedLM.from_pretrained('microsoft/codebert-base-mlm')
tokenizer = RobertaTokenizer.from_pretrained('microsoft/codebert-base-mlm')

code_example = "if (x is not None) <mask> (x>1)"
fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer)

outputs = fill_mask(code_example)
print(outputs)

Expected results:

{'sequence': '<s> if (x is not None) and (x>1)</s>', 'score': 0.6049249172210693, 'token': 8}
{'sequence': '<s> if (x is not None) or (x>1)</s>', 'score': 0.30680200457572937, 'token': 50}
{'sequence': '<s> if (x is not None) if (x>1)</s>', 'score': 0.02133703976869583, 'token': 114}
{'sequence': '<s> if (x is not None) then (x>1)</s>', 'score': 0.018607674166560173, 'token': 172}
{'sequence': '<s> if (x is not None) AND (x>1)</s>', 'score': 0.007619690150022507, 'token': 4248}

Reference

  1. Bimodal CodeBERT trained with MLM+RTD objective (suitable for code search and document generation)
  2. 🤗 Hugging Face's CodeBERTa (small size, 6 layers)

Citation

@misc{feng2020codebert,
    title={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},
    author={Zhangyin Feng and Daya Guo and Duyu Tang and Nan Duan and Xiaocheng Feng and Ming Gong and Linjun Shou and Bing Qin and Ting Liu and Daxin Jiang and Ming Zhou},
    year={2020},
    eprint={2002.08155},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
6
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train claudios/codebert-base-mlm