|
--- |
|
language: pl |
|
license: mit |
|
tags: |
|
- ner |
|
datasets: |
|
- clarin-pl/kpwr-ner |
|
metrics: |
|
- f1 |
|
- accuracy |
|
- precision |
|
- recall |
|
widget: |
|
- text: "Nazywam się Jan Kowalski i mieszkam we Wrocławiu." |
|
example_title: "Example" |
|
--- |
|
|
|
# FastPDN |
|
|
|
FastPolDeepNer is a model designed for easy use, training and configuration. The forerunner of this project is [PolDeepNer2](https://gitlab.clarin-pl.eu/information-extraction/poldeepner2). The model implements a pipeline consisting of data processing and training using: hydra, pytorch, pytorch-lightning, transformers. |
|
|
|
## How to use |
|
|
|
Here is how to use this model to get the Named Entities in text: |
|
|
|
```python |
|
from transformers import pipeline |
|
ner = pipeline('ner', model='clarin-pl/FastPDN') |
|
|
|
text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu." |
|
ner_results = ner(text) |
|
for output in ner_results: |
|
print(output) |
|
|
|
{'entity': 'B-nam_liv_person', 'score': 0.99957544, 'index': 4, 'word': 'Jan</w>', 'start': 12, 'end': 15} |
|
{'entity': 'I-nam_liv_person', 'score': 0.99963534, 'index': 5, 'word': 'Kowalski</w>', 'start': 16, 'end': 24} |
|
{'entity': 'B-nam_loc_gpe_city', 'score': 0.998931, 'index': 9, 'word': 'Wrocławiu</w>', 'start': 39, 'end': 48} |
|
``` |
|
|
|
Here is how to use this model to get the logits for every token in text: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("clarin-pl/FastPDN") |
|
model = AutoModelForTokenClassification.from_pretrained("clarin-pl/FastPDN") |
|
|
|
text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu." |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
``` |
|
|
|
### Developing |
|
|
|
Model pipeline consists of 2 steps: |
|
|
|
- Data processing |
|
- Training |
|
- (optional) Share model to Hugginface Hub |
|
|
|
#### Config |
|
|
|
This project use hydra configuration. Every configuration used in this module |
|
is placed in `.yaml` files in `config` directory. |
|
|
|
This directory has structure: |
|
|
|
- prepare_data.yaml - main configuration for the data processing stage |
|
- train.yaml - main configuration for the training stage |
|
- share_mode.yaml - main configuraion for sharing model to Huggingface Hub |
|
- callbacks - contains callbacks for pytorch_lightning trainer |
|
- default.yaml |
|
- early_stopping.yaml |
|
- learning_rate_monitor.yaml |
|
- model_checkpoint.yaml |
|
- rich_progress_bar.yaml |
|
- datamodule - contains pytorch_lightning datamodule configuration |
|
- pdn.yaml |
|
- experiment - contains all the configurations of executed experiments |
|
- hydra - hydra configuration files |
|
- loggers - contains loggers for trainer |
|
- csv.yaml |
|
- many_loggers.yaml |
|
- tensorboards.yaml |
|
- wandb.yaml |
|
- model - contains model architecture hyperparameters |
|
- default.yaml |
|
- distiluse.yaml |
|
- custom_classification_head.yaml |
|
- multilabel.yaml |
|
- paths - contains paths for IO |
|
- prepare_data - contains configuration for data processing stage |
|
- cen_n82 |
|
- default |
|
- trainer - contains trainer configurations |
|
- default.yaml |
|
- cpu.yaml |
|
- gpu.yaml |
|
|
|
#### Training |
|
|
|
1. Install requirements with poetry |
|
|
|
``` |
|
poetry install |
|
``` |
|
|
|
2. Use poetry environment in next steps |
|
|
|
``` |
|
poetry shell |
|
``` |
|
|
|
or |
|
|
|
``` |
|
poetry run <command> |
|
``` |
|
|
|
3. Prepare dataset |
|
|
|
``` |
|
python3 src/prepare_data.py experiment=<experiment-name> |
|
``` |
|
|
|
4. Train model |
|
|
|
``` |
|
CUDA_VISIBLE_DEVICES=<device-id> python3 src/train.py experiment=<experiment-name> |
|
``` |
|
|
|
5. (optional) Share model to Huggingface Hub |
|
|
|
``` |
|
python3 src/share_model.py |
|
``` |
|
|
|
## Evaluation |
|
|
|
Runs trained on `cen_n82` and `kpwr_n82`: |
|
| name |test/f1|test/pdn2_f1|test/acc|test/precision|test/recall| |
|
|---------|-------|------------|--------|--------------|-----------| |
|
|distiluse| 0.53 | 0.61 | 0.95 | 0.55 | 0.54 | |
|
| herbert | 0.68 | 0.78 | 0.97 | 0.7 | 0.69 | |
|
|
|
Runs trained and validated only on `cen_n82`: |
|
| name |test/f1|test/pdn2_f1|test/acc|test/precision|test/recall| |
|
|----------------|-------|------------|--------|--------------|-----------| |
|
| distiluse_cen | 0.58 | 0.7 | 0.96 | 0.6 | 0.59 | |
|
|herbert_cen_bs32| 0.71 | 0.84 | 0.97 | 0.72 | 0.72 | |
|
| herbert_cen | 0.72 | 0.84 | 0.97 | 0.73 | 0.73 | |
|
|
|
Detailed results for `herbert`: |
|
| tag | f1 |precision|recall|support| |
|
|-------------------------|----|---------|------|-------| |
|
| nam_eve_human_cultural |0.65| 0.53 | 0.83 | 88 | |
|
| nam_pro_title_document |0.87| 0.82 | 0.92 | 50 | |
|
| nam_loc_gpe_country |0.82| 0.76 | 0.9 | 258 | |
|
| nam_oth_www |0.71| 0.85 | 0.61 | 18 | |
|
| nam_liv_person |0.94| 0.89 | 1.0 | 8 | |
|
| nam_adj_country |0.44| 0.42 | 0.46 | 94 | |
|
| nam_org_institution |0.15| 0.16 | 0.14 | 22 | |
|
| nam_loc_land_continent | 0.5| 0.57 | 0.44 | 9 | |
|
| nam_org_organization |0.64| 0.59 | 0.71 | 58 | |
|
| nam_liv_god |0.13| 0.09 | 0.25 | 4 | |
|
| nam_loc_gpe_city |0.56| 0.51 | 0.62 | 87 | |
|
| nam_org_company | 0.0| 0.0 | 0.0 | 4 | |
|
| nam_oth_currency |0.71| 0.86 | 0.6 | 10 | |
|
| nam_org_group_team |0.87| 0.79 | 0.96 | 106 | |
|
| nam_fac_road |0.67| 0.67 | 0.67 | 6 | |
|
| nam_fac_park |0.39| 0.7 | 0.27 | 26 | |
|
| nam_pro_title_tv |0.17| 1.0 | 0.09 | 11 | |
|
| nam_loc_gpe_admin3 |0.91| 0.97 | 0.86 | 35 | |
|
| nam_adj |0.47| 0.5 | 0.44 | 9 | |
|
| nam_loc_gpe_admin1 |0.92| 0.91 | 0.93 | 1146 | |
|
| nam_oth_tech | 0.0| 0.0 | 0.0 | 4 | |
|
| nam_pro_brand |0.93| 0.88 | 1.0 | 14 | |
|
| nam_fac_goe | 0.1| 0.07 | 0.14 | 7 | |
|
| nam_eve_human |0.76| 0.73 | 0.78 | 74 | |
|
| nam_pro_vehicle |0.81| 0.79 | 0.83 | 36 | |
|
| nam_oth | 0.8| 0.82 | 0.79 | 47 | |
|
| nam_org_nation |0.85| 0.87 | 0.84 | 516 | |
|
| nam_pro_media_periodic |0.95| 0.94 | 0.96 | 603 | |
|
| nam_adj_city |0.43| 0.39 | 0.47 | 19 | |
|
| nam_oth_position |0.56| 0.54 | 0.58 | 26 | |
|
| nam_pro_title |0.63| 0.68 | 0.59 | 22 | |
|
| nam_pro_media_tv |0.29| 0.2 | 0.5 | 2 | |
|
| nam_fac_system |0.29| 0.2 | 0.5 | 2 | |
|
| nam_eve_human_holiday | 1.0| 1.0 | 1.0 | 2 | |
|
| nam_loc_gpe_admin2 |0.83| 0.91 | 0.76 | 51 | |
|
| nam_adj_person |0.86| 0.75 | 1.0 | 3 | |
|
| nam_pro_software |0.67| 1.0 | 0.5 | 2 | |
|
| nam_num_house |0.88| 0.9 | 0.86 | 43 | |
|
| nam_pro_media_web |0.32| 0.43 | 0.25 | 12 | |
|
| nam_org_group | 0.5| 0.45 | 0.56 | 9 | |
|
| nam_loc_hydronym_river |0.67| 0.61 | 0.74 | 19 | |
|
| nam_liv_animal |0.88| 0.79 | 1.0 | 11 | |
|
| nam_pro_award | 0.8| 1.0 | 0.67 | 3 | |
|
| nam_pro |0.82| 0.8 | 0.83 | 243 | |
|
| nam_org_political_party |0.34| 0.38 | 0.32 | 19 | |
|
| nam_eve_human_sport |0.65| 0.73 | 0.58 | 19 | |
|
| nam_pro_title_book |0.94| 0.93 | 0.95 | 149 | |
|
| nam_org_group_band |0.74| 0.73 | 0.75 | 359 | |
|
| nam_oth_data_format |0.82| 0.88 | 0.76 | 88 | |
|
| nam_loc_astronomical |0.75| 0.72 | 0.79 | 341 | |
|
| nam_loc_hydronym_sea | 0.4| 1.0 | 0.25 | 4 | |
|
| nam_loc_land_mountain |0.95| 0.96 | 0.95 | 74 | |
|
| nam_loc_land_island |0.55| 0.52 | 0.59 | 46 | |
|
| nam_num_phone |0.91| 0.91 | 0.91 | 137 | |
|
| nam_pro_model_car |0.56| 0.64 | 0.5 | 14 | |
|
| nam_loc_land_region |0.52| 0.5 | 0.55 | 11 | |
|
| nam_liv_habitant |0.38| 0.29 | 0.54 | 13 | |
|
| nam_eve |0.47| 0.38 | 0.61 | 85 | |
|
| nam_loc_historical_region|0.44| 0.8 | 0.31 | 26 | |
|
| nam_fac_bridge |0.33| 0.26 | 0.46 | 24 | |
|
| nam_oth_license |0.65| 0.74 | 0.58 | 24 | |
|
| nam_pro_media |0.33| 0.32 | 0.35 | 52 | |
|
| nam_loc_gpe_subdivision | 0.0| 0.0 | 0.0 | 9 | |
|
| nam_loc_gpe_district |0.84| 0.86 | 0.81 | 108 | |
|
| nam_loc |0.67| 0.6 | 0.75 | 4 | |
|
| nam_pro_software_game |0.75| 0.61 | 0.95 | 20 | |
|
| nam_pro_title_album | 0.6| 0.56 | 0.65 | 52 | |
|
| nam_loc_country_region |0.81| 0.74 | 0.88 | 26 | |
|
| nam_pro_title_song |0.52| 0.6 | 0.45 | 111 | |
|
| nam_org_organization_sub| 0.0| 0.0 | 0.0 | 3 | |
|
| nam_loc_land | 0.4| 0.31 | 0.56 | 36 | |
|
| nam_fac_square | 0.5| 0.6 | 0.43 | 7 | |
|
| nam_loc_hydronym |0.67| 0.56 | 0.82 | 11 | |
|
| nam_loc_hydronym_lake |0.51| 0.44 | 0.61 | 96 | |
|
| nam_fac_goe_stop |0.35| 0.3 | 0.43 | 7 | |
|
| nam_pro_media_radio | 0.0| 0.0 | 0.0 | 2 | |
|
| nam_pro_title_treaty | 0.3| 0.56 | 0.21 | 24 | |
|
| nam_loc_hydronym_ocean |0.35| 0.38 | 0.33 | 33 | |
|
|
|
To see all the experiments and graphs head over to wandb - https://wandb.ai/clarin-pl/FastPDN |
|
|
|
## Authors |
|
|
|
- Grupa Wieszcze CLARIN-PL |
|
|
|
## Contact |
|
|
|
- Norbert Ropiak ([email protected]) |
|
|