File size: 7,902 Bytes
18726e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
---
language: pl
license: mit
tags:
- ner
datasets:
- clarin-pl/kpwr-ner
metrics:
- f1
- accuracy
- precision
- recall
widget:
- text: "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
example_title: "Example"
---
# FastPDN
FastPolDeepNer is a model designed for easy use, training and configuration. The forerunner of this project is [PolDeepNer2](https://gitlab.clarin-pl.eu/information-extraction/poldeepner2). The model implements a pipeline consisting of data processing and training using: hydra, pytorch, pytorch-lightning, transformers.
## How to use
Here is how to use this model to get the Named Entities in text:
```python
from transformers import pipeline
ner = pipeline('ner', model='clarin-pl/FastPDN')
text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
ner_results = ner(text)
for output in ner_results:
print(output)
{'entity': 'B-nam_liv_person', 'score': 0.99957544, 'index': 4, 'word': 'Jan</w>', 'start': 12, 'end': 15}
{'entity': 'I-nam_liv_person', 'score': 0.99963534, 'index': 5, 'word': 'Kowalski</w>', 'start': 16, 'end': 24}
{'entity': 'B-nam_loc_gpe_city', 'score': 0.998931, 'index': 9, 'word': 'Wrocławiu</w>', 'start': 39, 'end': 48}
```
Here is how to use this model to get the logits for every token in text:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("clarin-pl/FastPDN")
model = AutoModelForTokenClassification.from_pretrained("clarin-pl/FastPDN")
text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
### Developing
Model pipeline consists of 2 steps:
- Data processing
- Training
- (optional) Share model to Hugginface Hub
#### Config
This project use hydra configuration. Every configuration used in this module
is placed in `.yaml` files in `config` directory.
This directory has structure:
- prepare_data.yaml - main configuration for the data processing stage
- train.yaml - main configuration for the training stage
- share_mode.yaml - main configuraion for sharing model to Huggingface Hub
- callbacks - contains callbacks for pytorch_lightning trainer
- default.yaml
- early_stopping.yaml
- learning_rate_monitor.yaml
- model_checkpoint.yaml
- rich_progress_bar.yaml
- datamodule - contains pytorch_lightning datamodule configuration
- pdn.yaml
- experiment - contains all the configurations of executed experiments
- hydra - hydra configuration files
- loggers - contains loggers for trainer
- csv.yaml
- many_loggers.yaml
- tensorboards.yaml
- wandb.yaml
- model - contains model architecture hyperparameters
- default.yaml
- distiluse.yaml
- custom_classification_head.yaml
- multilabel.yaml
- paths - contains paths for IO
- prepare_data - contains configuration for data processing stage
- cen_n82
- default
- trainer - contains trainer configurations
- default.yaml
- cpu.yaml
- gpu.yaml
#### Training
1. Install requirements with poetry
```
poetry install
```
2. Use poetry environment in next steps
```
poetry shell
```
or
```
poetry run <command>
```
3. Prepare dataset
```
python3 src/prepare_data.py experiment=<experiment-name>
```
4. Train model
```
CUDA_VISIBLE_DEVICES=<device-id> python3 src/train.py experiment=<experiment-name>
```
5. (optional) Share model to Huggingface Hub
```
python3 src/share_model.py
```
## Evaluation
Runs trained on `cen_n82` and `kpwr_n82`:
| name |test/f1|test/pdn2_f1|test/acc|test/precision|test/recall|
|---------|-------|------------|--------|--------------|-----------|
|distiluse| 0.53 | 0.61 | 0.95 | 0.55 | 0.54 |
| herbert | 0.68 | 0.78 | 0.97 | 0.7 | 0.69 |
Runs trained and validated only on `cen_n82`:
| name |test/f1|test/pdn2_f1|test/acc|test/precision|test/recall|
|----------------|-------|------------|--------|--------------|-----------|
| distiluse_cen | 0.58 | 0.7 | 0.96 | 0.6 | 0.59 |
|herbert_cen_bs32| 0.71 | 0.84 | 0.97 | 0.72 | 0.72 |
| herbert_cen | 0.72 | 0.84 | 0.97 | 0.73 | 0.73 |
Detailed results for `herbert`:
| tag | f1 |precision|recall|support|
|-------------------------|----|---------|------|-------|
| nam_eve_human_cultural |0.65| 0.53 | 0.83 | 88 |
| nam_pro_title_document |0.87| 0.82 | 0.92 | 50 |
| nam_loc_gpe_country |0.82| 0.76 | 0.9 | 258 |
| nam_oth_www |0.71| 0.85 | 0.61 | 18 |
| nam_liv_person |0.94| 0.89 | 1.0 | 8 |
| nam_adj_country |0.44| 0.42 | 0.46 | 94 |
| nam_org_institution |0.15| 0.16 | 0.14 | 22 |
| nam_loc_land_continent | 0.5| 0.57 | 0.44 | 9 |
| nam_org_organization |0.64| 0.59 | 0.71 | 58 |
| nam_liv_god |0.13| 0.09 | 0.25 | 4 |
| nam_loc_gpe_city |0.56| 0.51 | 0.62 | 87 |
| nam_org_company | 0.0| 0.0 | 0.0 | 4 |
| nam_oth_currency |0.71| 0.86 | 0.6 | 10 |
| nam_org_group_team |0.87| 0.79 | 0.96 | 106 |
| nam_fac_road |0.67| 0.67 | 0.67 | 6 |
| nam_fac_park |0.39| 0.7 | 0.27 | 26 |
| nam_pro_title_tv |0.17| 1.0 | 0.09 | 11 |
| nam_loc_gpe_admin3 |0.91| 0.97 | 0.86 | 35 |
| nam_adj |0.47| 0.5 | 0.44 | 9 |
| nam_loc_gpe_admin1 |0.92| 0.91 | 0.93 | 1146 |
| nam_oth_tech | 0.0| 0.0 | 0.0 | 4 |
| nam_pro_brand |0.93| 0.88 | 1.0 | 14 |
| nam_fac_goe | 0.1| 0.07 | 0.14 | 7 |
| nam_eve_human |0.76| 0.73 | 0.78 | 74 |
| nam_pro_vehicle |0.81| 0.79 | 0.83 | 36 |
| nam_oth | 0.8| 0.82 | 0.79 | 47 |
| nam_org_nation |0.85| 0.87 | 0.84 | 516 |
| nam_pro_media_periodic |0.95| 0.94 | 0.96 | 603 |
| nam_adj_city |0.43| 0.39 | 0.47 | 19 |
| nam_oth_position |0.56| 0.54 | 0.58 | 26 |
| nam_pro_title |0.63| 0.68 | 0.59 | 22 |
| nam_pro_media_tv |0.29| 0.2 | 0.5 | 2 |
| nam_fac_system |0.29| 0.2 | 0.5 | 2 |
| nam_eve_human_holiday | 1.0| 1.0 | 1.0 | 2 |
| nam_loc_gpe_admin2 |0.83| 0.91 | 0.76 | 51 |
| nam_adj_person |0.86| 0.75 | 1.0 | 3 |
| nam_pro_software |0.67| 1.0 | 0.5 | 2 |
| nam_num_house |0.88| 0.9 | 0.86 | 43 |
| nam_pro_media_web |0.32| 0.43 | 0.25 | 12 |
| nam_org_group | 0.5| 0.45 | 0.56 | 9 |
| nam_loc_hydronym_river |0.67| 0.61 | 0.74 | 19 |
| nam_liv_animal |0.88| 0.79 | 1.0 | 11 |
| nam_pro_award | 0.8| 1.0 | 0.67 | 3 |
| nam_pro |0.82| 0.8 | 0.83 | 243 |
| nam_org_political_party |0.34| 0.38 | 0.32 | 19 |
| nam_eve_human_sport |0.65| 0.73 | 0.58 | 19 |
| nam_pro_title_book |0.94| 0.93 | 0.95 | 149 |
| nam_org_group_band |0.74| 0.73 | 0.75 | 359 |
| nam_oth_data_format |0.82| 0.88 | 0.76 | 88 |
| nam_loc_astronomical |0.75| 0.72 | 0.79 | 341 |
| nam_loc_hydronym_sea | 0.4| 1.0 | 0.25 | 4 |
| nam_loc_land_mountain |0.95| 0.96 | 0.95 | 74 |
| nam_loc_land_island |0.55| 0.52 | 0.59 | 46 |
| nam_num_phone |0.91| 0.91 | 0.91 | 137 |
| nam_pro_model_car |0.56| 0.64 | 0.5 | 14 |
| nam_loc_land_region |0.52| 0.5 | 0.55 | 11 |
| nam_liv_habitant |0.38| 0.29 | 0.54 | 13 |
| nam_eve |0.47| 0.38 | 0.61 | 85 |
| nam_loc_historical_region|0.44| 0.8 | 0.31 | 26 |
| nam_fac_bridge |0.33| 0.26 | 0.46 | 24 |
| nam_oth_license |0.65| 0.74 | 0.58 | 24 |
| nam_pro_media |0.33| 0.32 | 0.35 | 52 |
| nam_loc_gpe_subdivision | 0.0| 0.0 | 0.0 | 9 |
| nam_loc_gpe_district |0.84| 0.86 | 0.81 | 108 |
| nam_loc |0.67| 0.6 | 0.75 | 4 |
| nam_pro_software_game |0.75| 0.61 | 0.95 | 20 |
| nam_pro_title_album | 0.6| 0.56 | 0.65 | 52 |
| nam_loc_country_region |0.81| 0.74 | 0.88 | 26 |
| nam_pro_title_song |0.52| 0.6 | 0.45 | 111 |
| nam_org_organization_sub| 0.0| 0.0 | 0.0 | 3 |
| nam_loc_land | 0.4| 0.31 | 0.56 | 36 |
| nam_fac_square | 0.5| 0.6 | 0.43 | 7 |
| nam_loc_hydronym |0.67| 0.56 | 0.82 | 11 |
| nam_loc_hydronym_lake |0.51| 0.44 | 0.61 | 96 |
| nam_fac_goe_stop |0.35| 0.3 | 0.43 | 7 |
| nam_pro_media_radio | 0.0| 0.0 | 0.0 | 2 |
| nam_pro_title_treaty | 0.3| 0.56 | 0.21 | 24 |
| nam_loc_hydronym_ocean |0.35| 0.38 | 0.33 | 33 |
To see all the experiments and graphs head over to wandb - https://wandb.ai/clarin-pl/FastPDN
## Authors
- Grupa Wieszcze CLARIN-PL
## Contact
- Norbert Ropiak ([email protected])
|