|
--- |
|
license: apache-2.0 |
|
base_model: Helsinki-NLP/opus-mt-ko-en |
|
tags: |
|
- translation |
|
- generated_from_trainer |
|
datasets: |
|
- kde4 |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: kd4_opus-mt-ko-en |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: kde4 |
|
type: kde4 |
|
config: en-ko |
|
split: train |
|
args: en-ko |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 32.11616746914562 |
|
--- |
|
|
|
# kd4_opus-mt-ko-en |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on the kde4 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3924 |
|
- Bleu: 32.1162 |
|
|
|
See [translation_ko_en.ipynb](https://github.com/chunwoolee0/ko-nlp/blob/main/translation_ko_en.ipynb) |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Usage |
|
|
|
You can use this model directly with a pipeline for translation language modeling: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> translator = pipeline('translation',model='chunwoolee0/kd4_opus-mt-ko-e') |
|
>>> translator("μ μ¬ μμ¬ νμ μ°μ±
κ°μ.") |
|
|
|
[{'translation_text': "Let's go for a walk after noon."}] |
|
|
|
>>> translator("μ΄ κ°μ’λ νκΉ
νμ΄μ€κ° λ§λ κ±°μΌ.") |
|
[{'translation_text': 'This is a course by Huggingspace.'}] |
|
|
|
>>> translator("μ€λμ λ¦κ² μΌμ΄λ¬λ€.") |
|
[{'translation_text': "I'm up late today."}] |
|
``` |
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
Step Training Loss |
|
500 1.858500 |
|
1000 1.781400 |
|
1500 1.715200 |
|
2000 1.678100 |
|
2500 1.546600 |
|
3000 1.488700 |
|
3500 1.503500 |
|
4000 1.455100 |
|
4500 1.419100 |
|
5000 1.393400 |
|
5500 1.357100 |
|
6000 1.339400 |
|
TrainOutput(global_step=6474, training_loss=1.532715692246148, |
|
metrics={'train_runtime': 1035.7775, 'train_samples_per_second': 199.957, |
|
'train_steps_per_second': 6.25, 'total_flos': 2551308264603648.0, |
|
'train_loss': 1.532715692246148, 'epoch': 3.0}) |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|