File size: 2,407 Bytes
f683442 1804523 f683442 3818623 76b599f 3818623 76b599f 3818623 f683442 3818623 f683442 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-ko-en
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: kd4_opus-mt-ko-en
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
config: en-ko
split: train
args: en-ko
metrics:
- name: Bleu
type: bleu
value: 32.11616746914562
---
# kd4_opus-mt-ko-en
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3924
- Bleu: 32.1162
See [translation_ko_en.ipynb](https://github.com/chunwoolee0/ko-nlp/blob/main/translation_ko_en.ipynb)
## Model description
More information needed
## Intended uses & limitations
More information needed
## Usage
You can use this model directly with a pipeline for translation language modeling:
```python
>>> from transformers import pipeline
>>> translator = pipeline('translation',model='chunwoolee0/kd4_opus-mt-ko-e')
>>> translator("์ ์ฌ ์์ฌ ํ์ ์ฐ์ฑ
๊ฐ์.")
[{'translation_text': "Let's go for a walk after noon."}]
>>> translator("์ด ๊ฐ์ข๋ ํ๊น
ํ์ด์ค๊ฐ ๋ง๋ ๊ฑฐ์ผ.")
[{'translation_text': 'This is a course by Huggingspace.'}]
>>> translator("์ค๋์ ๋ฆ๊ฒ ์ผ์ด๋ฌ๋ค.")
[{'translation_text': "I'm up late today."}]
```
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
Step Training Loss
500 1.858500
1000 1.781400
1500 1.715200
2000 1.678100
2500 1.546600
3000 1.488700
3500 1.503500
4000 1.455100
4500 1.419100
5000 1.393400
5500 1.357100
6000 1.339400
TrainOutput(global_step=6474, training_loss=1.532715692246148,
metrics={'train_runtime': 1035.7775, 'train_samples_per_second': 199.957,
'train_steps_per_second': 6.25, 'total_flos': 2551308264603648.0,
'train_loss': 1.532715692246148, 'epoch': 3.0})
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|