output / README.md
chethan999's picture
chethan999/legal-bert-v1
5e97822
metadata
license: apache-2.0
base_model: bert-large-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: output
    results: []

output

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8310
  • Accuracy: 0.7919
  • Precision: 0.8030
  • Recall: 0.7919
  • F1: 0.7889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 495 1.0327 0.7253 0.7362 0.7253 0.7090
1.68 2.0 990 0.8310 0.7919 0.8030 0.7919 0.7889
0.8242 3.0 1485 0.8599 0.8091 0.8106 0.8091 0.8013
0.6748 4.0 1980 0.8628 0.8263 0.8125 0.8263 0.8158
0.4822 5.0 2475 1.0139 0.8162 0.8065 0.8162 0.8070
0.3781 6.0 2970 1.0535 0.8081 0.8013 0.8081 0.8011
0.3832 7.0 3465 1.1459 0.8081 0.8039 0.8081 0.8034
0.3101 8.0 3960 1.3831 0.7788 0.8079 0.7788 0.7847
0.2665 9.0 4455 1.2051 0.8222 0.8263 0.8222 0.8197
0.2286 10.0 4950 1.4487 0.7980 0.8064 0.7980 0.7962
0.2163 11.0 5445 1.4848 0.8121 0.8240 0.8121 0.8123
0.1965 12.0 5940 1.4572 0.7919 0.8051 0.7919 0.7919

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Tokenizers 0.15.0