output
This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8310
- Accuracy: 0.7919
- Precision: 0.8030
- Recall: 0.7919
- F1: 0.7889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 495 | 1.0327 | 0.7253 | 0.7362 | 0.7253 | 0.7090 |
1.68 | 2.0 | 990 | 0.8310 | 0.7919 | 0.8030 | 0.7919 | 0.7889 |
0.8242 | 3.0 | 1485 | 0.8599 | 0.8091 | 0.8106 | 0.8091 | 0.8013 |
0.6748 | 4.0 | 1980 | 0.8628 | 0.8263 | 0.8125 | 0.8263 | 0.8158 |
0.4822 | 5.0 | 2475 | 1.0139 | 0.8162 | 0.8065 | 0.8162 | 0.8070 |
0.3781 | 6.0 | 2970 | 1.0535 | 0.8081 | 0.8013 | 0.8081 | 0.8011 |
0.3832 | 7.0 | 3465 | 1.1459 | 0.8081 | 0.8039 | 0.8081 | 0.8034 |
0.3101 | 8.0 | 3960 | 1.3831 | 0.7788 | 0.8079 | 0.7788 | 0.7847 |
0.2665 | 9.0 | 4455 | 1.2051 | 0.8222 | 0.8263 | 0.8222 | 0.8197 |
0.2286 | 10.0 | 4950 | 1.4487 | 0.7980 | 0.8064 | 0.7980 | 0.7962 |
0.2163 | 11.0 | 5445 | 1.4848 | 0.8121 | 0.8240 | 0.8121 | 0.8123 |
0.1965 | 12.0 | 5940 | 1.4572 | 0.7919 | 0.8051 | 0.7919 | 0.7919 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Tokenizers 0.15.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for chethan999/output
Base model
google-bert/bert-large-uncased