metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
"Die selbsternannten Klimaretter von der Letzten Generation haben wieder
einmal den Verkehr in der Stadt lahmgelegt und tausende Pendler in den
Morgenstau getrieben."
- text: >-
Trotz der teils massiven Behinderungen des öffentlichen Straßenverkehrs
durch Aktionen, wie dem Aufkleben von Straßen oder dem Blockieren von
Straßenkreuzungen, zeigte sich, dass ein Teil der Bevölkerung, die die
Demonstrationen beobachtete, die Aktionen der Klima-Aktivisten
unterstützt.
- text: >-
"Die selbsternannten Klimahelden von Fridays for Future und der Letzten
Generation haben wieder einmal für Chaos auf Deutschlands Straßen gesorgt
und dabei nicht nur den Verkehrslärm, sondern auch die Geduld der Bürger
zum Kochen gebracht."
- text: ' Die Einführung von Wärmepumpen durch das neue Heizungsgesetz ist ein wichtiger Schritt zur Reduzierung des CO2-Ausstoßes und zur Förderung nachhaltiger Energiequellen.'
- text: ' "Ein nationales Tempolimit auf Autobahnen wäre ein weiterer Schritt in Richtung eines überregulierten Staates, der den Bürgern ihre Freiheit stückweise entreißt."'
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.956989247311828
name: Accuracy
SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
neutral |
|
supportive |
|
opposed |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9570 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cbpuschmann/MiniLM-klimacoder_v0.6")
# Run inference
preds = model(" \"Ein nationales Tempolimit auf Autobahnen wäre ein weiterer Schritt in Richtung eines überregulierten Staates, der den Bürgern ihre Freiheit stückweise entreißt.\"")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 10 | 25.7025 | 53 |
Label | Training Sample Count |
---|---|
neutral | 318 |
opposed | 388 |
supportive | 410 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.2339 | - |
0.0019 | 50 | 0.2439 | - |
0.0039 | 100 | 0.2407 | - |
0.0058 | 150 | 0.2295 | - |
0.0078 | 200 | 0.2123 | - |
0.0097 | 250 | 0.1903 | - |
0.0116 | 300 | 0.153 | - |
0.0136 | 350 | 0.1322 | - |
0.0155 | 400 | 0.116 | - |
0.0174 | 450 | 0.0937 | - |
0.0194 | 500 | 0.0721 | - |
0.0213 | 550 | 0.0525 | - |
0.0233 | 600 | 0.0388 | - |
0.0252 | 650 | 0.0338 | - |
0.0271 | 700 | 0.026 | - |
0.0291 | 750 | 0.0224 | - |
0.0310 | 800 | 0.0122 | - |
0.0329 | 850 | 0.0088 | - |
0.0349 | 900 | 0.0079 | - |
0.0368 | 950 | 0.0055 | - |
0.0388 | 1000 | 0.004 | - |
0.0407 | 1050 | 0.0027 | - |
0.0426 | 1100 | 0.0025 | - |
0.0446 | 1150 | 0.0019 | - |
0.0465 | 1200 | 0.0014 | - |
0.0484 | 1250 | 0.0013 | - |
0.0504 | 1300 | 0.0006 | - |
0.0523 | 1350 | 0.0012 | - |
0.0543 | 1400 | 0.0006 | - |
0.0562 | 1450 | 0.0004 | - |
0.0581 | 1500 | 0.0003 | - |
0.0601 | 1550 | 0.0003 | - |
0.0620 | 1600 | 0.0003 | - |
0.0639 | 1650 | 0.0002 | - |
0.0659 | 1700 | 0.0007 | - |
0.0678 | 1750 | 0.0002 | - |
0.0698 | 1800 | 0.0002 | - |
0.0717 | 1850 | 0.0002 | - |
0.0736 | 1900 | 0.0003 | - |
0.0756 | 1950 | 0.0002 | - |
0.0775 | 2000 | 0.0001 | - |
0.0794 | 2050 | 0.0001 | - |
0.0814 | 2100 | 0.0001 | - |
0.0833 | 2150 | 0.0001 | - |
0.0853 | 2200 | 0.0008 | - |
0.0872 | 2250 | 0.0007 | - |
0.0891 | 2300 | 0.0007 | - |
0.0911 | 2350 | 0.0002 | - |
0.0930 | 2400 | 0.0001 | - |
0.0950 | 2450 | 0.0001 | - |
0.0969 | 2500 | 0.0014 | - |
0.0988 | 2550 | 0.0008 | - |
0.1008 | 2600 | 0.0009 | - |
0.1027 | 2650 | 0.0006 | - |
0.1046 | 2700 | 0.0008 | - |
0.1066 | 2750 | 0.0001 | - |
0.1085 | 2800 | 0.0 | - |
0.1105 | 2850 | 0.0 | - |
0.1124 | 2900 | 0.0 | - |
0.1143 | 2950 | 0.0 | - |
0.1163 | 3000 | 0.0 | - |
0.1182 | 3050 | 0.0 | - |
0.1201 | 3100 | 0.0 | - |
0.1221 | 3150 | 0.0 | - |
0.1240 | 3200 | 0.0 | - |
0.1260 | 3250 | 0.0 | - |
0.1279 | 3300 | 0.0 | - |
0.1298 | 3350 | 0.0 | - |
0.1318 | 3400 | 0.0 | - |
0.1337 | 3450 | 0.0 | - |
0.1356 | 3500 | 0.0 | - |
0.1376 | 3550 | 0.0 | - |
0.1395 | 3600 | 0.0 | - |
0.1415 | 3650 | 0.0 | - |
0.1434 | 3700 | 0.0 | - |
0.1453 | 3750 | 0.0 | - |
0.1473 | 3800 | 0.0 | - |
0.1492 | 3850 | 0.0 | - |
0.1511 | 3900 | 0.0 | - |
0.1531 | 3950 | 0.0 | - |
0.1550 | 4000 | 0.001 | - |
0.1570 | 4050 | 0.0012 | - |
0.1589 | 4100 | 0.0042 | - |
0.1608 | 4150 | 0.0023 | - |
0.1628 | 4200 | 0.001 | - |
0.1647 | 4250 | 0.001 | - |
0.1666 | 4300 | 0.0001 | - |
0.1686 | 4350 | 0.0 | - |
0.1705 | 4400 | 0.0 | - |
0.1725 | 4450 | 0.0 | - |
0.1744 | 4500 | 0.0 | - |
0.1763 | 4550 | 0.0003 | - |
0.1783 | 4600 | 0.0 | - |
0.1802 | 4650 | 0.0 | - |
0.1821 | 4700 | 0.0005 | - |
0.1841 | 4750 | 0.0009 | - |
0.1860 | 4800 | 0.0001 | - |
0.1880 | 4850 | 0.0 | - |
0.1899 | 4900 | 0.0 | - |
0.1918 | 4950 | 0.0 | - |
0.1938 | 5000 | 0.0 | - |
0.1957 | 5050 | 0.0 | - |
0.1977 | 5100 | 0.0 | - |
0.1996 | 5150 | 0.0 | - |
0.2015 | 5200 | 0.0 | - |
0.2035 | 5250 | 0.0 | - |
0.2054 | 5300 | 0.0 | - |
0.2073 | 5350 | 0.0 | - |
0.2093 | 5400 | 0.0 | - |
0.2112 | 5450 | 0.0 | - |
0.2132 | 5500 | 0.0 | - |
0.2151 | 5550 | 0.0 | - |
0.2170 | 5600 | 0.0 | - |
0.2190 | 5650 | 0.0 | - |
0.2209 | 5700 | 0.0 | - |
0.2228 | 5750 | 0.0 | - |
0.2248 | 5800 | 0.0 | - |
0.2267 | 5850 | 0.0 | - |
0.2287 | 5900 | 0.0 | - |
0.2306 | 5950 | 0.0 | - |
0.2325 | 6000 | 0.0 | - |
0.2345 | 6050 | 0.0 | - |
0.2364 | 6100 | 0.0 | - |
0.2383 | 6150 | 0.0 | - |
0.2403 | 6200 | 0.0 | - |
0.2422 | 6250 | 0.0 | - |
0.2442 | 6300 | 0.0 | - |
0.2461 | 6350 | 0.0 | - |
0.2480 | 6400 | 0.0 | - |
0.2500 | 6450 | 0.0 | - |
0.2519 | 6500 | 0.0 | - |
0.2538 | 6550 | 0.0 | - |
0.2558 | 6600 | 0.0 | - |
0.2577 | 6650 | 0.0 | - |
0.2597 | 6700 | 0.0 | - |
0.2616 | 6750 | 0.0 | - |
0.2635 | 6800 | 0.0 | - |
0.2655 | 6850 | 0.0 | - |
0.2674 | 6900 | 0.0 | - |
0.2693 | 6950 | 0.0 | - |
0.2713 | 7000 | 0.0 | - |
0.2732 | 7050 | 0.0 | - |
0.2752 | 7100 | 0.0 | - |
0.2771 | 7150 | 0.0 | - |
0.2790 | 7200 | 0.0 | - |
0.2810 | 7250 | 0.0 | - |
0.2829 | 7300 | 0.0 | - |
0.2849 | 7350 | 0.0 | - |
0.2868 | 7400 | 0.0 | - |
0.2887 | 7450 | 0.0 | - |
0.2907 | 7500 | 0.0 | - |
0.2926 | 7550 | 0.0 | - |
0.2945 | 7600 | 0.0 | - |
0.2965 | 7650 | 0.0 | - |
0.2984 | 7700 | 0.0 | - |
0.3004 | 7750 | 0.0 | - |
0.3023 | 7800 | 0.0 | - |
0.3042 | 7850 | 0.0 | - |
0.3062 | 7900 | 0.0 | - |
0.3081 | 7950 | 0.0 | - |
0.3100 | 8000 | 0.0 | - |
0.3120 | 8050 | 0.0 | - |
0.3139 | 8100 | 0.0 | - |
0.3159 | 8150 | 0.0 | - |
0.3178 | 8200 | 0.0 | - |
0.3197 | 8250 | 0.0 | - |
0.3217 | 8300 | 0.0 | - |
0.3236 | 8350 | 0.0 | - |
0.3255 | 8400 | 0.0 | - |
0.3275 | 8450 | 0.0 | - |
0.3294 | 8500 | 0.0 | - |
0.3314 | 8550 | 0.0 | - |
0.3333 | 8600 | 0.0 | - |
0.3352 | 8650 | 0.0 | - |
0.3372 | 8700 | 0.0 | - |
0.3391 | 8750 | 0.0 | - |
0.3410 | 8800 | 0.0 | - |
0.3430 | 8850 | 0.0 | - |
0.3449 | 8900 | 0.0 | - |
0.3469 | 8950 | 0.0 | - |
0.3488 | 9000 | 0.0 | - |
0.3507 | 9050 | 0.0 | - |
0.3527 | 9100 | 0.0 | - |
0.3546 | 9150 | 0.0 | - |
0.3565 | 9200 | 0.0042 | - |
0.3585 | 9250 | 0.0083 | - |
0.3604 | 9300 | 0.0071 | - |
0.3624 | 9350 | 0.0011 | - |
0.3643 | 9400 | 0.0008 | - |
0.3662 | 9450 | 0.001 | - |
0.3682 | 9500 | 0.0006 | - |
0.3701 | 9550 | 0.0 | - |
0.3720 | 9600 | 0.0 | - |
0.3740 | 9650 | 0.0004 | - |
0.3759 | 9700 | 0.0 | - |
0.3779 | 9750 | 0.0 | - |
0.3798 | 9800 | 0.0 | - |
0.3817 | 9850 | 0.0 | - |
0.3837 | 9900 | 0.0 | - |
0.3856 | 9950 | 0.0 | - |
0.3876 | 10000 | 0.0 | - |
0.3895 | 10050 | 0.0 | - |
0.3914 | 10100 | 0.0 | - |
0.3934 | 10150 | 0.0 | - |
0.3953 | 10200 | 0.0 | - |
0.3972 | 10250 | 0.0 | - |
0.3992 | 10300 | 0.0 | - |
0.4011 | 10350 | 0.0 | - |
0.4031 | 10400 | 0.0 | - |
0.4050 | 10450 | 0.0 | - |
0.4069 | 10500 | 0.0 | - |
0.4089 | 10550 | 0.0 | - |
0.4108 | 10600 | 0.0 | - |
0.4127 | 10650 | 0.0 | - |
0.4147 | 10700 | 0.0 | - |
0.4166 | 10750 | 0.0 | - |
0.4186 | 10800 | 0.0 | - |
0.4205 | 10850 | 0.0 | - |
0.4224 | 10900 | 0.0 | - |
0.4244 | 10950 | 0.0 | - |
0.4263 | 11000 | 0.0 | - |
0.4282 | 11050 | 0.0 | - |
0.4302 | 11100 | 0.0 | - |
0.4321 | 11150 | 0.0 | - |
0.4341 | 11200 | 0.0 | - |
0.4360 | 11250 | 0.0 | - |
0.4379 | 11300 | 0.0 | - |
0.4399 | 11350 | 0.0 | - |
0.4418 | 11400 | 0.0 | - |
0.4437 | 11450 | 0.0 | - |
0.4457 | 11500 | 0.0 | - |
0.4476 | 11550 | 0.0 | - |
0.4496 | 11600 | 0.0 | - |
0.4515 | 11650 | 0.0 | - |
0.4534 | 11700 | 0.0 | - |
0.4554 | 11750 | 0.0 | - |
0.4573 | 11800 | 0.0 | - |
0.4592 | 11850 | 0.0 | - |
0.4612 | 11900 | 0.0 | - |
0.4631 | 11950 | 0.0 | - |
0.4651 | 12000 | 0.0 | - |
0.4670 | 12050 | 0.0 | - |
0.4689 | 12100 | 0.0 | - |
0.4709 | 12150 | 0.0 | - |
0.4728 | 12200 | 0.0 | - |
0.4748 | 12250 | 0.0 | - |
0.4767 | 12300 | 0.0 | - |
0.4786 | 12350 | 0.0 | - |
0.4806 | 12400 | 0.0 | - |
0.4825 | 12450 | 0.0 | - |
0.4844 | 12500 | 0.0 | - |
0.4864 | 12550 | 0.0 | - |
0.4883 | 12600 | 0.0 | - |
0.4903 | 12650 | 0.0 | - |
0.4922 | 12700 | 0.0 | - |
0.4941 | 12750 | 0.0 | - |
0.4961 | 12800 | 0.0 | - |
0.4980 | 12850 | 0.0 | - |
0.4999 | 12900 | 0.0 | - |
0.5019 | 12950 | 0.0 | - |
0.5038 | 13000 | 0.0 | - |
0.5058 | 13050 | 0.0 | - |
0.5077 | 13100 | 0.0 | - |
0.5096 | 13150 | 0.0 | - |
0.5116 | 13200 | 0.0 | - |
0.5135 | 13250 | 0.0 | - |
0.5154 | 13300 | 0.0 | - |
0.5174 | 13350 | 0.0 | - |
0.5193 | 13400 | 0.0 | - |
0.5213 | 13450 | 0.0 | - |
0.5232 | 13500 | 0.0 | - |
0.5251 | 13550 | 0.0 | - |
0.5271 | 13600 | 0.0 | - |
0.5290 | 13650 | 0.0 | - |
0.5309 | 13700 | 0.0 | - |
0.5329 | 13750 | 0.0 | - |
0.5348 | 13800 | 0.0 | - |
0.5368 | 13850 | 0.0 | - |
0.5387 | 13900 | 0.0 | - |
0.5406 | 13950 | 0.0 | - |
0.5426 | 14000 | 0.0 | - |
0.5445 | 14050 | 0.0 | - |
0.5464 | 14100 | 0.0 | - |
0.5484 | 14150 | 0.0 | - |
0.5503 | 14200 | 0.0 | - |
0.5523 | 14250 | 0.0 | - |
0.5542 | 14300 | 0.0 | - |
0.5561 | 14350 | 0.0 | - |
0.5581 | 14400 | 0.0 | - |
0.5600 | 14450 | 0.0 | - |
0.5620 | 14500 | 0.0 | - |
0.5639 | 14550 | 0.0 | - |
0.5658 | 14600 | 0.0 | - |
0.5678 | 14650 | 0.0 | - |
0.5697 | 14700 | 0.0 | - |
0.5716 | 14750 | 0.0 | - |
0.5736 | 14800 | 0.0 | - |
0.5755 | 14850 | 0.0 | - |
0.5775 | 14900 | 0.0 | - |
0.5794 | 14950 | 0.0 | - |
0.5813 | 15000 | 0.0 | - |
0.5833 | 15050 | 0.0 | - |
0.5852 | 15100 | 0.0 | - |
0.5871 | 15150 | 0.0 | - |
0.5891 | 15200 | 0.0 | - |
0.5910 | 15250 | 0.0 | - |
0.5930 | 15300 | 0.0 | - |
0.5949 | 15350 | 0.0 | - |
0.5968 | 15400 | 0.0 | - |
0.5988 | 15450 | 0.0 | - |
0.6007 | 15500 | 0.0 | - |
0.6026 | 15550 | 0.0 | - |
0.6046 | 15600 | 0.0 | - |
0.6065 | 15650 | 0.0 | - |
0.6085 | 15700 | 0.0 | - |
0.6104 | 15750 | 0.0 | - |
0.6123 | 15800 | 0.0 | - |
0.6143 | 15850 | 0.0 | - |
0.6162 | 15900 | 0.0 | - |
0.6181 | 15950 | 0.0 | - |
0.6201 | 16000 | 0.0 | - |
0.6220 | 16050 | 0.0 | - |
0.6240 | 16100 | 0.0 | - |
0.6259 | 16150 | 0.0 | - |
0.6278 | 16200 | 0.0 | - |
0.6298 | 16250 | 0.0 | - |
0.6317 | 16300 | 0.0 | - |
0.6336 | 16350 | 0.0 | - |
0.6356 | 16400 | 0.0 | - |
0.6375 | 16450 | 0.0 | - |
0.6395 | 16500 | 0.0 | - |
0.6414 | 16550 | 0.0 | - |
0.6433 | 16600 | 0.0 | - |
0.6453 | 16650 | 0.0 | - |
0.6472 | 16700 | 0.0 | - |
0.6491 | 16750 | 0.0 | - |
0.6511 | 16800 | 0.0 | - |
0.6530 | 16850 | 0.0 | - |
0.6550 | 16900 | 0.0 | - |
0.6569 | 16950 | 0.0 | - |
0.6588 | 17000 | 0.0 | - |
0.6608 | 17050 | 0.0 | - |
0.6627 | 17100 | 0.0 | - |
0.6647 | 17150 | 0.0 | - |
0.6666 | 17200 | 0.0 | - |
0.6685 | 17250 | 0.0 | - |
0.6705 | 17300 | 0.0 | - |
0.6724 | 17350 | 0.0 | - |
0.6743 | 17400 | 0.0 | - |
0.6763 | 17450 | 0.0 | - |
0.6782 | 17500 | 0.0 | - |
0.6802 | 17550 | 0.0 | - |
0.6821 | 17600 | 0.0 | - |
0.6840 | 17650 | 0.0 | - |
0.6860 | 17700 | 0.0 | - |
0.6879 | 17750 | 0.0 | - |
0.6898 | 17800 | 0.0 | - |
0.6918 | 17850 | 0.0 | - |
0.6937 | 17900 | 0.0 | - |
0.6957 | 17950 | 0.0 | - |
0.6976 | 18000 | 0.0 | - |
0.6995 | 18050 | 0.0 | - |
0.7015 | 18100 | 0.0 | - |
0.7034 | 18150 | 0.0 | - |
0.7053 | 18200 | 0.0 | - |
0.7073 | 18250 | 0.0 | - |
0.7092 | 18300 | 0.0 | - |
0.7112 | 18350 | 0.0 | - |
0.7131 | 18400 | 0.0 | - |
0.7150 | 18450 | 0.0 | - |
0.7170 | 18500 | 0.0 | - |
0.7189 | 18550 | 0.0 | - |
0.7208 | 18600 | 0.0 | - |
0.7228 | 18650 | 0.0 | - |
0.7247 | 18700 | 0.0 | - |
0.7267 | 18750 | 0.0 | - |
0.7286 | 18800 | 0.0 | - |
0.7305 | 18850 | 0.0 | - |
0.7325 | 18900 | 0.0 | - |
0.7344 | 18950 | 0.0 | - |
0.7363 | 19000 | 0.0 | - |
0.7383 | 19050 | 0.0 | - |
0.7402 | 19100 | 0.0 | - |
0.7422 | 19150 | 0.0 | - |
0.7441 | 19200 | 0.0 | - |
0.7460 | 19250 | 0.0 | - |
0.7480 | 19300 | 0.0 | - |
0.7499 | 19350 | 0.0 | - |
0.7519 | 19400 | 0.0 | - |
0.7538 | 19450 | 0.0 | - |
0.7557 | 19500 | 0.0 | - |
0.7577 | 19550 | 0.0 | - |
0.7596 | 19600 | 0.0 | - |
0.7615 | 19650 | 0.0 | - |
0.7635 | 19700 | 0.0 | - |
0.7654 | 19750 | 0.0 | - |
0.7674 | 19800 | 0.0 | - |
0.7693 | 19850 | 0.0 | - |
0.7712 | 19900 | 0.0 | - |
0.7732 | 19950 | 0.0 | - |
0.7751 | 20000 | 0.0 | - |
0.7770 | 20050 | 0.0 | - |
0.7790 | 20100 | 0.0 | - |
0.7809 | 20150 | 0.0 | - |
0.7829 | 20200 | 0.0 | - |
0.7848 | 20250 | 0.0 | - |
0.7867 | 20300 | 0.0 | - |
0.7887 | 20350 | 0.0 | - |
0.7906 | 20400 | 0.0 | - |
0.7925 | 20450 | 0.0 | - |
0.7945 | 20500 | 0.0 | - |
0.7964 | 20550 | 0.0 | - |
0.7984 | 20600 | 0.0 | - |
0.8003 | 20650 | 0.0 | - |
0.8022 | 20700 | 0.0 | - |
0.8042 | 20750 | 0.0 | - |
0.8061 | 20800 | 0.0 | - |
0.8080 | 20850 | 0.0 | - |
0.8100 | 20900 | 0.0 | - |
0.8119 | 20950 | 0.0 | - |
0.8139 | 21000 | 0.0 | - |
0.8158 | 21050 | 0.0 | - |
0.8177 | 21100 | 0.0 | - |
0.8197 | 21150 | 0.0 | - |
0.8216 | 21200 | 0.0 | - |
0.8235 | 21250 | 0.0 | - |
0.8255 | 21300 | 0.0 | - |
0.8274 | 21350 | 0.0 | - |
0.8294 | 21400 | 0.0 | - |
0.8313 | 21450 | 0.0 | - |
0.8332 | 21500 | 0.0 | - |
0.8352 | 21550 | 0.0 | - |
0.8371 | 21600 | 0.0 | - |
0.8390 | 21650 | 0.0 | - |
0.8410 | 21700 | 0.0 | - |
0.8429 | 21750 | 0.0 | - |
0.8449 | 21800 | 0.0 | - |
0.8468 | 21850 | 0.0 | - |
0.8487 | 21900 | 0.0 | - |
0.8507 | 21950 | 0.0 | - |
0.8526 | 22000 | 0.0 | - |
0.8546 | 22050 | 0.0 | - |
0.8565 | 22100 | 0.0 | - |
0.8584 | 22150 | 0.0 | - |
0.8604 | 22200 | 0.0 | - |
0.8623 | 22250 | 0.0 | - |
0.8642 | 22300 | 0.0 | - |
0.8662 | 22350 | 0.0 | - |
0.8681 | 22400 | 0.0 | - |
0.8701 | 22450 | 0.0 | - |
0.8720 | 22500 | 0.0 | - |
0.8739 | 22550 | 0.0 | - |
0.8759 | 22600 | 0.0 | - |
0.8778 | 22650 | 0.0 | - |
0.8797 | 22700 | 0.0 | - |
0.8817 | 22750 | 0.0 | - |
0.8836 | 22800 | 0.0 | - |
0.8856 | 22850 | 0.0 | - |
0.8875 | 22900 | 0.0 | - |
0.8894 | 22950 | 0.0 | - |
0.8914 | 23000 | 0.0 | - |
0.8933 | 23050 | 0.0 | - |
0.8952 | 23100 | 0.0 | - |
0.8972 | 23150 | 0.0 | - |
0.8991 | 23200 | 0.0 | - |
0.9011 | 23250 | 0.0 | - |
0.9030 | 23300 | 0.0 | - |
0.9049 | 23350 | 0.0 | - |
0.9069 | 23400 | 0.0 | - |
0.9088 | 23450 | 0.0 | - |
0.9107 | 23500 | 0.0 | - |
0.9127 | 23550 | 0.0 | - |
0.9146 | 23600 | 0.0 | - |
0.9166 | 23650 | 0.0 | - |
0.9185 | 23700 | 0.0 | - |
0.9204 | 23750 | 0.0 | - |
0.9224 | 23800 | 0.0 | - |
0.9243 | 23850 | 0.0 | - |
0.9262 | 23900 | 0.0 | - |
0.9282 | 23950 | 0.0 | - |
0.9301 | 24000 | 0.0 | - |
0.9321 | 24050 | 0.0 | - |
0.9340 | 24100 | 0.0 | - |
0.9359 | 24150 | 0.0 | - |
0.9379 | 24200 | 0.0 | - |
0.9398 | 24250 | 0.0 | - |
0.9418 | 24300 | 0.0 | - |
0.9437 | 24350 | 0.0 | - |
0.9456 | 24400 | 0.0 | - |
0.9476 | 24450 | 0.0 | - |
0.9495 | 24500 | 0.0 | - |
0.9514 | 24550 | 0.0 | - |
0.9534 | 24600 | 0.0 | - |
0.9553 | 24650 | 0.0 | - |
0.9573 | 24700 | 0.0 | - |
0.9592 | 24750 | 0.0 | - |
0.9611 | 24800 | 0.0 | - |
0.9631 | 24850 | 0.0 | - |
0.9650 | 24900 | 0.0 | - |
0.9669 | 24950 | 0.0 | - |
0.9689 | 25000 | 0.0 | - |
0.9708 | 25050 | 0.0 | - |
0.9728 | 25100 | 0.0 | - |
0.9747 | 25150 | 0.0 | - |
0.9766 | 25200 | 0.0 | - |
0.9786 | 25250 | 0.0 | - |
0.9805 | 25300 | 0.0 | - |
0.9824 | 25350 | 0.0 | - |
0.9844 | 25400 | 0.0 | - |
0.9863 | 25450 | 0.0 | - |
0.9883 | 25500 | 0.0 | - |
0.9902 | 25550 | 0.0 | - |
0.9921 | 25600 | 0.0 | - |
0.9941 | 25650 | 0.0 | - |
0.9960 | 25700 | 0.0 | - |
0.9979 | 25750 | 0.0 | - |
0.9999 | 25800 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}