--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '"Die selbsternannten Klimaretter von der Letzten Generation haben wieder einmal den Verkehr in der Stadt lahmgelegt und tausende Pendler in den Morgenstau getrieben."' - text: Trotz der teils massiven Behinderungen des öffentlichen Straßenverkehrs durch Aktionen, wie dem Aufkleben von Straßen oder dem Blockieren von Straßenkreuzungen, zeigte sich, dass ein Teil der Bevölkerung, die die Demonstrationen beobachtete, die Aktionen der Klima-Aktivisten unterstützt. - text: '"Die selbsternannten Klimahelden von Fridays for Future und der Letzten Generation haben wieder einmal für Chaos auf Deutschlands Straßen gesorgt und dabei nicht nur den Verkehrslärm, sondern auch die Geduld der Bürger zum Kochen gebracht."' - text: ' Die Einführung von Wärmepumpen durch das neue Heizungsgesetz ist ein wichtiger Schritt zur Reduzierung des CO2-Ausstoßes und zur Förderung nachhaltiger Energiequellen.' - text: ' "Ein nationales Tempolimit auf Autobahnen wäre ein weiterer Schritt in Richtung eines überregulierten Staates, der den Bürgern ihre Freiheit stückweise entreißt."' metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.956989247311828 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-----------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | neutral | | | supportive | | | opposed | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9570 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("cbpuschmann/MiniLM-klimacoder_v0.6") # Run inference preds = model(" \"Ein nationales Tempolimit auf Autobahnen wäre ein weiterer Schritt in Richtung eines überregulierten Staates, der den Bürgern ihre Freiheit stückweise entreißt.\"") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 10 | 25.7025 | 53 | | Label | Training Sample Count | |:-----------|:----------------------| | neutral | 318 | | opposed | 388 | | supportive | 410 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0000 | 1 | 0.2339 | - | | 0.0019 | 50 | 0.2439 | - | | 0.0039 | 100 | 0.2407 | - | | 0.0058 | 150 | 0.2295 | - | | 0.0078 | 200 | 0.2123 | - | | 0.0097 | 250 | 0.1903 | - | | 0.0116 | 300 | 0.153 | - | | 0.0136 | 350 | 0.1322 | - | | 0.0155 | 400 | 0.116 | - | | 0.0174 | 450 | 0.0937 | - | | 0.0194 | 500 | 0.0721 | - | | 0.0213 | 550 | 0.0525 | - | | 0.0233 | 600 | 0.0388 | - | | 0.0252 | 650 | 0.0338 | - | | 0.0271 | 700 | 0.026 | - | | 0.0291 | 750 | 0.0224 | - | | 0.0310 | 800 | 0.0122 | - | | 0.0329 | 850 | 0.0088 | - | | 0.0349 | 900 | 0.0079 | - | | 0.0368 | 950 | 0.0055 | - | | 0.0388 | 1000 | 0.004 | - | | 0.0407 | 1050 | 0.0027 | - | | 0.0426 | 1100 | 0.0025 | - | | 0.0446 | 1150 | 0.0019 | - | | 0.0465 | 1200 | 0.0014 | - | | 0.0484 | 1250 | 0.0013 | - | | 0.0504 | 1300 | 0.0006 | - | | 0.0523 | 1350 | 0.0012 | - | | 0.0543 | 1400 | 0.0006 | - | | 0.0562 | 1450 | 0.0004 | - | | 0.0581 | 1500 | 0.0003 | - | | 0.0601 | 1550 | 0.0003 | - | | 0.0620 | 1600 | 0.0003 | - | | 0.0639 | 1650 | 0.0002 | - | | 0.0659 | 1700 | 0.0007 | - | | 0.0678 | 1750 | 0.0002 | - | | 0.0698 | 1800 | 0.0002 | - | | 0.0717 | 1850 | 0.0002 | - | | 0.0736 | 1900 | 0.0003 | - | | 0.0756 | 1950 | 0.0002 | - | | 0.0775 | 2000 | 0.0001 | - | | 0.0794 | 2050 | 0.0001 | - | | 0.0814 | 2100 | 0.0001 | - | | 0.0833 | 2150 | 0.0001 | - | | 0.0853 | 2200 | 0.0008 | - | | 0.0872 | 2250 | 0.0007 | - | | 0.0891 | 2300 | 0.0007 | - | | 0.0911 | 2350 | 0.0002 | - | | 0.0930 | 2400 | 0.0001 | - | | 0.0950 | 2450 | 0.0001 | - | | 0.0969 | 2500 | 0.0014 | - | | 0.0988 | 2550 | 0.0008 | - | | 0.1008 | 2600 | 0.0009 | - | | 0.1027 | 2650 | 0.0006 | - | | 0.1046 | 2700 | 0.0008 | - | | 0.1066 | 2750 | 0.0001 | - | | 0.1085 | 2800 | 0.0 | - | | 0.1105 | 2850 | 0.0 | - | | 0.1124 | 2900 | 0.0 | - | | 0.1143 | 2950 | 0.0 | - | | 0.1163 | 3000 | 0.0 | - | | 0.1182 | 3050 | 0.0 | - | | 0.1201 | 3100 | 0.0 | - | | 0.1221 | 3150 | 0.0 | - | | 0.1240 | 3200 | 0.0 | - | | 0.1260 | 3250 | 0.0 | - | | 0.1279 | 3300 | 0.0 | - | | 0.1298 | 3350 | 0.0 | - | | 0.1318 | 3400 | 0.0 | - | | 0.1337 | 3450 | 0.0 | - | | 0.1356 | 3500 | 0.0 | - | | 0.1376 | 3550 | 0.0 | - | | 0.1395 | 3600 | 0.0 | - | | 0.1415 | 3650 | 0.0 | - | | 0.1434 | 3700 | 0.0 | - | | 0.1453 | 3750 | 0.0 | - | | 0.1473 | 3800 | 0.0 | - | | 0.1492 | 3850 | 0.0 | - | | 0.1511 | 3900 | 0.0 | - | | 0.1531 | 3950 | 0.0 | - | | 0.1550 | 4000 | 0.001 | - | | 0.1570 | 4050 | 0.0012 | - | | 0.1589 | 4100 | 0.0042 | - | | 0.1608 | 4150 | 0.0023 | - | | 0.1628 | 4200 | 0.001 | - | | 0.1647 | 4250 | 0.001 | - | | 0.1666 | 4300 | 0.0001 | - | | 0.1686 | 4350 | 0.0 | - | | 0.1705 | 4400 | 0.0 | - | | 0.1725 | 4450 | 0.0 | - | | 0.1744 | 4500 | 0.0 | - | | 0.1763 | 4550 | 0.0003 | - | | 0.1783 | 4600 | 0.0 | - | | 0.1802 | 4650 | 0.0 | - | | 0.1821 | 4700 | 0.0005 | - | | 0.1841 | 4750 | 0.0009 | - | | 0.1860 | 4800 | 0.0001 | - | | 0.1880 | 4850 | 0.0 | - | | 0.1899 | 4900 | 0.0 | - | | 0.1918 | 4950 | 0.0 | - | | 0.1938 | 5000 | 0.0 | - | | 0.1957 | 5050 | 0.0 | - | | 0.1977 | 5100 | 0.0 | - | | 0.1996 | 5150 | 0.0 | - | | 0.2015 | 5200 | 0.0 | - | | 0.2035 | 5250 | 0.0 | - | | 0.2054 | 5300 | 0.0 | - | | 0.2073 | 5350 | 0.0 | - | | 0.2093 | 5400 | 0.0 | - | | 0.2112 | 5450 | 0.0 | - | | 0.2132 | 5500 | 0.0 | - | | 0.2151 | 5550 | 0.0 | - | | 0.2170 | 5600 | 0.0 | - | | 0.2190 | 5650 | 0.0 | - | | 0.2209 | 5700 | 0.0 | - | | 0.2228 | 5750 | 0.0 | - | | 0.2248 | 5800 | 0.0 | - | | 0.2267 | 5850 | 0.0 | - | | 0.2287 | 5900 | 0.0 | - | | 0.2306 | 5950 | 0.0 | - | | 0.2325 | 6000 | 0.0 | - | | 0.2345 | 6050 | 0.0 | - | | 0.2364 | 6100 | 0.0 | - | | 0.2383 | 6150 | 0.0 | - | | 0.2403 | 6200 | 0.0 | - | | 0.2422 | 6250 | 0.0 | - | | 0.2442 | 6300 | 0.0 | - | | 0.2461 | 6350 | 0.0 | - | | 0.2480 | 6400 | 0.0 | - | | 0.2500 | 6450 | 0.0 | - | | 0.2519 | 6500 | 0.0 | - | | 0.2538 | 6550 | 0.0 | - | | 0.2558 | 6600 | 0.0 | - | | 0.2577 | 6650 | 0.0 | - | | 0.2597 | 6700 | 0.0 | - | | 0.2616 | 6750 | 0.0 | - | | 0.2635 | 6800 | 0.0 | - | | 0.2655 | 6850 | 0.0 | - | | 0.2674 | 6900 | 0.0 | - | | 0.2693 | 6950 | 0.0 | - | | 0.2713 | 7000 | 0.0 | - | | 0.2732 | 7050 | 0.0 | - | | 0.2752 | 7100 | 0.0 | - | | 0.2771 | 7150 | 0.0 | - | | 0.2790 | 7200 | 0.0 | - | | 0.2810 | 7250 | 0.0 | - | | 0.2829 | 7300 | 0.0 | - | | 0.2849 | 7350 | 0.0 | - | | 0.2868 | 7400 | 0.0 | - | | 0.2887 | 7450 | 0.0 | - | | 0.2907 | 7500 | 0.0 | - | | 0.2926 | 7550 | 0.0 | - | | 0.2945 | 7600 | 0.0 | - | | 0.2965 | 7650 | 0.0 | - | | 0.2984 | 7700 | 0.0 | - | | 0.3004 | 7750 | 0.0 | - | | 0.3023 | 7800 | 0.0 | - | | 0.3042 | 7850 | 0.0 | - | | 0.3062 | 7900 | 0.0 | - | | 0.3081 | 7950 | 0.0 | - | | 0.3100 | 8000 | 0.0 | - | | 0.3120 | 8050 | 0.0 | - | | 0.3139 | 8100 | 0.0 | - | | 0.3159 | 8150 | 0.0 | - | | 0.3178 | 8200 | 0.0 | - | | 0.3197 | 8250 | 0.0 | - | | 0.3217 | 8300 | 0.0 | - | | 0.3236 | 8350 | 0.0 | - | | 0.3255 | 8400 | 0.0 | - | | 0.3275 | 8450 | 0.0 | - | | 0.3294 | 8500 | 0.0 | - | | 0.3314 | 8550 | 0.0 | - | | 0.3333 | 8600 | 0.0 | - | | 0.3352 | 8650 | 0.0 | - | | 0.3372 | 8700 | 0.0 | - | | 0.3391 | 8750 | 0.0 | - | | 0.3410 | 8800 | 0.0 | - | | 0.3430 | 8850 | 0.0 | - | | 0.3449 | 8900 | 0.0 | - | | 0.3469 | 8950 | 0.0 | - | | 0.3488 | 9000 | 0.0 | - | | 0.3507 | 9050 | 0.0 | - | | 0.3527 | 9100 | 0.0 | - | | 0.3546 | 9150 | 0.0 | - | | 0.3565 | 9200 | 0.0042 | - | | 0.3585 | 9250 | 0.0083 | - | | 0.3604 | 9300 | 0.0071 | - | | 0.3624 | 9350 | 0.0011 | - | | 0.3643 | 9400 | 0.0008 | - | | 0.3662 | 9450 | 0.001 | - | | 0.3682 | 9500 | 0.0006 | - | | 0.3701 | 9550 | 0.0 | - | | 0.3720 | 9600 | 0.0 | - | | 0.3740 | 9650 | 0.0004 | - | | 0.3759 | 9700 | 0.0 | - | | 0.3779 | 9750 | 0.0 | - | | 0.3798 | 9800 | 0.0 | - | | 0.3817 | 9850 | 0.0 | - | | 0.3837 | 9900 | 0.0 | - | | 0.3856 | 9950 | 0.0 | - | | 0.3876 | 10000 | 0.0 | - | | 0.3895 | 10050 | 0.0 | - | | 0.3914 | 10100 | 0.0 | - | | 0.3934 | 10150 | 0.0 | - | | 0.3953 | 10200 | 0.0 | - | | 0.3972 | 10250 | 0.0 | - | | 0.3992 | 10300 | 0.0 | - | | 0.4011 | 10350 | 0.0 | - | | 0.4031 | 10400 | 0.0 | - | | 0.4050 | 10450 | 0.0 | - | | 0.4069 | 10500 | 0.0 | - | | 0.4089 | 10550 | 0.0 | - | | 0.4108 | 10600 | 0.0 | - | | 0.4127 | 10650 | 0.0 | - | | 0.4147 | 10700 | 0.0 | - | | 0.4166 | 10750 | 0.0 | - | | 0.4186 | 10800 | 0.0 | - | | 0.4205 | 10850 | 0.0 | - | | 0.4224 | 10900 | 0.0 | - | | 0.4244 | 10950 | 0.0 | - | | 0.4263 | 11000 | 0.0 | - | | 0.4282 | 11050 | 0.0 | - | | 0.4302 | 11100 | 0.0 | - | | 0.4321 | 11150 | 0.0 | - | | 0.4341 | 11200 | 0.0 | - | | 0.4360 | 11250 | 0.0 | - | | 0.4379 | 11300 | 0.0 | - | | 0.4399 | 11350 | 0.0 | - | | 0.4418 | 11400 | 0.0 | - | | 0.4437 | 11450 | 0.0 | - | | 0.4457 | 11500 | 0.0 | - | | 0.4476 | 11550 | 0.0 | - | | 0.4496 | 11600 | 0.0 | - | | 0.4515 | 11650 | 0.0 | - | | 0.4534 | 11700 | 0.0 | - | | 0.4554 | 11750 | 0.0 | - | | 0.4573 | 11800 | 0.0 | - | | 0.4592 | 11850 | 0.0 | - | | 0.4612 | 11900 | 0.0 | - | | 0.4631 | 11950 | 0.0 | - | | 0.4651 | 12000 | 0.0 | - | | 0.4670 | 12050 | 0.0 | - | | 0.4689 | 12100 | 0.0 | - | | 0.4709 | 12150 | 0.0 | - | | 0.4728 | 12200 | 0.0 | - | | 0.4748 | 12250 | 0.0 | - | | 0.4767 | 12300 | 0.0 | - | | 0.4786 | 12350 | 0.0 | - | | 0.4806 | 12400 | 0.0 | - | | 0.4825 | 12450 | 0.0 | - | | 0.4844 | 12500 | 0.0 | - | | 0.4864 | 12550 | 0.0 | - | | 0.4883 | 12600 | 0.0 | - | | 0.4903 | 12650 | 0.0 | - | | 0.4922 | 12700 | 0.0 | - | | 0.4941 | 12750 | 0.0 | - | | 0.4961 | 12800 | 0.0 | - | | 0.4980 | 12850 | 0.0 | - | | 0.4999 | 12900 | 0.0 | - | | 0.5019 | 12950 | 0.0 | - | | 0.5038 | 13000 | 0.0 | - | | 0.5058 | 13050 | 0.0 | - | | 0.5077 | 13100 | 0.0 | - | | 0.5096 | 13150 | 0.0 | - | | 0.5116 | 13200 | 0.0 | - | | 0.5135 | 13250 | 0.0 | - | | 0.5154 | 13300 | 0.0 | - | | 0.5174 | 13350 | 0.0 | - | | 0.5193 | 13400 | 0.0 | - | | 0.5213 | 13450 | 0.0 | - | | 0.5232 | 13500 | 0.0 | - | | 0.5251 | 13550 | 0.0 | - | | 0.5271 | 13600 | 0.0 | - | | 0.5290 | 13650 | 0.0 | - | | 0.5309 | 13700 | 0.0 | - | | 0.5329 | 13750 | 0.0 | - | | 0.5348 | 13800 | 0.0 | - | | 0.5368 | 13850 | 0.0 | - | | 0.5387 | 13900 | 0.0 | - | | 0.5406 | 13950 | 0.0 | - | | 0.5426 | 14000 | 0.0 | - | | 0.5445 | 14050 | 0.0 | - | | 0.5464 | 14100 | 0.0 | - | | 0.5484 | 14150 | 0.0 | - | | 0.5503 | 14200 | 0.0 | - | | 0.5523 | 14250 | 0.0 | - | | 0.5542 | 14300 | 0.0 | - | | 0.5561 | 14350 | 0.0 | - | | 0.5581 | 14400 | 0.0 | - | | 0.5600 | 14450 | 0.0 | - | | 0.5620 | 14500 | 0.0 | - | | 0.5639 | 14550 | 0.0 | - | | 0.5658 | 14600 | 0.0 | - | | 0.5678 | 14650 | 0.0 | - | | 0.5697 | 14700 | 0.0 | - | | 0.5716 | 14750 | 0.0 | - | | 0.5736 | 14800 | 0.0 | - | | 0.5755 | 14850 | 0.0 | - | | 0.5775 | 14900 | 0.0 | - | | 0.5794 | 14950 | 0.0 | - | | 0.5813 | 15000 | 0.0 | - | | 0.5833 | 15050 | 0.0 | - | | 0.5852 | 15100 | 0.0 | - | | 0.5871 | 15150 | 0.0 | - | | 0.5891 | 15200 | 0.0 | - | | 0.5910 | 15250 | 0.0 | - | | 0.5930 | 15300 | 0.0 | - | | 0.5949 | 15350 | 0.0 | - | | 0.5968 | 15400 | 0.0 | - | | 0.5988 | 15450 | 0.0 | - | | 0.6007 | 15500 | 0.0 | - | | 0.6026 | 15550 | 0.0 | - | | 0.6046 | 15600 | 0.0 | - | | 0.6065 | 15650 | 0.0 | - | | 0.6085 | 15700 | 0.0 | - | | 0.6104 | 15750 | 0.0 | - | | 0.6123 | 15800 | 0.0 | - | | 0.6143 | 15850 | 0.0 | - | | 0.6162 | 15900 | 0.0 | - | | 0.6181 | 15950 | 0.0 | - | | 0.6201 | 16000 | 0.0 | - | | 0.6220 | 16050 | 0.0 | - | | 0.6240 | 16100 | 0.0 | - | | 0.6259 | 16150 | 0.0 | - | | 0.6278 | 16200 | 0.0 | - | | 0.6298 | 16250 | 0.0 | - | | 0.6317 | 16300 | 0.0 | - | | 0.6336 | 16350 | 0.0 | - | | 0.6356 | 16400 | 0.0 | - | | 0.6375 | 16450 | 0.0 | - | | 0.6395 | 16500 | 0.0 | - | | 0.6414 | 16550 | 0.0 | - | | 0.6433 | 16600 | 0.0 | - | | 0.6453 | 16650 | 0.0 | - | | 0.6472 | 16700 | 0.0 | - | | 0.6491 | 16750 | 0.0 | - | | 0.6511 | 16800 | 0.0 | - | | 0.6530 | 16850 | 0.0 | - | | 0.6550 | 16900 | 0.0 | - | | 0.6569 | 16950 | 0.0 | - | | 0.6588 | 17000 | 0.0 | - | | 0.6608 | 17050 | 0.0 | - | | 0.6627 | 17100 | 0.0 | - | | 0.6647 | 17150 | 0.0 | - | | 0.6666 | 17200 | 0.0 | - | | 0.6685 | 17250 | 0.0 | - | | 0.6705 | 17300 | 0.0 | - | | 0.6724 | 17350 | 0.0 | - | | 0.6743 | 17400 | 0.0 | - | | 0.6763 | 17450 | 0.0 | - | | 0.6782 | 17500 | 0.0 | - | | 0.6802 | 17550 | 0.0 | - | | 0.6821 | 17600 | 0.0 | - | | 0.6840 | 17650 | 0.0 | - | | 0.6860 | 17700 | 0.0 | - | | 0.6879 | 17750 | 0.0 | - | | 0.6898 | 17800 | 0.0 | - | | 0.6918 | 17850 | 0.0 | - | | 0.6937 | 17900 | 0.0 | - | | 0.6957 | 17950 | 0.0 | - | | 0.6976 | 18000 | 0.0 | - | | 0.6995 | 18050 | 0.0 | - | | 0.7015 | 18100 | 0.0 | - | | 0.7034 | 18150 | 0.0 | - | | 0.7053 | 18200 | 0.0 | - | | 0.7073 | 18250 | 0.0 | - | | 0.7092 | 18300 | 0.0 | - | | 0.7112 | 18350 | 0.0 | - | | 0.7131 | 18400 | 0.0 | - | | 0.7150 | 18450 | 0.0 | - | | 0.7170 | 18500 | 0.0 | - | | 0.7189 | 18550 | 0.0 | - | | 0.7208 | 18600 | 0.0 | - | | 0.7228 | 18650 | 0.0 | - | | 0.7247 | 18700 | 0.0 | - | | 0.7267 | 18750 | 0.0 | - | | 0.7286 | 18800 | 0.0 | - | | 0.7305 | 18850 | 0.0 | - | | 0.7325 | 18900 | 0.0 | - | | 0.7344 | 18950 | 0.0 | - | | 0.7363 | 19000 | 0.0 | - | | 0.7383 | 19050 | 0.0 | - | | 0.7402 | 19100 | 0.0 | - | | 0.7422 | 19150 | 0.0 | - | | 0.7441 | 19200 | 0.0 | - | | 0.7460 | 19250 | 0.0 | - | | 0.7480 | 19300 | 0.0 | - | | 0.7499 | 19350 | 0.0 | - | | 0.7519 | 19400 | 0.0 | - | | 0.7538 | 19450 | 0.0 | - | | 0.7557 | 19500 | 0.0 | - | | 0.7577 | 19550 | 0.0 | - | | 0.7596 | 19600 | 0.0 | - | | 0.7615 | 19650 | 0.0 | - | | 0.7635 | 19700 | 0.0 | - | | 0.7654 | 19750 | 0.0 | - | | 0.7674 | 19800 | 0.0 | - | | 0.7693 | 19850 | 0.0 | - | | 0.7712 | 19900 | 0.0 | - | | 0.7732 | 19950 | 0.0 | - | | 0.7751 | 20000 | 0.0 | - | | 0.7770 | 20050 | 0.0 | - | | 0.7790 | 20100 | 0.0 | - | | 0.7809 | 20150 | 0.0 | - | | 0.7829 | 20200 | 0.0 | - | | 0.7848 | 20250 | 0.0 | - | | 0.7867 | 20300 | 0.0 | - | | 0.7887 | 20350 | 0.0 | - | | 0.7906 | 20400 | 0.0 | - | | 0.7925 | 20450 | 0.0 | - | | 0.7945 | 20500 | 0.0 | - | | 0.7964 | 20550 | 0.0 | - | | 0.7984 | 20600 | 0.0 | - | | 0.8003 | 20650 | 0.0 | - | | 0.8022 | 20700 | 0.0 | - | | 0.8042 | 20750 | 0.0 | - | | 0.8061 | 20800 | 0.0 | - | | 0.8080 | 20850 | 0.0 | - | | 0.8100 | 20900 | 0.0 | - | | 0.8119 | 20950 | 0.0 | - | | 0.8139 | 21000 | 0.0 | - | | 0.8158 | 21050 | 0.0 | - | | 0.8177 | 21100 | 0.0 | - | | 0.8197 | 21150 | 0.0 | - | | 0.8216 | 21200 | 0.0 | - | | 0.8235 | 21250 | 0.0 | - | | 0.8255 | 21300 | 0.0 | - | | 0.8274 | 21350 | 0.0 | - | | 0.8294 | 21400 | 0.0 | - | | 0.8313 | 21450 | 0.0 | - | | 0.8332 | 21500 | 0.0 | - | | 0.8352 | 21550 | 0.0 | - | | 0.8371 | 21600 | 0.0 | - | | 0.8390 | 21650 | 0.0 | - | | 0.8410 | 21700 | 0.0 | - | | 0.8429 | 21750 | 0.0 | - | | 0.8449 | 21800 | 0.0 | - | | 0.8468 | 21850 | 0.0 | - | | 0.8487 | 21900 | 0.0 | - | | 0.8507 | 21950 | 0.0 | - | | 0.8526 | 22000 | 0.0 | - | | 0.8546 | 22050 | 0.0 | - | | 0.8565 | 22100 | 0.0 | - | | 0.8584 | 22150 | 0.0 | - | | 0.8604 | 22200 | 0.0 | - | | 0.8623 | 22250 | 0.0 | - | | 0.8642 | 22300 | 0.0 | - | | 0.8662 | 22350 | 0.0 | - | | 0.8681 | 22400 | 0.0 | - | | 0.8701 | 22450 | 0.0 | - | | 0.8720 | 22500 | 0.0 | - | | 0.8739 | 22550 | 0.0 | - | | 0.8759 | 22600 | 0.0 | - | | 0.8778 | 22650 | 0.0 | - | | 0.8797 | 22700 | 0.0 | - | | 0.8817 | 22750 | 0.0 | - | | 0.8836 | 22800 | 0.0 | - | | 0.8856 | 22850 | 0.0 | - | | 0.8875 | 22900 | 0.0 | - | | 0.8894 | 22950 | 0.0 | - | | 0.8914 | 23000 | 0.0 | - | | 0.8933 | 23050 | 0.0 | - | | 0.8952 | 23100 | 0.0 | - | | 0.8972 | 23150 | 0.0 | - | | 0.8991 | 23200 | 0.0 | - | | 0.9011 | 23250 | 0.0 | - | | 0.9030 | 23300 | 0.0 | - | | 0.9049 | 23350 | 0.0 | - | | 0.9069 | 23400 | 0.0 | - | | 0.9088 | 23450 | 0.0 | - | | 0.9107 | 23500 | 0.0 | - | | 0.9127 | 23550 | 0.0 | - | | 0.9146 | 23600 | 0.0 | - | | 0.9166 | 23650 | 0.0 | - | | 0.9185 | 23700 | 0.0 | - | | 0.9204 | 23750 | 0.0 | - | | 0.9224 | 23800 | 0.0 | - | | 0.9243 | 23850 | 0.0 | - | | 0.9262 | 23900 | 0.0 | - | | 0.9282 | 23950 | 0.0 | - | | 0.9301 | 24000 | 0.0 | - | | 0.9321 | 24050 | 0.0 | - | | 0.9340 | 24100 | 0.0 | - | | 0.9359 | 24150 | 0.0 | - | | 0.9379 | 24200 | 0.0 | - | | 0.9398 | 24250 | 0.0 | - | | 0.9418 | 24300 | 0.0 | - | | 0.9437 | 24350 | 0.0 | - | | 0.9456 | 24400 | 0.0 | - | | 0.9476 | 24450 | 0.0 | - | | 0.9495 | 24500 | 0.0 | - | | 0.9514 | 24550 | 0.0 | - | | 0.9534 | 24600 | 0.0 | - | | 0.9553 | 24650 | 0.0 | - | | 0.9573 | 24700 | 0.0 | - | | 0.9592 | 24750 | 0.0 | - | | 0.9611 | 24800 | 0.0 | - | | 0.9631 | 24850 | 0.0 | - | | 0.9650 | 24900 | 0.0 | - | | 0.9669 | 24950 | 0.0 | - | | 0.9689 | 25000 | 0.0 | - | | 0.9708 | 25050 | 0.0 | - | | 0.9728 | 25100 | 0.0 | - | | 0.9747 | 25150 | 0.0 | - | | 0.9766 | 25200 | 0.0 | - | | 0.9786 | 25250 | 0.0 | - | | 0.9805 | 25300 | 0.0 | - | | 0.9824 | 25350 | 0.0 | - | | 0.9844 | 25400 | 0.0 | - | | 0.9863 | 25450 | 0.0 | - | | 0.9883 | 25500 | 0.0 | - | | 0.9902 | 25550 | 0.0 | - | | 0.9921 | 25600 | 0.0 | - | | 0.9941 | 25650 | 0.0 | - | | 0.9960 | 25700 | 0.0 | - | | 0.9979 | 25750 | 0.0 | - | | 0.9999 | 25800 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.42.2 - PyTorch: 2.5.1+cu121 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```