carolinetfls's picture
update model card README.md
b7b24ab
|
raw
history blame
2.59 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: plant-seedlings-model-beit
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8968565815324165
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# plant-seedlings-model-beit
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3466
- Accuracy: 0.8969
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.4966 | 0.8 | 100 | 1.2583 | 0.5909 |
| 0.8239 | 1.6 | 200 | 0.9266 | 0.6979 |
| 0.7583 | 2.4 | 300 | 0.6527 | 0.7834 |
| 0.5222 | 3.2 | 400 | 0.5186 | 0.8035 |
| 0.5233 | 4.0 | 500 | 0.5527 | 0.8060 |
| 0.516 | 4.8 | 600 | 0.5558 | 0.8148 |
| 0.4848 | 5.6 | 700 | 0.4780 | 0.8409 |
| 0.1949 | 6.4 | 800 | 0.5876 | 0.8320 |
| 0.2581 | 7.2 | 900 | 0.4364 | 0.8482 |
| 0.2748 | 8.0 | 1000 | 0.3565 | 0.8777 |
| 0.2973 | 8.8 | 1100 | 0.4623 | 0.8615 |
| 0.1655 | 9.6 | 1200 | 0.3700 | 0.8875 |
| 0.1744 | 10.4 | 1300 | 0.3751 | 0.8905 |
| 0.3044 | 11.2 | 1400 | 0.3799 | 0.8919 |
| 0.0981 | 12.0 | 1500 | 0.3466 | 0.8969 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3