carolinetfls commited on
Commit
b7b24ab
·
1 Parent(s): 3e95e7f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: plant-seedlings-model-beit
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8968565815324165
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # plant-seedlings-model-beit
31
+
32
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.3466
35
+ - Accuracy: 0.8969
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0002
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 12
61
+ - mixed_precision_training: Native AMP
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 1.4966 | 0.8 | 100 | 1.2583 | 0.5909 |
68
+ | 0.8239 | 1.6 | 200 | 0.9266 | 0.6979 |
69
+ | 0.7583 | 2.4 | 300 | 0.6527 | 0.7834 |
70
+ | 0.5222 | 3.2 | 400 | 0.5186 | 0.8035 |
71
+ | 0.5233 | 4.0 | 500 | 0.5527 | 0.8060 |
72
+ | 0.516 | 4.8 | 600 | 0.5558 | 0.8148 |
73
+ | 0.4848 | 5.6 | 700 | 0.4780 | 0.8409 |
74
+ | 0.1949 | 6.4 | 800 | 0.5876 | 0.8320 |
75
+ | 0.2581 | 7.2 | 900 | 0.4364 | 0.8482 |
76
+ | 0.2748 | 8.0 | 1000 | 0.3565 | 0.8777 |
77
+ | 0.2973 | 8.8 | 1100 | 0.4623 | 0.8615 |
78
+ | 0.1655 | 9.6 | 1200 | 0.3700 | 0.8875 |
79
+ | 0.1744 | 10.4 | 1300 | 0.3751 | 0.8905 |
80
+ | 0.3044 | 11.2 | 1400 | 0.3799 | 0.8919 |
81
+ | 0.0981 | 12.0 | 1500 | 0.3466 | 0.8969 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.28.1
87
+ - Pytorch 2.0.0+cu118
88
+ - Datasets 2.11.0
89
+ - Tokenizers 0.13.3