|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: led-base-16384-100-MDS |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# led-base-16384-100-MDS |
|
|
|
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.1425 |
|
- Rouge1: 16.7324 |
|
- Rouge2: 5.8501 |
|
- Rougel: 13.908 |
|
- Rougelsum: 13.8469 |
|
- Gen Len: 20.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 25 | 3.6187 | 15.1426 | 4.2468 | 13.4488 | 13.38 | 20.0 | |
|
| No log | 2.0 | 50 | 3.9873 | 13.4341 | 3.3283 | 10.2739 | 10.8229 | 20.0 | |
|
| No log | 3.0 | 75 | 4.0264 | 18.1891 | 5.3395 | 15.0797 | 15.3586 | 20.0 | |
|
| No log | 4.0 | 100 | 4.0929 | 17.0091 | 5.5336 | 14.4381 | 14.5149 | 19.5 | |
|
| No log | 5.0 | 125 | 4.1425 | 16.7324 | 5.8501 | 13.908 | 13.8469 | 20.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.2 |
|
- Pytorch 1.10.2 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.0 |
|
|