update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: led-base-16384-100-MDS
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# led-base-16384-100-MDS
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 4.1425
|
20 |
+
- Rouge1: 16.7324
|
21 |
+
- Rouge2: 5.8501
|
22 |
+
- Rougel: 13.908
|
23 |
+
- Rougelsum: 13.8469
|
24 |
+
- Gen Len: 20.0
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 1
|
45 |
+
- eval_batch_size: 1
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 4
|
48 |
+
- total_train_batch_size: 4
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 5
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
|
58 |
+
| No log | 1.0 | 25 | 3.6187 | 15.1426 | 4.2468 | 13.4488 | 13.38 | 20.0 |
|
59 |
+
| No log | 2.0 | 50 | 3.9873 | 13.4341 | 3.3283 | 10.2739 | 10.8229 | 20.0 |
|
60 |
+
| No log | 3.0 | 75 | 4.0264 | 18.1891 | 5.3395 | 15.0797 | 15.3586 | 20.0 |
|
61 |
+
| No log | 4.0 | 100 | 4.0929 | 17.0091 | 5.5336 | 14.4381 | 14.5149 | 19.5 |
|
62 |
+
| No log | 5.0 | 125 | 4.1425 | 16.7324 | 5.8501 | 13.908 | 13.8469 | 20.0 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.16.2
|
68 |
+
- Pytorch 1.10.2
|
69 |
+
- Datasets 1.18.3
|
70 |
+
- Tokenizers 0.11.0
|