|
--- |
|
license: apache-2.0 |
|
base_model: buianh0803/text-sum |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cnn_dailymail |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: text-sum-2 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: cnn_dailymail |
|
type: cnn_dailymail |
|
config: 3.0.0 |
|
split: test |
|
args: 3.0.0 |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.2485 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# text-sum-2 |
|
|
|
This model is a fine-tuned version of [buianh0803/text-sum](https://huggingface.co/buianh0803/text-sum) on the cnn_dailymail dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6574 |
|
- Rouge1: 0.2485 |
|
- Rouge2: 0.1188 |
|
- Rougel: 0.2056 |
|
- Rougelsum: 0.2056 |
|
- Gen Len: 18.9991 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 1.7956 | 1.0 | 17945 | 1.6629 | 0.2481 | 0.1182 | 0.2053 | 0.2054 | 18.999 | |
|
| 1.7865 | 2.0 | 35890 | 1.6576 | 0.2479 | 0.1181 | 0.2049 | 0.205 | 18.9987 | |
|
| 1.7697 | 3.0 | 53835 | 1.6574 | 0.2485 | 0.1188 | 0.2056 | 0.2056 | 18.9991 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|