text-sum-2

This model is a fine-tuned version of buianh0803/text-sum on the cnn_dailymail dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6574
  • Rouge1: 0.2485
  • Rouge2: 0.1188
  • Rougel: 0.2056
  • Rougelsum: 0.2056
  • Gen Len: 18.9991

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.7956 1.0 17945 1.6629 0.2481 0.1182 0.2053 0.2054 18.999
1.7865 2.0 35890 1.6576 0.2479 0.1181 0.2049 0.205 18.9987
1.7697 3.0 53835 1.6574 0.2485 0.1188 0.2056 0.2056 18.9991

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
19
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for buianh0803/text-sum-2

Base model

google-t5/t5-small
Finetuned
(1)
this model
Finetunes
1 model

Dataset used to train buianh0803/text-sum-2

Evaluation results