|
Hugging Face's logo |
|
Hugging Face |
|
Search models, datasets, users... |
|
Models |
|
Datasets |
|
Spaces |
|
Posts |
|
Docs |
|
Enterprise |
|
Pricing |
|
|
|
|
|
|
|
|
|
beyoru |
|
/ |
|
MCQ-o1-1 |
|
|
|
like |
|
0 |
|
Text Generation |
|
Transformers |
|
PyTorch |
|
|
|
beyoru/Tin_hoc_mcq |
|
English |
|
Vietnamese |
|
qwen2 |
|
text-generation-inference |
|
trl |
|
sft |
|
conversational |
|
Inference Endpoints |
|
|
|
License: |
|
apache-2.0 |
|
Model card |
|
Files and versions |
|
Community |
|
Settings |
|
MCQ-o1-1/ |
|
README.md |
|
Metadata UI |
|
license |
|
|
|
|
|
datasets |
|
|
|
|
|
+ Add Datasets |
|
language |
|
|
|
|
|
|
|
+ Add Languages |
|
metrics |
|
|
|
+ Add Metrics |
|
base_model |
|
|
|
|
|
+ Add Base Model |
|
new_version |
|
|
|
+ Add New Version |
|
pipeline_tag |
|
|
|
|
|
Auto-detected |
|
library_name |
|
|
|
+ Add Library |
|
tags |
|
|
|
|
|
|
|
|
|
|
|
|
|
+ Add Tags |
|
Eval Results |
|
|
|
View doc |
|
|
|
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
|
48 |
|
49 |
|
50 |
|
51 |
|
52 |
|
53 |
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
|
59 |
|
60 |
|
61 |
|
62 |
|
⌄ |
|
⌄ |
|
⌄ |
|
⌄ |
|
⌄ |
|
⌄ |
|
⌄ |
|
⌄ |
|
⌄ |
|
--- |
|
base_model: |
|
- Qwen/Qwen2.5-3B-Instruct |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- qwen2 |
|
- trl |
|
- sft |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- vi |
|
datasets: |
|
- beyoru/Tin_hoc_mcq |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** beyoru |
|
- **License:** apache-2.0 |
|
|
|
# Usage |
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "beyoru/MCQ-3B-o1-1" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
messages = [ |
|
{"role": "system", "content": "Tạo một câu hỏi trắc nghiệm về"}, |
|
{"role": "user", "content": "<YOUR CONTEXT>"} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
do_sample=True |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
# Notes: |
|
- For small datasets with narrow content which the model has already done well on our domain, and doesn't want the model to forget the knowledge => Just need to focus on q,v. |
|
- Fine-tuned lora with rank = 8 and alpha = 16, epoch = 1, linear (optim) |
|
- DoRA |
|
|
|
Commit directly to the |
|
main |
|
branch |
|
Open as a pull request to the |
|
main |
|
branch |
|
Commit changes |
|
Update README.md |
|
Add an extended description... |
|
Upload images, audio, and videos by dragging in the text input, pasting, or clicking here. |
|
|