MCQ-qv-8 / README.md
beyoru's picture
Update README.md
9a397d6 verified
|
raw
history blame
2.51 kB
Hugging Face's logo
Hugging Face
Search models, datasets, users...
Models
Datasets
Spaces
Posts
Docs
Enterprise
Pricing
beyoru
/
MCQ-o1-1
like
0
Text Generation
Transformers
PyTorch
beyoru/Tin_hoc_mcq
English
Vietnamese
qwen2
text-generation-inference
trl
sft
conversational
Inference Endpoints
License:
apache-2.0
Model card
Files and versions
Community
Settings
MCQ-o1-1/
README.md
Metadata UI
license
datasets
+ Add Datasets
language
+ Add Languages
metrics
+ Add Metrics
base_model
+ Add Base Model
new_version
+ Add New Version
pipeline_tag
Auto-detected
library_name
+ Add Library
tags
+ Add Tags
Eval Results
View doc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
base_model:
- Qwen/Qwen2.5-3B-Instruct
tags:
- text-generation-inference
- transformers
- qwen2
- trl
- sft
license: apache-2.0
language:
- en
- vi
datasets:
- beyoru/Tin_hoc_mcq
---
# Uploaded model
- **Developed by:** beyoru
- **License:** apache-2.0
# Usage
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "beyoru/MCQ-3B-o1-1"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
{"role": "system", "content": "Tạo một câu hỏi trắc nghiệm về"},
{"role": "user", "content": "<YOUR CONTEXT>"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
do_sample=True
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
# Notes:
- For small datasets with narrow content which the model has already done well on our domain, and doesn't want the model to forget the knowledge => Just need to focus on q,v.
- Fine-tuned lora with rank = 8 and alpha = 16, epoch = 1, linear (optim)
- DoRA
Commit directly to the
main
branch
Open as a pull request to the
main
branch
Commit changes
Update README.md
Add an extended description...
Upload images, audio, and videos by dragging in the text input, pasting, or clicking here.