beyoru commited on
Commit
9a397d6
·
verified ·
1 Parent(s): b666e96

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +209 -5
README.md CHANGED
@@ -1,23 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- base_model: unsloth/Qwen2.5-3B-Instruct
 
3
  tags:
4
  - text-generation-inference
5
  - transformers
6
- - unsloth
7
  - qwen2
8
  - trl
9
  - sft
10
  license: apache-2.0
11
  language:
12
  - en
 
 
 
13
  ---
14
 
15
  # Uploaded model
16
 
17
  - **Developed by:** beyoru
18
  - **License:** apache-2.0
19
- - **Finetuned from model :** unsloth/Qwen2.5-3B-Instruct
20
 
21
- This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Hugging Face's logo
2
+ Hugging Face
3
+ Search models, datasets, users...
4
+ Models
5
+ Datasets
6
+ Spaces
7
+ Posts
8
+ Docs
9
+ Enterprise
10
+ Pricing
11
+
12
+
13
+
14
+
15
+ beyoru
16
+ /
17
+ MCQ-o1-1
18
+
19
+ like
20
+ 0
21
+ Text Generation
22
+ Transformers
23
+ PyTorch
24
+
25
+ beyoru/Tin_hoc_mcq
26
+ English
27
+ Vietnamese
28
+ qwen2
29
+ text-generation-inference
30
+ trl
31
+ sft
32
+ conversational
33
+ Inference Endpoints
34
+
35
+ License:
36
+ apache-2.0
37
+ Model card
38
+ Files and versions
39
+ Community
40
+ Settings
41
+ MCQ-o1-1/
42
+ README.md
43
+ Metadata UI
44
+ license
45
+
46
+
47
+ datasets
48
+
49
+
50
+ + Add Datasets
51
+ language
52
+
53
+
54
+
55
+ + Add Languages
56
+ metrics
57
+
58
+ + Add Metrics
59
+ base_model
60
+
61
+
62
+ + Add Base Model
63
+ new_version
64
+
65
+ + Add New Version
66
+ pipeline_tag
67
+
68
+
69
+ Auto-detected
70
+ library_name
71
+
72
+ + Add Library
73
+ tags
74
+
75
+
76
+
77
+
78
+
79
+
80
+ + Add Tags
81
+ Eval Results
82
+
83
+ View doc
84
+
85
+ 1
86
+ 2
87
+ 3
88
+ 4
89
+ 5
90
+ 6
91
+ 7
92
+ 8
93
+ 9
94
+ 10
95
+ 11
96
+ 12
97
+ 13
98
+ 14
99
+ 15
100
+ 16
101
+ 17
102
+ 18
103
+ 19
104
+ 20
105
+ 21
106
+ 22
107
+ 23
108
+ 24
109
+ 25
110
+ 26
111
+ 27
112
+ 28
113
+ 29
114
+ 30
115
+ 31
116
+ 32
117
+ 33
118
+ 34
119
+ 35
120
+ 36
121
+ 37
122
+ 38
123
+ 39
124
+ 40
125
+ 41
126
+ 42
127
+ 43
128
+ 44
129
+ 45
130
+ 46
131
+ 47
132
+ 48
133
+ 49
134
+ 50
135
+ 51
136
+ 52
137
+ 53
138
+ 54
139
+ 55
140
+ 56
141
+ 57
142
+ 58
143
+ 59
144
+ 60
145
+ 61
146
+ 62
147
+
148
+
149
+
150
+
151
+
152
+
153
+
154
+
155
+
156
  ---
157
+ base_model:
158
+ - Qwen/Qwen2.5-3B-Instruct
159
  tags:
160
  - text-generation-inference
161
  - transformers
 
162
  - qwen2
163
  - trl
164
  - sft
165
  license: apache-2.0
166
  language:
167
  - en
168
+ - vi
169
+ datasets:
170
+ - beyoru/Tin_hoc_mcq
171
  ---
172
 
173
  # Uploaded model
174
 
175
  - **Developed by:** beyoru
176
  - **License:** apache-2.0
 
177
 
178
+ # Usage
179
+ ```
180
+ from transformers import AutoModelForCausalLM, AutoTokenizer
181
+
182
+ model_name = "beyoru/MCQ-3B-o1-1"
183
+
184
+ model = AutoModelForCausalLM.from_pretrained(
185
+ model_name,
186
+ torch_dtype="auto",
187
+ device_map="auto"
188
+ )
189
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
190
+
191
+ messages = [
192
+ {"role": "system", "content": "Tạo một câu hỏi trắc nghiệm về"},
193
+ {"role": "user", "content": "<YOUR CONTEXT>"}
194
+ ]
195
+ text = tokenizer.apply_chat_template(
196
+ messages,
197
+ tokenize=False,
198
+ add_generation_prompt=True
199
+ )
200
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
201
+
202
+ generated_ids = model.generate(
203
+ **model_inputs,
204
+ do_sample=True
205
+ )
206
+ generated_ids = [
207
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
208
+ ]
209
+
210
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
211
+ ```
212
 
213
+ # Notes:
214
+ - For small datasets with narrow content which the model has already done well on our domain, and doesn't want the model to forget the knowledge => Just need to focus on q,v.
215
+ - Fine-tuned lora with rank = 8 and alpha = 16, epoch = 1, linear (optim)
216
+ - DoRA
217
+
218
+ Commit directly to the
219
+ main
220
+ branch
221
+ Open as a pull request to the
222
+ main
223
+ branch
224
+ Commit changes
225
+ Update README.md
226
+ Add an extended description...
227
+ Upload images, audio, and videos by dragging in the text input, pasting, or clicking here.