bdpc's picture
Saving best model to hub
64fad3c
|
raw
history blame
2.85 kB
metadata
license: apache-2.0
base_model: jordyvl/vit-base_rvl-cdip
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base_rvl_cdip-N1K_AURC_256
    results: []

vit-base_rvl_cdip-N1K_AURC_256

This model is a fine-tuned version of jordyvl/vit-base_rvl-cdip on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2459
  • Accuracy: 0.8968
  • Brier Loss: 0.1720
  • Nll: 0.9246
  • F1 Micro: 0.8968
  • F1 Macro: 0.8967
  • Ece: 0.0709
  • Aurc: 0.0191

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 63 0.1138 0.8922 0.1604 1.1695 0.8922 0.8926 0.0478 0.0170
No log 2.0 126 0.1565 0.8952 0.1607 1.1000 0.8952 0.8952 0.0532 0.0176
No log 3.0 189 0.1722 0.8972 0.1620 1.0250 0.8972 0.8973 0.0584 0.0175
No log 4.0 252 0.2006 0.897 0.1642 0.9921 0.897 0.8969 0.0615 0.0181
No log 5.0 315 0.2142 0.8988 0.1668 0.9670 0.8988 0.8986 0.0640 0.0183
No log 6.0 378 0.2207 0.8975 0.1688 0.9482 0.8975 0.8975 0.0674 0.0186
No log 7.0 441 0.2310 0.897 0.1700 0.9397 0.897 0.8969 0.0697 0.0188
0.008 8.0 504 0.2401 0.8968 0.1714 0.9268 0.8968 0.8966 0.0705 0.0190
0.008 9.0 567 0.2441 0.8975 0.1719 0.9262 0.8975 0.8974 0.0709 0.0191
0.008 10.0 630 0.2459 0.8968 0.1720 0.9246 0.8968 0.8967 0.0709 0.0191

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.2.0.dev20231002
  • Datasets 2.7.1
  • Tokenizers 0.13.3