vit-base_rvl_cdip-N1K_AURC_256

This model is a fine-tuned version of jordyvl/vit-base_rvl-cdip on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2459
  • Accuracy: 0.8968
  • Brier Loss: 0.1720
  • Nll: 0.9246
  • F1 Micro: 0.8968
  • F1 Macro: 0.8967
  • Ece: 0.0709
  • Aurc: 0.0191

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 63 0.1138 0.8922 0.1604 1.1695 0.8922 0.8926 0.0478 0.0170
No log 2.0 126 0.1565 0.8952 0.1607 1.1000 0.8952 0.8952 0.0532 0.0176
No log 3.0 189 0.1722 0.8972 0.1620 1.0250 0.8972 0.8973 0.0584 0.0175
No log 4.0 252 0.2006 0.897 0.1642 0.9921 0.897 0.8969 0.0615 0.0181
No log 5.0 315 0.2142 0.8988 0.1668 0.9670 0.8988 0.8986 0.0640 0.0183
No log 6.0 378 0.2207 0.8975 0.1688 0.9482 0.8975 0.8975 0.0674 0.0186
No log 7.0 441 0.2310 0.897 0.1700 0.9397 0.897 0.8969 0.0697 0.0188
0.008 8.0 504 0.2401 0.8968 0.1714 0.9268 0.8968 0.8966 0.0705 0.0190
0.008 9.0 567 0.2441 0.8975 0.1719 0.9262 0.8975 0.8974 0.0709 0.0191
0.008 10.0 630 0.2459 0.8968 0.1720 0.9246 0.8968 0.8967 0.0709 0.0191

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.2.0.dev20231002
  • Datasets 2.7.1
  • Tokenizers 0.13.3
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for bdpc/vit-base_rvl_cdip-N1K_AURC_256

Finetuned
(25)
this model